A Bayesian Shared Control Approach for Wheelchair Robot With Brain Machine Interface

To enhance the performance of the brain-actuated robot system, a novel shared controller based on Bayesian approach is proposed for intelligently combining robot automatic control and brain-actuated control, which takes into account the uncertainty of robot perception, action and human control. Base...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 28; no. 1; pp. 328 - 338
Main Authors Deng, Xiaoyan, Yu, Zhu Liang, Lin, Canguang, Gu, Zhenghui, Li, Yuanqing
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1534-4320
1558-0210
1558-0210
DOI10.1109/TNSRE.2019.2958076

Cover

Abstract To enhance the performance of the brain-actuated robot system, a novel shared controller based on Bayesian approach is proposed for intelligently combining robot automatic control and brain-actuated control, which takes into account the uncertainty of robot perception, action and human control. Based on maximum a posteriori probability (MAP), this method establishes the probabilistic models of human and robot control commands to realize the optimal control of a brain-actuated shared control system. Application on an intelligent Bayesian shared control system based on steady-state visual evoked potential (SSVEP)-based brain machine interface (BMI) is presented for all-time continuous wheelchair navigation task. Moreover, to obtain more accurate brain control commands for shared controller and adapt the proposed system to the uncertainty of electroencephalogram (EEG), a hierarchical brain control mechanism with feedback rule is designed. Experiments have been conducted to verify the proposed system in several scenarios. Eleven subjects participated in our experiments and the results illustrate the effectiveness of the proposed method.
AbstractList To enhance the performance of the brain-actuated robot system, a novel shared controller based on Bayesian approach is proposed for intelligently combining robot automatic control and brain-actuated control, which takes into account the uncertainty of robot perception, action and human control. Based on maximum a posteriori probability (MAP), this method establishes the probabilistic models of human and robot control commands to realize the optimal control of a brain-actuated shared control system. Application on an intelligent Bayesian shared control system based on steady-state visual evoked potential (SSVEP)-based brain machine interface (BMI) is presented for all-time continuous wheelchair navigation task. Moreover, to obtain more accurate brain control commands for shared controller and adapt the proposed system to the uncertainty of electroencephalogram (EEG), a hierarchical brain control mechanism with feedback rule is designed. Experiments have been conducted to verify the proposed system in several scenarios. Eleven subjects participated in our experiments and the results illustrate the effectiveness of the proposed method.To enhance the performance of the brain-actuated robot system, a novel shared controller based on Bayesian approach is proposed for intelligently combining robot automatic control and brain-actuated control, which takes into account the uncertainty of robot perception, action and human control. Based on maximum a posteriori probability (MAP), this method establishes the probabilistic models of human and robot control commands to realize the optimal control of a brain-actuated shared control system. Application on an intelligent Bayesian shared control system based on steady-state visual evoked potential (SSVEP)-based brain machine interface (BMI) is presented for all-time continuous wheelchair navigation task. Moreover, to obtain more accurate brain control commands for shared controller and adapt the proposed system to the uncertainty of electroencephalogram (EEG), a hierarchical brain control mechanism with feedback rule is designed. Experiments have been conducted to verify the proposed system in several scenarios. Eleven subjects participated in our experiments and the results illustrate the effectiveness of the proposed method.
To enhance the performance of the brain-actuated robot system, a novel shared controller based on Bayesian approach is proposed for intelligently combining robot automatic control and brain-actuated control, which takes into account the uncertainty of robot perception, action and human control. Based on maximum a posteriori probability (MAP), this method establishes the probabilistic models of human and robot control commands to realize the optimal control of a brain-actuated shared control system. Application on an intelligent Bayesian shared control system based on steady-state visual evoked potential (SSVEP)-based brain machine interface (BMI) is presented for all-time continuous wheelchair navigation task. Moreover, to obtain more accurate brain control commands for shared controller and adapt the proposed system to the uncertainty of electroencephalogram (EEG), a hierarchical brain control mechanism with feedback rule is designed. Experiments have been conducted to verify the proposed system in several scenarios. Eleven subjects participated in our experiments and the results illustrate the effectiveness of the proposed method.
Author Li, Yuanqing
Deng, Xiaoyan
Yu, Zhu Liang
Lin, Canguang
Gu, Zhenghui
Author_xml – sequence: 1
  givenname: Xiaoyan
  surname: Deng
  fullname: Deng, Xiaoyan
  organization: School of Automation Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 2
  givenname: Zhu Liang
  surname: Yu
  fullname: Yu, Zhu Liang
  email: zlyu@scut.edu.cn
  organization: School of Automation Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 3
  givenname: Canguang
  surname: Lin
  fullname: Lin, Canguang
  organization: School of Automation Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 4
  givenname: Zhenghui
  orcidid: 0000-0001-9365-2953
  surname: Gu
  fullname: Gu, Zhenghui
  organization: School of Automation Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 5
  givenname: Yuanqing
  orcidid: 0000-0003-4288-5591
  surname: Li
  fullname: Li, Yuanqing
  organization: School of Automation Science and Engineering, South China University of Technology, Guangzhou, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31825869$$D View this record in MEDLINE/PubMed
BookMark eNp9kcFO3DAQhq2KqsC2L9BKlSUuXLKM7dhxjsuKAhKlEmzF0ZokjmKUtbd29sDb19tdOHDoyXP4vtH4_0_JkQ_eEvKVwZwxqC9W948PV3MOrJ7zWmqo1AdywqTUBXAGR7tZlEUpOByT05SeAVilZPWJHAumudSqPiGrBb3EF5scevo4YLQdXQY_xTDSxWYTA7YD7UOkT4O1Yzugi_QhNGGiT24a6GVE5-nPDDlv6a2fbOyxtZ_Jxx7HZL8c3hn5_eNqtbwp7n5d3y4Xd0UrJJsKLaDTWKueNZophKpkqpMt5J-A5aXqSkQlOoEcVK9RdFWNFQPVcNGUoJSYkfP93nzon61Nk1m71NpxRG_DNhkuuBSg6goyevYOfQ7b6PN1mRK1EBJyWjPy_UBtm7XtzCa6NcYX85pXBvQeaGNIKdretG7Cye0iQzcaBmZXjflXjdlVYw7VZJW_U1-3_1f6tpectfZN0DVXQivxFyTzlr8
CODEN ITNSB3
CitedBy_id crossref_primary_10_1007_s11042_023_15653_x
crossref_primary_10_1109_JBHI_2022_3219812
crossref_primary_10_1109_JSEN_2024_3432076
crossref_primary_10_3389_fnbot_2023_1293878
crossref_primary_10_1016_j_neulet_2022_136482
crossref_primary_10_2139_ssrn_4197702
crossref_primary_10_3390_s22155631
crossref_primary_10_3390_s24185875
crossref_primary_10_3934_mbe_2023170
crossref_primary_10_1109_TIM_2023_3284952
crossref_primary_10_1016_j_bspc_2021_102940
crossref_primary_10_3390_bios12060384
crossref_primary_10_1109_TNSRE_2023_3307814
crossref_primary_10_3389_fnsys_2021_578875
crossref_primary_10_1016_j_jneumeth_2021_109426
crossref_primary_10_3390_s21165309
crossref_primary_10_1088_1741_2552_abf8cb
crossref_primary_10_1109_TETCI_2023_3301385
crossref_primary_10_3390_app12168274
crossref_primary_10_1109_LRA_2024_3396111
crossref_primary_10_1016_j_bspc_2024_106063
crossref_primary_10_1007_s00521_024_09428_0
crossref_primary_10_1109_TASE_2024_3441055
crossref_primary_10_1109_TNSRE_2022_3175307
crossref_primary_10_1109_TNSRE_2023_3250953
crossref_primary_10_1109_TNSRE_2023_3323351
crossref_primary_10_1016_j_bspc_2023_105530
crossref_primary_10_1109_JSEN_2020_3017491
crossref_primary_10_1016_j_csbj_2023_07_033
crossref_primary_10_1088_1741_2552_ac59a4
crossref_primary_10_3390_electronics13081507
crossref_primary_10_3390_s21144754
crossref_primary_10_3389_fnhum_2022_875851
crossref_primary_10_1109_ACCESS_2023_3318477
crossref_primary_10_1016_j_rcim_2023_102610
crossref_primary_10_1088_1741_2552_ac5f1a
crossref_primary_10_3389_fnbot_2022_855825
crossref_primary_10_1109_JSEN_2020_2992714
crossref_primary_10_3390_s21103521
crossref_primary_10_1016_j_jneumeth_2024_110280
crossref_primary_10_3390_app10196761
crossref_primary_10_34133_cbsystems_0024
Cites_doi 10.1371/journal.pone.0140703
10.1109/86.847819
10.1016/j.medengphy.2016.06.010
10.1371/journal.pone.0142168
10.1016/S1388-2457(02)00057-3
10.1109/CCMB.2011.5952123
10.1016/j.robot.2010.05.010
10.1155/2018/7108906
10.1109/TSMCC.2012.2219046
10.1155/2007/25130
10.1038/10223
10.1109/TMECH.2016.2606642
10.1073/pnas.1508080112
10.1109/TNSRE.2012.2197221
10.1109/TNSRE.2013.2286955
10.1109/TNSRE.2006.875570
10.1109/TCDS.2016.2541162
10.1016/0013-4694(88)90149-6
10.1016/j.neucom.2014.09.078
10.1109/TSMCA.2011.2159589
10.1016/j.medengphy.2012.12.005
10.1016/S0004-3702(99)00070-3
10.1109/TAMD.2015.2434951
10.1109/ACCESS.2019.2895133
10.1142/S0129065714500191
10.1109/IEMBS.2009.5332828
10.1115/1.3662552
10.1023/A:1007934111358
10.1109/TBME.2004.827086
10.1016/S1388-2457(99)00141-8
10.1007/978-3-540-88906-9_42
10.1109/TNSRE.2015.2439298
10.1109/ACSSC.2010.5757758
10.1109/TRO.2009.2020347
10.1109/TRO.2004.842350
10.1038/sc.2012.14
10.1038/nature11076
10.1016/j.robot.2012.11.002
10.1162/0899766042321814
10.1109/IROS.2009.5354534
10.1371/journal.pone.0029519
10.3389/fnbot.2017.00048
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TNSRE.2019.2958076
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 338
ExternalDocumentID 31825869
10_1109_TNSRE_2019_2958076
8926386
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Key Research and Development Project
  grantid: 2017YFB1002500
– fundername: National Natural Science Foundation of China
  grantid: 61836003; 61573150; 61573152; 61633010
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 2019MS138; 2019MS113
  funderid: 10.13039/501100012226
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c351t-830d8a96f1b816a07416d5c08070e246d4aa63d3a206f8a3d79a7106b23b40663
IEDL.DBID RIE
ISSN 1534-4320
1558-0210
IngestDate Fri Jul 11 02:32:18 EDT 2025
Fri Jul 25 05:22:13 EDT 2025
Wed Feb 19 02:31:13 EST 2025
Wed Oct 01 01:12:27 EDT 2025
Thu Apr 24 22:57:30 EDT 2025
Wed Aug 27 02:51:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-830d8a96f1b816a07416d5c08070e246d4aa63d3a206f8a3d79a7106b23b40663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9365-2953
0000-0003-4288-5591
PMID 31825869
PQID 2339335015
PQPubID 85423
PageCount 11
ParticipantIDs proquest_miscellaneous_2325306970
crossref_citationtrail_10_1109_TNSRE_2019_2958076
crossref_primary_10_1109_TNSRE_2019_2958076
ieee_primary_8926386
proquest_journals_2339335015
pubmed_primary_31825869
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-Jan.
2020-1-00
2020-01-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-Jan.
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref39
ref17
ref38
ref16
ref19
ref18
lee (ref34) 2009; 58
ref24
ref23
ref26
ref25
ref20
ref42
ref22
ref21
ref43
ref28
ref27
feng (ref41) 2015; 7
ref29
ref8
hochberg (ref4) 2013; 485
ref7
ref9
ref3
ref6
ref5
ref40
References_xml – ident: ref33
  doi: 10.1371/journal.pone.0140703
– ident: ref30
  doi: 10.1109/86.847819
– ident: ref11
  doi: 10.1016/j.medengphy.2016.06.010
– ident: ref32
  doi: 10.1371/journal.pone.0142168
– ident: ref1
  doi: 10.1016/S1388-2457(02)00057-3
– ident: ref16
  doi: 10.1109/CCMB.2011.5952123
– ident: ref26
  doi: 10.1016/j.robot.2010.05.010
– ident: ref40
  doi: 10.1155/2018/7108906
– ident: ref18
  doi: 10.1109/TSMCC.2012.2219046
– ident: ref19
  doi: 10.1155/2007/25130
– ident: ref3
  doi: 10.1038/10223
– ident: ref35
  doi: 10.1109/TMECH.2016.2606642
– ident: ref31
  doi: 10.1073/pnas.1508080112
– ident: ref14
  doi: 10.1109/TNSRE.2012.2197221
– ident: ref10
  doi: 10.1109/TNSRE.2013.2286955
– volume: 58
  start-page: 824
  year: 2009
  ident: ref34
  article-title: Obstacle avoidance of autonomous mobile agent using circular navigation method
  publication-title: Trans Korean Inst Elect Eng
– ident: ref2
  doi: 10.1109/TNSRE.2006.875570
– ident: ref42
  doi: 10.1109/TCDS.2016.2541162
– ident: ref29
  doi: 10.1016/0013-4694(88)90149-6
– ident: ref12
  doi: 10.1016/j.neucom.2014.09.078
– ident: ref5
  doi: 10.1109/TSMCA.2011.2159589
– ident: ref6
  doi: 10.1016/j.medengphy.2012.12.005
– ident: ref20
  doi: 10.1016/S0004-3702(99)00070-3
– volume: 7
  start-page: 332
  year: 2015
  ident: ref41
  article-title: Design of a multimodal EEG-based hybrid BCI system with visual servo module
  publication-title: IEEE Trans Auton Mental Develop
  doi: 10.1109/TAMD.2015.2434951
– ident: ref43
  doi: 10.1109/ACCESS.2019.2895133
– ident: ref36
  doi: 10.1142/S0129065714500191
– ident: ref24
  doi: 10.1109/IEMBS.2009.5332828
– ident: ref39
  doi: 10.1115/1.3662552
– ident: ref21
  doi: 10.1023/A:1007934111358
– ident: ref15
  doi: 10.1109/TBME.2004.827086
– ident: ref28
  doi: 10.1016/S1388-2457(99)00141-8
– ident: ref8
  doi: 10.1007/978-3-540-88906-9_42
– ident: ref25
  doi: 10.1109/TNSRE.2015.2439298
– ident: ref13
  doi: 10.1109/ACSSC.2010.5757758
– ident: ref22
  doi: 10.1109/TRO.2009.2020347
– ident: ref7
  doi: 10.1109/TRO.2004.842350
– ident: ref27
  doi: 10.1038/sc.2012.14
– volume: 485
  start-page: 372
  year: 2013
  ident: ref4
  article-title: Reach and grasp by people with tetraplegia using a neurally controlled robotic arm
  publication-title: Nature
  doi: 10.1038/nature11076
– ident: ref9
  doi: 10.1016/j.robot.2012.11.002
– ident: ref37
  doi: 10.1162/0899766042321814
– ident: ref23
  doi: 10.1109/IROS.2009.5354534
– ident: ref38
  doi: 10.1371/journal.pone.0029519
– ident: ref17
  doi: 10.3389/fnbot.2017.00048
SSID ssj0017657
Score 2.4967384
Snippet To enhance the performance of the brain-actuated robot system, a novel shared controller based on Bayesian approach is proposed for intelligently combining...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 328
SubjectTerms Automatic control
Bayes methods
Bayesian analysis
Bayesian approach
Brain
brain machine interface
Control systems
Controllers
EEG
Electroencephalography
Man-machine interfaces
Mathematical models
Mobile robots
Optimal control
Probabilistic methods
Probabilistic models
Robot control
Robot kinematics
Robots
Shared control
Statistical analysis
Uncertainty
Visual evoked potentials
wheelchair robot
Wheelchairs
Title A Bayesian Shared Control Approach for Wheelchair Robot With Brain Machine Interface
URI https://ieeexplore.ieee.org/document/8926386
https://www.ncbi.nlm.nih.gov/pubmed/31825869
https://www.proquest.com/docview/2339335015
https://www.proquest.com/docview/2325306970
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0210
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017657
  issn: 1534-4320
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PaBeeJVHoCAjARfI1vHbx23VqkLaHpat6C3yK2rVaoNK9gC_Htt5qCBA3CLFdmLN2P7GM_MNwNvAvbJOsrJRUkcDxTel8dKWihPvBQ2Mm5QovDgTp-fs0wW_2IKPUy5MCCEHn4VZesy-fN-6TboqO1CaRHUR27Atpe5ztSaPgRSZ1TMuYFYySvCYIIP1wers8_I4RXHpGdFcRct9F-5FXSZcpTjnO-dRLrDyd6yZz5yTB7AY_7YPNbmebTo7cz9-I3L83-k8hPsD-ETzXlsewVZYP4Z3d4mG0apnGUDv0fIXDu89WM3RofkeUtIlSjTPwaOjPs4dzQdichQRMIrbe7hxl-bqFi1b23boy1V3iQ5TKQq0yKGbAeV7yMa48ATOT45XR6flUJOhdJRXXako9spo0VRWVcJkQOd5oiuXOBAmPDNGUE8NwaJRhnqpTQQxwhJqWYI3T2Fn3a7Dc0BBMStCJQ0mloW4c1rlNY5jeWwcdqSAapRM7YbJproZN3U2XLCus2DrJNh6EGwBH6Y-X3u6jn-23ktSmVoOAilgf1SAeljR32pCqabJC8sLeDO9jmsxOVjMOrSb1IbwaIJpiQt41ivONPaoby_-_M2XsEuSJZ8vd_Zhp7vdhFcR7nT2ddbznzaz-Bo
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIkEvvMojUMBIwIVm6_gV-7itWi3Q3cOSit4iO3bUimpTtdkD_Hps56GCAHGLFNuJNWP7G8_MNwBvHbfSVDlLa5krb6DYOtU2N6nkxFpBHeM6JArPF2J2wj6d8tMN2B1zYZxzMfjMTcJj9OXbplqHq7I9qYhXF3ELbnNvVeRdttboM8hF5PX0S5iljBI8pMhgtVcsviwPQxyXmhDFpbfdt-CO12bCZYh0vnEixRIrf0eb8dQ5ug_z4X-7YJNvk3VrJtWP36gc_3dCD-BeDz_RtNOXh7DhVo_g3U2qYVR0PAPoPVr-wuK9DcUU7evvLqRdokD07Cw66CLd0bSnJkceAyO_wbuL6kyfX6FlY5oWfT1vz9B-KEaB5jF406F4E1nryj2Gk6PD4mCW9lUZ0oryrE0lxVZqJerMyEzoCOksD4TlOXaECcu0FtRSTbCopaY2V9rDGGEINSwAnCewuWpW7hkgJ5kRLss1JoY5v3caaRX2Y1msK1yRBLJBMmXVTzZUzrgoo-mCVRkFWwbBlr1gE_gw9rnsCDv-2Xo7SGVs2QskgZ1BAcp-TV-XhFJFgx-WJ_BmfO1XY3Cx6JVr1qEN4d4IUzlO4GmnOOPYg749__M3X8PdWTE_Lo8_Lj6_gC0S7Pp41bMDm-3V2r304Kc1r6LO_wRntPtr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Bayesian+Shared+Control+Approach+for+Wheelchair+Robot+With+Brain+Machine+Interface&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Deng%2C+Xiaoyan&rft.au=Yu%2C+Zhu+Liang&rft.au=Lin%2C+Canguang&rft.au=Gu%2C+Zhenghui&rft.date=2020-01-01&rft.issn=1534-4320&rft.eissn=1558-0210&rft.volume=28&rft.issue=1&rft.spage=328&rft.epage=338&rft_id=info:doi/10.1109%2FTNSRE.2019.2958076&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNSRE_2019_2958076
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon