Computing Primitive of Fully VCSEL-Based All-Optical Spiking Neural Network for Supervised Learning and Pattern Classification

We propose computing primitive for an all-optical spiking neural network (SNN) based on vertical-cavity surface-emitting lasers (VCSELs) for supervised learning by using biologically plausible mechanisms. The spike-timing-dependent plasticity (STDP) model was established based on the dynamics of the...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 32; no. 6; pp. 2494 - 2505
Main Authors Xiang, Shuiying, Ren, Zhenxing, Song, Ziwei, Zhang, Yahui, Guo, Xingxing, Han, Genquan, Hao, Yue
Format Journal Article
LanguageEnglish
Published United States IEEE 01.06.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2162-237X
2162-2388
2162-2388
DOI10.1109/TNNLS.2020.3006263

Cover

Abstract We propose computing primitive for an all-optical spiking neural network (SNN) based on vertical-cavity surface-emitting lasers (VCSELs) for supervised learning by using biologically plausible mechanisms. The spike-timing-dependent plasticity (STDP) model was established based on the dynamics of the vertical-cavity semiconductor optical amplifier (VCSOA) subject to dual-optical pulse injection. The neuron-synapse self-consistent unified model of the all-optical SNN was developed, which enables reproducing the essential neuron-like dynamics and STDP function. Optical character numbers are trained and tested by the proposed fully VCSEL-based all-optical SNN. Simulation results show that the proposed all-optical SNN is capable of recognizing ten numbers by a supervised learning algorithm, in which the input and output patterns as well as the teacher signals of the all-optical SNN are represented by spatiotemporal fashions. Moreover, the lateral inhibition is not required in our proposed architecture, which is friendly to the hardware implementation. The system-level unified model enables architecture-algorithm codesigns and optimization of all-optical SNN. To the best of our knowledge, the computing primitive of an all-optical SNN based on VCSELs for supervised learning has not yet been reported, which paves the way toward fully VCSEL-based large-scale photonic neuromorphic systems with low power consumption.
AbstractList We propose computing primitive for an all-optical spiking neural network (SNN) based on vertical-cavity surface-emitting lasers (VCSELs) for supervised learning by using biologically plausible mechanisms. The spike-timing-dependent plasticity (STDP) model was established based on the dynamics of the vertical-cavity semiconductor optical amplifier (VCSOA) subject to dual-optical pulse injection. The neuron-synapse self-consistent unified model of the all-optical SNN was developed, which enables reproducing the essential neuron-like dynamics and STDP function. Optical character numbers are trained and tested by the proposed fully VCSEL-based all-optical SNN. Simulation results show that the proposed all-optical SNN is capable of recognizing ten numbers by a supervised learning algorithm, in which the input and output patterns as well as the teacher signals of the all-optical SNN are represented by spatiotemporal fashions. Moreover, the lateral inhibition is not required in our proposed architecture, which is friendly to the hardware implementation. The system-level unified model enables architecture-algorithm codesigns and optimization of all-optical SNN. To the best of our knowledge, the computing primitive of an all-optical SNN based on VCSELs for supervised learning has not yet been reported, which paves the way toward fully VCSEL-based large-scale photonic neuromorphic systems with low power consumption.
We propose computing primitive for an all-optical spiking neural network (SNN) based on vertical-cavity surface-emitting lasers (VCSELs) for supervised learning by using biologically plausible mechanisms. The spike-timing-dependent plasticity (STDP) model was established based on the dynamics of the vertical-cavity semiconductor optical amplifier (VCSOA) subject to dual-optical pulse injection. The neuron-synapse self-consistent unified model of the all-optical SNN was developed, which enables reproducing the essential neuron-like dynamics and STDP function. Optical character numbers are trained and tested by the proposed fully VCSEL-based all-optical SNN. Simulation results show that the proposed all-optical SNN is capable of recognizing ten numbers by a supervised learning algorithm, in which the input and output patterns as well as the teacher signals of the all-optical SNN are represented by spatiotemporal fashions. Moreover, the lateral inhibition is not required in our proposed architecture, which is friendly to the hardware implementation. The system-level unified model enables architecture-algorithm codesigns and optimization of all-optical SNN. To the best of our knowledge, the computing primitive of an all-optical SNN based on VCSELs for supervised learning has not yet been reported, which paves the way toward fully VCSEL-based large-scale photonic neuromorphic systems with low power consumption.We propose computing primitive for an all-optical spiking neural network (SNN) based on vertical-cavity surface-emitting lasers (VCSELs) for supervised learning by using biologically plausible mechanisms. The spike-timing-dependent plasticity (STDP) model was established based on the dynamics of the vertical-cavity semiconductor optical amplifier (VCSOA) subject to dual-optical pulse injection. The neuron-synapse self-consistent unified model of the all-optical SNN was developed, which enables reproducing the essential neuron-like dynamics and STDP function. Optical character numbers are trained and tested by the proposed fully VCSEL-based all-optical SNN. Simulation results show that the proposed all-optical SNN is capable of recognizing ten numbers by a supervised learning algorithm, in which the input and output patterns as well as the teacher signals of the all-optical SNN are represented by spatiotemporal fashions. Moreover, the lateral inhibition is not required in our proposed architecture, which is friendly to the hardware implementation. The system-level unified model enables architecture-algorithm codesigns and optimization of all-optical SNN. To the best of our knowledge, the computing primitive of an all-optical SNN based on VCSELs for supervised learning has not yet been reported, which paves the way toward fully VCSEL-based large-scale photonic neuromorphic systems with low power consumption.
Author Ren, Zhenxing
Song, Ziwei
Han, Genquan
Guo, Xingxing
Zhang, Yahui
Hao, Yue
Xiang, Shuiying
Author_xml – sequence: 1
  givenname: Shuiying
  orcidid: 0000-0002-1698-2083
  surname: Xiang
  fullname: Xiang, Shuiying
  email: syxiang@xidian.edu.cn
  organization: State Key Laboratory of Integrated Services Network, Xidian University, Xi'an, China
– sequence: 2
  givenname: Zhenxing
  surname: Ren
  fullname: Ren, Zhenxing
  organization: State Key Laboratory of Integrated Services Network, Xidian University, Xi'an, China
– sequence: 3
  givenname: Ziwei
  surname: Song
  fullname: Song, Ziwei
  organization: State Key Laboratory of Integrated Services Network, Xidian University, Xi'an, China
– sequence: 4
  givenname: Yahui
  surname: Zhang
  fullname: Zhang, Yahui
  organization: State Key Laboratory of Integrated Services Network, Xidian University, Xi'an, China
– sequence: 5
  givenname: Xingxing
  surname: Guo
  fullname: Guo, Xingxing
  organization: State Key Laboratory of Integrated Services Network, Xidian University, Xi'an, China
– sequence: 6
  givenname: Genquan
  surname: Han
  fullname: Han, Genquan
  organization: State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an, China
– sequence: 7
  givenname: Yue
  surname: Hao
  fullname: Hao, Yue
  organization: State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32673197$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAURi1UREvpC4CELLFhk8H_ySxL1AJSNK00BbGzPMkNcuuxU9sp6oZnJ-kMs-gCb2xL51xb3_caHfngAaG3lCwoJctPN6tVs14wwsiCE6KY4i_QCaOKFYxX1dHhXP48Rmcp3ZJpKSKVWL5Cx5ypktNleYL-1GE7jNn6X_g62q3N9gFw6PHl6Nwj_lGvL5ris0nQ4XPniqsh29Y4vB7s3aysYIzTdQX5d4h3uA8Rr8cB4oOdjQZM9DNmfIevTc4QPa6dScn205hsg3-DXvbGJTjb76fo--XFTf21aK6-fKvPm6LlkubCCMaF2Eheqa5SrewEULbhZdW3phNdZXjHZE-AlVwyWaq2LHtJFVWtoASI5Kfo427uEMP9CCnrrU0tOGc8hDFpJpgkhAtJJvTDM_Q2jNFPv9NMckU4YXym3u-pcbOFTg9TeCY-6n_JTgDbAW0MKUXoDwglem5QPzWo5wb1vsFJqp5Jrc1PQeVorPu_-m6nWgA4vLWkgglS8r9Vs6dr
CODEN ITNNAL
CitedBy_id crossref_primary_10_3390_photonics9020120
crossref_primary_10_1007_s11071_024_09525_8
crossref_primary_10_1109_JLT_2024_3383719
crossref_primary_10_1364_PRJ_471950
crossref_primary_10_1007_s11432_023_3810_9
crossref_primary_10_1364_OE_479077
crossref_primary_10_1364_PRJ_499767
crossref_primary_10_1109_JSTQE_2022_3218950
crossref_primary_10_1364_OPTICA_468347
crossref_primary_10_3390_photonics9040217
crossref_primary_10_1007_s11432_020_3040_1
crossref_primary_10_1364_OE_471189
crossref_primary_10_1002_lpor_202300424
crossref_primary_10_1364_OL_471943
crossref_primary_10_1016_j_eng_2021_06_021
crossref_primary_10_1364_OE_497218
crossref_primary_10_1002_lpor_202400482
crossref_primary_10_1364_OE_470857
crossref_primary_10_1364_OE_491910
crossref_primary_10_1088_1402_4896_ac35bf
crossref_primary_10_34133_icomputing_0032
crossref_primary_10_1364_OE_559380
crossref_primary_10_1364_OME_450926
crossref_primary_10_1038_s41377_024_01590_3
crossref_primary_10_1364_OE_487047
crossref_primary_10_1364_OE_464661
crossref_primary_10_1007_s11432_022_3699_2
crossref_primary_10_1088_1612_202X_acfd92
crossref_primary_10_1007_s00340_023_08146_0
crossref_primary_10_1109_JLT_2024_3437420
crossref_primary_10_1109_JPHOT_2021_3115598
crossref_primary_10_1515_nanoph_2022_0362
crossref_primary_10_1109_JSTQE_2023_3240248
crossref_primary_10_29026_oes_2023_230021
crossref_primary_10_3390_life13051148
crossref_primary_10_1364_OE_468554
crossref_primary_10_1364_OL_543987
crossref_primary_10_7498_aps_74_20241659
crossref_primary_10_1063_5_0048674
crossref_primary_10_1364_OE_403287
crossref_primary_10_1364_AO_441907
crossref_primary_10_1016_j_optcom_2023_130207
crossref_primary_10_1109_TNNLS_2023_3278265
crossref_primary_10_1109_JLT_2022_3225099
crossref_primary_10_1364_OE_432956
crossref_primary_10_1016_j_optcom_2023_129806
crossref_primary_10_1109_ACCESS_2024_3434587
crossref_primary_10_3390_photonics8090363
crossref_primary_10_1364_PRJ_437798
crossref_primary_10_1109_JLT_2023_3287647
crossref_primary_10_1364_OE_465653
crossref_primary_10_1007_s11432_021_3235_7
crossref_primary_10_1016_j_optlastec_2024_111941
crossref_primary_10_1364_OE_539339
crossref_primary_10_1109_JLT_2022_3146157
crossref_primary_10_1364_PRJ_403319
crossref_primary_10_1109_JPHOT_2022_3180675
crossref_primary_10_3390_electronics11132097
crossref_primary_10_1364_PRJ_507178
crossref_primary_10_29026_oea_2023_230140
crossref_primary_10_1109_JLT_2024_3517145
crossref_primary_10_1364_OL_484268
crossref_primary_10_1109_JSTQE_2023_3271818
crossref_primary_10_1371_journal_pone_0313547
crossref_primary_10_1016_j_optcom_2023_129870
crossref_primary_10_1007_s11432_021_3350_9
crossref_primary_10_1109_JSTQE_2022_3200942
crossref_primary_10_1364_OE_454852
crossref_primary_10_1364_PRJ_485941
crossref_primary_10_1021_acsphotonics_3c00846
Cites_doi 10.1109/JSTQE.2017.2678170
10.3389/fncom.2015.00099
10.1109/JSSC.2013.2259038
10.1063/1.3692726
10.1002/adom.201400472
10.3389/fncom.2012.00084
10.3389/fncom.2018.00024
10.1152/jn.1996.76.2.1310
10.1109/JPROC.2015.2444094
10.1007/s11263-014-0788-3
10.1109/TED.2016.2598413
10.1364/JON.6.000434
10.1109/JSTQE.2013.2257700
10.1109/TNN.2010.2074212
10.1016/j.neucom.2016.08.087
10.1109/JLT.2019.2903474
10.1016/j.neunet.2019.03.017
10.1109/JLT.2015.2475275
10.1038/376033a0
10.1016/j.neunet.2019.09.036
10.1109/TED.2015.2439635
10.1109/JSTQE.2019.2927582
10.1364/OE.23.025247
10.1109/3.985569
10.1109/TNNLS.2017.2761335
10.1371/journal.pcbi.0030031.eor
10.1016/S0925-2312(01)00658-0
10.1126/science.7770778
10.1364/OL.38.000419
10.1371/journal.pone.0040233
10.1038/s41586-019-1677-2
10.1016/j.optcom.2011.01.010
10.1109/MM.2018.112130359
10.1038/s41598-018-31365-x
10.1038/ncomms15199
10.1109/TNNLS.2013.2245677
10.1162/NECO_a_00396
10.1109/JLT.2018.2818195
10.1038/s41598-018-30758-2
10.1364/OL.42.001560
10.1364/AO.57.001731
10.1364/OE.15.009084
10.1016/j.neunet.2013.02.003
10.1038/s41586-019-1157-8
10.1162/NECO_a_00450
10.1007/s00422-008-0233-1
10.1038/s41467-018-04484-2
10.1007/s11432-015-5511-7
10.1523/JNEUROSCI.18-24-10464.1998
10.3389/fnins.2016.00508
10.1016/S0303-2647(98)00050-1
10.1126/sciadv.1700160
10.1162/neco.2009.11-08-901
10.1038/ncomms3072
10.1371/journal.pone.0078318
10.1103/PhysRevLett.112.183902
10.1109/3.903078
10.1364/OE.18.025170
10.1109/JPROC.2014.2313565
10.1109/TAC.2019.2934532
10.1038/nn1643
10.1109/JSTQE.2019.2929187
10.1038/s41598-018-34537-x
10.1038/nature14441
10.1109/JSTQE.2019.2931215
10.1038/s41467-018-04933-y
10.1109/JSTQE.2017.2685140
10.1162/neco.2008.06-08-804
10.1142/S0129065712500128
10.1146/annurev.neuro.24.1.139
10.1109/TNNLS.2019.2917753
10.1038/s41586-019-1424-8
10.1109/TNNLS.2018.2797801
10.1016/S0893-6080(97)00011-7
10.1364/OE.23.016133
10.1016/j.neunet.2017.12.005
10.1017/CBO9780511815706
10.1109/JSTQE.2018.2840448
10.1126/sciadv.aau5759
10.1109/5.58356
10.1016/j.neunet.2018.03.019
10.1109/JSTQE.2019.2911565
10.1364/OL.44.001548
10.1364/OE.11.002689
10.1016/j.neucom.2012.08.034
10.1364/AOP.8.000228
10.1109/JQE.2018.2879484
10.1038/srep10123
10.1016/j.neucom.2014.04.017
10.1364/OE.27.005181
10.1109/TNNLS.2018.2826721
10.1126/science.1149639
10.1016/j.neunet.2018.12.002
10.1364/OL.43.003802
10.1126/science.1254642
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2020.3006263
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 2505
ExternalDocumentID 32673197
10_1109_TNNLS_2020_3006263
9142407
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2018YFB2200500
  funderid: 10.13039/501100012166
– fundername: National Natural Science Foundation of China
  grantid: 61974177; 61674119
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-a42344b5386d86c5d4e12b378fcad4d8a3d25f0e27352576c77f51616c410e053
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Sat Sep 27 18:12:11 EDT 2025
Sun Jun 29 15:44:02 EDT 2025
Thu Apr 03 06:58:25 EDT 2025
Wed Oct 01 00:44:52 EDT 2025
Thu Apr 24 23:07:33 EDT 2025
Wed Aug 27 02:29:54 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-a42344b5386d86c5d4e12b378fcad4d8a3d25f0e27352576c77f51616c410e053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1698-2083
PMID 32673197
PQID 2536030230
PQPubID 85436
PageCount 12
ParticipantIDs pubmed_primary_32673197
proquest_miscellaneous_2425003450
proquest_journals_2536030230
crossref_primary_10_1109_TNNLS_2020_3006263
crossref_citationtrail_10_1109_TNNLS_2020_3006263
ieee_primary_9142407
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
ref59
ref53
tait (ref85) 2019; 11
ref52
ref55
ref54
ref50
ref45
ref48
ref47
schuman (ref51) 2017
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
kasi?ski (ref14) 2006; 16
ref4
ref3
ref6
ref5
ref100
ref101
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref39
ref38
li (ref69) 2016; 10019
ref24
ref23
yu (ref26) 2013; 24
chakraborty (ref79) 2019; 11
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref13
ref12
ref15
ref97
ref96
ref99
ref11
ref98
ref10
ref17
ref16
ref19
prezioso (ref46) 2015; 521
ref18
ref93
ref92
ref95
ref94
ref91
ref90
ref89
ref86
ref88
ref87
shastri (ref58) 2017
ref82
ref81
ref84
ref83
ref80
ref78
ref75
ref74
ref77
ref76
ref2
ref1
ref71
ref70
ref73
ref72
ref68
ref67
ref64
ref63
ref66
ref65
ref60
ref62
ref61
References_xml – ident: ref71
  doi: 10.1109/JSTQE.2017.2678170
– ident: ref30
  doi: 10.3389/fncom.2015.00099
– ident: ref43
  doi: 10.1109/JSSC.2013.2259038
– ident: ref60
  doi: 10.1063/1.3692726
– ident: ref65
  doi: 10.1002/adom.201400472
– ident: ref21
  doi: 10.3389/fncom.2012.00084
– ident: ref34
  doi: 10.3389/fncom.2018.00024
– ident: ref99
  doi: 10.1152/jn.1996.76.2.1310
– ident: ref1
  doi: 10.1109/JPROC.2015.2444094
– ident: ref29
  doi: 10.1007/s11263-014-0788-3
– ident: ref50
  doi: 10.1109/TED.2016.2598413
– ident: ref95
  doi: 10.1364/JON.6.000434
– ident: ref62
  doi: 10.1109/JSTQE.2013.2257700
– ident: ref18
  doi: 10.1109/TNN.2010.2074212
– volume: 16
  start-page: 101
  year: 2006
  ident: ref14
  article-title: Comparison of supervised learning methods for spike time coding in spiking neural networks
  publication-title: Int J Appl Math Comput Sci
– ident: ref32
  doi: 10.1016/j.neucom.2016.08.087
– ident: ref82
  doi: 10.1109/JLT.2019.2903474
– ident: ref39
  doi: 10.1016/j.neunet.2019.03.017
– ident: ref68
  doi: 10.1109/JLT.2015.2475275
– ident: ref6
  doi: 10.1038/376033a0
– ident: ref40
  doi: 10.1016/j.neunet.2019.09.036
– ident: ref47
  doi: 10.1109/TED.2015.2439635
– ident: ref89
  doi: 10.1109/JSTQE.2019.2927582
– ident: ref64
  doi: 10.1364/OE.23.025247
– ident: ref96
  doi: 10.1109/3.985569
– ident: ref55
  doi: 10.1109/TNNLS.2017.2761335
– ident: ref15
  doi: 10.1371/journal.pcbi.0030031.eor
– volume: 10019
  year: 2016
  ident: ref69
  article-title: Optical implementation of neural learning algorithms based on cross-gain modulation in a semiconductor optical amplifier
  publication-title: Proc SPIE
– ident: ref12
  doi: 10.1016/S0925-2312(01)00658-0
– ident: ref5
  doi: 10.1126/science.7770778
– ident: ref61
  doi: 10.1364/OL.38.000419
– ident: ref19
  doi: 10.1371/journal.pone.0040233
– ident: ref2
  doi: 10.1038/s41586-019-1677-2
– ident: ref97
  doi: 10.1016/j.optcom.2011.01.010
– ident: ref56
  doi: 10.1109/MM.2018.112130359
– ident: ref75
  doi: 10.1038/s41598-018-31365-x
– ident: ref52
  doi: 10.1038/ncomms15199
– volume: 24
  start-page: 1539
  year: 2013
  ident: ref26
  article-title: Rapid feedforward computation by temporal encoding and learning with spiking neurons
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2013.2245677
– ident: ref27
  doi: 10.1162/NECO_a_00396
– ident: ref74
  doi: 10.1109/JLT.2018.2818195
– ident: ref92
  doi: 10.1038/s41598-018-30758-2
– ident: ref90
  doi: 10.1364/OL.42.001560
– ident: ref73
  doi: 10.1364/AO.57.001731
– ident: ref93
  doi: 10.1364/OE.15.009084
– ident: ref23
  doi: 10.1016/j.neunet.2013.02.003
– ident: ref84
  doi: 10.1038/s41586-019-1157-8
– volume: 11
  year: 2019
  ident: ref79
  article-title: Photonic in-memory computing primitive for spiking neural networks using phase-change materials
  publication-title: Phys Rev A Gen Phys
– ident: ref22
  doi: 10.1162/NECO_a_00450
– ident: ref11
  doi: 10.1007/s00422-008-0233-1
– ident: ref53
  doi: 10.1038/s41467-018-04484-2
– ident: ref49
  doi: 10.1007/s11432-015-5511-7
– ident: ref9
  doi: 10.1523/JNEUROSCI.18-24-10464.1998
– ident: ref31
  doi: 10.3389/fnins.2016.00508
– ident: ref7
  doi: 10.1016/S0303-2647(98)00050-1
– ident: ref70
  doi: 10.1126/sciadv.1700160
– ident: ref17
  doi: 10.1162/neco.2009.11-08-901
– ident: ref42
  doi: 10.1038/ncomms3072
– ident: ref24
  doi: 10.1371/journal.pone.0078318
– ident: ref63
  doi: 10.1103/PhysRevLett.112.183902
– ident: ref98
  doi: 10.1109/3.903078
– ident: ref59
  doi: 10.1364/OE.18.025170
– ident: ref44
  doi: 10.1109/JPROC.2014.2313565
– ident: ref101
  doi: 10.1109/TAC.2019.2934532
– ident: ref13
  doi: 10.1038/nn1643
– ident: ref87
  doi: 10.1109/JSTQE.2019.2929187
– ident: ref76
  doi: 10.1038/s41598-018-34537-x
– volume: 521
  start-page: 61
  year: 2015
  ident: ref46
  article-title: Training and operation of an integrated neuromorphic network based on metal-oxide memristors
  publication-title: Nature
  doi: 10.1038/nature14441
– ident: ref88
  doi: 10.1109/JSTQE.2019.2931215
– ident: ref54
  doi: 10.1038/s41467-018-04933-y
– ident: ref72
  doi: 10.1109/JSTQE.2017.2685140
– ident: ref16
  doi: 10.1162/neco.2008.06-08-804
– ident: ref20
  doi: 10.1142/S0129065712500128
– ident: ref10
  doi: 10.1146/annurev.neuro.24.1.139
– year: 2017
  ident: ref58
  article-title: Principles of neuromorphic photonics
  publication-title: arXiv 1801 00016
– ident: ref100
  doi: 10.1109/TNNLS.2019.2917753
– ident: ref57
  doi: 10.1038/s41586-019-1424-8
– ident: ref36
  doi: 10.1109/TNNLS.2018.2797801
– volume: 11
  year: 2019
  ident: ref85
  article-title: Silicon photonic modulator neuron
  publication-title: Phys Rev A Gen Phys
– ident: ref3
  doi: 10.1016/S0893-6080(97)00011-7
– year: 2017
  ident: ref51
  article-title: A survey of neuromorphic computing and neural networks in hardware
  publication-title: arXiv 1705 06963
– ident: ref66
  doi: 10.1364/OE.23.016133
– ident: ref33
  doi: 10.1016/j.neunet.2017.12.005
– ident: ref4
  doi: 10.1017/CBO9780511815706
– ident: ref77
  doi: 10.1109/JSTQE.2018.2840448
– ident: ref81
  doi: 10.1126/sciadv.aau5759
– ident: ref41
  doi: 10.1109/5.58356
– ident: ref35
  doi: 10.1016/j.neunet.2018.03.019
– ident: ref86
  doi: 10.1109/JSTQE.2019.2911565
– ident: ref83
  doi: 10.1364/OL.44.001548
– ident: ref94
  doi: 10.1364/OE.11.002689
– ident: ref25
  doi: 10.1016/j.neucom.2012.08.034
– ident: ref67
  doi: 10.1364/AOP.8.000228
– ident: ref78
  doi: 10.1109/JQE.2018.2879484
– ident: ref48
  doi: 10.1038/srep10123
– ident: ref28
  doi: 10.1016/j.neucom.2014.04.017
– ident: ref80
  doi: 10.1364/OE.27.005181
– ident: ref37
  doi: 10.1109/TNNLS.2018.2826721
– ident: ref8
  doi: 10.1126/science.1149639
– ident: ref38
  doi: 10.1016/j.neunet.2018.12.002
– ident: ref91
  doi: 10.1364/OL.43.003802
– ident: ref45
  doi: 10.1126/science.1254642
SSID ssj0000605649
Score 2.612102
Snippet We propose computing primitive for an all-optical spiking neural network (SNN) based on vertical-cavity surface-emitting lasers (VCSELs) for supervised...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2494
SubjectTerms Algorithms
All-optical spiking neural network (SNN)
Computation
Computer architecture
Computer Systems
Firing pattern
Lasers
Machine learning
Neural networks
Neural Networks, Computer
neuromorphic photonics
Neuromorphics
Neuronal Plasticity
Neurons
Optical pulses
Optimization
Pattern classification
Pattern Recognition, Automated - methods
Photonics
Power consumption
Semiconductor optical amplifiers
spike-timing-dependent plasticity (STDP)
Spiking
Supervised learning
Supervised Machine Learning
Synapses - physiology
Vertical cavity surface emission lasers
Vertical cavity surface emitting lasers
vertical-cavity surface-emitting laser (VCSEL)
Title Computing Primitive of Fully VCSEL-Based All-Optical Spiking Neural Network for Supervised Learning and Pattern Classification
URI https://ieeexplore.ieee.org/document/9142407
https://www.ncbi.nlm.nih.gov/pubmed/32673197
https://www.proquest.com/docview/2536030230
https://www.proquest.com/docview/2425003450
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6VnrjQlvIIFLRI3MCpvd6HfSxVqwq1oVJalJu13keFiJyIxgd66G_vzPohgQBxi5O1k2hmd76dnfk-gPeBByO4LZMsEKk2BrGETpdw4hmThiB5KKkb-WKmzq7F54VcbMHHsRfGex-Lz_yUXsazfLeyLaXKDktqy6LW8Ue6UF2v1phPSRGXq4h2eaZ4wnO9GHpk0vLwajY7n-NukOMmldoGFennIHLR6IH6l5AUNVb-Djdj2DndgYvhB3fVJt-n7aae2rvfuBz_9x_twpMef7KjzmH2YMs3T2Fn0HZg_VTfh_vuLQxs7JKUv2hVZKvAaMv6k309np-cJ58wAjp2tFwmX9YxJc7m62-UemdE-YGXs67GnCEwZvN2TcsS3dFzut4w0zh2GQk-GxbVOaluKbrKM7g-Pbk6Pkt6rYbE5jLbJGjwXIgal0_lCmWlEz7jda6LYI0TrjC54zKkHtES8a8qq3WQiDaVFVlK8hTPYbtZNf4lMEQthlulaymD0E6YUCoviryQQtXoPxPIBnNVticyJz2NZRU3NGlZRWtXZO2qt_YEPoz3rDsaj3-O3idTjSN7K03gYPCKqp_ptxWXuUpJeSmdwLvxY5yjdPBiGr9qcQwujEQEJHHMi86bxmcPTvjqz9_5Gh5zqqKJeZ8D2N78aP0bhEGb-m30_weRHP-x
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5V5QAXChRo2gKLxA2c2uvdtX0sVasAiamUFOVm2ftAiMiJaHxoD_3tzKwfEggQNz_WTqyZ2fl2duYbgDeOu1JwnQWRI1JtdGIB7S6h4ZVl6JzkLqNq5FmuJlfi41Iud-DdUAtjrfXJZ3ZMh34v36x1Q6Gyk4zKsqh0_J4UQsi2WmuIqISIzJXHuzxSPOBxsuyrZMLsZJHn0zmuBzkuU6lwUFEHHcQuCepg8otT8l1W_g44veO52INZ_5fbfJPv42ZbjfXtb2yO__tNj-Bhh0DZaasyj2HH1k9gr-_uwDpj34e79hK6NnZJvb9oXmRrx2jResO-nM3Pp8F79IGGna5WweeND4qz-eYbBd8ZkX7gad5mmTOExmzebGhioic6VtevrKwNu_QUnzXz_Tkpc8kry1O4ujhfnE2CrltDoGMZbQMUeSxEhROoMqnS0ggb8SpOUqdLI0xaxoZLF1rES8TAqnSSOIl4U2kRhdSg4hns1uvaHgBD3FJyrZJKSicSI0qXKSvSOJVCVahBI4h6cRW6ozKnjhqrwi9pwqzw0i5I2kUn7RG8HZ7ZtEQe_xy9T6IaRnZSGsFxrxVFZ-vXBZexCqn3UjiC18NttFLaeilru25wDE6NRAUkcczzVpuGd_dKePjn33wF9yeL2bSYfsg_HcEDTjk1Pgp0DLvbH419gaBoW730tvATGKkDDQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computing+Primitive+of+Fully+VCSEL-Based+All-Optical+Spiking+Neural+Network+for+Supervised+Learning+and+Pattern+Classification&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Xiang%2C+Shuiying&rft.au=Ren%2C+Zhenxing&rft.au=Song%2C+Ziwei&rft.au=Zhang%2C+Yahui&rft.date=2021-06-01&rft.pub=IEEE&rft.issn=2162-237X&rft.volume=32&rft.issue=6&rft.spage=2494&rft.epage=2505&rft_id=info:doi/10.1109%2FTNNLS.2020.3006263&rft_id=info%3Apmid%2F32673197&rft.externalDocID=9142407
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon