A Bayesian Shared Control Approach for Wheelchair Robot With Brain Machine Interface
To enhance the performance of the brain-actuated robot system, a novel shared controller based on Bayesian approach is proposed for intelligently combining robot automatic control and brain-actuated control, which takes into account the uncertainty of robot perception, action and human control. Base...
Saved in:
Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 28; no. 1; pp. 328 - 338 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1534-4320 1558-0210 1558-0210 |
DOI | 10.1109/TNSRE.2019.2958076 |
Cover
Abstract | To enhance the performance of the brain-actuated robot system, a novel shared controller based on Bayesian approach is proposed for intelligently combining robot automatic control and brain-actuated control, which takes into account the uncertainty of robot perception, action and human control. Based on maximum a posteriori probability (MAP), this method establishes the probabilistic models of human and robot control commands to realize the optimal control of a brain-actuated shared control system. Application on an intelligent Bayesian shared control system based on steady-state visual evoked potential (SSVEP)-based brain machine interface (BMI) is presented for all-time continuous wheelchair navigation task. Moreover, to obtain more accurate brain control commands for shared controller and adapt the proposed system to the uncertainty of electroencephalogram (EEG), a hierarchical brain control mechanism with feedback rule is designed. Experiments have been conducted to verify the proposed system in several scenarios. Eleven subjects participated in our experiments and the results illustrate the effectiveness of the proposed method. |
---|---|
AbstractList | To enhance the performance of the brain-actuated robot system, a novel shared controller based on Bayesian approach is proposed for intelligently combining robot automatic control and brain-actuated control, which takes into account the uncertainty of robot perception, action and human control. Based on maximum a posteriori probability (MAP), this method establishes the probabilistic models of human and robot control commands to realize the optimal control of a brain-actuated shared control system. Application on an intelligent Bayesian shared control system based on steady-state visual evoked potential (SSVEP)-based brain machine interface (BMI) is presented for all-time continuous wheelchair navigation task. Moreover, to obtain more accurate brain control commands for shared controller and adapt the proposed system to the uncertainty of electroencephalogram (EEG), a hierarchical brain control mechanism with feedback rule is designed. Experiments have been conducted to verify the proposed system in several scenarios. Eleven subjects participated in our experiments and the results illustrate the effectiveness of the proposed method.To enhance the performance of the brain-actuated robot system, a novel shared controller based on Bayesian approach is proposed for intelligently combining robot automatic control and brain-actuated control, which takes into account the uncertainty of robot perception, action and human control. Based on maximum a posteriori probability (MAP), this method establishes the probabilistic models of human and robot control commands to realize the optimal control of a brain-actuated shared control system. Application on an intelligent Bayesian shared control system based on steady-state visual evoked potential (SSVEP)-based brain machine interface (BMI) is presented for all-time continuous wheelchair navigation task. Moreover, to obtain more accurate brain control commands for shared controller and adapt the proposed system to the uncertainty of electroencephalogram (EEG), a hierarchical brain control mechanism with feedback rule is designed. Experiments have been conducted to verify the proposed system in several scenarios. Eleven subjects participated in our experiments and the results illustrate the effectiveness of the proposed method. To enhance the performance of the brain-actuated robot system, a novel shared controller based on Bayesian approach is proposed for intelligently combining robot automatic control and brain-actuated control, which takes into account the uncertainty of robot perception, action and human control. Based on maximum a posteriori probability (MAP), this method establishes the probabilistic models of human and robot control commands to realize the optimal control of a brain-actuated shared control system. Application on an intelligent Bayesian shared control system based on steady-state visual evoked potential (SSVEP)-based brain machine interface (BMI) is presented for all-time continuous wheelchair navigation task. Moreover, to obtain more accurate brain control commands for shared controller and adapt the proposed system to the uncertainty of electroencephalogram (EEG), a hierarchical brain control mechanism with feedback rule is designed. Experiments have been conducted to verify the proposed system in several scenarios. Eleven subjects participated in our experiments and the results illustrate the effectiveness of the proposed method. |
Author | Li, Yuanqing Deng, Xiaoyan Yu, Zhu Liang Lin, Canguang Gu, Zhenghui |
Author_xml | – sequence: 1 givenname: Xiaoyan surname: Deng fullname: Deng, Xiaoyan organization: School of Automation Science and Engineering, South China University of Technology, Guangzhou, China – sequence: 2 givenname: Zhu Liang surname: Yu fullname: Yu, Zhu Liang email: zlyu@scut.edu.cn organization: School of Automation Science and Engineering, South China University of Technology, Guangzhou, China – sequence: 3 givenname: Canguang surname: Lin fullname: Lin, Canguang organization: School of Automation Science and Engineering, South China University of Technology, Guangzhou, China – sequence: 4 givenname: Zhenghui orcidid: 0000-0001-9365-2953 surname: Gu fullname: Gu, Zhenghui organization: School of Automation Science and Engineering, South China University of Technology, Guangzhou, China – sequence: 5 givenname: Yuanqing orcidid: 0000-0003-4288-5591 surname: Li fullname: Li, Yuanqing organization: School of Automation Science and Engineering, South China University of Technology, Guangzhou, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31825869$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kcFO3DAQhq2KqsC2L9BKlSUuXLKM7dhxjsuKAhKlEmzF0ZokjmKUtbd29sDb19tdOHDoyXP4vtH4_0_JkQ_eEvKVwZwxqC9W948PV3MOrJ7zWmqo1AdywqTUBXAGR7tZlEUpOByT05SeAVilZPWJHAumudSqPiGrBb3EF5scevo4YLQdXQY_xTDSxWYTA7YD7UOkT4O1Yzugi_QhNGGiT24a6GVE5-nPDDlv6a2fbOyxtZ_Jxx7HZL8c3hn5_eNqtbwp7n5d3y4Xd0UrJJsKLaDTWKueNZophKpkqpMt5J-A5aXqSkQlOoEcVK9RdFWNFQPVcNGUoJSYkfP93nzon61Nk1m71NpxRG_DNhkuuBSg6goyevYOfQ7b6PN1mRK1EBJyWjPy_UBtm7XtzCa6NcYX85pXBvQeaGNIKdretG7Cye0iQzcaBmZXjflXjdlVYw7VZJW_U1-3_1f6tpectfZN0DVXQivxFyTzlr8 |
CODEN | ITNSB3 |
CitedBy_id | crossref_primary_10_1007_s11042_023_15653_x crossref_primary_10_1109_JBHI_2022_3219812 crossref_primary_10_1109_JSEN_2024_3432076 crossref_primary_10_3389_fnbot_2023_1293878 crossref_primary_10_1016_j_neulet_2022_136482 crossref_primary_10_2139_ssrn_4197702 crossref_primary_10_3390_s22155631 crossref_primary_10_3390_s24185875 crossref_primary_10_3934_mbe_2023170 crossref_primary_10_1109_TIM_2023_3284952 crossref_primary_10_1016_j_bspc_2021_102940 crossref_primary_10_3390_bios12060384 crossref_primary_10_1109_TNSRE_2023_3307814 crossref_primary_10_3389_fnsys_2021_578875 crossref_primary_10_1016_j_jneumeth_2021_109426 crossref_primary_10_3390_s21165309 crossref_primary_10_1088_1741_2552_abf8cb crossref_primary_10_1109_TETCI_2023_3301385 crossref_primary_10_3390_app12168274 crossref_primary_10_1109_LRA_2024_3396111 crossref_primary_10_1016_j_bspc_2024_106063 crossref_primary_10_1007_s00521_024_09428_0 crossref_primary_10_1109_TASE_2024_3441055 crossref_primary_10_1109_TNSRE_2022_3175307 crossref_primary_10_1109_TNSRE_2023_3250953 crossref_primary_10_1109_TNSRE_2023_3323351 crossref_primary_10_1016_j_bspc_2023_105530 crossref_primary_10_1109_JSEN_2020_3017491 crossref_primary_10_1016_j_csbj_2023_07_033 crossref_primary_10_1088_1741_2552_ac59a4 crossref_primary_10_3390_electronics13081507 crossref_primary_10_3390_s21144754 crossref_primary_10_3389_fnhum_2022_875851 crossref_primary_10_1109_ACCESS_2023_3318477 crossref_primary_10_1016_j_rcim_2023_102610 crossref_primary_10_1088_1741_2552_ac5f1a crossref_primary_10_3389_fnbot_2022_855825 crossref_primary_10_1109_JSEN_2020_2992714 crossref_primary_10_3390_s21103521 crossref_primary_10_1016_j_jneumeth_2024_110280 crossref_primary_10_3390_app10196761 crossref_primary_10_34133_cbsystems_0024 |
Cites_doi | 10.1371/journal.pone.0140703 10.1109/86.847819 10.1016/j.medengphy.2016.06.010 10.1371/journal.pone.0142168 10.1016/S1388-2457(02)00057-3 10.1109/CCMB.2011.5952123 10.1016/j.robot.2010.05.010 10.1155/2018/7108906 10.1109/TSMCC.2012.2219046 10.1155/2007/25130 10.1038/10223 10.1109/TMECH.2016.2606642 10.1073/pnas.1508080112 10.1109/TNSRE.2012.2197221 10.1109/TNSRE.2013.2286955 10.1109/TNSRE.2006.875570 10.1109/TCDS.2016.2541162 10.1016/0013-4694(88)90149-6 10.1016/j.neucom.2014.09.078 10.1109/TSMCA.2011.2159589 10.1016/j.medengphy.2012.12.005 10.1016/S0004-3702(99)00070-3 10.1109/TAMD.2015.2434951 10.1109/ACCESS.2019.2895133 10.1142/S0129065714500191 10.1109/IEMBS.2009.5332828 10.1115/1.3662552 10.1023/A:1007934111358 10.1109/TBME.2004.827086 10.1016/S1388-2457(99)00141-8 10.1007/978-3-540-88906-9_42 10.1109/TNSRE.2015.2439298 10.1109/ACSSC.2010.5757758 10.1109/TRO.2009.2020347 10.1109/TRO.2004.842350 10.1038/sc.2012.14 10.1038/nature11076 10.1016/j.robot.2012.11.002 10.1162/0899766042321814 10.1109/IROS.2009.5354534 10.1371/journal.pone.0029519 10.3389/fnbot.2017.00048 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
DOI | 10.1109/TNSRE.2019.2958076 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Neurosciences Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Occupational Therapy & Rehabilitation |
EISSN | 1558-0210 |
EndPage | 338 |
ExternalDocumentID | 31825869 10_1109_TNSRE_2019_2958076 8926386 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Key Research and Development Project grantid: 2017YFB1002500 – fundername: National Natural Science Foundation of China grantid: 61836003; 61573150; 61573152; 61633010 funderid: 10.13039/501100001809 – fundername: Fundamental Research Funds for the Central Universities grantid: 2019MS138; 2019MS113 funderid: 10.13039/501100012226 |
GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c351t-830d8a96f1b816a07416d5c08070e246d4aa63d3a206f8a3d79a7106b23b40663 |
IEDL.DBID | RIE |
ISSN | 1534-4320 1558-0210 |
IngestDate | Fri Jul 11 02:32:18 EDT 2025 Fri Jul 25 05:22:13 EDT 2025 Wed Feb 19 02:31:13 EST 2025 Wed Oct 01 01:12:27 EDT 2025 Thu Apr 24 22:57:30 EDT 2025 Wed Aug 27 02:51:13 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-830d8a96f1b816a07416d5c08070e246d4aa63d3a206f8a3d79a7106b23b40663 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9365-2953 0000-0003-4288-5591 |
PMID | 31825869 |
PQID | 2339335015 |
PQPubID | 85423 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2325306970 crossref_citationtrail_10_1109_TNSRE_2019_2958076 crossref_primary_10_1109_TNSRE_2019_2958076 ieee_primary_8926386 proquest_journals_2339335015 pubmed_primary_31825869 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-Jan. 2020-1-00 2020-01-00 20200101 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-Jan. |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
PublicationTitleAbbrev | TNSRE |
PublicationTitleAlternate | IEEE Trans Neural Syst Rehabil Eng |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref39 ref17 ref38 ref16 ref19 ref18 lee (ref34) 2009; 58 ref24 ref23 ref26 ref25 ref20 ref42 ref22 ref21 ref43 ref28 ref27 feng (ref41) 2015; 7 ref29 ref8 hochberg (ref4) 2013; 485 ref7 ref9 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref33 doi: 10.1371/journal.pone.0140703 – ident: ref30 doi: 10.1109/86.847819 – ident: ref11 doi: 10.1016/j.medengphy.2016.06.010 – ident: ref32 doi: 10.1371/journal.pone.0142168 – ident: ref1 doi: 10.1016/S1388-2457(02)00057-3 – ident: ref16 doi: 10.1109/CCMB.2011.5952123 – ident: ref26 doi: 10.1016/j.robot.2010.05.010 – ident: ref40 doi: 10.1155/2018/7108906 – ident: ref18 doi: 10.1109/TSMCC.2012.2219046 – ident: ref19 doi: 10.1155/2007/25130 – ident: ref3 doi: 10.1038/10223 – ident: ref35 doi: 10.1109/TMECH.2016.2606642 – ident: ref31 doi: 10.1073/pnas.1508080112 – ident: ref14 doi: 10.1109/TNSRE.2012.2197221 – ident: ref10 doi: 10.1109/TNSRE.2013.2286955 – volume: 58 start-page: 824 year: 2009 ident: ref34 article-title: Obstacle avoidance of autonomous mobile agent using circular navigation method publication-title: Trans Korean Inst Elect Eng – ident: ref2 doi: 10.1109/TNSRE.2006.875570 – ident: ref42 doi: 10.1109/TCDS.2016.2541162 – ident: ref29 doi: 10.1016/0013-4694(88)90149-6 – ident: ref12 doi: 10.1016/j.neucom.2014.09.078 – ident: ref5 doi: 10.1109/TSMCA.2011.2159589 – ident: ref6 doi: 10.1016/j.medengphy.2012.12.005 – ident: ref20 doi: 10.1016/S0004-3702(99)00070-3 – volume: 7 start-page: 332 year: 2015 ident: ref41 article-title: Design of a multimodal EEG-based hybrid BCI system with visual servo module publication-title: IEEE Trans Auton Mental Develop doi: 10.1109/TAMD.2015.2434951 – ident: ref43 doi: 10.1109/ACCESS.2019.2895133 – ident: ref36 doi: 10.1142/S0129065714500191 – ident: ref24 doi: 10.1109/IEMBS.2009.5332828 – ident: ref39 doi: 10.1115/1.3662552 – ident: ref21 doi: 10.1023/A:1007934111358 – ident: ref15 doi: 10.1109/TBME.2004.827086 – ident: ref28 doi: 10.1016/S1388-2457(99)00141-8 – ident: ref8 doi: 10.1007/978-3-540-88906-9_42 – ident: ref25 doi: 10.1109/TNSRE.2015.2439298 – ident: ref13 doi: 10.1109/ACSSC.2010.5757758 – ident: ref22 doi: 10.1109/TRO.2009.2020347 – ident: ref7 doi: 10.1109/TRO.2004.842350 – ident: ref27 doi: 10.1038/sc.2012.14 – volume: 485 start-page: 372 year: 2013 ident: ref4 article-title: Reach and grasp by people with tetraplegia using a neurally controlled robotic arm publication-title: Nature doi: 10.1038/nature11076 – ident: ref9 doi: 10.1016/j.robot.2012.11.002 – ident: ref37 doi: 10.1162/0899766042321814 – ident: ref23 doi: 10.1109/IROS.2009.5354534 – ident: ref38 doi: 10.1371/journal.pone.0029519 – ident: ref17 doi: 10.3389/fnbot.2017.00048 |
SSID | ssj0017657 |
Score | 2.4967384 |
Snippet | To enhance the performance of the brain-actuated robot system, a novel shared controller based on Bayesian approach is proposed for intelligently combining... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 328 |
SubjectTerms | Automatic control Bayes methods Bayesian analysis Bayesian approach Brain brain machine interface Control systems Controllers EEG Electroencephalography Man-machine interfaces Mathematical models Mobile robots Optimal control Probabilistic methods Probabilistic models Robot control Robot kinematics Robots Shared control Statistical analysis Uncertainty Visual evoked potentials wheelchair robot Wheelchairs |
Title | A Bayesian Shared Control Approach for Wheelchair Robot With Brain Machine Interface |
URI | https://ieeexplore.ieee.org/document/8926386 https://www.ncbi.nlm.nih.gov/pubmed/31825869 https://www.proquest.com/docview/2339335015 https://www.proquest.com/docview/2325306970 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0210 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017657 issn: 1534-4320 databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PaBeeJVHoCAjARfI1vHbx23VqkLaHpat6C3yK2rVaoNK9gC_Htt5qCBA3CLFdmLN2P7GM_MNwNvAvbJOsrJRUkcDxTel8dKWihPvBQ2Mm5QovDgTp-fs0wW_2IKPUy5MCCEHn4VZesy-fN-6TboqO1CaRHUR27Atpe5ztSaPgRSZ1TMuYFYySvCYIIP1wers8_I4RXHpGdFcRct9F-5FXSZcpTjnO-dRLrDyd6yZz5yTB7AY_7YPNbmebTo7cz9-I3L83-k8hPsD-ETzXlsewVZYP4Z3d4mG0apnGUDv0fIXDu89WM3RofkeUtIlSjTPwaOjPs4dzQdichQRMIrbe7hxl-bqFi1b23boy1V3iQ5TKQq0yKGbAeV7yMa48ATOT45XR6flUJOhdJRXXako9spo0VRWVcJkQOd5oiuXOBAmPDNGUE8NwaJRhnqpTQQxwhJqWYI3T2Fn3a7Dc0BBMStCJQ0mloW4c1rlNY5jeWwcdqSAapRM7YbJproZN3U2XLCus2DrJNh6EGwBH6Y-X3u6jn-23ktSmVoOAilgf1SAeljR32pCqabJC8sLeDO9jmsxOVjMOrSb1IbwaIJpiQt41ivONPaoby_-_M2XsEuSJZ8vd_Zhp7vdhFcR7nT2ddbznzaz-Bo |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIkEvvMojUMBIwIVm6_gV-7itWi3Q3cOSit4iO3bUimpTtdkD_Hps56GCAHGLFNuJNWP7G8_MNwBvHbfSVDlLa5krb6DYOtU2N6nkxFpBHeM6JArPF2J2wj6d8tMN2B1zYZxzMfjMTcJj9OXbplqHq7I9qYhXF3ELbnNvVeRdttboM8hF5PX0S5iljBI8pMhgtVcsviwPQxyXmhDFpbfdt-CO12bCZYh0vnEixRIrf0eb8dQ5ug_z4X-7YJNvk3VrJtWP36gc_3dCD-BeDz_RtNOXh7DhVo_g3U2qYVR0PAPoPVr-wuK9DcUU7evvLqRdokD07Cw66CLd0bSnJkceAyO_wbuL6kyfX6FlY5oWfT1vz9B-KEaB5jF406F4E1nryj2Gk6PD4mCW9lUZ0oryrE0lxVZqJerMyEzoCOksD4TlOXaECcu0FtRSTbCopaY2V9rDGGEINSwAnCewuWpW7hkgJ5kRLss1JoY5v3caaRX2Y1msK1yRBLJBMmXVTzZUzrgoo-mCVRkFWwbBlr1gE_gw9rnsCDv-2Xo7SGVs2QskgZ1BAcp-TV-XhFJFgx-WJ_BmfO1XY3Cx6JVr1qEN4d4IUzlO4GmnOOPYg749__M3X8PdWTE_Lo8_Lj6_gC0S7Pp41bMDm-3V2r304Kc1r6LO_wRntPtr |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Bayesian+Shared+Control+Approach+for+Wheelchair+Robot+With+Brain+Machine+Interface&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Deng%2C+Xiaoyan&rft.au=Yu%2C+Zhu+Liang&rft.au=Lin%2C+Canguang&rft.au=Gu%2C+Zhenghui&rft.date=2020-01-01&rft.issn=1534-4320&rft.eissn=1558-0210&rft.volume=28&rft.issue=1&rft.spage=328&rft.epage=338&rft_id=info:doi/10.1109%2FTNSRE.2019.2958076&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNSRE_2019_2958076 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |