Identification and Control for Singularly Perturbed Systems Using Multitime-Scale Neural Networks

Many well-established singular perturbation theories for singularly perturbed systems require the full knowledge of system model parameters. In order to obtain an accurate and faithful model, a new identification scheme for singularly perturbed nonlinear system using multitime-scale recurrent high-o...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 28; no. 2; pp. 321 - 333
Main Authors Zheng, Dongdong, Xie, Wen-Fang, Ren, Xuemei
Format Journal Article
LanguageEnglish
Published United States IEEE 01.02.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2162-237X
2162-2388
2162-2388
DOI10.1109/TNNLS.2015.2508738

Cover

Abstract Many well-established singular perturbation theories for singularly perturbed systems require the full knowledge of system model parameters. In order to obtain an accurate and faithful model, a new identification scheme for singularly perturbed nonlinear system using multitime-scale recurrent high-order neural networks (NNs) is proposed in this paper. Inspired by the optimal bounded ellipsoid algorithm, which is originally designed for discrete-time systems, a novel weight updating law is developed for continuous-time NNs identification process. Compared with other widely used gradient-descent updating algorithms, this new method can achieve faster convergence, due to its adaptively adjusted learning rate. Based on the identification results, a control scheme using singular perturbation theories is developed. By using singular perturbation methods, the system order is reduced, and the controller structure is simplified. The closed-loop stability is analyzed and the convergence of system states is guaranteed. The effectiveness of the identification and the control scheme is demonstrated by simulation results.
AbstractList Many well-established singular perturbation theories for singularly perturbed systems require the full knowledge of system model parameters. In order to obtain an accurate and faithful model, a new identification scheme for singularly perturbed nonlinear system using multitime-scale recurrent high-order neural networks (NNs) is proposed in this paper. Inspired by the optimal bounded ellipsoid algorithm, which is originally designed for discrete-time systems, a novel weight updating law is developed for continuous-time NNs identification process. Compared with other widely used gradient-descent updating algorithms, this new method can achieve faster convergence, due to its adaptively adjusted learning rate. Based on the identification results, a control scheme using singular perturbation theories is developed. By using singular perturbation methods, the system order is reduced, and the controller structure is simplified. The closed-loop stability is analyzed and the convergence of system states is guaranteed. The effectiveness of the identification and the control scheme is demonstrated by simulation results.
Many well-established singular perturbation theories for singularly perturbed systems require the full knowledge of system model parameters. In order to obtain an accurate and faithful model, a new identification scheme for singularly perturbed nonlinear system using multitime-scale recurrent high-order neural networks (NNs) is proposed in this paper. Inspired by the optimal bounded ellipsoid algorithm, which is originally designed for discrete-time systems, a novel weight updating law is developed for continuous-time NNs identification process. Compared with other widely used gradient-descent updating algorithms, this new method can achieve faster convergence, due to its adaptively adjusted learning rate. Based on the identification results, a control scheme using singular perturbation theories is developed. By using singular perturbation methods, the system order is reduced, and the controller structure is simplified. The closed-loop stability is analyzed and the convergence of system states is guaranteed. The effectiveness of the identification and the control scheme is demonstrated by simulation results.Many well-established singular perturbation theories for singularly perturbed systems require the full knowledge of system model parameters. In order to obtain an accurate and faithful model, a new identification scheme for singularly perturbed nonlinear system using multitime-scale recurrent high-order neural networks (NNs) is proposed in this paper. Inspired by the optimal bounded ellipsoid algorithm, which is originally designed for discrete-time systems, a novel weight updating law is developed for continuous-time NNs identification process. Compared with other widely used gradient-descent updating algorithms, this new method can achieve faster convergence, due to its adaptively adjusted learning rate. Based on the identification results, a control scheme using singular perturbation theories is developed. By using singular perturbation methods, the system order is reduced, and the controller structure is simplified. The closed-loop stability is analyzed and the convergence of system states is guaranteed. The effectiveness of the identification and the control scheme is demonstrated by simulation results.
Author Xuemei Ren
Dongdong Zheng
Wen-Fang Xie
Jing Na
Author_xml – sequence: 1
  givenname: Dongdong
  surname: Zheng
  fullname: Zheng, Dongdong
– sequence: 2
  givenname: Wen-Fang
  orcidid: 0000-0003-2449-6306
  surname: Xie
  fullname: Xie, Wen-Fang
– sequence: 3
  givenname: Xuemei
  surname: Ren
  fullname: Ren, Xuemei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26742148$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFrHCEUx6UkJGmaL9BCGegll9mqo6NzLEuaBjbbwiaQ2-Dos5g6Y6oOZb99TXa7hxzq5Qnv9_PJ-79FR1OYAKH3BC8Iwd3nu_V6tVlQTPiCcixFI9-gM0paWtNGyqPDXTycoouUHnE5LeYt607QKW0Fo4TJM6RuDEzZWadVdmGq1GSqZZhyDL6yIVYbN_2cvYp-W_2AmOc4gKk225RhTNV9Kt3qdvbZZTdCvdHKQ7WGOSpfSv4T4q_0Dh1b5RNc7Os5uv96dbf8Vq--X98sv6xq3XCSa6Gs4V3TMUkN14QIYQZTOkbTwVrLLHR8GLjhlhBmMYcBa22VJVpoXZzmHF3u3n2K4fcMKfejSxq8VxOEOfVE0rZlkgla0E-v0Mcwx6n8rqdEMMYplm2hPu6peRjB9E_RjSpu-3_LKwDdATqGlCLYA0Jw_xxS_xJS_xxSvw-pSPKVpF1-2X2Oyvn_qx92qgOAwyzRiKZtSPMXQ3OgZA
CODEN ITNNAL
CitedBy_id crossref_primary_10_1109_TII_2022_3220892
crossref_primary_10_1016_j_neucom_2022_03_044
crossref_primary_10_3390_electronics11081209
crossref_primary_10_1109_TNNLS_2020_2963998
crossref_primary_10_1016_j_neucom_2018_10_008
crossref_primary_10_1109_TCYB_2021_3066639
crossref_primary_10_1155_2019_4949265
crossref_primary_10_1016_j_jfranklin_2019_07_022
crossref_primary_10_1155_2018_9765861
crossref_primary_10_1016_j_amc_2023_128338
crossref_primary_10_1177_01423312231169605
crossref_primary_10_1109_TIE_2016_2645139
crossref_primary_10_1049_rpg2_12415
crossref_primary_10_1002_asjc_2772
crossref_primary_10_1016_j_neucom_2021_06_089
crossref_primary_10_1115_1_4048933
crossref_primary_10_1109_TNNLS_2018_2886135
crossref_primary_10_1109_TNNLS_2021_3123361
crossref_primary_10_3390_app14104030
crossref_primary_10_1007_s12204_020_2210_3
crossref_primary_10_1016_j_amc_2023_127939
crossref_primary_10_1109_ACCESS_2019_2908276
crossref_primary_10_1109_TCYB_2020_3004226
crossref_primary_10_1016_j_neucom_2019_11_031
crossref_primary_10_1016_j_precisioneng_2023_02_006
crossref_primary_10_1016_j_isatra_2024_11_038
crossref_primary_10_1155_2018_1872493
crossref_primary_10_1109_TNNLS_2018_2827307
crossref_primary_10_1155_2018_8925838
crossref_primary_10_1109_ACCESS_2019_2945545
crossref_primary_10_1016_j_neucom_2022_09_043
crossref_primary_10_1109_ACCESS_2025_3532546
Cites_doi 10.1002/(SICI)1099-1115(200003/05)14:2/3<245::AID-ACS578>3.0.CO;2-B
10.1016/S0094-114X(01)00021-0
10.1109/ICAL.2009.5262970
10.1109/72.279191
10.1115/1.2192838
10.1109/TNN.2011.2109737
10.1017/S0305004100030929
10.1007/978-3-540-72383-7_137
10.1016/j.fss.2005.05.004
10.1049/ip-cta:20050955
10.1109/TNNLS.2013.2265604
10.1049/ip-cta:20045161
10.1109/TIE.2003.812350
10.1016/0016-0032(91)90066-C
10.1002/aic.13798
10.1109/70.650161
10.1080/00207179108953660
10.1016/j.conengprac.2010.01.013
10.1109/72.809085
10.1109/TFUZZ.2004.839660
10.1016/j.conengprac.2011.07.005
10.1016/j.neucom.2011.06.007
10.1016/S0020-0255(02)00207-4
10.1109/TSMCB.2003.817055
10.1111/j.1934-6093.2001.tb00053.x
10.1016/S0893-6080(02)00230-7
10.1109/WCICA.2014.7053707
10.1109/TCST.2009.2014242
10.1049/ip-cta:19981984
10.1016/j.neucom.2012.11.041
10.1109/TNN.2009.2015079
10.1016/S0005-1098(99)00105-3
10.1016/0005-1098(95)00078-B
10.1080/01969720590944267
10.1109/ICICIP.2013.6568184
10.1080/00207721003710631
10.1016/j.isatra.2014.01.008
10.1016/S0005-1098(02)00199-1
10.1287/opre.29.6.1039
10.1109/TMECH.2006.878527
10.1007/s00202-007-0085-z
10.1109/78.127966
10.1007/978-3-642-38524-7_80
10.1049/ip-cta:20045159
10.1109/72.668883
10.1109/TCSII.2011.2149690
10.1080/00207720010017580
10.1007/978-1-4471-0785-9
10.1109/70.134278
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2015.2508738
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Materials Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 333
ExternalDocumentID 26742148
10_1109_TNNLS_2015_2508738
7373631
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council of Canada through the Discovery Grant Program
  grantid: N00892
  funderid: 10.13039/501100000038
– fundername: Natural Science Foundation of China
  grantid: 61433003; 61573174
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-7afd5939482d5c1177dbd351dc2bfff4fe95bb5d5f114f05eb0ccfaf1c7cc82d3
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Sun Sep 28 11:57:24 EDT 2025
Sun Jun 29 15:53:38 EDT 2025
Thu Apr 03 07:08:24 EDT 2025
Wed Oct 01 00:44:40 EDT 2025
Thu Apr 24 23:03:24 EDT 2025
Tue Aug 26 16:38:10 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-7afd5939482d5c1177dbd351dc2bfff4fe95bb5d5f114f05eb0ccfaf1c7cc82d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2449-6306
PMID 26742148
PQID 2174452086
PQPubID 85436
PageCount 13
ParticipantIDs pubmed_primary_26742148
proquest_journals_2174452086
crossref_primary_10_1109_TNNLS_2015_2508738
proquest_miscellaneous_1826648472
ieee_primary_7373631
crossref_citationtrail_10_1109_TNNLS_2015_2508738
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-02-01
PublicationDateYYYYMMDD 2017-02-01
PublicationDate_xml – month: 02
  year: 2017
  text: 2017-02-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
narang (ref4) 2012
ref56
ref12
ref15
ref58
ref55
ref11
ref54
ref10
ref17
ref16
ref18
christofides (ref14) 2000; 36
yu (ref38) 2009; 20
khalil (ref59) 2002
ref46
ref48
ref47
ref42
ref44
ref43
lewis (ref50) 1998
ref49
zhang (ref1) 2014; 9
ref8
ref9
ref3
ref6
lobry (ref51) 2005
ref5
ref40
ghorbel (ref19) 1991
ref35
ref34
ref37
ref36
ref31
ref30
ref32
ref2
ref39
esakki (ref21) 2011
ref24
ref23
ref26
ref25
ref20
ref22
boutalis (ref52) 2014
lin (ref7) 2010
rojas (ref53) 1996
rovithakis (ref33) 2000
ref28
de jesús rubio (ref41) 2008; 7
ref27
ref29
fu (ref45) 2013; 24
ref60
References_xml – ident: ref22
  doi: 10.1002/(SICI)1099-1115(200003/05)14:2/3<245::AID-ACS578>3.0.CO;2-B
– ident: ref18
  doi: 10.1016/S0094-114X(01)00021-0
– ident: ref46
  doi: 10.1109/ICAL.2009.5262970
– ident: ref37
  doi: 10.1109/72.279191
– ident: ref48
  doi: 10.1115/1.2192838
– volume: 9
  start-page: 1
  year: 2014
  ident: ref1
  article-title: Singular perturbations and time scales in control theories and applications: An overview 2002-2012
  publication-title: Int J Inf Syst Sci
– ident: ref35
  doi: 10.1109/TNN.2011.2109737
– ident: ref55
  doi: 10.1017/S0305004100030929
– ident: ref40
  doi: 10.1007/978-3-540-72383-7_137
– year: 2012
  ident: ref4
  article-title: Analysis and control of non-affine, non-standard, singularly perturbed systems
– ident: ref23
  doi: 10.1016/j.fss.2005.05.004
– ident: ref8
  doi: 10.1049/ip-cta:20050955
– volume: 24
  start-page: 1814
  year: 2013
  ident: ref45
  article-title: Nonlinear systems identification and control via dynamic multitime scales neural networks
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2013.2265604
– ident: ref16
  doi: 10.1049/ip-cta:20045161
– ident: ref31
  doi: 10.1109/TIE.2003.812350
– start-page: 151
  year: 2005
  ident: ref51
  article-title: Singular perturbations methods in control theory
  publication-title: Contrôle non Linéaire et Applications Les Cours du CIMPA
– ident: ref6
  doi: 10.1016/0016-0032(91)90066-C
– ident: ref5
  doi: 10.1002/aic.13798
– ident: ref2
  doi: 10.1109/70.650161
– start-page: 3056
  year: 2010
  ident: ref7
  article-title: Composite observer-based feedback design for singularly perturbed systems via LMI approach
  publication-title: Proc SICE Annu Conf
– ident: ref10
  doi: 10.1080/00207179108953660
– ident: ref54
  doi: 10.1016/j.conengprac.2010.01.013
– ident: ref32
  doi: 10.1109/72.809085
– ident: ref24
  doi: 10.1109/TFUZZ.2004.839660
– ident: ref57
  doi: 10.1016/j.conengprac.2011.07.005
– ident: ref43
  doi: 10.1016/j.neucom.2011.06.007
– ident: ref30
  doi: 10.1016/S0020-0255(02)00207-4
– ident: ref56
  doi: 10.1109/TSMCB.2003.817055
– year: 2014
  ident: ref52
  publication-title: System Identification and Adaptive Control Theory and Applications of the Neurofuzzy and Fuzzy Cognitive Network Models
– ident: ref49
  doi: 10.1111/j.1934-6093.2001.tb00053.x
– ident: ref36
  doi: 10.1016/S0893-6080(02)00230-7
– ident: ref42
  doi: 10.1109/WCICA.2014.7053707
– ident: ref29
  doi: 10.1109/TCST.2009.2014242
– ident: ref60
  doi: 10.1049/ip-cta:19981984
– ident: ref47
  doi: 10.1016/j.neucom.2012.11.041
– volume: 20
  start-page: 983
  year: 2009
  ident: ref38
  article-title: Recurrent neural networks training with stable bounding ellipsoid algorithm
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2009.2015079
– volume: 36
  start-page: 45
  year: 2000
  ident: ref14
  article-title: Robust output feedback control of nonlinear singularly perturbed systems
  publication-title: Automatica
  doi: 10.1016/S0005-1098(99)00105-3
– ident: ref58
  doi: 10.1016/0005-1098(95)00078-B
– volume: 7
  start-page: 542
  year: 2008
  ident: ref41
  article-title: Nonlinear system identification with a feedforward neural network and an optimal bounded ellipsoid algorithm
  publication-title: WSEAS Trans Comput
– ident: ref17
  doi: 10.1080/01969720590944267
– ident: ref44
  doi: 10.1109/ICICIP.2013.6568184
– ident: ref3
  doi: 10.1080/00207721003710631
– ident: ref25
  doi: 10.1016/j.isatra.2014.01.008
– ident: ref11
  doi: 10.1016/S0005-1098(02)00199-1
– ident: ref39
  doi: 10.1287/opre.29.6.1039
– ident: ref28
  doi: 10.1109/TMECH.2006.878527
– ident: ref26
  doi: 10.1007/s00202-007-0085-z
– ident: ref34
  doi: 10.1109/78.127966
– year: 2011
  ident: ref21
  article-title: Modeling and robust control of two collaborative robot manipulators handling a flexibile object
– year: 1996
  ident: ref53
  publication-title: Neural Networks A Systematic Introduction
– ident: ref12
  doi: 10.1007/978-3-642-38524-7_80
– year: 2002
  ident: ref59
  publication-title: Nonlinear Systems
– ident: ref13
  doi: 10.1049/ip-cta:20045159
– ident: ref27
  doi: 10.1109/72.668883
– ident: ref15
  doi: 10.1109/TCSII.2011.2149690
– ident: ref9
  doi: 10.1080/00207720010017580
– year: 2000
  ident: ref33
  publication-title: Adaptive Control with Recurrent High-Order Neural Networks Theory and Industrial Applications
  doi: 10.1007/978-1-4471-0785-9
– year: 1998
  ident: ref50
  publication-title: Neural Network Control of Robot Manipulators and Non-Linear Systems
– year: 1991
  ident: ref19
  article-title: Adaptive control of flexible joint robot manipulators: A singular perturbation approach
– ident: ref20
  doi: 10.1109/70.134278
SSID ssj0000605649
Score 2.3909605
Snippet Many well-established singular perturbation theories for singularly perturbed systems require the full knowledge of system model parameters. In order to obtain...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 321
SubjectTerms Algorithm design and analysis
Algorithms
Artificial Intelligence - trends
Artificial neural networks
Computer simulation
Control stability
Control systems
Convergence
Discrete time systems
Ellipsoids
Feedback control
Identification
Manifolds
Mathematical model
Neural networks
Neural Networks (Computer)
Nonlinear Dynamics
Nonlinear systems
optimal bounded ellipsoid (OBE)
Order parameters
recurrent high-order neural network (RHONN)
Singular perturbation
Singular perturbation methods
singularly perturbed system (SPS)
Stability analysis
Time Factors
Uncertainty
Weight
Title Identification and Control for Singularly Perturbed Systems Using Multitime-Scale Neural Networks
URI https://ieeexplore.ieee.org/document/7373631
https://www.ncbi.nlm.nih.gov/pubmed/26742148
https://www.proquest.com/docview/2174452086
https://www.proquest.com/docview/1826648472
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VnrhQoDwCBRmJG2Sb-JkcUUVVIbpC2lbaWxTbYwlRsqi7e4Bfj8dOIoQAcYvkOE4048w3nm9mAF4LaSr0RpbBSkFhRls2jW3KvqpRCzTcJ27O5VJfXMsPa7U-gLdzLgwiJvIZLugyxfL9xu3pqOzUCCM0JU3fMY3OuVrzeUoVcblOaJfXmpdcmPWUI1O1p1fL5ccVEbnUItr8xgjq08d19Atr6vzzi0lKPVb-DjeT2Tk_gsvphTPb5Mtiv7ML9-O3Wo7_-0X34d6IP9m7rDAP4ACHh3A09XZg41Y_hj5n8IbxSI_1g2dnmdbOIs5lq2jyiMF68519wttotyx6NpY_Z4mHwHJu7-evWK6iIiCjOiBx6WUmnm8fwfX5-6uzi3Jsx1A6oepdafrgVSta2XCvHAV7vfVxxDtuQwgyYKusVV6F6GOFSqGtnAt9qJ1xLs4Rj-Fw2Az4FFiLWtuKMgD7IEXjehVaUwdhI9o08R9UQD1JpHNjrXJqmXHTJZ-larsk0I4E2o0CLeDNPOdbrtTxz7uPSRrznaMgCjiZBN-Nm3nbkdcmFY_OXwGv5uG4DSm20g-42W87ctO0jKaeF_AkK8z87EnPnv15zedwlxNWSFTwEzjc3e7xRUQ6O_syqfhPPlH4qQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V5QAXSimPlBaMxA2yTfxMjqhqtcBuhLRbaW9W_JIqShZ1dw_l12M7ToQqQNwiOY4TzTjzjeebGYB3hIrCGkFzpygJYUaVV5Wq8rYoLSdWYBO5OfOGT6_o5xVb7cGHMRfGWhvJZ3YSLmMs36z1LhyVnQkiCA9J0w8YpZT12VrjiUrhkTmPeBeXHOeYiNWQJVPUZ8ummS0ClYtNvNWvBAmd-jD3nmEZev_8ZpRil5W_A85oeC4PYD68cs83-TbZbdVE_7xXzfF_v-kJPE4IFH3sVeYQ9mz3FA6G7g4obfYjaPscXpcO9VDbGXTeE9uRR7po4Y1e4LDe3KGv9tZbLmUNSgXQUWQioD679_q7zRdeFSwKlUD80k1PPd88g6vLi-X5NE8NGXJNWLnNResMq0lNK2yYDuFeo4wfMRor5xx1tmZKMcOc97JcwawqtHatK7XQ2s8hz2G_W3f2JaDacq6KkAPYOkoq3TJXi9IR5fGm8H-hDMpBIlKnauWhacaNjF5LUcsoUBkEKpNAM3g_zvnR1-r4591HQRrjnUkQGZwMgpdpO29k8Nsow979y-DtOOw3YoiutJ1d7zYyOGqcemOPM3jRK8z47EHPjv-85ht4OF3OZ3L2qfnyCh7hgBwiMfwE9re3O3vqcc9WvY7q_gtlzPv2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+and+Control+for+Singularly+Perturbed+Systems+Using+Multitime-Scale+Neural+Networks&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Zheng%2C+Dongdong&rft.au=Xie%2C+Wen-Fang&rft.au=Ren%2C+Xuemei&rft.au=Na%2C+Jing&rft.date=2017-02-01&rft.issn=2162-2388&rft.eissn=2162-2388&rft.volume=28&rft.issue=2&rft.spage=321&rft_id=info:doi/10.1109%2FTNNLS.2015.2508738&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon