Cascaded Internal Phase Control of All-Fiber Coherent Fiber Laser Array

Fiber lasers have been widely used in medical care, industries, and scientific research in recent years. The coherent beam combining of fiber lasers with an internal phase control has drawn many interests at present, which is a promising method to achieve a large-scale optical phased array. In this...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in physics Vol. 10
Main Authors Chang, Hongxiang, Su, Rongtao, Zhang, Yuqiu, Jiang, Min, Chang, Qi, Long, Jinhu, Ma, Pengfei, Ma, Yanxing, Zhou, Pu
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 08.06.2022
Subjects
Online AccessGet full text
ISSN2296-424X
2296-424X
DOI10.3389/fphy.2022.913195

Cover

Abstract Fiber lasers have been widely used in medical care, industries, and scientific research in recent years. The coherent beam combining of fiber lasers with an internal phase control has drawn many interests at present, which is a promising method to achieve a large-scale optical phased array. In this article, we presented a cascaded internal phase control method to expand the internal all-fiber phased array. The method distributes the phase measurements to a series of internal Mach–Zender interferometers. Then, the phase of each loop is locked by the gradient descent algorithm. The electric control method to compensate π -ambiguity between channels is proposed. Finally, the phases of the three fiber beams are locked experimentally to verify the feasibility of the method, and the residue phase error is better than λ/22.
AbstractList Fiber lasers have been widely used in medical care, industries, and scientific research in recent years. The coherent beam combining of fiber lasers with an internal phase control has drawn many interests at present, which is a promising method to achieve a large-scale optical phased array. In this article, we presented a cascaded internal phase control method to expand the internal all-fiber phased array. The method distributes the phase measurements to a series of internal Mach–Zender interferometers. Then, the phase of each loop is locked by the gradient descent algorithm. The electric control method to compensate π-ambiguity between channels is proposed. Finally, the phases of the three fiber beams are locked experimentally to verify the feasibility of the method, and the residue phase error is better than λ/22.
Fiber lasers have been widely used in medical care, industries, and scientific research in recent years. The coherent beam combining of fiber lasers with an internal phase control has drawn many interests at present, which is a promising method to achieve a large-scale optical phased array. In this article, we presented a cascaded internal phase control method to expand the internal all-fiber phased array. The method distributes the phase measurements to a series of internal Mach–Zender interferometers. Then, the phase of each loop is locked by the gradient descent algorithm. The electric control method to compensate π -ambiguity between channels is proposed. Finally, the phases of the three fiber beams are locked experimentally to verify the feasibility of the method, and the residue phase error is better than λ/22.
Author Su, Rongtao
Long, Jinhu
Ma, Pengfei
Chang, Qi
Ma, Yanxing
Jiang, Min
Zhang, Yuqiu
Chang, Hongxiang
Zhou, Pu
Author_xml – sequence: 1
  givenname: Hongxiang
  surname: Chang
  fullname: Chang, Hongxiang
– sequence: 2
  givenname: Rongtao
  surname: Su
  fullname: Su, Rongtao
– sequence: 3
  givenname: Yuqiu
  surname: Zhang
  fullname: Zhang, Yuqiu
– sequence: 4
  givenname: Min
  surname: Jiang
  fullname: Jiang, Min
– sequence: 5
  givenname: Qi
  surname: Chang
  fullname: Chang, Qi
– sequence: 6
  givenname: Jinhu
  surname: Long
  fullname: Long, Jinhu
– sequence: 7
  givenname: Pengfei
  surname: Ma
  fullname: Ma, Pengfei
– sequence: 8
  givenname: Yanxing
  surname: Ma
  fullname: Ma, Yanxing
– sequence: 9
  givenname: Pu
  surname: Zhou
  fullname: Zhou, Pu
BookMark eNqNkMtKw0AUQAepYK3du8wPpM4jmcwsS7C1UNBFF-6GOy-bMiZlEpH8vYkREUFwdede5pzFuUazuqkdQrcErxgT8s6fj_2KYkpXkjAi8ws0p1TyNKPZ8-zH-wot2_aEMSY0l4Jmc7QtoTVgnU12dediDSF5OkLrkrKpu9iEpPHJOoR0U2kXh-PRRVd3ybTuh48xWccI_Q269BBat_yaC3TY3B_Kh3T_uN2V631qWE66FGQOFHTuveVQaCuwMVLwQhjNdcGF8UJrzXHhMsgoeLAMqM2J8aQwhLEF2k1a28BJnWP1CrFXDVTq89DEFwWxq0xwSjOSeSqoIXaQURDaSIpzV1jCpbF0cJHJ9VafoX-HEL6FBKuxqxq7qrGrmroODJ4YE5u2jc7_B-G_EFN10FVjX6jC3-AHJ9WP6Q
CitedBy_id crossref_primary_10_3788_AOS231395
crossref_primary_10_1088_1674_1056_ad47af
Cites_doi 10.1038/nphoton.2013.75
10.1364/OE.416499
10.1109/JSTQE.2007.897173
10.1364/OE.27.024223
10.1364/AO.422337
10.1364/OE.447869
10.1364/AO.435858
10.1364/OL.36.004455
10.1364/AO.51.001724
10.1038/nphoton.2013.273
10.1016/j.actaastro.2018.08.035
10.3788/COL202018.041402
10.1364/JOSAA.27.00A106
10.1186/s43074-020-00008-8
10.1364/OL.22.000907
10.1364/OE.26.012072
10.1364/OE.23.012407
10.1364/OL.35.001542
10.1017/hpl.2019.46
10.1364/OL.44.004554
10.1364/JOSAB.34.0000A7
10.1016/j.actaastro.2021.11.032
10.1364/OE.394031
10.1109/JSTQE.2014.2321279
10.1364/JOSAB.414593
10.1364/PRJ.409788
10.1364/OE.419232
10.1364/OE.21.025045
10.1364/OL.36.000951
10.1364/OE.388381
10.1364/OL.38.001137
10.1134/S1024856019060095
10.1364/OE.24.013467
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.3389/fphy.2022.913195
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2296-424X
ExternalDocumentID oai_doaj_org_article_b314f282c1de4a2a8bc9205e7d169cd2
10.3389/fphy.2022.913195
10_3389_fphy_2022_913195
GroupedDBID 5VS
9T4
AAFWJ
AAYXX
ACGFS
ADBBV
ADMLS
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
KQ8
M~E
OK1
ADTOC
ARCSS
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c351t-a95a2ab5ffd6a7bd80cc98678cb6b768cf8bbb607e4a42afad3a2d51cf17c133
IEDL.DBID DOA
ISSN 2296-424X
IngestDate Fri Oct 03 12:43:10 EDT 2025
Tue Aug 19 18:46:50 EDT 2025
Wed Oct 01 01:47:01 EDT 2025
Thu Apr 24 23:07:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-a95a2ab5ffd6a7bd80cc98678cb6b768cf8bbb607e4a42afad3a2d51cf17c133
OpenAccessLink https://doaj.org/article/b314f282c1de4a2a8bc9205e7d169cd2
ParticipantIDs doaj_primary_oai_doaj_org_article_b314f282c1de4a2a8bc9205e7d169cd2
unpaywall_primary_10_3389_fphy_2022_913195
crossref_primary_10_3389_fphy_2022_913195
crossref_citationtrail_10_3389_fphy_2022_913195
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-08
PublicationDateYYYYMMDD 2022-06-08
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-08
  day: 08
PublicationDecade 2020
PublicationTitle Frontiers in physics
PublicationYear 2022
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Chang (B33) 2022; 30
Ma (B12) 2011; 36
Worden (B8) 2021; 60
Liu (B17) 2020; 18
Vorontsov (B20) 1997; 22
Geng (B21) 2013; 21
Duplay (B5) 2022; 192
Jauregui (B2) 2013; 7
Ahn (B14) 2015; 23
Goodno (B10) 2010; 35
Roberts (B31) 2016; 24
Bowman (B27) 2013; 38
Stihler (B3) 2020; 1
Parkin (B6) 2018; 152
Tünnermann (B18) 2019; 27
Klenke (B15) 2018; 26
Liu (B4) 2017; 34
Vorontsov (B29) 2010; 27
Kolosov (B30) 2019; 32
Chang (B25) 2020; 8
Mourou (B9) 2013; 7
Hettel (B28) 2021; 60
Du (B24) 2021; 29
Bandutunga (B7) 2021; 38
Fsaifes (B11) 2020; 28
Montoya (B23) 2012; 51
Sibley (B32) 2020; 28
Shay (B13) 2007; 13
Weyrauch (B22) 2011; 36
Du (B19) 2019; 44
Zervas (B1) 2014; 20
Shpakovych (B26) 2021; 29
Hou (B16) 2019; 7
References_xml – volume: 7
  start-page: 258
  year: 2013
  ident: B9
  article-title: The Future Is Fibre Accelerators
  publication-title: Nat Photon
  doi: 10.1038/nphoton.2013.75
– volume: 29
  start-page: 5407
  year: 2021
  ident: B24
  article-title: 81-Beam Coherent Combination Using a Programmable Array Generator
  publication-title: Opt Express
  doi: 10.1364/OE.416499
– volume: 13
  start-page: 480
  year: 2007
  ident: B13
  article-title: Self-Synchronous and Self-Referenced Coherent Beam Combination for Large Optical Arrays
  publication-title: IEEE J Select Top Quan Electron.
  doi: 10.1109/JSTQE.2007.897173
– volume: 27
  start-page: 24223
  year: 2019
  ident: B18
  article-title: Deep Reinforcement Learning for Coherent Beam Combining Applications
  publication-title: Opt Express
  doi: 10.1364/OE.27.024223
– volume: 60
  start-page: 5117
  year: 2021
  ident: B28
  article-title: Beam Propagation Simulation of Phased Laser Arrays with Atmospheric Perturbations
  publication-title: Appl Opt
  doi: 10.1364/AO.422337
– volume: 30
  start-page: 1089
  year: 2022
  ident: B33
  article-title: Distributed Active Phase-Locking of an All-Fiber Structured Laser Array by a Stochastic Parallel Gradient Descent (Spgd) Algorithm
  publication-title: Opt Express
  doi: 10.1364/OE.447869
– volume: 60
  start-page: H20
  year: 2021
  ident: B8
  article-title: Progress on the Starshot Laser Propulsion System
  publication-title: Appl Opt
  doi: 10.1364/AO.435858
– volume: 36
  start-page: 4455
  year: 2011
  ident: B22
  article-title: Experimental Demonstration of Coherent Beam Combining over a 7 Km Propagation Path
  publication-title: Opt Lett
  doi: 10.1364/OL.36.004455
– volume: 51
  start-page: 1724
  year: 2012
  ident: B23
  article-title: External Cavity Beam Combining of 21 Semiconductor Lasers Using Spgd
  publication-title: Appl Opt
  doi: 10.1364/AO.51.001724
– volume: 7
  start-page: 861
  year: 2013
  ident: B2
  article-title: High-Power Fibre Lasers
  publication-title: Nat Photon
  doi: 10.1038/nphoton.2013.273
– volume: 152
  start-page: 370
  year: 2018
  ident: B6
  article-title: The Breakthrough Starshot System Model
  publication-title: Acta Astronautica
  doi: 10.1016/j.actaastro.2018.08.035
– volume: 18
  start-page: 041402
  year: 2020
  ident: B17
  article-title: Coherent Beam Combination Far-Field Measuring Method Based on Amplitude Modulation and Deep Learning
  publication-title: Chin Opt Lett
  doi: 10.3788/COL202018.041402
– volume: 27
  start-page: A106
  year: 2010
  ident: B29
  article-title: Obscuration-Free Pupil-Plane Phase Locking of a Coherent Array of Fiber Collimators
  publication-title: J Opt Soc Am A
  doi: 10.1364/JOSAA.27.00A106
– volume: 1
  start-page: 8
  year: 2020
  ident: B3
  article-title: Intensity Noise as a Driver for Transverse Mode Instability in Fiber Amplifiers
  publication-title: PhotoniX
  doi: 10.1186/s43074-020-00008-8
– volume: 22
  start-page: 907
  year: 1997
  ident: B20
  article-title: Adaptive Phase-Distortion Correction Based on Parallel Gradient-Descent Optimization
  publication-title: Opt Lett
  doi: 10.1364/OL.22.000907
– volume: 26
  start-page: 12072
  year: 2018
  ident: B15
  article-title: Sequential Phase Locking Scheme for a Filled Aperture Intensity Coherent Combination of Beam Arrays
  publication-title: Opt Express
  doi: 10.1364/OE.26.012072
– volume: 23
  start-page: 12407
  year: 2015
  ident: B14
  article-title: Cascaded Multi-Dithering Theory for Coherent Beam Combining of Multiplexed Beam Elements
  publication-title: Opt Express
  doi: 10.1364/OE.23.012407
– volume: 35
  start-page: 1542
  year: 2010
  ident: B10
  article-title: Active Phase and Polarization Locking of a 14 kW Fiber Amplifier
  publication-title: Opt Lett
  doi: 10.1364/OL.35.001542
– volume: 7
  start-page: e59
  year: 2019
  ident: B16
  article-title: Deep-Learning-Based Phase Control Method for Tiled Aperture Coherent Beam Combining Systems
  publication-title: High Pow Laser Sci Eng
  doi: 10.1017/hpl.2019.46
– volume: 44
  start-page: 4554
  year: 2019
  ident: B19
  article-title: Deterministic Stabilization of Eight-Way 2d Diffractive Beam Combining Using Pattern Recognition
  publication-title: Opt Lett
  doi: 10.1364/OL.44.004554
– volume: 34
  start-page: A7
  year: 2017
  ident: B4
  article-title: High-Power Coherent Beam Polarization Combination of Fiber Lasers: Progress and Prospect [Invited]
  publication-title: J Opt Soc Am B
  doi: 10.1364/JOSAB.34.0000A7
– volume: 192
  start-page: 143
  year: 2022
  ident: B5
  article-title: Design of a Rapid Transit to Mars Mission Using Laser-Thermal Propulsion
  publication-title: Acta Astronautica
  doi: 10.1016/j.actaastro.2021.11.032
– volume: 28
  start-page: 20152
  year: 2020
  ident: B11
  article-title: Coherent Beam Combining of 61 Femtosecond Fiber Amplifiers
  publication-title: Opt Express
  doi: 10.1364/OE.394031
– volume: 20
  start-page: 219
  year: 2014
  ident: B1
  article-title: High Power Fiber Lasers: A Review
  publication-title: IEEE J Select Top Quan Electron.
  doi: 10.1109/JSTQE.2014.2321279
– volume: 38
  start-page: 1477
  year: 2021
  ident: B7
  article-title: Photonic Solution to Phase Sensing and Control for Light-Based Interstellar Propulsion
  publication-title: J Opt Soc Am B
  doi: 10.1364/JOSAB.414593
– volume: 8
  start-page: 1943
  year: 2020
  ident: B25
  article-title: First Experimental Demonstration of Coherent Beam Combining of More Than 100 Beams
  publication-title: Photon Res
  doi: 10.1364/PRJ.409788
– volume: 29
  start-page: 12307
  year: 2021
  ident: B26
  article-title: Experimental Phase Control of a 100 Laser Beam Array with Quasi-Reinforcement Learning of a Neural Network in an Error Reduction Loop
  publication-title: Opt Express
  doi: 10.1364/OE.419232
– volume: 21
  start-page: 25045
  year: 2013
  ident: B21
  article-title: Experimental Demonstration of Using Divergence Cost-Function in Spgd Algorithm for Coherent Beam Combining with Tip/Tilt Control
  publication-title: Opt Express
  doi: 10.1364/OE.21.025045
– volume: 36
  start-page: 951
  year: 2011
  ident: B12
  article-title: Coherent Beam Combination of 108 kW Fiber Amplifier Array Using Single Frequency Dithering Technique
  publication-title: Opt Lett
  doi: 10.1364/OL.36.000951
– volume: 28
  start-page: 10400
  year: 2020
  ident: B32
  article-title: Crosstalk Reduction for Multi-Channel Optical Phase Metrology
  publication-title: Opt Express
  doi: 10.1364/OE.388381
– volume: 38
  start-page: 1137
  year: 2013
  ident: B27
  article-title: Internally Sensed Optical Phased Array
  publication-title: Opt Lett
  doi: 10.1364/OL.38.001137
– volume: 32
  start-page: 716
  year: 2019
  ident: B30
  article-title: Formation of the Feedback Loop for Phase Control of a Fiber Laser Array
  publication-title: Atmos Ocean Opt
  doi: 10.1134/S1024856019060095
– volume: 24
  start-page: 13467
  year: 2016
  ident: B31
  article-title: High Power Compatible Internally Sensed Optical Phased Array
  publication-title: Opt Express
  doi: 10.1364/OE.24.013467
SSID ssj0001259824
Score 2.2090154
Snippet Fiber lasers have been widely used in medical care, industries, and scientific research in recent years. The coherent beam combining of fiber lasers with an...
SourceID doaj
unpaywall
crossref
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
SubjectTerms coherent beam combining
fiber laser array
gradient descent algorithm
internal phase-locking
laser field manipulation
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED-6lLHuYd1HS7N1RQ972cBJpFiy9ZiFZqVspQ8tdE9GJ1ls1LghH5T2r-9d7IRtjI2xR5mTJd3J3J380-8A3smovPFDBrVHk6TauyTHmCcuxGjTUjkd-Lzjy5k5uUxPr_QaTThvYZWRr-5zIejvdcMU3ELE-AunjMr2I82AUjulelbSFtL9aYiPYNtoCsc7sH15dj76ykXllKXhVXrV_J78bdef3NGKtf8pPFnWU3d366rqB1cz2QVcT7JBmFz3lgvs-ftf-Bv_axXP4VkbiIpRI_8Ctsr6JTxeAUL9_BV8Grs5Q-eDaM8MK3H-jTyeGDfYdnETxaiqkgkjTgRf8mCaJ9E0P5PgjF49c3d7cDE5vhifJG3RhYQsJheJs9ophzrGYFyGIR94b3NyaR4NUm7iY46IZpCVqUuViy4MnQpa-igzTwnvPnTqm7o8AJGjisrgADnppKgDQ7ASMTgbMyyV7EJ_rfrCt4TkXBejKigxYQ0VrKGCNVQ0GurC-02PaUPG8QfZj2zNjRzTaK8ekC2K1hYFDmUaKen0MtBylMvRWzXQZRaksT6oLnzY7IW_jvj6X4TfwA63VqCz_BA6i9myfEvhzQKP2g38AK-5-Q8
  priority: 102
  providerName: Unpaywall
Title Cascaded Internal Phase Control of All-Fiber Coherent Fiber Laser Array
URI https://www.frontiersin.org/articles/10.3389/fphy.2022.913195/pdf
https://doaj.org/article/b314f282c1de4a2a8bc9205e7d169cd2
UnpaywallVersion publishedVersion
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2296-424X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001259824
  issn: 2296-424X
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2296-424X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001259824
  issn: 2296-424X
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2296-424X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001259824
  issn: 2296-424X
  databaseCode: ADMLS
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2296-424X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001259824
  issn: 2296-424X
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8MwGA4yEfUgfuL8GDl4Uahrsn4kxzqdQ1QEFeap5E0aPJRtzIns3_umqWNe3MVjSpqkzxv65kmfPiHkjFmuE91xonabBFGsVSDAikAZa2VUcBUbt9_x8Jj0X6O7QTxYOOrLacK8PbAHrg0dFlnkBZqZIlJcCdCSh3GRGpZIbaq3byjkApnyuyvOmC7y3yWRhcm2xVEjHeT8UjKcdvGvPFTZ9W-S9c_hWM2-VFku5JjeNtmqF4c084PaISvFcJesVSJN_bFHbrvqw8nZDa338Ur69I5ZiHa93pyOLM3KMug5FQh1P1446yXqi_dYcYJNT9Rsn7z0bl66_aA-CCFAFNk0UDLGJ4fYWpOoFIwItZYC04yGBJAvaCsAIAlTRCjiyirTUdzETFuWaiShB6QxHA2LQ0IFcMsTCMERQVwJgDGSARglbQoFZ03S_kEl17VJuDurosyRLDgcc4dj7nDMPY5Ncj6_Y-wNMv6oe-WAntdz1tbVBQx4Xgc8XxbwJrmYh2lpj0f_0eMx2XBNVgIxcUIa08lncYpLkSm0yGp2_XD_3KpmH5ZeH5-yt29vGt-G
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED-6lLHuYd1HS7N1RQ972cBJpFiy9ZiFZqVspQ8tdE9GJ1ls1LghH5T2r-9d7IRtjI2xR5mTJd3J3J380-8A3smovPFDBrVHk6TauyTHmCcuxGjTUjkd-Lzjy5k5uUxPr_QaTThvYZWRr-5zIejvdcMU3ELE-AunjMr2I82AUjulelbSFtL9aYiPYNtoCsc7sH15dj76ykXllKXhVXrV_J78bdef3NGKtf8pPFnWU3d366rqB1cz2QVcT7JBmFz3lgvs-ftf-Bv_axXP4VkbiIpRI_8Ctsr6JTxeAUL9_BV8Grs5Q-eDaM8MK3H-jTyeGDfYdnETxaiqkgkjTgRf8mCaJ9E0P5PgjF49c3d7cDE5vhifJG3RhYQsJheJs9ophzrGYFyGIR94b3NyaR4NUm7iY46IZpCVqUuViy4MnQpa-igzTwnvPnTqm7o8AJGjisrgADnppKgDQ7ASMTgbMyyV7EJ_rfrCt4TkXBejKigxYQ0VrKGCNVQ0GurC-02PaUPG8QfZj2zNjRzTaK8ekC2K1hYFDmUaKen0MtBylMvRWzXQZRaksT6oLnzY7IW_jvj6X4TfwA63VqCz_BA6i9myfEvhzQKP2g38AK-5-Q8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cascaded+Internal+Phase+Control+of+All-Fiber+Coherent+Fiber+Laser+Array&rft.jtitle=Frontiers+in+physics&rft.au=Hongxiang+Chang&rft.au=Rongtao+Su&rft.au=Yuqiu+Zhang&rft.au=Min+Jiang&rft.date=2022-06-08&rft.pub=Frontiers+Media+S.A&rft.eissn=2296-424X&rft.volume=10&rft_id=info:doi/10.3389%2Ffphy.2022.913195&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b314f282c1de4a2a8bc9205e7d169cd2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-424X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-424X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-424X&client=summon