Trichoderma longibrachiatum, a biological control agent of Sclerotium cepivorum on onion plants under salt stress

[Display omitted] •Onions are affected by salt stress and white rot caused by Sclerotium cepivorum.•Salt stress increases damage severity caused by white rot in onions.•Trichoderma longibrachiatum maintains antagonistic activity in saline conditions.•T. longibrachiatum is more tolerant to salinity t...

Full description

Saved in:
Bibliographic Details
Published inBiological control Vol. 180; p. 105168
Main Authors Camacho-Luna, Valeria, Pizar-Quiroz, Alejandro Marcelino, Rodríguez-Hernández, Aida Araceli, Rodríguez-Monroy, Mario, Sepúlveda-Jiménez, Gabriela
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.05.2023
Subjects
Online AccessGet full text
ISSN1049-9644
1090-2112
DOI10.1016/j.biocontrol.2023.105168

Cover

Abstract [Display omitted] •Onions are affected by salt stress and white rot caused by Sclerotium cepivorum.•Salt stress increases damage severity caused by white rot in onions.•Trichoderma longibrachiatum maintains antagonistic activity in saline conditions.•T. longibrachiatum is more tolerant to salinity than Sclerotium cepivorum.•T. longibrachiatum reduces the severity of white rot disease in saline conditions. Salt stress and pathogen infection cause damage to onion crops and limit production. Application of Trichoderma species could be an option for reducing crop damage. The objective of this work was to evaluate the capacity of Trichoderma longibrachiatum to reduce damage to onion plants caused by salinity and infection by Sclerotium cepivorum. The two fungi showed differences in their tolerance to NaCl depending on the NaCl concentration. At low concentrations of NaCl, S. cepivorum was more tolerant than T. longibrachiatum, while at high concentrations of NaCl the tolerance of T. longibrachiatum was reduced to 17% and S. cepivorum did not grow. However, T. longibrachiatum maintained antagonistic activity against S. cepivorum in the presence of NaCl. Compared with uninoculated plants, inoculation with T. longibrachiatum increased the biomass of plants infected with S. cepivorum, plants treated with NaCl, and also plants treated with the combined treatment of S. cepivorum and NaCl. In plants infected with S. cepivorum and with the combined treatment of NaCl and S. cepivorum, the disease severity index was 69 and 89 %, respectively. However, inoculation with T. longibrachiatum reduced the disease severity index to 12 and 60 % in plants infected with S. cepivorum and in the combined treatment of S. cepivorum and NaCl, respectively. Chlorophyll and carotenoid content were maintained in plants inoculated with T. longibrachiatum and then subjected to salinity and infection; T. longibrachiatum decreased electrolyte leakage caused by salinity and infection. In conclusion, inoculation of onion plants with T. longibrachiatum reduced damage caused by infection with S. cepivorum and NaCl in onion plants; this was achieved by maintaining biomass and the content of photosynthetic pigments and by reducing electrolyte leakage. T. longibrachiatum is a fungus with potential as a biological control agent of S. cepivorum on onion plants under salt stress.
AbstractList [Display omitted] •Onions are affected by salt stress and white rot caused by Sclerotium cepivorum.•Salt stress increases damage severity caused by white rot in onions.•Trichoderma longibrachiatum maintains antagonistic activity in saline conditions.•T. longibrachiatum is more tolerant to salinity than Sclerotium cepivorum.•T. longibrachiatum reduces the severity of white rot disease in saline conditions. Salt stress and pathogen infection cause damage to onion crops and limit production. Application of Trichoderma species could be an option for reducing crop damage. The objective of this work was to evaluate the capacity of Trichoderma longibrachiatum to reduce damage to onion plants caused by salinity and infection by Sclerotium cepivorum. The two fungi showed differences in their tolerance to NaCl depending on the NaCl concentration. At low concentrations of NaCl, S. cepivorum was more tolerant than T. longibrachiatum, while at high concentrations of NaCl the tolerance of T. longibrachiatum was reduced to 17% and S. cepivorum did not grow. However, T. longibrachiatum maintained antagonistic activity against S. cepivorum in the presence of NaCl. Compared with uninoculated plants, inoculation with T. longibrachiatum increased the biomass of plants infected with S. cepivorum, plants treated with NaCl, and also plants treated with the combined treatment of S. cepivorum and NaCl. In plants infected with S. cepivorum and with the combined treatment of NaCl and S. cepivorum, the disease severity index was 69 and 89 %, respectively. However, inoculation with T. longibrachiatum reduced the disease severity index to 12 and 60 % in plants infected with S. cepivorum and in the combined treatment of S. cepivorum and NaCl, respectively. Chlorophyll and carotenoid content were maintained in plants inoculated with T. longibrachiatum and then subjected to salinity and infection; T. longibrachiatum decreased electrolyte leakage caused by salinity and infection. In conclusion, inoculation of onion plants with T. longibrachiatum reduced damage caused by infection with S. cepivorum and NaCl in onion plants; this was achieved by maintaining biomass and the content of photosynthetic pigments and by reducing electrolyte leakage. T. longibrachiatum is a fungus with potential as a biological control agent of S. cepivorum on onion plants under salt stress.
Salt stress and pathogen infection cause damage to onion crops and limit production. Application of Trichoderma species could be an option for reducing crop damage. The objective of this work was to evaluate the capacity of Trichoderma longibrachiatum to reduce damage to onion plants caused by salinity and infection by Sclerotium cepivorum. The two fungi showed differences in their tolerance to NaCl depending on the NaCl concentration. At low concentrations of NaCl, S. cepivorum was more tolerant than T. longibrachiatum, while at high concentrations of NaCl the tolerance of T. longibrachiatum was reduced to 17% and S. cepivorum did not grow. However, T. longibrachiatum maintained antagonistic activity against S. cepivorum in the presence of NaCl. Compared with uninoculated plants, inoculation with T. longibrachiatum increased the biomass of plants infected with S. cepivorum, plants treated with NaCl, and also plants treated with the combined treatment of S. cepivorum and NaCl. In plants infected with S. cepivorum and with the combined treatment of NaCl and S. cepivorum, the disease severity index was 69 and 89 %, respectively. However, inoculation with T. longibrachiatum reduced the disease severity index to 12 and 60 % in plants infected with S. cepivorum and in the combined treatment of S. cepivorum and NaCl, respectively. Chlorophyll and carotenoid content were maintained in plants inoculated with T. longibrachiatum and then subjected to salinity and infection; T. longibrachiatum decreased electrolyte leakage caused by salinity and infection. In conclusion, inoculation of onion plants with T. longibrachiatum reduced damage caused by infection with S. cepivorum and NaCl in onion plants; this was achieved by maintaining biomass and the content of photosynthetic pigments and by reducing electrolyte leakage. T. longibrachiatum is a fungus with potential as a biological control agent of S. cepivorum on onion plants under salt stress.
ArticleNumber 105168
Author Pizar-Quiroz, Alejandro Marcelino
Rodríguez-Hernández, Aida Araceli
Rodríguez-Monroy, Mario
Camacho-Luna, Valeria
Sepúlveda-Jiménez, Gabriela
Author_xml – sequence: 1
  givenname: Valeria
  surname: Camacho-Luna
  fullname: Camacho-Luna, Valeria
  email: vcamachol1100@alumno.ipn.mx
  organization: Departamento de Biotecnología, Centro de Desarrollo de Productos Bióticos-Instituto Politécnico Nacional, Calle CEPROBI No. 8, Col. San Isidro, 62731 Yautepec, Morelos, Mexico
– sequence: 2
  givenname: Alejandro Marcelino
  surname: Pizar-Quiroz
  fullname: Pizar-Quiroz, Alejandro Marcelino
  email: apizarq1800@alumno.ipn.mx
  organization: Departamento de Biotecnología, Centro de Desarrollo de Productos Bióticos-Instituto Politécnico Nacional, Calle CEPROBI No. 8, Col. San Isidro, 62731 Yautepec, Morelos, Mexico
– sequence: 3
  givenname: Aida Araceli
  surname: Rodríguez-Hernández
  fullname: Rodríguez-Hernández, Aida Araceli
  email: arodriguezhe@ipn.mx
  organization: CONACyT-Instituto Politécnico Nacional, Centro de Desarrollo de Productos Bióticos, Calle CEPROBI No. 8, Col. San Isidro, 62731 Yautepec, Morelos, Mexico
– sequence: 4
  givenname: Mario
  surname: Rodríguez-Monroy
  fullname: Rodríguez-Monroy, Mario
  email: mrmonroy@ipn.mx
  organization: Departamento de Biotecnología, Centro de Desarrollo de Productos Bióticos-Instituto Politécnico Nacional, Calle CEPROBI No. 8, Col. San Isidro, 62731 Yautepec, Morelos, Mexico
– sequence: 5
  givenname: Gabriela
  surname: Sepúlveda-Jiménez
  fullname: Sepúlveda-Jiménez, Gabriela
  email: gsepulvedaj@ipn.mx
  organization: Departamento de Biotecnología, Centro de Desarrollo de Productos Bióticos-Instituto Politécnico Nacional, Calle CEPROBI No. 8, Col. San Isidro, 62731 Yautepec, Morelos, Mexico
BookMark eNqNkMFq3DAQhkVJoUmad9Cxh3orrW15dSm0oWkKgR6anMXseLyZRZY2khzo21fLBgq5tCCkQfzzjfRdiLMQAwkhtVpppc2n_WrLEWMoKfrVWq3bet1rs3kjzrWyqllrvT471p1trOm6d-Ii571SWneDOhdP94nxMY6UZpA-hh1vE-AjQ1nmjxJkhfu4YwQvX4ZI2FEoMk7yF3pKsfAyS6QDP8dUqxjq4rofPISS5RIqW2bwReaSKOf34u0EPtPVy3kpHm6-3V_fNnc_v_-4_nLXYNvr0thho60dkEbopxZNS6ChH0xnyBictFGqBWtwBJwmQBzHadup3g7WDFsw0F6KDyfuIcWnhXJxM2ckX59Fccmu1X07GKP0pkY3pyimmHOiyR0Sz5B-O63c0bLbu7-W3dGyO1murZ9ftSIXKHyMAvv_AXw9Aai6eGZKLiNTqP_mRFjcGPnfkD8Ec6XN
CitedBy_id crossref_primary_10_1080_07060661_2024_2413956
crossref_primary_10_1016_j_stress_2023_100234
crossref_primary_10_3390_jof10110776
crossref_primary_10_1016_j_plaphy_2023_108328
crossref_primary_10_3390_cleantechnol6030050
crossref_primary_10_3390_horticulturae10080805
crossref_primary_10_3389_fsufs_2024_1427303
crossref_primary_10_7717_peerj_19016
Cites_doi 10.1046/j.1469-8137.2000.00694.x
10.3852/08-189
10.3390/antiox9010067
10.1007/s42729-019-00114-y
10.1007/s10535-006-0096-z
10.1186/s12864-019-5513-8
10.1111/tpj.13800
10.1094/MPMI-09-13-0265-R
10.1016/j.envexpbot.2021.104588
10.1590/S0102-33062013000200013
10.1146/annurev.arplant.51.1.463
10.1016/j.micres.2020.126552
10.1016/j.scienta.2004.04.009
10.3389/fpls.2018.00525
10.1016/S0944-5013(11)80074-1
10.29312/remexca.v13i6.3030
10.1016/B978-0-444-59576-8.00001-1
10.1007/s12298-018-0570-z
10.21273/HORTSCI.39.6.1416
10.3389/fpls.2021.741231
10.1016/0076-6879(93)14065-Q
10.3390/ijerph16112053
10.1186/s12870-018-1618-5
10.1007/BF02818539
10.1080/03235408.2016.1276423
10.3390/su132313226
10.1016/0076-6879(87)48036-1
10.1146/annurev.arplant.59.032607.092911
10.1111/j.1365-3059.2006.01389.x
10.1094/PHYTO-100-9-0871
10.1016/j.plantsci.2016.02.008
ContentType Journal Article
Copyright 2023 Elsevier Inc.
Copyright_xml – notice: 2023 Elsevier Inc.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.biocontrol.2023.105168
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Biology
EISSN 1090-2112
ExternalDocumentID 10_1016_j_biocontrol_2023_105168
S104996442300021X
GroupedDBID --K
--M
.~1
0R~
0SF
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JM
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
CBWCG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HVGLF
HZ~
IHE
J1W
KFR
KOM
LG5
LW8
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SDP
SES
SEW
SPCBC
SSA
SSZ
T5K
UHS
VH1
WUQ
XPP
Y6R
ZMT
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
GROUPED_DOAJ
SSH
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c351t-9781997ceda5f3c63ea1a57646e66cf16003a96cdacffaccddfb40597967ba6a3
IEDL.DBID AIKHN
ISSN 1049-9644
IngestDate Fri Sep 05 16:08:55 EDT 2025
Thu Apr 24 23:11:44 EDT 2025
Tue Jul 01 01:09:54 EDT 2025
Fri Feb 23 02:37:41 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords White rot
Antagonistic activity
Salinity tolerance
Soil salinity
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-9781997ceda5f3c63ea1a57646e66cf16003a96cdacffaccddfb40597967ba6a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 3153766018
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3153766018
crossref_primary_10_1016_j_biocontrol_2023_105168
crossref_citationtrail_10_1016_j_biocontrol_2023_105168
elsevier_sciencedirect_doi_10_1016_j_biocontrol_2023_105168
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationTitle Biological control
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Zervakis, Philippoussis, Ioannldou, Diamantopoulou (b0190) 2001; 46
Dileo, Pye, Roubtsova, Duniway, MacDonald, Rizzo, Bostock (b0070) 2010; 100
Agrios (b0010) 2005
Contreras-Cornejo, Macías-Rodríguez, Alfaro-Cuevas, López-Bucio (b0050) 2014; 27
De Palma, Docimo, Guida, Salzano, Albrizio, Giorio, Ruocco, Tucci (b0060) 2021; 190
Rawat, Singh, Shukla, Kumar (b0135) 2013; 46
Rojas, Ulacio, Jiménez, Perdomo, Pardo (b0140) 2010; 22
Yuan, Huang, Huang, Ge, Jia, Song, Zhang (b0175) 2019; 20
Shoaib, Meraj, Khan, Javaid (b0155) 2018; 24
Zhang, Gan, Xu (b0195) 2016; 7
Boamah, Zhang, Xu, Li, Calderón-Urrea (b0020) 2021; 12
Stępień, Kłbus (b0160) 2006; 50
Xu, Harrington, Gleason, Batzer (b0170) 2010; 102
Clarkson, Scruby, Mead, Wright, Smith, Whipps (b0035) 2006; 55
Elshahawy, Saied, Abd-El-Kareem, Morsy (b0080) 2017; 50
in different habitats, in: Gupta, V.M., Schmoll, M., Herrera-Estrella, A., Upadhyay, R.S., Druzhinina, I., Tuohy, M.G. (Eds.), Biotechnology and Biology of
Dikilitas, Karakas (b0065) 2014
El-Abyad, Attaby, Abu-Taleb (b0075) 1994; 149
Zhang, Gan, Xu (b0200) 2019; 19
Bai, Kissoudis, Yan, Visser, van der Linden (b0015) 2018; 93
Cogdell, Gardiner (b0040) 1993; 214
Zapata-Sarmiento, Palacios-Pala, Rodríguez-Hernández, Medina-Melchor, Rodríguez-Monroy, Sepúlveda-Jiménez (b0185) 2019; 140
Munns, Tester (b0125) 2008; 59
Elsevier, B.V pp. 3–24. doi:10.1016/B978-0-444-59576-8.00001-1.
Chang, Randle (b0030) 2004; 39
Pye, Dye, Resende, MacDonald, Bostock (b0130) 2018; 9
Kredics, L., Hatvani, L., Naeimi, S., Körmöczi, P., Manczinger, L., Vágvölgyi, C., Druzhinina, I., 2014. Biodiversity of the genus
Kashyap, Solanki, Kushwaha, Kumar, Srivastava (b0105) 2020; 20
Yusnawan, Taufiq, Wijanarko, Susilowati, Praptana, Chandra-Hioe, Supriyo, Inayati (b0180) 2021; 13
Colpaert, Vandenkoornhuyse, Adriaensen, Vangronsveld (b0045) 2000; 147
Hasegawa, Bressan, Zhu, Bohnert (b0095) 2000; 51
/
Camacho-Luna, Rodríguez-Hernández, Mario, Robledo, Sepúlveda-Jiménez (b0025) 2022; 13
Macías-Rodríguez, Contreras-Cornejo, Adame-Garnica, Del-Val, Larsen (b0120) 2020; 240
Sudha, Riazunnisa (b0165) 2015; 5
Corrêa, Bandeira, Marini, Borba, Lopes, Moraes (b0055) 2013; 27
Sánchez-Montesinos, Diánez, Moreno-Gavira, Gea, Santos (b0145) 2019; 16
García, G., Clemente-Moreno, M.J., Díaz-Vivancos, P., García, M., Hernández, J.A., 2020. The apoplastic and symplastic antioxidant system in onion: response to long-term salt stress. Antioxidants. 9, 67-67. doi:10.3390/antiox9010067.
Jambunathan (b0100) 2010; 639
Abdelrahman, Abdel-Motaal, El-Sayed, Jogaiah, Shigyo, Ito, Tran (b0005) 2016; 246
Lichtenthaler (b0115) 1987; 148
FAO, 2021. https://www.fao.org/global-soil-partnership/areas-of-work/soil-salinity/en/ (Accessed 16 March 2022).
Santos (b0150) 2004; 103
Dikilitas (10.1016/j.biocontrol.2023.105168_b0065) 2014
Cogdell (10.1016/j.biocontrol.2023.105168_b0040) 1993; 214
10.1016/j.biocontrol.2023.105168_b0090
Sudha (10.1016/j.biocontrol.2023.105168_b0165) 2015; 5
Shoaib (10.1016/j.biocontrol.2023.105168_b0155) 2018; 24
Kashyap (10.1016/j.biocontrol.2023.105168_b0105) 2020; 20
Agrios (10.1016/j.biocontrol.2023.105168_b0010) 2005
Chang (10.1016/j.biocontrol.2023.105168_b0030) 2004; 39
Rojas (10.1016/j.biocontrol.2023.105168_b0140) 2010; 22
El-Abyad (10.1016/j.biocontrol.2023.105168_b0075) 1994; 149
Boamah (10.1016/j.biocontrol.2023.105168_b0020) 2021; 12
Dileo (10.1016/j.biocontrol.2023.105168_b0070) 2010; 100
Rawat (10.1016/j.biocontrol.2023.105168_b0135) 2013; 46
Yuan (10.1016/j.biocontrol.2023.105168_b0175) 2019; 20
Contreras-Cornejo (10.1016/j.biocontrol.2023.105168_b0050) 2014; 27
Corrêa (10.1016/j.biocontrol.2023.105168_b0055) 2013; 27
Lichtenthaler (10.1016/j.biocontrol.2023.105168_b0115) 1987; 148
10.1016/j.biocontrol.2023.105168_b0110
Santos (10.1016/j.biocontrol.2023.105168_b0150) 2004; 103
Zervakis (10.1016/j.biocontrol.2023.105168_b0190) 2001; 46
Camacho-Luna (10.1016/j.biocontrol.2023.105168_b0025) 2022; 13
Munns (10.1016/j.biocontrol.2023.105168_b0125) 2008; 59
Elshahawy (10.1016/j.biocontrol.2023.105168_b0080) 2017; 50
Zhang (10.1016/j.biocontrol.2023.105168_b0200) 2019; 19
Jambunathan (10.1016/j.biocontrol.2023.105168_b0100) 2010; 639
Colpaert (10.1016/j.biocontrol.2023.105168_b0045) 2000; 147
Abdelrahman (10.1016/j.biocontrol.2023.105168_b0005) 2016; 246
De Palma (10.1016/j.biocontrol.2023.105168_b0060) 2021; 190
Sánchez-Montesinos (10.1016/j.biocontrol.2023.105168_b0145) 2019; 16
Zhang (10.1016/j.biocontrol.2023.105168_b0195) 2016; 7
Yusnawan (10.1016/j.biocontrol.2023.105168_b0180) 2021; 13
Hasegawa (10.1016/j.biocontrol.2023.105168_b0095) 2000; 51
Stępień (10.1016/j.biocontrol.2023.105168_b0160) 2006; 50
Bai (10.1016/j.biocontrol.2023.105168_b0015) 2018; 93
Pye (10.1016/j.biocontrol.2023.105168_b0130) 2018; 9
10.1016/j.biocontrol.2023.105168_b0085
Xu (10.1016/j.biocontrol.2023.105168_b0170) 2010; 102
Macías-Rodríguez (10.1016/j.biocontrol.2023.105168_b0120) 2020; 240
Clarkson (10.1016/j.biocontrol.2023.105168_b0035) 2006; 55
Zapata-Sarmiento (10.1016/j.biocontrol.2023.105168_b0185) 2019; 140
References_xml – volume: 214
  start-page: 185
  year: 1993
  end-page: 193
  ident: b0040
  article-title: Functions of carotenoids in photosynthesis
  publication-title: Meth. Enzymol.
– volume: 93
  start-page: 781
  year: 2018
  end-page: 793
  ident: b0015
  article-title: Plant behavior under combined stress: tomato responses to combined salinity and pathogen stress
  publication-title: Plant J.
– reference: . Elsevier, B.V pp. 3–24. doi:10.1016/B978-0-444-59576-8.00001-1.
– volume: 55
  start-page: 375
  year: 2006
  end-page: 386
  ident: b0035
  article-title: Integrated control of
  publication-title: Plant Pathol.
– volume: 16
  start-page: 2053
  year: 2019
  ident: b0145
  article-title: Plant growth promotion and biocontrol of
  publication-title: Int. J. Environ. Res. Public Health.
– volume: 51
  start-page: 463
  year: 2000
  end-page: 499
  ident: b0095
  article-title: Plant cellular and molecular responses to high salinity
  publication-title: Ann. Rev. Plant Physiol. Plant Mol. Biol.
– volume: 46
  start-page: 1442
  year: 2013
  end-page: 1467
  ident: b0135
  article-title: Salinity tolerant
  publication-title: Ann Rev Plant Biol.
– volume: 190
  year: 2021
  ident: b0060
  article-title: Transcriptome modulation by the beneficial fungus
  publication-title: Environ. Exp. Bot.
– volume: 9
  start-page: 871
  year: 2018
  end-page: 879
  ident: b0130
  article-title: Abscisic acid as a dominant signal in tomato during salt stress predisposition to phytophthora root and crown rot
  publication-title: Front. Plant Sci.
– volume: 147
  start-page: 367
  year: 2000
  end-page: 379
  ident: b0045
  article-title: Genetic variation and heavy metal tolerance in the ectomycorrhizal basidiomycete
  publication-title: New Phytol.
– volume: 7
  start-page: 1405
  year: 2016
  ident: b0195
  article-title: Application of plant-growth-promoting fungi
  publication-title: Front. Plant Sci.
– volume: 639
  start-page: 292
  year: 2010
  end-page: 298
  ident: b0100
  article-title: Determination and detection of reactive oxygen species (ROS), lipid peroxidation, and electrolyte leakage in plants
  publication-title: Methods Mol Biol.
– reference: Kredics, L., Hatvani, L., Naeimi, S., Körmöczi, P., Manczinger, L., Vágvölgyi, C., Druzhinina, I., 2014. Biodiversity of the genus
– volume: 100
  start-page: 871
  year: 2010
  end-page: 879
  ident: b0070
  article-title: Abscisic acid in salt stress predisposition to phytophthora root and crown rot in tomato and chrysanthemum
  publication-title: Phytopathology.
– volume: 27
  start-page: 394
  year: 2013
  end-page: 399
  ident: b0055
  article-title: Salt stress: antioxidant activity as a physiological adaptation of onion cultivars
  publication-title: Acta Bot Brasilica.
– volume: 50
  start-page: 150
  year: 2017
  end-page: 166
  ident: b0080
  article-title: Biocontrol of onion white rot by application of
  publication-title: Arch. Phytopathol. Plant Prot.
– volume: 148
  start-page: 350
  year: 1987
  end-page: 382
  ident: b0115
  article-title: Chlorophylls and carotenoids: pigments of photosynthetic biomembranes
  publication-title: Meth. Enzymol.
– volume: 103
  start-page: 93
  year: 2004
  end-page: 99
  ident: b0150
  article-title: Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves
  publication-title: Sci. Hortic.
– volume: 39
  start-page: 1416
  year: 2004
  end-page: 1420
  ident: b0030
  article-title: Sodium chloride in nutrient solutions can affect onion growth and flavor development
  publication-title: HortScience.
– reference: FAO, 2021. https://www.fao.org/global-soil-partnership/areas-of-work/soil-salinity/en/ (Accessed 16 March 2022).
– volume: 50
  start-page: 610
  year: 2006
  end-page: 616
  ident: b0160
  article-title: Water relations and photosynthesis in
  publication-title: Biol Plant.
– volume: 19
  start-page: 22
  year: 2019
  ident: b0200
  article-title: Mechanisms of the IAA and ACC-deaminase producing strain of
  publication-title: BMC Plant Biol.
– volume: 27
  start-page: 503
  year: 2014
  end-page: 514
  ident: b0050
  article-title: spp. improve growth of Arabidopsis seedlings under salt stress through enhanced root development, osmolite production, and Na
  publication-title: Mol Plant Microbe Interact.
– volume: 13
  start-page: 13226
  year: 2021
  ident: b0180
  article-title: Changes in volatile organic compounds from salt-tolerant
  publication-title: Sustainability.
– volume: 20
  start-page: 160
  year: 2020
  end-page: 176
  ident: b0105
  article-title: Biocontrol potential of salt-tolerant
  publication-title: J. Soil Sci. Plant Nutr.
– volume: 46
  start-page: 231
  year: 2001
  end-page: 234
  ident: b0190
  article-title: Mycelium growth kinetics and optimal temperature conditions for the cultivation of edible mushroom species on lignocellulosic substrates
  publication-title: Folia Microbiol.
– volume: 59
  start-page: 651
  year: 2008
  end-page: 681
  ident: b0125
  article-title: Mechanisms of salinity tolerance
  publication-title: Ann. Rev Plant Biol.
– volume: 20
  start-page: 144
  year: 2019
  ident: b0175
  article-title: Involvement of jasmonic acid, ethylene and salicylic acid signaling pathways behind the systemic resistance induced by
  publication-title: BMC Genomics.
– volume: 22
  start-page: 185
  year: 2010
  end-page: 192
  ident: b0140
  article-title: Análisis epidemiológico y control de
  publication-title: Bioagro.
– reference: in different habitats, in: Gupta, V.M., Schmoll, M., Herrera-Estrella, A., Upadhyay, R.S., Druzhinina, I., Tuohy, M.G. (Eds.), Biotechnology and Biology of
– volume: 149
  start-page: 309
  year: 1994
  end-page: 315
  ident: b0075
  article-title: Impact of salinity stress on the free amino acid pools of some phytopathogenic fungi
  publication-title: Microbiol. Res.
– volume: 140
  year: 2019
  ident: b0185
  article-title: , a potential biological control agent of
  publication-title: Biol. Control.
– reference: /
– volume: 24
  start-page: 1093
  year: 2018
  end-page: 1101
  ident: b0155
  article-title: Influence of salinity and
  publication-title: Physiol Mol Biol Plants.
– volume: 102
  start-page: 337
  year: 2010
  end-page: 346
  ident: b0170
  article-title: Phylogenetic placement of plant pathogenic
  publication-title: Mycologia.
– volume: 5
  start-page: 125
  year: 2015
  end-page: 128
  ident: b0165
  article-title: Effect of salt stress (NaCl) on morphological parameters of onion (
  publication-title: IJPAES.
– volume: 246
  start-page: 128
  year: 2016
  end-page: 138
  ident: b0005
  article-title: Dissection of
  publication-title: Plant Sci.
– volume: 12
  year: 2021
  ident: b0020
  article-title: (TG1) enhances wheat seedlings tolerance to salt stress and resistance to
  publication-title: Front. Plant Sci.
– volume: 13
  start-page: 1027
  year: 2022
  end-page: 1040
  ident: b0025
  article-title: Identification of endophytic fungi of
  publication-title: REMEXCA.
– volume: 240
  year: 2020
  ident: b0120
  article-title: The interactions of
  publication-title: Microbiol. Res.
– reference: García, G., Clemente-Moreno, M.J., Díaz-Vivancos, P., García, M., Hernández, J.A., 2020. The apoplastic and symplastic antioxidant system in onion: response to long-term salt stress. Antioxidants. 9, 67-67. doi:10.3390/antiox9010067.
– year: 2005
  ident: b0010
  article-title: Plant Pathology
– start-page: 173
  year: 2014
  end-page: 192
  ident: b0065
  article-title: Crop plants under saline-adapted fungal pathogens: An overview
  publication-title: Emerging Technologies and Management of Crop Stress Tolerance
– volume: 147
  start-page: 367
  year: 2000
  ident: 10.1016/j.biocontrol.2023.105168_b0045
  article-title: Genetic variation and heavy metal tolerance in the ectomycorrhizal basidiomycete Suillus luteus
  publication-title: New Phytol.
  doi: 10.1046/j.1469-8137.2000.00694.x
– volume: 102
  start-page: 337
  year: 2010
  ident: 10.1016/j.biocontrol.2023.105168_b0170
  article-title: Phylogenetic placement of plant pathogenic Sclerotium species among teleomorph genera
  publication-title: Mycologia.
  doi: 10.3852/08-189
– ident: 10.1016/j.biocontrol.2023.105168_b0090
  doi: 10.3390/antiox9010067
– volume: 639
  start-page: 292
  year: 2010
  ident: 10.1016/j.biocontrol.2023.105168_b0100
  article-title: Determination and detection of reactive oxygen species (ROS), lipid peroxidation, and electrolyte leakage in plants
  publication-title: Methods Mol Biol.
– volume: 20
  start-page: 160
  year: 2020
  ident: 10.1016/j.biocontrol.2023.105168_b0105
  article-title: Biocontrol potential of salt-tolerant Trichoderma and Hypocrea isolates for the management of tomato root rot under saline environment
  publication-title: J. Soil Sci. Plant Nutr.
  doi: 10.1007/s42729-019-00114-y
– volume: 50
  start-page: 610
  year: 2006
  ident: 10.1016/j.biocontrol.2023.105168_b0160
  article-title: Water relations and photosynthesis in Cucumis sativus L. leaves under salt stress
  publication-title: Biol Plant.
  doi: 10.1007/s10535-006-0096-z
– volume: 20
  start-page: 144
  year: 2019
  ident: 10.1016/j.biocontrol.2023.105168_b0175
  article-title: Involvement of jasmonic acid, ethylene and salicylic acid signaling pathways behind the systemic resistance induced by Trichoderma longibrachiatum H9 in cucumber
  publication-title: BMC Genomics.
  doi: 10.1186/s12864-019-5513-8
– volume: 93
  start-page: 781
  year: 2018
  ident: 10.1016/j.biocontrol.2023.105168_b0015
  article-title: Plant behavior under combined stress: tomato responses to combined salinity and pathogen stress
  publication-title: Plant J.
  doi: 10.1111/tpj.13800
– volume: 27
  start-page: 503
  year: 2014
  ident: 10.1016/j.biocontrol.2023.105168_b0050
  article-title: Trichoderma spp. improve growth of Arabidopsis seedlings under salt stress through enhanced root development, osmolite production, and Na+ elimination through root exudates
  publication-title: Mol Plant Microbe Interact.
  doi: 10.1094/MPMI-09-13-0265-R
– volume: 190
  year: 2021
  ident: 10.1016/j.biocontrol.2023.105168_b0060
  article-title: Transcriptome modulation by the beneficial fungus Trichoderma longibrachiatum drives water stress response and recovery in tomato
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2021.104588
– volume: 27
  start-page: 394
  year: 2013
  ident: 10.1016/j.biocontrol.2023.105168_b0055
  article-title: Salt stress: antioxidant activity as a physiological adaptation of onion cultivars
  publication-title: Acta Bot Brasilica.
  doi: 10.1590/S0102-33062013000200013
– volume: 51
  start-page: 463
  year: 2000
  ident: 10.1016/j.biocontrol.2023.105168_b0095
  article-title: Plant cellular and molecular responses to high salinity
  publication-title: Ann. Rev. Plant Physiol. Plant Mol. Biol.
  doi: 10.1146/annurev.arplant.51.1.463
– volume: 240
  year: 2020
  ident: 10.1016/j.biocontrol.2023.105168_b0120
  article-title: The interactions of Trichoderma at multiple trophic levels: inter-kingdom communication
  publication-title: Microbiol. Res.
  doi: 10.1016/j.micres.2020.126552
– volume: 103
  start-page: 93
  year: 2004
  ident: 10.1016/j.biocontrol.2023.105168_b0150
  article-title: Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2004.04.009
– volume: 9
  start-page: 871
  year: 2018
  ident: 10.1016/j.biocontrol.2023.105168_b0130
  article-title: Abscisic acid as a dominant signal in tomato during salt stress predisposition to phytophthora root and crown rot
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.00525
– volume: 149
  start-page: 309
  year: 1994
  ident: 10.1016/j.biocontrol.2023.105168_b0075
  article-title: Impact of salinity stress on the free amino acid pools of some phytopathogenic fungi
  publication-title: Microbiol. Res.
  doi: 10.1016/S0944-5013(11)80074-1
– start-page: 173
  year: 2014
  ident: 10.1016/j.biocontrol.2023.105168_b0065
  article-title: Crop plants under saline-adapted fungal pathogens: An overview
– volume: 13
  start-page: 1027
  year: 2022
  ident: 10.1016/j.biocontrol.2023.105168_b0025
  article-title: Identification of endophytic fungi of Ageratina pichinchensis with antagonistic activity against phytopathogens of agricultural importance
  publication-title: REMEXCA.
  doi: 10.29312/remexca.v13i6.3030
– year: 2005
  ident: 10.1016/j.biocontrol.2023.105168_b0010
– ident: 10.1016/j.biocontrol.2023.105168_b0110
  doi: 10.1016/B978-0-444-59576-8.00001-1
– volume: 24
  start-page: 1093
  year: 2018
  ident: 10.1016/j.biocontrol.2023.105168_b0155
  article-title: Influence of salinity and Fusarium oxysporum as the stress factors on morpho-physiological and yield attributes in onion
  publication-title: Physiol Mol Biol Plants.
  doi: 10.1007/s12298-018-0570-z
– volume: 5
  start-page: 125
  year: 2015
  ident: 10.1016/j.biocontrol.2023.105168_b0165
  article-title: Effect of salt stress (NaCl) on morphological parameters of onion (Allium cepa L.) seedlings
  publication-title: IJPAES.
– volume: 39
  start-page: 1416
  year: 2004
  ident: 10.1016/j.biocontrol.2023.105168_b0030
  article-title: Sodium chloride in nutrient solutions can affect onion growth and flavor development
  publication-title: HortScience.
  doi: 10.21273/HORTSCI.39.6.1416
– volume: 22
  start-page: 185
  year: 2010
  ident: 10.1016/j.biocontrol.2023.105168_b0140
  article-title: Análisis epidemiológico y control de Sclerotium cepivorum berk. y la pudrición blanca en ajo
  publication-title: Bioagro.
– volume: 12
  year: 2021
  ident: 10.1016/j.biocontrol.2023.105168_b0020
  article-title: Trichoderma longibrachiatum (TG1) enhances wheat seedlings tolerance to salt stress and resistance to Fusarium pseudograminearum
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2021.741231
– volume: 214
  start-page: 185
  year: 1993
  ident: 10.1016/j.biocontrol.2023.105168_b0040
  article-title: Functions of carotenoids in photosynthesis
  publication-title: Meth. Enzymol.
  doi: 10.1016/0076-6879(93)14065-Q
– volume: 16
  start-page: 2053
  year: 2019
  ident: 10.1016/j.biocontrol.2023.105168_b0145
  article-title: Plant growth promotion and biocontrol of Pythium ultimum by saline tolerant Trichoderma isolates under salinity stress
  publication-title: Int. J. Environ. Res. Public Health.
  doi: 10.3390/ijerph16112053
– volume: 19
  start-page: 22
  year: 2019
  ident: 10.1016/j.biocontrol.2023.105168_b0200
  article-title: Mechanisms of the IAA and ACC-deaminase producing strain of Trichoderma longibrachiatum T6 in enhancing wheat seedling tolerance to NaCl stress
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-018-1618-5
– volume: 46
  start-page: 231
  year: 2001
  ident: 10.1016/j.biocontrol.2023.105168_b0190
  article-title: Mycelium growth kinetics and optimal temperature conditions for the cultivation of edible mushroom species on lignocellulosic substrates
  publication-title: Folia Microbiol.
  doi: 10.1007/BF02818539
– volume: 7
  start-page: 1405
  year: 2016
  ident: 10.1016/j.biocontrol.2023.105168_b0195
  article-title: Application of plant-growth-promoting fungi Trichoderma longibrachiatum T6 enhances tolerance of wheat to salt stress through improvement of antioxidative defense system and gene expression
  publication-title: Front. Plant Sci.
– volume: 50
  start-page: 150
  year: 2017
  ident: 10.1016/j.biocontrol.2023.105168_b0080
  article-title: Biocontrol of onion white rot by application of Trichoderma species formulated on wheat bran powder
  publication-title: Arch. Phytopathol. Plant Prot.
  doi: 10.1080/03235408.2016.1276423
– volume: 46
  start-page: 1442
  year: 2013
  ident: 10.1016/j.biocontrol.2023.105168_b0135
  article-title: Salinity tolerant Trichoderma harzianum reinforces NaCl tolerance and reduces population dynamics of Fusarium oxysporum f.sp. ciceri in chickpea (Cicer arietinum L.) under salt stress conditions
  publication-title: Ann Rev Plant Biol.
– ident: 10.1016/j.biocontrol.2023.105168_b0085
– volume: 13
  start-page: 13226
  year: 2021
  ident: 10.1016/j.biocontrol.2023.105168_b0180
  article-title: Changes in volatile organic compounds from salt-tolerant Trichoderma and the biochemical response and growth performance in saline-stressed groundnut
  publication-title: Sustainability.
  doi: 10.3390/su132313226
– volume: 140
  year: 2019
  ident: 10.1016/j.biocontrol.2023.105168_b0185
  article-title: Trichoderma asperellum, a potential biological control agent of Stemphylium vesicarium, on onion (Allium cepa L.)
  publication-title: Biol. Control.
– volume: 148
  start-page: 350
  year: 1987
  ident: 10.1016/j.biocontrol.2023.105168_b0115
  article-title: Chlorophylls and carotenoids: pigments of photosynthetic biomembranes
  publication-title: Meth. Enzymol.
  doi: 10.1016/0076-6879(87)48036-1
– volume: 59
  start-page: 651
  year: 2008
  ident: 10.1016/j.biocontrol.2023.105168_b0125
  article-title: Mechanisms of salinity tolerance
  publication-title: Ann. Rev Plant Biol.
  doi: 10.1146/annurev.arplant.59.032607.092911
– volume: 55
  start-page: 375
  year: 2006
  ident: 10.1016/j.biocontrol.2023.105168_b0035
  article-title: Integrated control of Allium white rot with Trichoderma viride, tebuconazole and composted onion waste
  publication-title: Plant Pathol.
  doi: 10.1111/j.1365-3059.2006.01389.x
– volume: 100
  start-page: 871
  year: 2010
  ident: 10.1016/j.biocontrol.2023.105168_b0070
  article-title: Abscisic acid in salt stress predisposition to phytophthora root and crown rot in tomato and chrysanthemum
  publication-title: Phytopathology.
  doi: 10.1094/PHYTO-100-9-0871
– volume: 246
  start-page: 128
  year: 2016
  ident: 10.1016/j.biocontrol.2023.105168_b0005
  article-title: Dissection of Trichoderma longibrachiatum-induced defense in onion (Allium cepa L.) against Fusarium oxysporum f. sp. cepa by target metabolite profiling
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2016.02.008
SSID ssj0011470
Score 2.4197457
Snippet [Display omitted] •Onions are affected by salt stress and white rot caused by Sclerotium cepivorum.•Salt stress increases damage severity caused by white rot...
Salt stress and pathogen infection cause damage to onion crops and limit production. Application of Trichoderma species could be an option for reducing crop...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 105168
SubjectTerms Antagonistic activity
biological control
biological control agents
biomass
carotenoids
chlorophyll
crop damage
disease severity
electrolyte leakage
fungi
onions
pathogens
photosynthesis
salinity
Salinity tolerance
salt stress
Sclerotium cepivorum
Soil salinity
species
Trichoderma longibrachiatum
White rot
Title Trichoderma longibrachiatum, a biological control agent of Sclerotium cepivorum on onion plants under salt stress
URI https://dx.doi.org/10.1016/j.biocontrol.2023.105168
https://www.proquest.com/docview/3153766018
Volume 180
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ba9swFH60KYPtMNpuY926oMGOczNVtlzTUwgraTvKWFvITUiy1HkkdpY6g1362_teJLds9FAo-GKBbPM-We8T-vQ9gE9WFAKJhE2kkz5JkRIkxvIskftl5g0nP5OVyvdMji_Tk0k2WYNRdxaGZJVx7g9z-mq2ji2DGM3BvKoG55zYOqZzJNGUqSbrsLGP2f6gBxvD49Px2d1mAk_zaEpAZpRpGgU9QeZlqiaKwveokjjVveXku_pwlvpvvl4loaNNeBnZIxuGD9yCNVdvw4vh1SI6aLhteBaqS_59Bb8vsPkn1TqbaTZt6itaGa-kzcvZZ6ZZ8F8ikFj8NqbpoBVrPDvHxy-atlrOmHXz6g9ZNrCmxgtxZPMpqWcYnT9bsGs9bVk4cvIaLo--XozGSaywkFiR8TYhw6uiyDHWOvPCSuE017gCSRE5aT1HNiR0IW2prffa2rL0BuEs8kLmRkst3kCvbmr3FiOqhc9LU-bG-NQIg8w9E1-8EMixnC_tDuRdRJWN9uNUBWOqOp3ZL3WPhSIsVMBiB_hdz3mw4HhEn8MONPXPcFKYKR7R-2OHs8K_jbZQdO2a5bUSnOxvcBF78O5Jb3gPz-kuKCd3odculu4DspvW9GF974b3cQyPfnz73o9j-RbH2__F
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1BT9swFLYYaNo4TIwNDbYxT9pxafGcOEQ7IbSqbNALrdSbZTs2ZGqTUBKkXfbbeS92QJs4ICHl5MiJ9T7H77Py-XuEfDE840AkTCSscFEMlCDShiWR-JYnTjP0M-lUvhMxnsU_58l8jRz3Z2FQVhnWfr-md6t1aBmGaA7rohieM2TrkM6BRGOmmj8jGzGWOYBJPfh7p_MAvp8GSwK0oozjIOfxIi9dVEESPsA64lj1lqHr6sM56r_VuktBoy3yKnBHeuSH95qs2XKbbB5drIJ_ht0mz31tyT9vyNUUmi-x0tlS0UVVXuC-uBM2t8uvVFHvvoQQ0TA2qvCYFa0cPYfHr6qmaJfU2Lq4QcMGWpVwAYq0XqB2huLpsxW9VouG-gMnb8ls9GN6PI5CfYXI8IQ1EdpdZVkKkVaJ40Zwq5iC_UcMuAnjGHAhrjJhcmWcU8bkudMAZpZmItVKKL5D1suqtO8gooq7NNd5qrWLNdfA2xN-4DgHhmVdbnZJ2kdUmmA-jjUwFrJXmf2W91hIxEJ6LHYJu-tZewOOR_T53oMm_5lMEvLEI3p_7nGW8K3hDxRV2qq9lpyh-Q1sYQ_3nvSGT-TFeHp2Kk9PJr_ek5d4x2soP5D1ZtXaj8BzGr3fzeNb6C_-8g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trichoderma+longibrachiatum%2C+a+biological+control+agent+of+Sclerotium+cepivorum+on+onion+plants+under+salt+stress&rft.jtitle=Biological+control&rft.au=Camacho-Luna%2C+Valeria&rft.au=Pizar-Quiroz%2C+Alejandro+Marcelino&rft.au=Rodr%C3%ADguez-Hern%C3%A1ndez%2C+Aida+Araceli&rft.au=Rodr%C3%ADguez-Monroy%2C+Mario&rft.date=2023-05-01&rft.pub=Elsevier+Inc&rft.issn=1049-9644&rft.eissn=1090-2112&rft.volume=180&rft_id=info:doi/10.1016%2Fj.biocontrol.2023.105168&rft.externalDocID=S104996442300021X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1049-9644&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1049-9644&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1049-9644&client=summon