Identification and Control for Singularly Perturbed Systems Using Multitime-Scale Neural Networks
Many well-established singular perturbation theories for singularly perturbed systems require the full knowledge of system model parameters. In order to obtain an accurate and faithful model, a new identification scheme for singularly perturbed nonlinear system using multitime-scale recurrent high-o...
Saved in:
| Published in | IEEE transaction on neural networks and learning systems Vol. 28; no. 2; pp. 321 - 333 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.02.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2162-237X 2162-2388 2162-2388 |
| DOI | 10.1109/TNNLS.2015.2508738 |
Cover
| Abstract | Many well-established singular perturbation theories for singularly perturbed systems require the full knowledge of system model parameters. In order to obtain an accurate and faithful model, a new identification scheme for singularly perturbed nonlinear system using multitime-scale recurrent high-order neural networks (NNs) is proposed in this paper. Inspired by the optimal bounded ellipsoid algorithm, which is originally designed for discrete-time systems, a novel weight updating law is developed for continuous-time NNs identification process. Compared with other widely used gradient-descent updating algorithms, this new method can achieve faster convergence, due to its adaptively adjusted learning rate. Based on the identification results, a control scheme using singular perturbation theories is developed. By using singular perturbation methods, the system order is reduced, and the controller structure is simplified. The closed-loop stability is analyzed and the convergence of system states is guaranteed. The effectiveness of the identification and the control scheme is demonstrated by simulation results. |
|---|---|
| AbstractList | Many well-established singular perturbation theories for singularly perturbed systems require the full knowledge of system model parameters. In order to obtain an accurate and faithful model, a new identification scheme for singularly perturbed nonlinear system using multitime-scale recurrent high-order neural networks (NNs) is proposed in this paper. Inspired by the optimal bounded ellipsoid algorithm, which is originally designed for discrete-time systems, a novel weight updating law is developed for continuous-time NNs identification process. Compared with other widely used gradient-descent updating algorithms, this new method can achieve faster convergence, due to its adaptively adjusted learning rate. Based on the identification results, a control scheme using singular perturbation theories is developed. By using singular perturbation methods, the system order is reduced, and the controller structure is simplified. The closed-loop stability is analyzed and the convergence of system states is guaranteed. The effectiveness of the identification and the control scheme is demonstrated by simulation results. Many well-established singular perturbation theories for singularly perturbed systems require the full knowledge of system model parameters. In order to obtain an accurate and faithful model, a new identification scheme for singularly perturbed nonlinear system using multitime-scale recurrent high-order neural networks (NNs) is proposed in this paper. Inspired by the optimal bounded ellipsoid algorithm, which is originally designed for discrete-time systems, a novel weight updating law is developed for continuous-time NNs identification process. Compared with other widely used gradient-descent updating algorithms, this new method can achieve faster convergence, due to its adaptively adjusted learning rate. Based on the identification results, a control scheme using singular perturbation theories is developed. By using singular perturbation methods, the system order is reduced, and the controller structure is simplified. The closed-loop stability is analyzed and the convergence of system states is guaranteed. The effectiveness of the identification and the control scheme is demonstrated by simulation results.Many well-established singular perturbation theories for singularly perturbed systems require the full knowledge of system model parameters. In order to obtain an accurate and faithful model, a new identification scheme for singularly perturbed nonlinear system using multitime-scale recurrent high-order neural networks (NNs) is proposed in this paper. Inspired by the optimal bounded ellipsoid algorithm, which is originally designed for discrete-time systems, a novel weight updating law is developed for continuous-time NNs identification process. Compared with other widely used gradient-descent updating algorithms, this new method can achieve faster convergence, due to its adaptively adjusted learning rate. Based on the identification results, a control scheme using singular perturbation theories is developed. By using singular perturbation methods, the system order is reduced, and the controller structure is simplified. The closed-loop stability is analyzed and the convergence of system states is guaranteed. The effectiveness of the identification and the control scheme is demonstrated by simulation results. |
| Author | Xuemei Ren Dongdong Zheng Wen-Fang Xie Jing Na |
| Author_xml | – sequence: 1 givenname: Dongdong surname: Zheng fullname: Zheng, Dongdong – sequence: 2 givenname: Wen-Fang orcidid: 0000-0003-2449-6306 surname: Xie fullname: Xie, Wen-Fang – sequence: 3 givenname: Xuemei surname: Ren fullname: Ren, Xuemei |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26742148$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUFrHCEUx6UkJGmaL9BCGegll9mqo6NzLEuaBjbbwiaQ2-Dos5g6Y6oOZb99TXa7hxzq5Qnv9_PJ-79FR1OYAKH3BC8Iwd3nu_V6tVlQTPiCcixFI9-gM0paWtNGyqPDXTycoouUHnE5LeYt607QKW0Fo4TJM6RuDEzZWadVdmGq1GSqZZhyDL6yIVYbN_2cvYp-W_2AmOc4gKk225RhTNV9Kt3qdvbZZTdCvdHKQ7WGOSpfSv4T4q_0Dh1b5RNc7Os5uv96dbf8Vq--X98sv6xq3XCSa6Gs4V3TMUkN14QIYQZTOkbTwVrLLHR8GLjhlhBmMYcBa22VJVpoXZzmHF3u3n2K4fcMKfejSxq8VxOEOfVE0rZlkgla0E-v0Mcwx6n8rqdEMMYplm2hPu6peRjB9E_RjSpu-3_LKwDdATqGlCLYA0Jw_xxS_xJS_xxSvw-pSPKVpF1-2X2Oyvn_qx92qgOAwyzRiKZtSPMXQ3OgZA |
| CODEN | ITNNAL |
| CitedBy_id | crossref_primary_10_1109_TII_2022_3220892 crossref_primary_10_1016_j_neucom_2022_03_044 crossref_primary_10_3390_electronics11081209 crossref_primary_10_1109_TNNLS_2020_2963998 crossref_primary_10_1016_j_neucom_2018_10_008 crossref_primary_10_1109_TCYB_2021_3066639 crossref_primary_10_1155_2019_4949265 crossref_primary_10_1016_j_jfranklin_2019_07_022 crossref_primary_10_1155_2018_9765861 crossref_primary_10_1016_j_amc_2023_128338 crossref_primary_10_1177_01423312231169605 crossref_primary_10_1109_TIE_2016_2645139 crossref_primary_10_1049_rpg2_12415 crossref_primary_10_1002_asjc_2772 crossref_primary_10_1016_j_neucom_2021_06_089 crossref_primary_10_1115_1_4048933 crossref_primary_10_1109_TNNLS_2018_2886135 crossref_primary_10_1109_TNNLS_2021_3123361 crossref_primary_10_3390_app14104030 crossref_primary_10_1007_s12204_020_2210_3 crossref_primary_10_1016_j_amc_2023_127939 crossref_primary_10_1109_ACCESS_2019_2908276 crossref_primary_10_1109_TCYB_2020_3004226 crossref_primary_10_1016_j_neucom_2019_11_031 crossref_primary_10_1016_j_precisioneng_2023_02_006 crossref_primary_10_1016_j_isatra_2024_11_038 crossref_primary_10_1155_2018_1872493 crossref_primary_10_1109_TNNLS_2018_2827307 crossref_primary_10_1155_2018_8925838 crossref_primary_10_1109_ACCESS_2019_2945545 crossref_primary_10_1016_j_neucom_2022_09_043 crossref_primary_10_1109_ACCESS_2025_3532546 |
| Cites_doi | 10.1002/(SICI)1099-1115(200003/05)14:2/3<245::AID-ACS578>3.0.CO;2-B 10.1016/S0094-114X(01)00021-0 10.1109/ICAL.2009.5262970 10.1109/72.279191 10.1115/1.2192838 10.1109/TNN.2011.2109737 10.1017/S0305004100030929 10.1007/978-3-540-72383-7_137 10.1016/j.fss.2005.05.004 10.1049/ip-cta:20050955 10.1109/TNNLS.2013.2265604 10.1049/ip-cta:20045161 10.1109/TIE.2003.812350 10.1016/0016-0032(91)90066-C 10.1002/aic.13798 10.1109/70.650161 10.1080/00207179108953660 10.1016/j.conengprac.2010.01.013 10.1109/72.809085 10.1109/TFUZZ.2004.839660 10.1016/j.conengprac.2011.07.005 10.1016/j.neucom.2011.06.007 10.1016/S0020-0255(02)00207-4 10.1109/TSMCB.2003.817055 10.1111/j.1934-6093.2001.tb00053.x 10.1016/S0893-6080(02)00230-7 10.1109/WCICA.2014.7053707 10.1109/TCST.2009.2014242 10.1049/ip-cta:19981984 10.1016/j.neucom.2012.11.041 10.1109/TNN.2009.2015079 10.1016/S0005-1098(99)00105-3 10.1016/0005-1098(95)00078-B 10.1080/01969720590944267 10.1109/ICICIP.2013.6568184 10.1080/00207721003710631 10.1016/j.isatra.2014.01.008 10.1016/S0005-1098(02)00199-1 10.1287/opre.29.6.1039 10.1109/TMECH.2006.878527 10.1007/s00202-007-0085-z 10.1109/78.127966 10.1007/978-3-642-38524-7_80 10.1049/ip-cta:20045159 10.1109/72.668883 10.1109/TCSII.2011.2149690 10.1080/00207720010017580 10.1007/978-1-4471-0785-9 10.1109/70.134278 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1109/TNNLS.2015.2508738 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Materials Research Database MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2162-2388 |
| EndPage | 333 |
| ExternalDocumentID | 26742148 10_1109_TNNLS_2015_2508738 7373631 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Natural Sciences and Engineering Research Council of Canada through the Discovery Grant Program grantid: N00892 funderid: 10.13039/501100000038 – fundername: Natural Science Foundation of China grantid: 61433003; 61573174 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c351t-7afd5939482d5c1177dbd351dc2bfff4fe95bb5d5f114f05eb0ccfaf1c7cc82d3 |
| IEDL.DBID | RIE |
| ISSN | 2162-237X 2162-2388 |
| IngestDate | Sun Sep 28 11:57:24 EDT 2025 Sun Jun 29 15:53:38 EDT 2025 Thu Apr 03 07:08:24 EDT 2025 Wed Oct 01 00:44:40 EDT 2025 Thu Apr 24 23:03:24 EDT 2025 Tue Aug 26 16:38:10 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c351t-7afd5939482d5c1177dbd351dc2bfff4fe95bb5d5f114f05eb0ccfaf1c7cc82d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-2449-6306 |
| PMID | 26742148 |
| PQID | 2174452086 |
| PQPubID | 85436 |
| PageCount | 13 |
| ParticipantIDs | pubmed_primary_26742148 proquest_journals_2174452086 crossref_primary_10_1109_TNNLS_2015_2508738 proquest_miscellaneous_1826648472 ieee_primary_7373631 crossref_citationtrail_10_1109_TNNLS_2015_2508738 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2017-02-01 |
| PublicationDateYYYYMMDD | 2017-02-01 |
| PublicationDate_xml | – month: 02 year: 2017 text: 2017-02-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE transaction on neural networks and learning systems |
| PublicationTitleAbbrev | TNNLS |
| PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
| PublicationYear | 2017 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref13 narang (ref4) 2012 ref56 ref12 ref15 ref58 ref55 ref11 ref54 ref10 ref17 ref16 ref18 christofides (ref14) 2000; 36 yu (ref38) 2009; 20 khalil (ref59) 2002 ref46 ref48 ref47 ref42 ref44 ref43 lewis (ref50) 1998 ref49 zhang (ref1) 2014; 9 ref8 ref9 ref3 ref6 lobry (ref51) 2005 ref5 ref40 ghorbel (ref19) 1991 ref35 ref34 ref37 ref36 ref31 ref30 ref32 ref2 ref39 esakki (ref21) 2011 ref24 ref23 ref26 ref25 ref20 ref22 boutalis (ref52) 2014 lin (ref7) 2010 rojas (ref53) 1996 rovithakis (ref33) 2000 ref28 de jesús rubio (ref41) 2008; 7 ref27 ref29 fu (ref45) 2013; 24 ref60 |
| References_xml | – ident: ref22 doi: 10.1002/(SICI)1099-1115(200003/05)14:2/3<245::AID-ACS578>3.0.CO;2-B – ident: ref18 doi: 10.1016/S0094-114X(01)00021-0 – ident: ref46 doi: 10.1109/ICAL.2009.5262970 – ident: ref37 doi: 10.1109/72.279191 – ident: ref48 doi: 10.1115/1.2192838 – volume: 9 start-page: 1 year: 2014 ident: ref1 article-title: Singular perturbations and time scales in control theories and applications: An overview 2002-2012 publication-title: Int J Inf Syst Sci – ident: ref35 doi: 10.1109/TNN.2011.2109737 – ident: ref55 doi: 10.1017/S0305004100030929 – ident: ref40 doi: 10.1007/978-3-540-72383-7_137 – year: 2012 ident: ref4 article-title: Analysis and control of non-affine, non-standard, singularly perturbed systems – ident: ref23 doi: 10.1016/j.fss.2005.05.004 – ident: ref8 doi: 10.1049/ip-cta:20050955 – volume: 24 start-page: 1814 year: 2013 ident: ref45 article-title: Nonlinear systems identification and control via dynamic multitime scales neural networks publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2013.2265604 – ident: ref16 doi: 10.1049/ip-cta:20045161 – ident: ref31 doi: 10.1109/TIE.2003.812350 – start-page: 151 year: 2005 ident: ref51 article-title: Singular perturbations methods in control theory publication-title: Contrôle non Linéaire et Applications Les Cours du CIMPA – ident: ref6 doi: 10.1016/0016-0032(91)90066-C – ident: ref5 doi: 10.1002/aic.13798 – ident: ref2 doi: 10.1109/70.650161 – start-page: 3056 year: 2010 ident: ref7 article-title: Composite observer-based feedback design for singularly perturbed systems via LMI approach publication-title: Proc SICE Annu Conf – ident: ref10 doi: 10.1080/00207179108953660 – ident: ref54 doi: 10.1016/j.conengprac.2010.01.013 – ident: ref32 doi: 10.1109/72.809085 – ident: ref24 doi: 10.1109/TFUZZ.2004.839660 – ident: ref57 doi: 10.1016/j.conengprac.2011.07.005 – ident: ref43 doi: 10.1016/j.neucom.2011.06.007 – ident: ref30 doi: 10.1016/S0020-0255(02)00207-4 – ident: ref56 doi: 10.1109/TSMCB.2003.817055 – year: 2014 ident: ref52 publication-title: System Identification and Adaptive Control Theory and Applications of the Neurofuzzy and Fuzzy Cognitive Network Models – ident: ref49 doi: 10.1111/j.1934-6093.2001.tb00053.x – ident: ref36 doi: 10.1016/S0893-6080(02)00230-7 – ident: ref42 doi: 10.1109/WCICA.2014.7053707 – ident: ref29 doi: 10.1109/TCST.2009.2014242 – ident: ref60 doi: 10.1049/ip-cta:19981984 – ident: ref47 doi: 10.1016/j.neucom.2012.11.041 – volume: 20 start-page: 983 year: 2009 ident: ref38 article-title: Recurrent neural networks training with stable bounding ellipsoid algorithm publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2009.2015079 – volume: 36 start-page: 45 year: 2000 ident: ref14 article-title: Robust output feedback control of nonlinear singularly perturbed systems publication-title: Automatica doi: 10.1016/S0005-1098(99)00105-3 – ident: ref58 doi: 10.1016/0005-1098(95)00078-B – volume: 7 start-page: 542 year: 2008 ident: ref41 article-title: Nonlinear system identification with a feedforward neural network and an optimal bounded ellipsoid algorithm publication-title: WSEAS Trans Comput – ident: ref17 doi: 10.1080/01969720590944267 – ident: ref44 doi: 10.1109/ICICIP.2013.6568184 – ident: ref3 doi: 10.1080/00207721003710631 – ident: ref25 doi: 10.1016/j.isatra.2014.01.008 – ident: ref11 doi: 10.1016/S0005-1098(02)00199-1 – ident: ref39 doi: 10.1287/opre.29.6.1039 – ident: ref28 doi: 10.1109/TMECH.2006.878527 – ident: ref26 doi: 10.1007/s00202-007-0085-z – ident: ref34 doi: 10.1109/78.127966 – year: 2011 ident: ref21 article-title: Modeling and robust control of two collaborative robot manipulators handling a flexibile object – year: 1996 ident: ref53 publication-title: Neural Networks A Systematic Introduction – ident: ref12 doi: 10.1007/978-3-642-38524-7_80 – year: 2002 ident: ref59 publication-title: Nonlinear Systems – ident: ref13 doi: 10.1049/ip-cta:20045159 – ident: ref27 doi: 10.1109/72.668883 – ident: ref15 doi: 10.1109/TCSII.2011.2149690 – ident: ref9 doi: 10.1080/00207720010017580 – year: 2000 ident: ref33 publication-title: Adaptive Control with Recurrent High-Order Neural Networks Theory and Industrial Applications doi: 10.1007/978-1-4471-0785-9 – year: 1998 ident: ref50 publication-title: Neural Network Control of Robot Manipulators and Non-Linear Systems – year: 1991 ident: ref19 article-title: Adaptive control of flexible joint robot manipulators: A singular perturbation approach – ident: ref20 doi: 10.1109/70.134278 |
| SSID | ssj0000605649 |
| Score | 2.3909605 |
| Snippet | Many well-established singular perturbation theories for singularly perturbed systems require the full knowledge of system model parameters. In order to obtain... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 321 |
| SubjectTerms | Algorithm design and analysis Algorithms Artificial Intelligence - trends Artificial neural networks Computer simulation Control stability Control systems Convergence Discrete time systems Ellipsoids Feedback control Identification Manifolds Mathematical model Neural networks Neural Networks (Computer) Nonlinear Dynamics Nonlinear systems optimal bounded ellipsoid (OBE) Order parameters recurrent high-order neural network (RHONN) Singular perturbation Singular perturbation methods singularly perturbed system (SPS) Stability analysis Time Factors Uncertainty Weight |
| Title | Identification and Control for Singularly Perturbed Systems Using Multitime-Scale Neural Networks |
| URI | https://ieeexplore.ieee.org/document/7373631 https://www.ncbi.nlm.nih.gov/pubmed/26742148 https://www.proquest.com/docview/2174452086 https://www.proquest.com/docview/1826648472 |
| Volume | 28 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2162-2388 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605649 issn: 2162-237X databaseCode: RIE dateStart: 20120101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VnrhQoDwCBRmJG2Sb-JkcUUVVIbpC2lbaWxTbYwlRsqi7e4Bfj8dOIoQAcYvkOE4048w3nm9mAF4LaSr0RpbBSkFhRls2jW3KvqpRCzTcJ27O5VJfXMsPa7U-gLdzLgwiJvIZLugyxfL9xu3pqOzUCCM0JU3fMY3OuVrzeUoVcblOaJfXmpdcmPWUI1O1p1fL5ccVEbnUItr8xgjq08d19Atr6vzzi0lKPVb-DjeT2Tk_gsvphTPb5Mtiv7ML9-O3Wo7_-0X34d6IP9m7rDAP4ACHh3A09XZg41Y_hj5n8IbxSI_1g2dnmdbOIs5lq2jyiMF68519wttotyx6NpY_Z4mHwHJu7-evWK6iIiCjOiBx6WUmnm8fwfX5-6uzi3Jsx1A6oepdafrgVSta2XCvHAV7vfVxxDtuQwgyYKusVV6F6GOFSqGtnAt9qJ1xLs4Rj-Fw2Az4FFiLWtuKMgD7IEXjehVaUwdhI9o08R9UQD1JpHNjrXJqmXHTJZ-larsk0I4E2o0CLeDNPOdbrtTxz7uPSRrznaMgCjiZBN-Nm3nbkdcmFY_OXwGv5uG4DSm20g-42W87ctO0jKaeF_AkK8z87EnPnv15zedwlxNWSFTwEzjc3e7xRUQ6O_syqfhPPlH4qQ |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V5QAXSimPlBaMxA2yTfxMjqhqtcBuhLRbaW9W_JIqShZ1dw_l12M7ToQqQNwiOY4TzTjzjeebGYB3hIrCGkFzpygJYUaVV5Wq8rYoLSdWYBO5OfOGT6_o5xVb7cGHMRfGWhvJZ3YSLmMs36z1LhyVnQkiCA9J0w8YpZT12VrjiUrhkTmPeBeXHOeYiNWQJVPUZ8ummS0ClYtNvNWvBAmd-jD3nmEZev_8ZpRil5W_A85oeC4PYD68cs83-TbZbdVE_7xXzfF_v-kJPE4IFH3sVeYQ9mz3FA6G7g4obfYjaPscXpcO9VDbGXTeE9uRR7po4Y1e4LDe3KGv9tZbLmUNSgXQUWQioD679_q7zRdeFSwKlUD80k1PPd88g6vLi-X5NE8NGXJNWLnNResMq0lNK2yYDuFeo4wfMRor5xx1tmZKMcOc97JcwawqtHatK7XQ2s8hz2G_W3f2JaDacq6KkAPYOkoq3TJXi9IR5fGm8H-hDMpBIlKnauWhacaNjF5LUcsoUBkEKpNAM3g_zvnR1-r4591HQRrjnUkQGZwMgpdpO29k8Nsow979y-DtOOw3YoiutJ1d7zYyOGqcemOPM3jRK8z47EHPjv-85ht4OF3OZ3L2qfnyCh7hgBwiMfwE9re3O3vqcc9WvY7q_gtlzPv2 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+and+Control+for+Singularly+Perturbed+Systems+Using+Multitime-Scale+Neural+Networks&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Zheng%2C+Dongdong&rft.au=Xie%2C+Wen-Fang&rft.au=Ren%2C+Xuemei&rft.au=Na%2C+Jing&rft.date=2017-02-01&rft.issn=2162-2388&rft.eissn=2162-2388&rft.volume=28&rft.issue=2&rft.spage=321&rft_id=info:doi/10.1109%2FTNNLS.2015.2508738&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |