Computing Primitive of Fully VCSEL-Based All-Optical Spiking Neural Network for Supervised Learning and Pattern Classification
We propose computing primitive for an all-optical spiking neural network (SNN) based on vertical-cavity surface-emitting lasers (VCSELs) for supervised learning by using biologically plausible mechanisms. The spike-timing-dependent plasticity (STDP) model was established based on the dynamics of the...
Saved in:
| Published in | IEEE transaction on neural networks and learning systems Vol. 32; no. 6; pp. 2494 - 2505 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.06.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2162-237X 2162-2388 2162-2388 |
| DOI | 10.1109/TNNLS.2020.3006263 |
Cover
| Abstract | We propose computing primitive for an all-optical spiking neural network (SNN) based on vertical-cavity surface-emitting lasers (VCSELs) for supervised learning by using biologically plausible mechanisms. The spike-timing-dependent plasticity (STDP) model was established based on the dynamics of the vertical-cavity semiconductor optical amplifier (VCSOA) subject to dual-optical pulse injection. The neuron-synapse self-consistent unified model of the all-optical SNN was developed, which enables reproducing the essential neuron-like dynamics and STDP function. Optical character numbers are trained and tested by the proposed fully VCSEL-based all-optical SNN. Simulation results show that the proposed all-optical SNN is capable of recognizing ten numbers by a supervised learning algorithm, in which the input and output patterns as well as the teacher signals of the all-optical SNN are represented by spatiotemporal fashions. Moreover, the lateral inhibition is not required in our proposed architecture, which is friendly to the hardware implementation. The system-level unified model enables architecture-algorithm codesigns and optimization of all-optical SNN. To the best of our knowledge, the computing primitive of an all-optical SNN based on VCSELs for supervised learning has not yet been reported, which paves the way toward fully VCSEL-based large-scale photonic neuromorphic systems with low power consumption. |
|---|---|
| AbstractList | We propose computing primitive for an all-optical spiking neural network (SNN) based on vertical-cavity surface-emitting lasers (VCSELs) for supervised learning by using biologically plausible mechanisms. The spike-timing-dependent plasticity (STDP) model was established based on the dynamics of the vertical-cavity semiconductor optical amplifier (VCSOA) subject to dual-optical pulse injection. The neuron-synapse self-consistent unified model of the all-optical SNN was developed, which enables reproducing the essential neuron-like dynamics and STDP function. Optical character numbers are trained and tested by the proposed fully VCSEL-based all-optical SNN. Simulation results show that the proposed all-optical SNN is capable of recognizing ten numbers by a supervised learning algorithm, in which the input and output patterns as well as the teacher signals of the all-optical SNN are represented by spatiotemporal fashions. Moreover, the lateral inhibition is not required in our proposed architecture, which is friendly to the hardware implementation. The system-level unified model enables architecture-algorithm codesigns and optimization of all-optical SNN. To the best of our knowledge, the computing primitive of an all-optical SNN based on VCSELs for supervised learning has not yet been reported, which paves the way toward fully VCSEL-based large-scale photonic neuromorphic systems with low power consumption. We propose computing primitive for an all-optical spiking neural network (SNN) based on vertical-cavity surface-emitting lasers (VCSELs) for supervised learning by using biologically plausible mechanisms. The spike-timing-dependent plasticity (STDP) model was established based on the dynamics of the vertical-cavity semiconductor optical amplifier (VCSOA) subject to dual-optical pulse injection. The neuron-synapse self-consistent unified model of the all-optical SNN was developed, which enables reproducing the essential neuron-like dynamics and STDP function. Optical character numbers are trained and tested by the proposed fully VCSEL-based all-optical SNN. Simulation results show that the proposed all-optical SNN is capable of recognizing ten numbers by a supervised learning algorithm, in which the input and output patterns as well as the teacher signals of the all-optical SNN are represented by spatiotemporal fashions. Moreover, the lateral inhibition is not required in our proposed architecture, which is friendly to the hardware implementation. The system-level unified model enables architecture-algorithm codesigns and optimization of all-optical SNN. To the best of our knowledge, the computing primitive of an all-optical SNN based on VCSELs for supervised learning has not yet been reported, which paves the way toward fully VCSEL-based large-scale photonic neuromorphic systems with low power consumption.We propose computing primitive for an all-optical spiking neural network (SNN) based on vertical-cavity surface-emitting lasers (VCSELs) for supervised learning by using biologically plausible mechanisms. The spike-timing-dependent plasticity (STDP) model was established based on the dynamics of the vertical-cavity semiconductor optical amplifier (VCSOA) subject to dual-optical pulse injection. The neuron-synapse self-consistent unified model of the all-optical SNN was developed, which enables reproducing the essential neuron-like dynamics and STDP function. Optical character numbers are trained and tested by the proposed fully VCSEL-based all-optical SNN. Simulation results show that the proposed all-optical SNN is capable of recognizing ten numbers by a supervised learning algorithm, in which the input and output patterns as well as the teacher signals of the all-optical SNN are represented by spatiotemporal fashions. Moreover, the lateral inhibition is not required in our proposed architecture, which is friendly to the hardware implementation. The system-level unified model enables architecture-algorithm codesigns and optimization of all-optical SNN. To the best of our knowledge, the computing primitive of an all-optical SNN based on VCSELs for supervised learning has not yet been reported, which paves the way toward fully VCSEL-based large-scale photonic neuromorphic systems with low power consumption. |
| Author | Ren, Zhenxing Song, Ziwei Han, Genquan Guo, Xingxing Zhang, Yahui Hao, Yue Xiang, Shuiying |
| Author_xml | – sequence: 1 givenname: Shuiying orcidid: 0000-0002-1698-2083 surname: Xiang fullname: Xiang, Shuiying email: syxiang@xidian.edu.cn organization: State Key Laboratory of Integrated Services Network, Xidian University, Xi'an, China – sequence: 2 givenname: Zhenxing surname: Ren fullname: Ren, Zhenxing organization: State Key Laboratory of Integrated Services Network, Xidian University, Xi'an, China – sequence: 3 givenname: Ziwei surname: Song fullname: Song, Ziwei organization: State Key Laboratory of Integrated Services Network, Xidian University, Xi'an, China – sequence: 4 givenname: Yahui surname: Zhang fullname: Zhang, Yahui organization: State Key Laboratory of Integrated Services Network, Xidian University, Xi'an, China – sequence: 5 givenname: Xingxing surname: Guo fullname: Guo, Xingxing organization: State Key Laboratory of Integrated Services Network, Xidian University, Xi'an, China – sequence: 6 givenname: Genquan surname: Han fullname: Han, Genquan organization: State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an, China – sequence: 7 givenname: Yue surname: Hao fullname: Hao, Yue organization: State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32673197$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc1u1DAURi1UREvpC4CELLFhk8H_ySxL1AJSNK00BbGzPMkNcuuxU9sp6oZnJ-kMs-gCb2xL51xb3_caHfngAaG3lCwoJctPN6tVs14wwsiCE6KY4i_QCaOKFYxX1dHhXP48Rmcp3ZJpKSKVWL5Cx5ypktNleYL-1GE7jNn6X_g62q3N9gFw6PHl6Nwj_lGvL5ris0nQ4XPniqsh29Y4vB7s3aysYIzTdQX5d4h3uA8Rr8cB4oOdjQZM9DNmfIevTc4QPa6dScn205hsg3-DXvbGJTjb76fo--XFTf21aK6-fKvPm6LlkubCCMaF2Eheqa5SrewEULbhZdW3phNdZXjHZE-AlVwyWaq2LHtJFVWtoASI5Kfo427uEMP9CCnrrU0tOGc8hDFpJpgkhAtJJvTDM_Q2jNFPv9NMckU4YXym3u-pcbOFTg9TeCY-6n_JTgDbAW0MKUXoDwglem5QPzWo5wb1vsFJqp5Jrc1PQeVorPu_-m6nWgA4vLWkgglS8r9Vs6dr |
| CODEN | ITNNAL |
| CitedBy_id | crossref_primary_10_3390_photonics9020120 crossref_primary_10_1007_s11071_024_09525_8 crossref_primary_10_1109_JLT_2024_3383719 crossref_primary_10_1364_PRJ_471950 crossref_primary_10_1007_s11432_023_3810_9 crossref_primary_10_1364_OE_479077 crossref_primary_10_1364_PRJ_499767 crossref_primary_10_1109_JSTQE_2022_3218950 crossref_primary_10_1364_OPTICA_468347 crossref_primary_10_3390_photonics9040217 crossref_primary_10_1007_s11432_020_3040_1 crossref_primary_10_1364_OE_471189 crossref_primary_10_1002_lpor_202300424 crossref_primary_10_1364_OL_471943 crossref_primary_10_1016_j_eng_2021_06_021 crossref_primary_10_1364_OE_497218 crossref_primary_10_1002_lpor_202400482 crossref_primary_10_1364_OE_470857 crossref_primary_10_1364_OE_491910 crossref_primary_10_1088_1402_4896_ac35bf crossref_primary_10_34133_icomputing_0032 crossref_primary_10_1364_OE_559380 crossref_primary_10_1364_OME_450926 crossref_primary_10_1038_s41377_024_01590_3 crossref_primary_10_1364_OE_487047 crossref_primary_10_1364_OE_464661 crossref_primary_10_1007_s11432_022_3699_2 crossref_primary_10_1088_1612_202X_acfd92 crossref_primary_10_1007_s00340_023_08146_0 crossref_primary_10_1109_JLT_2024_3437420 crossref_primary_10_1109_JPHOT_2021_3115598 crossref_primary_10_1515_nanoph_2022_0362 crossref_primary_10_1109_JSTQE_2023_3240248 crossref_primary_10_29026_oes_2023_230021 crossref_primary_10_3390_life13051148 crossref_primary_10_1364_OE_468554 crossref_primary_10_1364_OL_543987 crossref_primary_10_7498_aps_74_20241659 crossref_primary_10_1063_5_0048674 crossref_primary_10_1364_OE_403287 crossref_primary_10_1364_AO_441907 crossref_primary_10_1016_j_optcom_2023_130207 crossref_primary_10_1109_TNNLS_2023_3278265 crossref_primary_10_1109_JLT_2022_3225099 crossref_primary_10_1364_OE_432956 crossref_primary_10_1016_j_optcom_2023_129806 crossref_primary_10_1109_ACCESS_2024_3434587 crossref_primary_10_3390_photonics8090363 crossref_primary_10_1364_PRJ_437798 crossref_primary_10_1109_JLT_2023_3287647 crossref_primary_10_1364_OE_465653 crossref_primary_10_1007_s11432_021_3235_7 crossref_primary_10_1016_j_optlastec_2024_111941 crossref_primary_10_1364_OE_539339 crossref_primary_10_1109_JLT_2022_3146157 crossref_primary_10_1364_PRJ_403319 crossref_primary_10_1109_JPHOT_2022_3180675 crossref_primary_10_3390_electronics11132097 crossref_primary_10_1364_PRJ_507178 crossref_primary_10_29026_oea_2023_230140 crossref_primary_10_1109_JLT_2024_3517145 crossref_primary_10_1364_OL_484268 crossref_primary_10_1109_JSTQE_2023_3271818 crossref_primary_10_1371_journal_pone_0313547 crossref_primary_10_1016_j_optcom_2023_129870 crossref_primary_10_1007_s11432_021_3350_9 crossref_primary_10_1109_JSTQE_2022_3200942 crossref_primary_10_1364_OE_454852 crossref_primary_10_1364_PRJ_485941 crossref_primary_10_1021_acsphotonics_3c00846 |
| Cites_doi | 10.1109/JSTQE.2017.2678170 10.3389/fncom.2015.00099 10.1109/JSSC.2013.2259038 10.1063/1.3692726 10.1002/adom.201400472 10.3389/fncom.2012.00084 10.3389/fncom.2018.00024 10.1152/jn.1996.76.2.1310 10.1109/JPROC.2015.2444094 10.1007/s11263-014-0788-3 10.1109/TED.2016.2598413 10.1364/JON.6.000434 10.1109/JSTQE.2013.2257700 10.1109/TNN.2010.2074212 10.1016/j.neucom.2016.08.087 10.1109/JLT.2019.2903474 10.1016/j.neunet.2019.03.017 10.1109/JLT.2015.2475275 10.1038/376033a0 10.1016/j.neunet.2019.09.036 10.1109/TED.2015.2439635 10.1109/JSTQE.2019.2927582 10.1364/OE.23.025247 10.1109/3.985569 10.1109/TNNLS.2017.2761335 10.1371/journal.pcbi.0030031.eor 10.1016/S0925-2312(01)00658-0 10.1126/science.7770778 10.1364/OL.38.000419 10.1371/journal.pone.0040233 10.1038/s41586-019-1677-2 10.1016/j.optcom.2011.01.010 10.1109/MM.2018.112130359 10.1038/s41598-018-31365-x 10.1038/ncomms15199 10.1109/TNNLS.2013.2245677 10.1162/NECO_a_00396 10.1109/JLT.2018.2818195 10.1038/s41598-018-30758-2 10.1364/OL.42.001560 10.1364/AO.57.001731 10.1364/OE.15.009084 10.1016/j.neunet.2013.02.003 10.1038/s41586-019-1157-8 10.1162/NECO_a_00450 10.1007/s00422-008-0233-1 10.1038/s41467-018-04484-2 10.1007/s11432-015-5511-7 10.1523/JNEUROSCI.18-24-10464.1998 10.3389/fnins.2016.00508 10.1016/S0303-2647(98)00050-1 10.1126/sciadv.1700160 10.1162/neco.2009.11-08-901 10.1038/ncomms3072 10.1371/journal.pone.0078318 10.1103/PhysRevLett.112.183902 10.1109/3.903078 10.1364/OE.18.025170 10.1109/JPROC.2014.2313565 10.1109/TAC.2019.2934532 10.1038/nn1643 10.1109/JSTQE.2019.2929187 10.1038/s41598-018-34537-x 10.1038/nature14441 10.1109/JSTQE.2019.2931215 10.1038/s41467-018-04933-y 10.1109/JSTQE.2017.2685140 10.1162/neco.2008.06-08-804 10.1142/S0129065712500128 10.1146/annurev.neuro.24.1.139 10.1109/TNNLS.2019.2917753 10.1038/s41586-019-1424-8 10.1109/TNNLS.2018.2797801 10.1016/S0893-6080(97)00011-7 10.1364/OE.23.016133 10.1016/j.neunet.2017.12.005 10.1017/CBO9780511815706 10.1109/JSTQE.2018.2840448 10.1126/sciadv.aau5759 10.1109/5.58356 10.1016/j.neunet.2018.03.019 10.1109/JSTQE.2019.2911565 10.1364/OL.44.001548 10.1364/OE.11.002689 10.1016/j.neucom.2012.08.034 10.1364/AOP.8.000228 10.1109/JQE.2018.2879484 10.1038/srep10123 10.1016/j.neucom.2014.04.017 10.1364/OE.27.005181 10.1109/TNNLS.2018.2826721 10.1126/science.1149639 10.1016/j.neunet.2018.12.002 10.1364/OL.43.003802 10.1126/science.1254642 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1109/TNNLS.2020.3006263 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2162-2388 |
| EndPage | 2505 |
| ExternalDocumentID | 32673197 10_1109_TNNLS_2020_3006263 9142407 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2018YFB2200500 funderid: 10.13039/501100012166 – fundername: National Natural Science Foundation of China grantid: 61974177; 61674119 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c351t-a42344b5386d86c5d4e12b378fcad4d8a3d25f0e27352576c77f51616c410e053 |
| IEDL.DBID | RIE |
| ISSN | 2162-237X 2162-2388 |
| IngestDate | Sat Sep 27 18:12:11 EDT 2025 Sun Jun 29 15:44:02 EDT 2025 Thu Apr 03 06:58:25 EDT 2025 Wed Oct 01 00:44:52 EDT 2025 Thu Apr 24 23:07:33 EDT 2025 Wed Aug 27 02:29:54 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c351t-a42344b5386d86c5d4e12b378fcad4d8a3d25f0e27352576c77f51616c410e053 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-1698-2083 |
| PMID | 32673197 |
| PQID | 2536030230 |
| PQPubID | 85436 |
| PageCount | 12 |
| ParticipantIDs | pubmed_primary_32673197 proquest_miscellaneous_2425003450 proquest_journals_2536030230 crossref_primary_10_1109_TNNLS_2020_3006263 crossref_citationtrail_10_1109_TNNLS_2020_3006263 ieee_primary_9142407 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-06-01 |
| PublicationDateYYYYMMDD | 2021-06-01 |
| PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE transaction on neural networks and learning systems |
| PublicationTitleAbbrev | TNNLS |
| PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref56 ref59 ref53 tait (ref85) 2019; 11 ref52 ref55 ref54 ref50 ref45 ref48 ref47 schuman (ref51) 2017 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 kasi?ski (ref14) 2006; 16 ref4 ref3 ref6 ref5 ref100 ref101 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref39 ref38 li (ref69) 2016; 10019 ref24 ref23 yu (ref26) 2013; 24 chakraborty (ref79) 2019; 11 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref13 ref12 ref15 ref97 ref96 ref99 ref11 ref98 ref10 ref17 ref16 ref19 prezioso (ref46) 2015; 521 ref18 ref93 ref92 ref95 ref94 ref91 ref90 ref89 ref86 ref88 ref87 shastri (ref58) 2017 ref82 ref81 ref84 ref83 ref80 ref78 ref75 ref74 ref77 ref76 ref2 ref1 ref71 ref70 ref73 ref72 ref68 ref67 ref64 ref63 ref66 ref65 ref60 ref62 ref61 |
| References_xml | – ident: ref71 doi: 10.1109/JSTQE.2017.2678170 – ident: ref30 doi: 10.3389/fncom.2015.00099 – ident: ref43 doi: 10.1109/JSSC.2013.2259038 – ident: ref60 doi: 10.1063/1.3692726 – ident: ref65 doi: 10.1002/adom.201400472 – ident: ref21 doi: 10.3389/fncom.2012.00084 – ident: ref34 doi: 10.3389/fncom.2018.00024 – ident: ref99 doi: 10.1152/jn.1996.76.2.1310 – ident: ref1 doi: 10.1109/JPROC.2015.2444094 – ident: ref29 doi: 10.1007/s11263-014-0788-3 – ident: ref50 doi: 10.1109/TED.2016.2598413 – ident: ref95 doi: 10.1364/JON.6.000434 – ident: ref62 doi: 10.1109/JSTQE.2013.2257700 – ident: ref18 doi: 10.1109/TNN.2010.2074212 – volume: 16 start-page: 101 year: 2006 ident: ref14 article-title: Comparison of supervised learning methods for spike time coding in spiking neural networks publication-title: Int J Appl Math Comput Sci – ident: ref32 doi: 10.1016/j.neucom.2016.08.087 – ident: ref82 doi: 10.1109/JLT.2019.2903474 – ident: ref39 doi: 10.1016/j.neunet.2019.03.017 – ident: ref68 doi: 10.1109/JLT.2015.2475275 – ident: ref6 doi: 10.1038/376033a0 – ident: ref40 doi: 10.1016/j.neunet.2019.09.036 – ident: ref47 doi: 10.1109/TED.2015.2439635 – ident: ref89 doi: 10.1109/JSTQE.2019.2927582 – ident: ref64 doi: 10.1364/OE.23.025247 – ident: ref96 doi: 10.1109/3.985569 – ident: ref55 doi: 10.1109/TNNLS.2017.2761335 – ident: ref15 doi: 10.1371/journal.pcbi.0030031.eor – volume: 10019 year: 2016 ident: ref69 article-title: Optical implementation of neural learning algorithms based on cross-gain modulation in a semiconductor optical amplifier publication-title: Proc SPIE – ident: ref12 doi: 10.1016/S0925-2312(01)00658-0 – ident: ref5 doi: 10.1126/science.7770778 – ident: ref61 doi: 10.1364/OL.38.000419 – ident: ref19 doi: 10.1371/journal.pone.0040233 – ident: ref2 doi: 10.1038/s41586-019-1677-2 – ident: ref97 doi: 10.1016/j.optcom.2011.01.010 – ident: ref56 doi: 10.1109/MM.2018.112130359 – ident: ref75 doi: 10.1038/s41598-018-31365-x – ident: ref52 doi: 10.1038/ncomms15199 – volume: 24 start-page: 1539 year: 2013 ident: ref26 article-title: Rapid feedforward computation by temporal encoding and learning with spiking neurons publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2013.2245677 – ident: ref27 doi: 10.1162/NECO_a_00396 – ident: ref74 doi: 10.1109/JLT.2018.2818195 – ident: ref92 doi: 10.1038/s41598-018-30758-2 – ident: ref90 doi: 10.1364/OL.42.001560 – ident: ref73 doi: 10.1364/AO.57.001731 – ident: ref93 doi: 10.1364/OE.15.009084 – ident: ref23 doi: 10.1016/j.neunet.2013.02.003 – ident: ref84 doi: 10.1038/s41586-019-1157-8 – volume: 11 year: 2019 ident: ref79 article-title: Photonic in-memory computing primitive for spiking neural networks using phase-change materials publication-title: Phys Rev A Gen Phys – ident: ref22 doi: 10.1162/NECO_a_00450 – ident: ref11 doi: 10.1007/s00422-008-0233-1 – ident: ref53 doi: 10.1038/s41467-018-04484-2 – ident: ref49 doi: 10.1007/s11432-015-5511-7 – ident: ref9 doi: 10.1523/JNEUROSCI.18-24-10464.1998 – ident: ref31 doi: 10.3389/fnins.2016.00508 – ident: ref7 doi: 10.1016/S0303-2647(98)00050-1 – ident: ref70 doi: 10.1126/sciadv.1700160 – ident: ref17 doi: 10.1162/neco.2009.11-08-901 – ident: ref42 doi: 10.1038/ncomms3072 – ident: ref24 doi: 10.1371/journal.pone.0078318 – ident: ref63 doi: 10.1103/PhysRevLett.112.183902 – ident: ref98 doi: 10.1109/3.903078 – ident: ref59 doi: 10.1364/OE.18.025170 – ident: ref44 doi: 10.1109/JPROC.2014.2313565 – ident: ref101 doi: 10.1109/TAC.2019.2934532 – ident: ref13 doi: 10.1038/nn1643 – ident: ref87 doi: 10.1109/JSTQE.2019.2929187 – ident: ref76 doi: 10.1038/s41598-018-34537-x – volume: 521 start-page: 61 year: 2015 ident: ref46 article-title: Training and operation of an integrated neuromorphic network based on metal-oxide memristors publication-title: Nature doi: 10.1038/nature14441 – ident: ref88 doi: 10.1109/JSTQE.2019.2931215 – ident: ref54 doi: 10.1038/s41467-018-04933-y – ident: ref72 doi: 10.1109/JSTQE.2017.2685140 – ident: ref16 doi: 10.1162/neco.2008.06-08-804 – ident: ref20 doi: 10.1142/S0129065712500128 – ident: ref10 doi: 10.1146/annurev.neuro.24.1.139 – year: 2017 ident: ref58 article-title: Principles of neuromorphic photonics publication-title: arXiv 1801 00016 – ident: ref100 doi: 10.1109/TNNLS.2019.2917753 – ident: ref57 doi: 10.1038/s41586-019-1424-8 – ident: ref36 doi: 10.1109/TNNLS.2018.2797801 – volume: 11 year: 2019 ident: ref85 article-title: Silicon photonic modulator neuron publication-title: Phys Rev A Gen Phys – ident: ref3 doi: 10.1016/S0893-6080(97)00011-7 – year: 2017 ident: ref51 article-title: A survey of neuromorphic computing and neural networks in hardware publication-title: arXiv 1705 06963 – ident: ref66 doi: 10.1364/OE.23.016133 – ident: ref33 doi: 10.1016/j.neunet.2017.12.005 – ident: ref4 doi: 10.1017/CBO9780511815706 – ident: ref77 doi: 10.1109/JSTQE.2018.2840448 – ident: ref81 doi: 10.1126/sciadv.aau5759 – ident: ref41 doi: 10.1109/5.58356 – ident: ref35 doi: 10.1016/j.neunet.2018.03.019 – ident: ref86 doi: 10.1109/JSTQE.2019.2911565 – ident: ref83 doi: 10.1364/OL.44.001548 – ident: ref94 doi: 10.1364/OE.11.002689 – ident: ref25 doi: 10.1016/j.neucom.2012.08.034 – ident: ref67 doi: 10.1364/AOP.8.000228 – ident: ref78 doi: 10.1109/JQE.2018.2879484 – ident: ref48 doi: 10.1038/srep10123 – ident: ref28 doi: 10.1016/j.neucom.2014.04.017 – ident: ref80 doi: 10.1364/OE.27.005181 – ident: ref37 doi: 10.1109/TNNLS.2018.2826721 – ident: ref8 doi: 10.1126/science.1149639 – ident: ref38 doi: 10.1016/j.neunet.2018.12.002 – ident: ref91 doi: 10.1364/OL.43.003802 – ident: ref45 doi: 10.1126/science.1254642 |
| SSID | ssj0000605649 |
| Score | 2.612102 |
| Snippet | We propose computing primitive for an all-optical spiking neural network (SNN) based on vertical-cavity surface-emitting lasers (VCSELs) for supervised... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2494 |
| SubjectTerms | Algorithms All-optical spiking neural network (SNN) Computation Computer architecture Computer Systems Firing pattern Lasers Machine learning Neural networks Neural Networks, Computer neuromorphic photonics Neuromorphics Neuronal Plasticity Neurons Optical pulses Optimization Pattern classification Pattern Recognition, Automated - methods Photonics Power consumption Semiconductor optical amplifiers spike-timing-dependent plasticity (STDP) Spiking Supervised learning Supervised Machine Learning Synapses - physiology Vertical cavity surface emission lasers Vertical cavity surface emitting lasers vertical-cavity surface-emitting laser (VCSEL) |
| Title | Computing Primitive of Fully VCSEL-Based All-Optical Spiking Neural Network for Supervised Learning and Pattern Classification |
| URI | https://ieeexplore.ieee.org/document/9142407 https://www.ncbi.nlm.nih.gov/pubmed/32673197 https://www.proquest.com/docview/2536030230 https://www.proquest.com/docview/2425003450 |
| Volume | 32 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2162-2388 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605649 issn: 2162-237X databaseCode: RIE dateStart: 20120101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6VnrjQlvIIFLRI3MCpvd6HfSxVqwq1oVJalJu13keFiJyIxgd66G_vzPohgQBxi5O1k2hmd76dnfk-gPeBByO4LZMsEKk2BrGETpdw4hmThiB5KKkb-WKmzq7F54VcbMHHsRfGex-Lz_yUXsazfLeyLaXKDktqy6LW8Ue6UF2v1phPSRGXq4h2eaZ4wnO9GHpk0vLwajY7n-NukOMmldoGFennIHLR6IH6l5AUNVb-Djdj2DndgYvhB3fVJt-n7aae2rvfuBz_9x_twpMef7KjzmH2YMs3T2Fn0HZg_VTfh_vuLQxs7JKUv2hVZKvAaMv6k309np-cJ58wAjp2tFwmX9YxJc7m62-UemdE-YGXs67GnCEwZvN2TcsS3dFzut4w0zh2GQk-GxbVOaluKbrKM7g-Pbk6Pkt6rYbE5jLbJGjwXIgal0_lCmWlEz7jda6LYI0TrjC54zKkHtES8a8qq3WQiDaVFVlK8hTPYbtZNf4lMEQthlulaymD0E6YUCoviryQQtXoPxPIBnNVticyJz2NZRU3NGlZRWtXZO2qt_YEPoz3rDsaj3-O3idTjSN7K03gYPCKqp_ptxWXuUpJeSmdwLvxY5yjdPBiGr9qcQwujEQEJHHMi86bxmcPTvjqz9_5Gh5zqqKJeZ8D2N78aP0bhEGb-m30_weRHP-x |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5V5QAXChRo2gKLxA2c2uvdtX0sVasAiamUFOVm2ftAiMiJaHxoD_3tzKwfEggQNz_WTqyZ2fl2duYbgDeOu1JwnQWRI1JtdGIB7S6h4ZVl6JzkLqNq5FmuJlfi41Iud-DdUAtjrfXJZ3ZMh34v36x1Q6Gyk4zKsqh0_J4UQsi2WmuIqISIzJXHuzxSPOBxsuyrZMLsZJHn0zmuBzkuU6lwUFEHHcQuCepg8otT8l1W_g44veO52INZ_5fbfJPv42ZbjfXtb2yO__tNj-Bhh0DZaasyj2HH1k9gr-_uwDpj34e79hK6NnZJvb9oXmRrx2jResO-nM3Pp8F79IGGna5WweeND4qz-eYbBd8ZkX7gad5mmTOExmzebGhioic6VtevrKwNu_QUnzXz_Tkpc8kry1O4ujhfnE2CrltDoGMZbQMUeSxEhROoMqnS0ggb8SpOUqdLI0xaxoZLF1rES8TAqnSSOIl4U2kRhdSg4hns1uvaHgBD3FJyrZJKSicSI0qXKSvSOJVCVahBI4h6cRW6ozKnjhqrwi9pwqzw0i5I2kUn7RG8HZ7ZtEQe_xy9T6IaRnZSGsFxrxVFZ-vXBZexCqn3UjiC18NttFLaeilru25wDE6NRAUkcczzVpuGd_dKePjn33wF9yeL2bSYfsg_HcEDTjk1Pgp0DLvbH419gaBoW730tvATGKkDDQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computing+Primitive+of+Fully+VCSEL-Based+All-Optical+Spiking+Neural+Network+for+Supervised+Learning+and+Pattern+Classification&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Xiang%2C+Shuiying&rft.au=Ren%2C+Zhenxing&rft.au=Song%2C+Ziwei&rft.au=Zhang%2C+Yahui&rft.date=2021-06-01&rft.pub=IEEE&rft.issn=2162-237X&rft.volume=32&rft.issue=6&rft.spage=2494&rft.epage=2505&rft_id=info:doi/10.1109%2FTNNLS.2020.3006263&rft_id=info%3Apmid%2F32673197&rft.externalDocID=9142407 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |