Trichoderma longibrachiatum, a biological control agent of Sclerotium cepivorum on onion plants under salt stress
[Display omitted] •Onions are affected by salt stress and white rot caused by Sclerotium cepivorum.•Salt stress increases damage severity caused by white rot in onions.•Trichoderma longibrachiatum maintains antagonistic activity in saline conditions.•T. longibrachiatum is more tolerant to salinity t...
Saved in:
Published in | Biological control Vol. 180; p. 105168 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.05.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1049-9644 1090-2112 |
DOI | 10.1016/j.biocontrol.2023.105168 |
Cover
Abstract | [Display omitted]
•Onions are affected by salt stress and white rot caused by Sclerotium cepivorum.•Salt stress increases damage severity caused by white rot in onions.•Trichoderma longibrachiatum maintains antagonistic activity in saline conditions.•T. longibrachiatum is more tolerant to salinity than Sclerotium cepivorum.•T. longibrachiatum reduces the severity of white rot disease in saline conditions.
Salt stress and pathogen infection cause damage to onion crops and limit production. Application of Trichoderma species could be an option for reducing crop damage. The objective of this work was to evaluate the capacity of Trichoderma longibrachiatum to reduce damage to onion plants caused by salinity and infection by Sclerotium cepivorum. The two fungi showed differences in their tolerance to NaCl depending on the NaCl concentration. At low concentrations of NaCl, S. cepivorum was more tolerant than T. longibrachiatum, while at high concentrations of NaCl the tolerance of T. longibrachiatum was reduced to 17% and S. cepivorum did not grow. However, T. longibrachiatum maintained antagonistic activity against S. cepivorum in the presence of NaCl. Compared with uninoculated plants, inoculation with T. longibrachiatum increased the biomass of plants infected with S. cepivorum, plants treated with NaCl, and also plants treated with the combined treatment of S. cepivorum and NaCl. In plants infected with S. cepivorum and with the combined treatment of NaCl and S. cepivorum, the disease severity index was 69 and 89 %, respectively. However, inoculation with T. longibrachiatum reduced the disease severity index to 12 and 60 % in plants infected with S. cepivorum and in the combined treatment of S. cepivorum and NaCl, respectively. Chlorophyll and carotenoid content were maintained in plants inoculated with T. longibrachiatum and then subjected to salinity and infection; T. longibrachiatum decreased electrolyte leakage caused by salinity and infection. In conclusion, inoculation of onion plants with T. longibrachiatum reduced damage caused by infection with S. cepivorum and NaCl in onion plants; this was achieved by maintaining biomass and the content of photosynthetic pigments and by reducing electrolyte leakage. T. longibrachiatum is a fungus with potential as a biological control agent of S. cepivorum on onion plants under salt stress. |
---|---|
AbstractList | [Display omitted]
•Onions are affected by salt stress and white rot caused by Sclerotium cepivorum.•Salt stress increases damage severity caused by white rot in onions.•Trichoderma longibrachiatum maintains antagonistic activity in saline conditions.•T. longibrachiatum is more tolerant to salinity than Sclerotium cepivorum.•T. longibrachiatum reduces the severity of white rot disease in saline conditions.
Salt stress and pathogen infection cause damage to onion crops and limit production. Application of Trichoderma species could be an option for reducing crop damage. The objective of this work was to evaluate the capacity of Trichoderma longibrachiatum to reduce damage to onion plants caused by salinity and infection by Sclerotium cepivorum. The two fungi showed differences in their tolerance to NaCl depending on the NaCl concentration. At low concentrations of NaCl, S. cepivorum was more tolerant than T. longibrachiatum, while at high concentrations of NaCl the tolerance of T. longibrachiatum was reduced to 17% and S. cepivorum did not grow. However, T. longibrachiatum maintained antagonistic activity against S. cepivorum in the presence of NaCl. Compared with uninoculated plants, inoculation with T. longibrachiatum increased the biomass of plants infected with S. cepivorum, plants treated with NaCl, and also plants treated with the combined treatment of S. cepivorum and NaCl. In plants infected with S. cepivorum and with the combined treatment of NaCl and S. cepivorum, the disease severity index was 69 and 89 %, respectively. However, inoculation with T. longibrachiatum reduced the disease severity index to 12 and 60 % in plants infected with S. cepivorum and in the combined treatment of S. cepivorum and NaCl, respectively. Chlorophyll and carotenoid content were maintained in plants inoculated with T. longibrachiatum and then subjected to salinity and infection; T. longibrachiatum decreased electrolyte leakage caused by salinity and infection. In conclusion, inoculation of onion plants with T. longibrachiatum reduced damage caused by infection with S. cepivorum and NaCl in onion plants; this was achieved by maintaining biomass and the content of photosynthetic pigments and by reducing electrolyte leakage. T. longibrachiatum is a fungus with potential as a biological control agent of S. cepivorum on onion plants under salt stress. Salt stress and pathogen infection cause damage to onion crops and limit production. Application of Trichoderma species could be an option for reducing crop damage. The objective of this work was to evaluate the capacity of Trichoderma longibrachiatum to reduce damage to onion plants caused by salinity and infection by Sclerotium cepivorum. The two fungi showed differences in their tolerance to NaCl depending on the NaCl concentration. At low concentrations of NaCl, S. cepivorum was more tolerant than T. longibrachiatum, while at high concentrations of NaCl the tolerance of T. longibrachiatum was reduced to 17% and S. cepivorum did not grow. However, T. longibrachiatum maintained antagonistic activity against S. cepivorum in the presence of NaCl. Compared with uninoculated plants, inoculation with T. longibrachiatum increased the biomass of plants infected with S. cepivorum, plants treated with NaCl, and also plants treated with the combined treatment of S. cepivorum and NaCl. In plants infected with S. cepivorum and with the combined treatment of NaCl and S. cepivorum, the disease severity index was 69 and 89 %, respectively. However, inoculation with T. longibrachiatum reduced the disease severity index to 12 and 60 % in plants infected with S. cepivorum and in the combined treatment of S. cepivorum and NaCl, respectively. Chlorophyll and carotenoid content were maintained in plants inoculated with T. longibrachiatum and then subjected to salinity and infection; T. longibrachiatum decreased electrolyte leakage caused by salinity and infection. In conclusion, inoculation of onion plants with T. longibrachiatum reduced damage caused by infection with S. cepivorum and NaCl in onion plants; this was achieved by maintaining biomass and the content of photosynthetic pigments and by reducing electrolyte leakage. T. longibrachiatum is a fungus with potential as a biological control agent of S. cepivorum on onion plants under salt stress. |
ArticleNumber | 105168 |
Author | Pizar-Quiroz, Alejandro Marcelino Rodríguez-Hernández, Aida Araceli Rodríguez-Monroy, Mario Camacho-Luna, Valeria Sepúlveda-Jiménez, Gabriela |
Author_xml | – sequence: 1 givenname: Valeria surname: Camacho-Luna fullname: Camacho-Luna, Valeria email: vcamachol1100@alumno.ipn.mx organization: Departamento de Biotecnología, Centro de Desarrollo de Productos Bióticos-Instituto Politécnico Nacional, Calle CEPROBI No. 8, Col. San Isidro, 62731 Yautepec, Morelos, Mexico – sequence: 2 givenname: Alejandro Marcelino surname: Pizar-Quiroz fullname: Pizar-Quiroz, Alejandro Marcelino email: apizarq1800@alumno.ipn.mx organization: Departamento de Biotecnología, Centro de Desarrollo de Productos Bióticos-Instituto Politécnico Nacional, Calle CEPROBI No. 8, Col. San Isidro, 62731 Yautepec, Morelos, Mexico – sequence: 3 givenname: Aida Araceli surname: Rodríguez-Hernández fullname: Rodríguez-Hernández, Aida Araceli email: arodriguezhe@ipn.mx organization: CONACyT-Instituto Politécnico Nacional, Centro de Desarrollo de Productos Bióticos, Calle CEPROBI No. 8, Col. San Isidro, 62731 Yautepec, Morelos, Mexico – sequence: 4 givenname: Mario surname: Rodríguez-Monroy fullname: Rodríguez-Monroy, Mario email: mrmonroy@ipn.mx organization: Departamento de Biotecnología, Centro de Desarrollo de Productos Bióticos-Instituto Politécnico Nacional, Calle CEPROBI No. 8, Col. San Isidro, 62731 Yautepec, Morelos, Mexico – sequence: 5 givenname: Gabriela surname: Sepúlveda-Jiménez fullname: Sepúlveda-Jiménez, Gabriela email: gsepulvedaj@ipn.mx organization: Departamento de Biotecnología, Centro de Desarrollo de Productos Bióticos-Instituto Politécnico Nacional, Calle CEPROBI No. 8, Col. San Isidro, 62731 Yautepec, Morelos, Mexico |
BookMark | eNqNkMFq3DAQhkVJoUmad9Cxh3orrW15dSm0oWkKgR6anMXseLyZRZY2khzo21fLBgq5tCCkQfzzjfRdiLMQAwkhtVpppc2n_WrLEWMoKfrVWq3bet1rs3kjzrWyqllrvT471p1trOm6d-Ii571SWneDOhdP94nxMY6UZpA-hh1vE-AjQ1nmjxJkhfu4YwQvX4ZI2FEoMk7yF3pKsfAyS6QDP8dUqxjq4rofPISS5RIqW2bwReaSKOf34u0EPtPVy3kpHm6-3V_fNnc_v_-4_nLXYNvr0thho60dkEbopxZNS6ChH0xnyBictFGqBWtwBJwmQBzHadup3g7WDFsw0F6KDyfuIcWnhXJxM2ckX59Fccmu1X07GKP0pkY3pyimmHOiyR0Sz5B-O63c0bLbu7-W3dGyO1murZ9ftSIXKHyMAvv_AXw9Aai6eGZKLiNTqP_mRFjcGPnfkD8Ec6XN |
CitedBy_id | crossref_primary_10_1080_07060661_2024_2413956 crossref_primary_10_1016_j_stress_2023_100234 crossref_primary_10_3390_jof10110776 crossref_primary_10_1016_j_plaphy_2023_108328 crossref_primary_10_3390_cleantechnol6030050 crossref_primary_10_3390_horticulturae10080805 crossref_primary_10_3389_fsufs_2024_1427303 crossref_primary_10_7717_peerj_19016 |
Cites_doi | 10.1046/j.1469-8137.2000.00694.x 10.3852/08-189 10.3390/antiox9010067 10.1007/s42729-019-00114-y 10.1007/s10535-006-0096-z 10.1186/s12864-019-5513-8 10.1111/tpj.13800 10.1094/MPMI-09-13-0265-R 10.1016/j.envexpbot.2021.104588 10.1590/S0102-33062013000200013 10.1146/annurev.arplant.51.1.463 10.1016/j.micres.2020.126552 10.1016/j.scienta.2004.04.009 10.3389/fpls.2018.00525 10.1016/S0944-5013(11)80074-1 10.29312/remexca.v13i6.3030 10.1016/B978-0-444-59576-8.00001-1 10.1007/s12298-018-0570-z 10.21273/HORTSCI.39.6.1416 10.3389/fpls.2021.741231 10.1016/0076-6879(93)14065-Q 10.3390/ijerph16112053 10.1186/s12870-018-1618-5 10.1007/BF02818539 10.1080/03235408.2016.1276423 10.3390/su132313226 10.1016/0076-6879(87)48036-1 10.1146/annurev.arplant.59.032607.092911 10.1111/j.1365-3059.2006.01389.x 10.1094/PHYTO-100-9-0871 10.1016/j.plantsci.2016.02.008 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Inc. |
Copyright_xml | – notice: 2023 Elsevier Inc. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.biocontrol.2023.105168 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Biology |
EISSN | 1090-2112 |
ExternalDocumentID | 10_1016_j_biocontrol_2023_105168 S104996442300021X |
GroupedDBID | --K --M .~1 0R~ 0SF 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ 9JM AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFRF ABGRD ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADFGL ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG CBWCG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HVGLF HZ~ IHE J1W KFR KOM LG5 LW8 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SDP SES SEW SPCBC SSA SSZ T5K UHS VH1 WUQ XPP Y6R ZMT ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION GROUPED_DOAJ SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c351t-9781997ceda5f3c63ea1a57646e66cf16003a96cdacffaccddfb40597967ba6a3 |
IEDL.DBID | AIKHN |
ISSN | 1049-9644 |
IngestDate | Fri Sep 05 16:08:55 EDT 2025 Thu Apr 24 23:11:44 EDT 2025 Tue Jul 01 01:09:54 EDT 2025 Fri Feb 23 02:37:41 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | White rot Antagonistic activity Salinity tolerance Soil salinity |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-9781997ceda5f3c63ea1a57646e66cf16003a96cdacffaccddfb40597967ba6a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 3153766018 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3153766018 crossref_primary_10_1016_j_biocontrol_2023_105168 crossref_citationtrail_10_1016_j_biocontrol_2023_105168 elsevier_sciencedirect_doi_10_1016_j_biocontrol_2023_105168 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-01 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Biological control |
PublicationYear | 2023 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Zervakis, Philippoussis, Ioannldou, Diamantopoulou (b0190) 2001; 46 Dileo, Pye, Roubtsova, Duniway, MacDonald, Rizzo, Bostock (b0070) 2010; 100 Agrios (b0010) 2005 Contreras-Cornejo, Macías-Rodríguez, Alfaro-Cuevas, López-Bucio (b0050) 2014; 27 De Palma, Docimo, Guida, Salzano, Albrizio, Giorio, Ruocco, Tucci (b0060) 2021; 190 Rawat, Singh, Shukla, Kumar (b0135) 2013; 46 Rojas, Ulacio, Jiménez, Perdomo, Pardo (b0140) 2010; 22 Yuan, Huang, Huang, Ge, Jia, Song, Zhang (b0175) 2019; 20 Shoaib, Meraj, Khan, Javaid (b0155) 2018; 24 Zhang, Gan, Xu (b0195) 2016; 7 Boamah, Zhang, Xu, Li, Calderón-Urrea (b0020) 2021; 12 Stępień, Kłbus (b0160) 2006; 50 Xu, Harrington, Gleason, Batzer (b0170) 2010; 102 Clarkson, Scruby, Mead, Wright, Smith, Whipps (b0035) 2006; 55 Elshahawy, Saied, Abd-El-Kareem, Morsy (b0080) 2017; 50 in different habitats, in: Gupta, V.M., Schmoll, M., Herrera-Estrella, A., Upadhyay, R.S., Druzhinina, I., Tuohy, M.G. (Eds.), Biotechnology and Biology of Dikilitas, Karakas (b0065) 2014 El-Abyad, Attaby, Abu-Taleb (b0075) 1994; 149 Zhang, Gan, Xu (b0200) 2019; 19 Bai, Kissoudis, Yan, Visser, van der Linden (b0015) 2018; 93 Cogdell, Gardiner (b0040) 1993; 214 Zapata-Sarmiento, Palacios-Pala, Rodríguez-Hernández, Medina-Melchor, Rodríguez-Monroy, Sepúlveda-Jiménez (b0185) 2019; 140 Munns, Tester (b0125) 2008; 59 Elsevier, B.V pp. 3–24. doi:10.1016/B978-0-444-59576-8.00001-1. Chang, Randle (b0030) 2004; 39 Pye, Dye, Resende, MacDonald, Bostock (b0130) 2018; 9 Kredics, L., Hatvani, L., Naeimi, S., Körmöczi, P., Manczinger, L., Vágvölgyi, C., Druzhinina, I., 2014. Biodiversity of the genus Kashyap, Solanki, Kushwaha, Kumar, Srivastava (b0105) 2020; 20 Yusnawan, Taufiq, Wijanarko, Susilowati, Praptana, Chandra-Hioe, Supriyo, Inayati (b0180) 2021; 13 Colpaert, Vandenkoornhuyse, Adriaensen, Vangronsveld (b0045) 2000; 147 Hasegawa, Bressan, Zhu, Bohnert (b0095) 2000; 51 / Camacho-Luna, Rodríguez-Hernández, Mario, Robledo, Sepúlveda-Jiménez (b0025) 2022; 13 Macías-Rodríguez, Contreras-Cornejo, Adame-Garnica, Del-Val, Larsen (b0120) 2020; 240 Sudha, Riazunnisa (b0165) 2015; 5 Corrêa, Bandeira, Marini, Borba, Lopes, Moraes (b0055) 2013; 27 Sánchez-Montesinos, Diánez, Moreno-Gavira, Gea, Santos (b0145) 2019; 16 García, G., Clemente-Moreno, M.J., Díaz-Vivancos, P., García, M., Hernández, J.A., 2020. The apoplastic and symplastic antioxidant system in onion: response to long-term salt stress. Antioxidants. 9, 67-67. doi:10.3390/antiox9010067. Jambunathan (b0100) 2010; 639 Abdelrahman, Abdel-Motaal, El-Sayed, Jogaiah, Shigyo, Ito, Tran (b0005) 2016; 246 Lichtenthaler (b0115) 1987; 148 FAO, 2021. https://www.fao.org/global-soil-partnership/areas-of-work/soil-salinity/en/ (Accessed 16 March 2022). Santos (b0150) 2004; 103 Dikilitas (10.1016/j.biocontrol.2023.105168_b0065) 2014 Cogdell (10.1016/j.biocontrol.2023.105168_b0040) 1993; 214 10.1016/j.biocontrol.2023.105168_b0090 Sudha (10.1016/j.biocontrol.2023.105168_b0165) 2015; 5 Shoaib (10.1016/j.biocontrol.2023.105168_b0155) 2018; 24 Kashyap (10.1016/j.biocontrol.2023.105168_b0105) 2020; 20 Agrios (10.1016/j.biocontrol.2023.105168_b0010) 2005 Chang (10.1016/j.biocontrol.2023.105168_b0030) 2004; 39 Rojas (10.1016/j.biocontrol.2023.105168_b0140) 2010; 22 El-Abyad (10.1016/j.biocontrol.2023.105168_b0075) 1994; 149 Boamah (10.1016/j.biocontrol.2023.105168_b0020) 2021; 12 Dileo (10.1016/j.biocontrol.2023.105168_b0070) 2010; 100 Rawat (10.1016/j.biocontrol.2023.105168_b0135) 2013; 46 Yuan (10.1016/j.biocontrol.2023.105168_b0175) 2019; 20 Contreras-Cornejo (10.1016/j.biocontrol.2023.105168_b0050) 2014; 27 Corrêa (10.1016/j.biocontrol.2023.105168_b0055) 2013; 27 Lichtenthaler (10.1016/j.biocontrol.2023.105168_b0115) 1987; 148 10.1016/j.biocontrol.2023.105168_b0110 Santos (10.1016/j.biocontrol.2023.105168_b0150) 2004; 103 Zervakis (10.1016/j.biocontrol.2023.105168_b0190) 2001; 46 Camacho-Luna (10.1016/j.biocontrol.2023.105168_b0025) 2022; 13 Munns (10.1016/j.biocontrol.2023.105168_b0125) 2008; 59 Elshahawy (10.1016/j.biocontrol.2023.105168_b0080) 2017; 50 Zhang (10.1016/j.biocontrol.2023.105168_b0200) 2019; 19 Jambunathan (10.1016/j.biocontrol.2023.105168_b0100) 2010; 639 Colpaert (10.1016/j.biocontrol.2023.105168_b0045) 2000; 147 Abdelrahman (10.1016/j.biocontrol.2023.105168_b0005) 2016; 246 De Palma (10.1016/j.biocontrol.2023.105168_b0060) 2021; 190 Sánchez-Montesinos (10.1016/j.biocontrol.2023.105168_b0145) 2019; 16 Zhang (10.1016/j.biocontrol.2023.105168_b0195) 2016; 7 Yusnawan (10.1016/j.biocontrol.2023.105168_b0180) 2021; 13 Hasegawa (10.1016/j.biocontrol.2023.105168_b0095) 2000; 51 Stępień (10.1016/j.biocontrol.2023.105168_b0160) 2006; 50 Bai (10.1016/j.biocontrol.2023.105168_b0015) 2018; 93 Pye (10.1016/j.biocontrol.2023.105168_b0130) 2018; 9 10.1016/j.biocontrol.2023.105168_b0085 Xu (10.1016/j.biocontrol.2023.105168_b0170) 2010; 102 Macías-Rodríguez (10.1016/j.biocontrol.2023.105168_b0120) 2020; 240 Clarkson (10.1016/j.biocontrol.2023.105168_b0035) 2006; 55 Zapata-Sarmiento (10.1016/j.biocontrol.2023.105168_b0185) 2019; 140 |
References_xml | – volume: 214 start-page: 185 year: 1993 end-page: 193 ident: b0040 article-title: Functions of carotenoids in photosynthesis publication-title: Meth. Enzymol. – volume: 93 start-page: 781 year: 2018 end-page: 793 ident: b0015 article-title: Plant behavior under combined stress: tomato responses to combined salinity and pathogen stress publication-title: Plant J. – reference: . Elsevier, B.V pp. 3–24. doi:10.1016/B978-0-444-59576-8.00001-1. – volume: 55 start-page: 375 year: 2006 end-page: 386 ident: b0035 article-title: Integrated control of publication-title: Plant Pathol. – volume: 16 start-page: 2053 year: 2019 ident: b0145 article-title: Plant growth promotion and biocontrol of publication-title: Int. J. Environ. Res. Public Health. – volume: 51 start-page: 463 year: 2000 end-page: 499 ident: b0095 article-title: Plant cellular and molecular responses to high salinity publication-title: Ann. Rev. Plant Physiol. Plant Mol. Biol. – volume: 46 start-page: 1442 year: 2013 end-page: 1467 ident: b0135 article-title: Salinity tolerant publication-title: Ann Rev Plant Biol. – volume: 190 year: 2021 ident: b0060 article-title: Transcriptome modulation by the beneficial fungus publication-title: Environ. Exp. Bot. – volume: 9 start-page: 871 year: 2018 end-page: 879 ident: b0130 article-title: Abscisic acid as a dominant signal in tomato during salt stress predisposition to phytophthora root and crown rot publication-title: Front. Plant Sci. – volume: 147 start-page: 367 year: 2000 end-page: 379 ident: b0045 article-title: Genetic variation and heavy metal tolerance in the ectomycorrhizal basidiomycete publication-title: New Phytol. – volume: 7 start-page: 1405 year: 2016 ident: b0195 article-title: Application of plant-growth-promoting fungi publication-title: Front. Plant Sci. – volume: 639 start-page: 292 year: 2010 end-page: 298 ident: b0100 article-title: Determination and detection of reactive oxygen species (ROS), lipid peroxidation, and electrolyte leakage in plants publication-title: Methods Mol Biol. – reference: Kredics, L., Hatvani, L., Naeimi, S., Körmöczi, P., Manczinger, L., Vágvölgyi, C., Druzhinina, I., 2014. Biodiversity of the genus – volume: 100 start-page: 871 year: 2010 end-page: 879 ident: b0070 article-title: Abscisic acid in salt stress predisposition to phytophthora root and crown rot in tomato and chrysanthemum publication-title: Phytopathology. – volume: 27 start-page: 394 year: 2013 end-page: 399 ident: b0055 article-title: Salt stress: antioxidant activity as a physiological adaptation of onion cultivars publication-title: Acta Bot Brasilica. – volume: 50 start-page: 150 year: 2017 end-page: 166 ident: b0080 article-title: Biocontrol of onion white rot by application of publication-title: Arch. Phytopathol. Plant Prot. – volume: 148 start-page: 350 year: 1987 end-page: 382 ident: b0115 article-title: Chlorophylls and carotenoids: pigments of photosynthetic biomembranes publication-title: Meth. Enzymol. – volume: 103 start-page: 93 year: 2004 end-page: 99 ident: b0150 article-title: Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves publication-title: Sci. Hortic. – volume: 39 start-page: 1416 year: 2004 end-page: 1420 ident: b0030 article-title: Sodium chloride in nutrient solutions can affect onion growth and flavor development publication-title: HortScience. – reference: FAO, 2021. https://www.fao.org/global-soil-partnership/areas-of-work/soil-salinity/en/ (Accessed 16 March 2022). – volume: 50 start-page: 610 year: 2006 end-page: 616 ident: b0160 article-title: Water relations and photosynthesis in publication-title: Biol Plant. – volume: 19 start-page: 22 year: 2019 ident: b0200 article-title: Mechanisms of the IAA and ACC-deaminase producing strain of publication-title: BMC Plant Biol. – volume: 27 start-page: 503 year: 2014 end-page: 514 ident: b0050 article-title: spp. improve growth of Arabidopsis seedlings under salt stress through enhanced root development, osmolite production, and Na publication-title: Mol Plant Microbe Interact. – volume: 13 start-page: 13226 year: 2021 ident: b0180 article-title: Changes in volatile organic compounds from salt-tolerant publication-title: Sustainability. – volume: 20 start-page: 160 year: 2020 end-page: 176 ident: b0105 article-title: Biocontrol potential of salt-tolerant publication-title: J. Soil Sci. Plant Nutr. – volume: 46 start-page: 231 year: 2001 end-page: 234 ident: b0190 article-title: Mycelium growth kinetics and optimal temperature conditions for the cultivation of edible mushroom species on lignocellulosic substrates publication-title: Folia Microbiol. – volume: 59 start-page: 651 year: 2008 end-page: 681 ident: b0125 article-title: Mechanisms of salinity tolerance publication-title: Ann. Rev Plant Biol. – volume: 20 start-page: 144 year: 2019 ident: b0175 article-title: Involvement of jasmonic acid, ethylene and salicylic acid signaling pathways behind the systemic resistance induced by publication-title: BMC Genomics. – volume: 22 start-page: 185 year: 2010 end-page: 192 ident: b0140 article-title: Análisis epidemiológico y control de publication-title: Bioagro. – reference: in different habitats, in: Gupta, V.M., Schmoll, M., Herrera-Estrella, A., Upadhyay, R.S., Druzhinina, I., Tuohy, M.G. (Eds.), Biotechnology and Biology of – volume: 149 start-page: 309 year: 1994 end-page: 315 ident: b0075 article-title: Impact of salinity stress on the free amino acid pools of some phytopathogenic fungi publication-title: Microbiol. Res. – volume: 140 year: 2019 ident: b0185 article-title: , a potential biological control agent of publication-title: Biol. Control. – reference: / – volume: 24 start-page: 1093 year: 2018 end-page: 1101 ident: b0155 article-title: Influence of salinity and publication-title: Physiol Mol Biol Plants. – volume: 102 start-page: 337 year: 2010 end-page: 346 ident: b0170 article-title: Phylogenetic placement of plant pathogenic publication-title: Mycologia. – volume: 5 start-page: 125 year: 2015 end-page: 128 ident: b0165 article-title: Effect of salt stress (NaCl) on morphological parameters of onion ( publication-title: IJPAES. – volume: 246 start-page: 128 year: 2016 end-page: 138 ident: b0005 article-title: Dissection of publication-title: Plant Sci. – volume: 12 year: 2021 ident: b0020 article-title: (TG1) enhances wheat seedlings tolerance to salt stress and resistance to publication-title: Front. Plant Sci. – volume: 13 start-page: 1027 year: 2022 end-page: 1040 ident: b0025 article-title: Identification of endophytic fungi of publication-title: REMEXCA. – volume: 240 year: 2020 ident: b0120 article-title: The interactions of publication-title: Microbiol. Res. – reference: García, G., Clemente-Moreno, M.J., Díaz-Vivancos, P., García, M., Hernández, J.A., 2020. The apoplastic and symplastic antioxidant system in onion: response to long-term salt stress. Antioxidants. 9, 67-67. doi:10.3390/antiox9010067. – year: 2005 ident: b0010 article-title: Plant Pathology – start-page: 173 year: 2014 end-page: 192 ident: b0065 article-title: Crop plants under saline-adapted fungal pathogens: An overview publication-title: Emerging Technologies and Management of Crop Stress Tolerance – volume: 147 start-page: 367 year: 2000 ident: 10.1016/j.biocontrol.2023.105168_b0045 article-title: Genetic variation and heavy metal tolerance in the ectomycorrhizal basidiomycete Suillus luteus publication-title: New Phytol. doi: 10.1046/j.1469-8137.2000.00694.x – volume: 102 start-page: 337 year: 2010 ident: 10.1016/j.biocontrol.2023.105168_b0170 article-title: Phylogenetic placement of plant pathogenic Sclerotium species among teleomorph genera publication-title: Mycologia. doi: 10.3852/08-189 – ident: 10.1016/j.biocontrol.2023.105168_b0090 doi: 10.3390/antiox9010067 – volume: 639 start-page: 292 year: 2010 ident: 10.1016/j.biocontrol.2023.105168_b0100 article-title: Determination and detection of reactive oxygen species (ROS), lipid peroxidation, and electrolyte leakage in plants publication-title: Methods Mol Biol. – volume: 20 start-page: 160 year: 2020 ident: 10.1016/j.biocontrol.2023.105168_b0105 article-title: Biocontrol potential of salt-tolerant Trichoderma and Hypocrea isolates for the management of tomato root rot under saline environment publication-title: J. Soil Sci. Plant Nutr. doi: 10.1007/s42729-019-00114-y – volume: 50 start-page: 610 year: 2006 ident: 10.1016/j.biocontrol.2023.105168_b0160 article-title: Water relations and photosynthesis in Cucumis sativus L. leaves under salt stress publication-title: Biol Plant. doi: 10.1007/s10535-006-0096-z – volume: 20 start-page: 144 year: 2019 ident: 10.1016/j.biocontrol.2023.105168_b0175 article-title: Involvement of jasmonic acid, ethylene and salicylic acid signaling pathways behind the systemic resistance induced by Trichoderma longibrachiatum H9 in cucumber publication-title: BMC Genomics. doi: 10.1186/s12864-019-5513-8 – volume: 93 start-page: 781 year: 2018 ident: 10.1016/j.biocontrol.2023.105168_b0015 article-title: Plant behavior under combined stress: tomato responses to combined salinity and pathogen stress publication-title: Plant J. doi: 10.1111/tpj.13800 – volume: 27 start-page: 503 year: 2014 ident: 10.1016/j.biocontrol.2023.105168_b0050 article-title: Trichoderma spp. improve growth of Arabidopsis seedlings under salt stress through enhanced root development, osmolite production, and Na+ elimination through root exudates publication-title: Mol Plant Microbe Interact. doi: 10.1094/MPMI-09-13-0265-R – volume: 190 year: 2021 ident: 10.1016/j.biocontrol.2023.105168_b0060 article-title: Transcriptome modulation by the beneficial fungus Trichoderma longibrachiatum drives water stress response and recovery in tomato publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2021.104588 – volume: 27 start-page: 394 year: 2013 ident: 10.1016/j.biocontrol.2023.105168_b0055 article-title: Salt stress: antioxidant activity as a physiological adaptation of onion cultivars publication-title: Acta Bot Brasilica. doi: 10.1590/S0102-33062013000200013 – volume: 51 start-page: 463 year: 2000 ident: 10.1016/j.biocontrol.2023.105168_b0095 article-title: Plant cellular and molecular responses to high salinity publication-title: Ann. Rev. Plant Physiol. Plant Mol. Biol. doi: 10.1146/annurev.arplant.51.1.463 – volume: 240 year: 2020 ident: 10.1016/j.biocontrol.2023.105168_b0120 article-title: The interactions of Trichoderma at multiple trophic levels: inter-kingdom communication publication-title: Microbiol. Res. doi: 10.1016/j.micres.2020.126552 – volume: 103 start-page: 93 year: 2004 ident: 10.1016/j.biocontrol.2023.105168_b0150 article-title: Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2004.04.009 – volume: 9 start-page: 871 year: 2018 ident: 10.1016/j.biocontrol.2023.105168_b0130 article-title: Abscisic acid as a dominant signal in tomato during salt stress predisposition to phytophthora root and crown rot publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.00525 – volume: 149 start-page: 309 year: 1994 ident: 10.1016/j.biocontrol.2023.105168_b0075 article-title: Impact of salinity stress on the free amino acid pools of some phytopathogenic fungi publication-title: Microbiol. Res. doi: 10.1016/S0944-5013(11)80074-1 – start-page: 173 year: 2014 ident: 10.1016/j.biocontrol.2023.105168_b0065 article-title: Crop plants under saline-adapted fungal pathogens: An overview – volume: 13 start-page: 1027 year: 2022 ident: 10.1016/j.biocontrol.2023.105168_b0025 article-title: Identification of endophytic fungi of Ageratina pichinchensis with antagonistic activity against phytopathogens of agricultural importance publication-title: REMEXCA. doi: 10.29312/remexca.v13i6.3030 – year: 2005 ident: 10.1016/j.biocontrol.2023.105168_b0010 – ident: 10.1016/j.biocontrol.2023.105168_b0110 doi: 10.1016/B978-0-444-59576-8.00001-1 – volume: 24 start-page: 1093 year: 2018 ident: 10.1016/j.biocontrol.2023.105168_b0155 article-title: Influence of salinity and Fusarium oxysporum as the stress factors on morpho-physiological and yield attributes in onion publication-title: Physiol Mol Biol Plants. doi: 10.1007/s12298-018-0570-z – volume: 5 start-page: 125 year: 2015 ident: 10.1016/j.biocontrol.2023.105168_b0165 article-title: Effect of salt stress (NaCl) on morphological parameters of onion (Allium cepa L.) seedlings publication-title: IJPAES. – volume: 39 start-page: 1416 year: 2004 ident: 10.1016/j.biocontrol.2023.105168_b0030 article-title: Sodium chloride in nutrient solutions can affect onion growth and flavor development publication-title: HortScience. doi: 10.21273/HORTSCI.39.6.1416 – volume: 22 start-page: 185 year: 2010 ident: 10.1016/j.biocontrol.2023.105168_b0140 article-title: Análisis epidemiológico y control de Sclerotium cepivorum berk. y la pudrición blanca en ajo publication-title: Bioagro. – volume: 12 year: 2021 ident: 10.1016/j.biocontrol.2023.105168_b0020 article-title: Trichoderma longibrachiatum (TG1) enhances wheat seedlings tolerance to salt stress and resistance to Fusarium pseudograminearum publication-title: Front. Plant Sci. doi: 10.3389/fpls.2021.741231 – volume: 214 start-page: 185 year: 1993 ident: 10.1016/j.biocontrol.2023.105168_b0040 article-title: Functions of carotenoids in photosynthesis publication-title: Meth. Enzymol. doi: 10.1016/0076-6879(93)14065-Q – volume: 16 start-page: 2053 year: 2019 ident: 10.1016/j.biocontrol.2023.105168_b0145 article-title: Plant growth promotion and biocontrol of Pythium ultimum by saline tolerant Trichoderma isolates under salinity stress publication-title: Int. J. Environ. Res. Public Health. doi: 10.3390/ijerph16112053 – volume: 19 start-page: 22 year: 2019 ident: 10.1016/j.biocontrol.2023.105168_b0200 article-title: Mechanisms of the IAA and ACC-deaminase producing strain of Trichoderma longibrachiatum T6 in enhancing wheat seedling tolerance to NaCl stress publication-title: BMC Plant Biol. doi: 10.1186/s12870-018-1618-5 – volume: 46 start-page: 231 year: 2001 ident: 10.1016/j.biocontrol.2023.105168_b0190 article-title: Mycelium growth kinetics and optimal temperature conditions for the cultivation of edible mushroom species on lignocellulosic substrates publication-title: Folia Microbiol. doi: 10.1007/BF02818539 – volume: 7 start-page: 1405 year: 2016 ident: 10.1016/j.biocontrol.2023.105168_b0195 article-title: Application of plant-growth-promoting fungi Trichoderma longibrachiatum T6 enhances tolerance of wheat to salt stress through improvement of antioxidative defense system and gene expression publication-title: Front. Plant Sci. – volume: 50 start-page: 150 year: 2017 ident: 10.1016/j.biocontrol.2023.105168_b0080 article-title: Biocontrol of onion white rot by application of Trichoderma species formulated on wheat bran powder publication-title: Arch. Phytopathol. Plant Prot. doi: 10.1080/03235408.2016.1276423 – volume: 46 start-page: 1442 year: 2013 ident: 10.1016/j.biocontrol.2023.105168_b0135 article-title: Salinity tolerant Trichoderma harzianum reinforces NaCl tolerance and reduces population dynamics of Fusarium oxysporum f.sp. ciceri in chickpea (Cicer arietinum L.) under salt stress conditions publication-title: Ann Rev Plant Biol. – ident: 10.1016/j.biocontrol.2023.105168_b0085 – volume: 13 start-page: 13226 year: 2021 ident: 10.1016/j.biocontrol.2023.105168_b0180 article-title: Changes in volatile organic compounds from salt-tolerant Trichoderma and the biochemical response and growth performance in saline-stressed groundnut publication-title: Sustainability. doi: 10.3390/su132313226 – volume: 140 year: 2019 ident: 10.1016/j.biocontrol.2023.105168_b0185 article-title: Trichoderma asperellum, a potential biological control agent of Stemphylium vesicarium, on onion (Allium cepa L.) publication-title: Biol. Control. – volume: 148 start-page: 350 year: 1987 ident: 10.1016/j.biocontrol.2023.105168_b0115 article-title: Chlorophylls and carotenoids: pigments of photosynthetic biomembranes publication-title: Meth. Enzymol. doi: 10.1016/0076-6879(87)48036-1 – volume: 59 start-page: 651 year: 2008 ident: 10.1016/j.biocontrol.2023.105168_b0125 article-title: Mechanisms of salinity tolerance publication-title: Ann. Rev Plant Biol. doi: 10.1146/annurev.arplant.59.032607.092911 – volume: 55 start-page: 375 year: 2006 ident: 10.1016/j.biocontrol.2023.105168_b0035 article-title: Integrated control of Allium white rot with Trichoderma viride, tebuconazole and composted onion waste publication-title: Plant Pathol. doi: 10.1111/j.1365-3059.2006.01389.x – volume: 100 start-page: 871 year: 2010 ident: 10.1016/j.biocontrol.2023.105168_b0070 article-title: Abscisic acid in salt stress predisposition to phytophthora root and crown rot in tomato and chrysanthemum publication-title: Phytopathology. doi: 10.1094/PHYTO-100-9-0871 – volume: 246 start-page: 128 year: 2016 ident: 10.1016/j.biocontrol.2023.105168_b0005 article-title: Dissection of Trichoderma longibrachiatum-induced defense in onion (Allium cepa L.) against Fusarium oxysporum f. sp. cepa by target metabolite profiling publication-title: Plant Sci. doi: 10.1016/j.plantsci.2016.02.008 |
SSID | ssj0011470 |
Score | 2.4197457 |
Snippet | [Display omitted]
•Onions are affected by salt stress and white rot caused by Sclerotium cepivorum.•Salt stress increases damage severity caused by white rot... Salt stress and pathogen infection cause damage to onion crops and limit production. Application of Trichoderma species could be an option for reducing crop... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 105168 |
SubjectTerms | Antagonistic activity biological control biological control agents biomass carotenoids chlorophyll crop damage disease severity electrolyte leakage fungi onions pathogens photosynthesis salinity Salinity tolerance salt stress Sclerotium cepivorum Soil salinity species Trichoderma longibrachiatum White rot |
Title | Trichoderma longibrachiatum, a biological control agent of Sclerotium cepivorum on onion plants under salt stress |
URI | https://dx.doi.org/10.1016/j.biocontrol.2023.105168 https://www.proquest.com/docview/3153766018 |
Volume | 180 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ba9swFH60KYPtMNpuY926oMGOczNVtlzTUwgraTvKWFvITUiy1HkkdpY6g1362_teJLds9FAo-GKBbPM-We8T-vQ9gE9WFAKJhE2kkz5JkRIkxvIskftl5g0nP5OVyvdMji_Tk0k2WYNRdxaGZJVx7g9z-mq2ji2DGM3BvKoG55zYOqZzJNGUqSbrsLGP2f6gBxvD49Px2d1mAk_zaEpAZpRpGgU9QeZlqiaKwveokjjVveXku_pwlvpvvl4loaNNeBnZIxuGD9yCNVdvw4vh1SI6aLhteBaqS_59Bb8vsPkn1TqbaTZt6itaGa-kzcvZZ6ZZ8F8ikFj8NqbpoBVrPDvHxy-atlrOmHXz6g9ZNrCmxgtxZPMpqWcYnT9bsGs9bVk4cvIaLo--XozGSaywkFiR8TYhw6uiyDHWOvPCSuE017gCSRE5aT1HNiR0IW2prffa2rL0BuEs8kLmRkst3kCvbmr3FiOqhc9LU-bG-NQIg8w9E1-8EMixnC_tDuRdRJWN9uNUBWOqOp3ZL3WPhSIsVMBiB_hdz3mw4HhEn8MONPXPcFKYKR7R-2OHs8K_jbZQdO2a5bUSnOxvcBF78O5Jb3gPz-kuKCd3odculu4DspvW9GF974b3cQyPfnz73o9j-RbH2__F |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1BT9swFLYYaNo4TIwNDbYxT9pxafGcOEQ7IbSqbNALrdSbZTs2ZGqTUBKkXfbbeS92QJs4ICHl5MiJ9T7H77Py-XuEfDE840AkTCSscFEMlCDShiWR-JYnTjP0M-lUvhMxnsU_58l8jRz3Z2FQVhnWfr-md6t1aBmGaA7rohieM2TrkM6BRGOmmj8jGzGWOYBJPfh7p_MAvp8GSwK0oozjIOfxIi9dVEESPsA64lj1lqHr6sM56r_VuktBoy3yKnBHeuSH95qs2XKbbB5drIJ_ht0mz31tyT9vyNUUmi-x0tlS0UVVXuC-uBM2t8uvVFHvvoQQ0TA2qvCYFa0cPYfHr6qmaJfU2Lq4QcMGWpVwAYq0XqB2huLpsxW9VouG-gMnb8ls9GN6PI5CfYXI8IQ1EdpdZVkKkVaJ40Zwq5iC_UcMuAnjGHAhrjJhcmWcU8bkudMAZpZmItVKKL5D1suqtO8gooq7NNd5qrWLNdfA2xN-4DgHhmVdbnZJ2kdUmmA-jjUwFrJXmf2W91hIxEJ6LHYJu-tZewOOR_T53oMm_5lMEvLEI3p_7nGW8K3hDxRV2qq9lpyh-Q1sYQ_3nvSGT-TFeHp2Kk9PJr_ek5d4x2soP5D1ZtXaj8BzGr3fzeNb6C_-8g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trichoderma+longibrachiatum%2C+a+biological+control+agent+of+Sclerotium+cepivorum+on+onion+plants+under+salt+stress&rft.jtitle=Biological+control&rft.au=Camacho-Luna%2C+Valeria&rft.au=Pizar-Quiroz%2C+Alejandro+Marcelino&rft.au=Rodr%C3%ADguez-Hern%C3%A1ndez%2C+Aida+Araceli&rft.au=Rodr%C3%ADguez-Monroy%2C+Mario&rft.date=2023-05-01&rft.pub=Elsevier+Inc&rft.issn=1049-9644&rft.eissn=1090-2112&rft.volume=180&rft_id=info:doi/10.1016%2Fj.biocontrol.2023.105168&rft.externalDocID=S104996442300021X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1049-9644&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1049-9644&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1049-9644&client=summon |