Dictionary Learning for Sparse Coding: Algorithms and Convergence Analysis
In recent years, sparse coding has been widely used in many applications ranging from image processing to pattern recognition. Most existing sparse coding based applications require solving a class of challenging non-smooth and non-convex optimization problems. Despite the fact that many numerical m...
Saved in:
| Published in | IEEE transactions on pattern analysis and machine intelligence Vol. 38; no. 7; pp. 1356 - 1369 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.07.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0162-8828 1939-3539 2160-9292 1939-3539 |
| DOI | 10.1109/TPAMI.2015.2487966 |
Cover
| Abstract | In recent years, sparse coding has been widely used in many applications ranging from image processing to pattern recognition. Most existing sparse coding based applications require solving a class of challenging non-smooth and non-convex optimization problems. Despite the fact that many numerical methods have been developed for solving these problems, it remains an open problem to find a numerical method which is not only empirically fast, but also has mathematically guaranteed strong convergence. In this paper, we propose an alternating iteration scheme for solving such problems. A rigorous convergence analysis shows that the proposed method satisfies the global convergence property: the whole sequence of iterates is convergent and converges to a critical point. Besides the theoretical soundness, the practical benefit of the proposed method is validated in applications including image restoration and recognition. Experiments show that the proposed method achieves similar results with less computation when compared to widely used methods such as K-SVD. |
|---|---|
| AbstractList | In recent years, sparse coding has been widely used in many applications ranging from image processing to pattern recognition. Most existing sparse coding based applications require solving a class of challenging non-smooth and non-convex optimization problems. Despite the fact that many numerical methods have been developed for solving these problems, it remains an open problem to find a numerical method which is not only empirically fast, but also has mathematically guaranteed strong convergence. In this paper, we propose an alternating iteration scheme for solving such problems. A rigorous convergence analysis shows that the proposed method satisfies the global convergence property: the whole sequence of iterates is convergent and converges to a critical point. Besides the theoretical soundness, the practical benefit of the proposed method is validated in applications including image restoration and recognition. Experiments show that the proposed method achieves similar results with less computation when compared to widely used methods such as K-SVD. In recent years, sparse coding has been widely used in many applications ranging from image processing to pattern recognition. Most existing sparse coding based applications require solving a class of challenging non-smooth and non-convex optimization problems. Despite the fact that many numerical methods have been developed for solving these problems, it remains an open problem to find a numerical method which is not only empirically fast, but also has mathematically guaranteed strong convergence. In this paper, we propose an alternating iteration scheme for solving such problems. A rigorous convergence analysis shows that the proposed method satisfies the global convergence property: the whole sequence of iterates is convergent and converges to a critical point. Besides the theoretical soundness, the practical benefit of the proposed method is validated in applications including image restoration and recognition. Experiments show that the proposed method achieves similar results with less computation when compared to widely used methods such as K-SVD.In recent years, sparse coding has been widely used in many applications ranging from image processing to pattern recognition. Most existing sparse coding based applications require solving a class of challenging non-smooth and non-convex optimization problems. Despite the fact that many numerical methods have been developed for solving these problems, it remains an open problem to find a numerical method which is not only empirically fast, but also has mathematically guaranteed strong convergence. In this paper, we propose an alternating iteration scheme for solving such problems. A rigorous convergence analysis shows that the proposed method satisfies the global convergence property: the whole sequence of iterates is convergent and converges to a critical point. Besides the theoretical soundness, the practical benefit of the proposed method is validated in applications including image restoration and recognition. Experiments show that the proposed method achieves similar results with less computation when compared to widely used methods such as K-SVD. |
| Author | Yuhui Quan Zuowei Shen Hui Ji Chenglong Bao |
| Author_xml | – sequence: 1 givenname: Chenglong surname: Bao fullname: Bao, Chenglong – sequence: 2 givenname: Hui surname: Ji fullname: Ji, Hui – sequence: 3 givenname: Yuhui surname: Quan fullname: Quan, Yuhui – sequence: 4 givenname: Zuowei surname: Shen fullname: Shen, Zuowei |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26452248$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU1rGzEQhkVJaJy0f6CFstBLL-tIo5VW6s24XwkOLTQ9C6121lVYS460LuTfV46dHnLoaWB4nmF433NyEmJAQt4wOmeM6svbH4ubqzlQJubQqFZL-YLMgElaa9BwQmaUSaiVAnVGznO-o5Q1gvKX5AxkI6A4M3L9ybvJx2DTQ7VCm4IP62qIqfq5tSljtYx92XysFuM6Jj_93uTKhr6swx9MawwOq0Ww40P2-RU5HeyY8fVxXpBfXz7fLr_Vq-9fr5aLVe24YFPdKkCt9UClpi1XyLBre-u63g5OSocaelDQUa6ckEJ2AwjLWNcg7duOI_IL8uFwd5vi_Q7zZDY-OxxHGzDusmGtbkG0DWMFff8MvYu7VP59pITm0DSiUO-O1K7bYG-2yW9KHuYppQKoA-BSzDnhYJyf7D62KVk_GkbNvhDzWIjZF2KOhRQVnqlP1_8rvT1IHhH_CS1oLhXwv0xBlW0 |
| CODEN | ITPIDJ |
| CitedBy_id | crossref_primary_10_1007_s11227_020_03398_5 crossref_primary_10_1109_TNNLS_2021_3114400 crossref_primary_10_3233_XST_190639 crossref_primary_10_1016_j_patcog_2020_107640 crossref_primary_10_3390_math12081155 crossref_primary_10_1109_TIP_2020_2978645 crossref_primary_10_1016_j_ins_2024_121059 crossref_primary_10_1049_iet_rsn_2019_0550 crossref_primary_10_1002_wics_1646 crossref_primary_10_1109_TNSE_2021_3098738 crossref_primary_10_1109_TNNLS_2023_3236641 crossref_primary_10_1007_s11424_024_3568_3 crossref_primary_10_1007_s13042_021_01406_5 crossref_primary_10_1109_TCI_2017_2697206 crossref_primary_10_3390_s21134279 crossref_primary_10_1109_TCSVT_2023_3316279 crossref_primary_10_1137_19M1298524 crossref_primary_10_1007_s12652_021_03262_1 crossref_primary_10_1093_imaiai_iaz028 crossref_primary_10_1109_TMI_2020_2968770 crossref_primary_10_1109_TNNLS_2021_3104837 crossref_primary_10_1007_s10115_021_01561_9 crossref_primary_10_1108_IJIUS_12_2019_0067 crossref_primary_10_1109_TSP_2016_2620967 crossref_primary_10_1109_TMM_2018_2871948 crossref_primary_10_1016_j_bspc_2024_107364 crossref_primary_10_1016_j_sigpro_2020_107796 crossref_primary_10_1080_02331934_2023_2282176 crossref_primary_10_1109_TCYB_2018_2853122 crossref_primary_10_1016_j_neucom_2020_12_003 crossref_primary_10_1016_j_petrol_2022_110536 crossref_primary_10_1109_TMRB_2022_3170210 crossref_primary_10_1109_TCYB_2021_3067352 crossref_primary_10_1109_TCYB_2022_3204894 crossref_primary_10_3390_jimaging5110085 crossref_primary_10_1016_j_cviu_2018_04_004 crossref_primary_10_1088_0031_9155_61_17_6347 crossref_primary_10_1109_TIP_2023_3245323 crossref_primary_10_1016_j_jneumeth_2020_109047 crossref_primary_10_1109_TITS_2022_3215636 crossref_primary_10_3390_app9081669 crossref_primary_10_3390_s22114255 crossref_primary_10_1016_j_apm_2023_10_023 crossref_primary_10_1109_TIM_2021_3135319 crossref_primary_10_3390_s23187922 crossref_primary_10_1109_TIP_2019_2896541 crossref_primary_10_1190_geo2022_0198_1 crossref_primary_10_1137_16M105928X crossref_primary_10_1049_el_2017_2917 crossref_primary_10_1186_s13640_019_0425_8 crossref_primary_10_1109_TMI_2021_3096142 crossref_primary_10_1109_LSP_2019_2959225 crossref_primary_10_1038_s41377_020_0267_2 crossref_primary_10_1016_j_eswa_2025_126889 crossref_primary_10_1007_s00034_019_01058_5 crossref_primary_10_1364_OPTICA_6_000921 crossref_primary_10_3389_fnins_2016_00188 crossref_primary_10_1109_TCSVT_2016_2643009 crossref_primary_10_1109_TMM_2020_2994512 crossref_primary_10_1109_TCI_2018_2884809 crossref_primary_10_1109_TNNLS_2020_2997289 crossref_primary_10_1109_TGRS_2023_3237865 crossref_primary_10_1109_TNNLS_2022_3153310 crossref_primary_10_1007_s00521_016_2764_z crossref_primary_10_1109_ACCESS_2020_2978875 crossref_primary_10_1109_TCSVT_2019_2918852 crossref_primary_10_1109_LSP_2018_2890765 crossref_primary_10_1016_j_dsp_2019_102611 crossref_primary_10_1016_j_neucom_2019_08_028 crossref_primary_10_1007_s10489_022_03714_x crossref_primary_10_1016_j_neucom_2018_02_022 crossref_primary_10_1088_1361_6560_aa5c24 crossref_primary_10_1109_TCSVT_2018_2886600 crossref_primary_10_1080_09540091_2020_1772722 crossref_primary_10_1016_j_sigpro_2020_107756 crossref_primary_10_1109_TCSVT_2017_2722232 crossref_primary_10_1109_TIM_2021_3097416 crossref_primary_10_3390_ijgi7030095 crossref_primary_10_1007_s00521_018_3479_0 crossref_primary_10_1137_17M1148426 crossref_primary_10_1109_TNNLS_2019_2906074 crossref_primary_10_1109_TPAMI_2019_2893953 crossref_primary_10_1109_ACCESS_2018_2880454 crossref_primary_10_1109_TNNLS_2019_2910146 crossref_primary_10_1137_23M1592377 crossref_primary_10_1137_17M1131453 crossref_primary_10_1016_j_dsp_2021_103220 crossref_primary_10_1109_ACCESS_2022_3194651 crossref_primary_10_3390_s20051536 crossref_primary_10_1186_s13636_018_0132_x crossref_primary_10_1016_j_compag_2017_11_013 crossref_primary_10_1109_JPHOT_2019_2900549 crossref_primary_10_1109_TPAMI_2022_3149445 crossref_primary_10_3390_math11122674 crossref_primary_10_1016_j_ins_2019_06_046 crossref_primary_10_1137_23M1614456 crossref_primary_10_1142_S0129065720500409 crossref_primary_10_1002_mp_13804 crossref_primary_10_1109_TSP_2021_3093769 crossref_primary_10_1109_ACCESS_2020_3021081 crossref_primary_10_1109_TIP_2017_2681436 |
| Cites_doi | 10.1007/978-3-642-02431-3 10.1109/CVPR.2006.68 10.1109/TIP.2007.911828 10.1109/MSP.2010.939537 10.1137/080716542 10.1109/TSP.2006.881199 10.1109/CVPR.2010.5539989 10.1109/TSP.2013.2245663 10.1007/s10107-013-0701-9 10.1287/moor.1100.0449 10.1198/016214501753382273 10.1214/09-AOS729 10.1109/TIP.2006.881969 10.1109/CVPR.2010.5539964 10.1137/120887795 10.1109/TIT.2004.834793 10.1137/S1064827596304010 10.1016/j.patcog.2009.09.023 10.1109/CVPR.2011.5995592 10.1109/TSP.2013.2278158 10.1109/ICASSP.2012.6288688 10.1137/1.9780898719468 10.1109/ICCV.2009.5459452 10.1214/009053604000000067 10.1007/s10107-011-0484-9 10.1016/j.cviu.2005.09.012 10.1007/BFb0030287 10.1109/34.927464 10.1007/BF01584660 10.1016/S0167-6377(99)00074-7 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TPAMI.2015.2487966 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Technology Research Database PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 2160-9292 1939-3539 |
| EndPage | 1369 |
| ExternalDocumentID | 4086963721 26452248 10_1109_TPAMI_2015_2487966 7293682 |
| Genre | orig-research Journal Article |
| GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AGQYO AGSQL AHBIQ AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB ~02 AAYXX CITATION 5VS 9M8 AAYOK ABFSI ADRHT AETEA AETIX AI. AIBXA AKJIK ALLEH FA8 H~9 IBMZZ ICLAB IFJZH NPM RIG RNI RZB VH1 XJT 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c351t-782e999f0690738e1eb7dacbdafc66ce92d282b038c5656bf25a11b4e0d7b3ee3 |
| IEDL.DBID | RIE |
| ISSN | 0162-8828 1939-3539 |
| IngestDate | Sun Sep 28 00:54:37 EDT 2025 Mon Jun 30 04:14:41 EDT 2025 Thu Apr 03 07:05:18 EDT 2025 Wed Oct 01 03:57:31 EDT 2025 Thu Apr 24 22:51:27 EDT 2025 Wed Aug 27 02:47:51 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | non-convex optimization convergence analysis sparse coding Dictionary learning |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c351t-782e999f0690738e1eb7dacbdafc66ce92d282b038c5656bf25a11b4e0d7b3ee3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 26452248 |
| PQID | 1795932445 |
| PQPubID | 85458 |
| PageCount | 14 |
| ParticipantIDs | ieee_primary_7293682 proquest_miscellaneous_1797257411 crossref_citationtrail_10_1109_TPAMI_2015_2487966 crossref_primary_10_1109_TPAMI_2015_2487966 proquest_journals_1795932445 pubmed_primary_26452248 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2016-July-1 2016-7-1 2016-07-00 20160701 |
| PublicationDateYYYYMMDD | 2016-07-01 |
| PublicationDate_xml | – month: 07 year: 2016 text: 2016-July-1 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
| PublicationTitleAbbrev | TPAMI |
| PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
| PublicationYear | 2016 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref34 ref12 gong (ref29) 0 ref15 ref36 mairal (ref7) 0 ref31 rubinstein (ref35) 2008 ref30 ref32 ref10 ref2 rockafellar (ref33) 1998; 317 ref1 ref39 ref38 ref16 bao (ref17) 0 ref19 ref18 mairal (ref5) 2010; 11 ref24 efron (ref21) 2004; 32 jiang (ref14) 0 ref26 ref25 ref20 ref41 ref22 sra (ref28) 0 ref27 ref8 aharon (ref11) 2006; 54 ref9 ref4 ref3 ref40 martínez (ref37) 1998; 24 jenatton (ref6) 0 xu (ref23) 2013 |
| References_xml | – volume: 317 year: 1998 ident: ref33 publication-title: Variational Analysis Grundlehren der Mathematischen Wissenschaften doi: 10.1007/978-3-642-02431-3 – ident: ref40 doi: 10.1109/CVPR.2006.68 – ident: ref20 doi: 10.1109/TIP.2007.911828 – ident: ref1 doi: 10.1109/MSP.2010.939537 – year: 2013 ident: ref23 article-title: A fast patch-dictionary method for the whole image recovery – ident: ref22 doi: 10.1137/080716542 – volume: 54 start-page: 4311 year: 2006 ident: ref11 article-title: K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2006.881199 – ident: ref15 doi: 10.1109/CVPR.2010.5539989 – ident: ref10 doi: 10.1109/TSP.2013.2245663 – ident: ref13 doi: 10.1007/s10107-013-0701-9 – ident: ref12 doi: 10.1287/moor.1100.0449 – ident: ref24 doi: 10.1198/016214501753382273 – ident: ref25 doi: 10.1214/09-AOS729 – ident: ref34 doi: 10.1109/TIP.2006.881969 – year: 2008 ident: ref35 article-title: Efficient implementation of the K-SVD algorithm using batch orthogonal matching pursuit – volume: 24 year: 1998 ident: ref37 article-title: The AR face database publication-title: CVC Tech Rep – ident: ref8 doi: 10.1109/CVPR.2010.5539964 – ident: ref16 doi: 10.1137/120887795 – ident: ref18 doi: 10.1109/TIT.2004.834793 – ident: ref4 doi: 10.1137/S1064827596304010 – volume: 11 start-page: 19 year: 2010 ident: ref5 article-title: Online learning for matrix factorization and sparse coding publication-title: J Mach Learn Res – start-page: 1033 year: 0 ident: ref7 article-title: Supervised dictionary learning publication-title: Proc Adv Neural Inf Process Syst – ident: ref39 doi: 10.1016/j.patcog.2009.09.023 – ident: ref26 doi: 10.1109/CVPR.2011.5995592 – start-page: 1697 year: 0 ident: ref14 article-title: Learning a dicscriminative dictionary for sparse coding via label consistent K-SVD publication-title: Proc IEEE Conf Comput Vis Pattern Recog – start-page: 3858 year: 0 ident: ref17 article-title: $\ell _0$ norm based dictioanry learning by proximal method with global convergence publication-title: Proc IEEE Conf Comput Vis Pattern Recog – ident: ref27 doi: 10.1109/TSP.2013.2278158 – ident: ref9 doi: 10.1109/ICASSP.2012.6288688 – ident: ref30 doi: 10.1137/1.9780898719468 – ident: ref19 doi: 10.1109/ICCV.2009.5459452 – volume: 32 start-page: 407 year: 2004 ident: ref21 article-title: Least angle regression publication-title: Ann Statist doi: 10.1214/009053604000000067 – ident: ref41 doi: 10.1007/s10107-011-0484-9 – ident: ref3 doi: 10.1109/TIT.2004.834793 – ident: ref38 doi: 10.1016/j.cviu.2005.09.012 – ident: ref2 doi: 10.1007/BFb0030287 – start-page: 487 year: 0 ident: ref6 article-title: Proximal methods for sparse hierarchical dictionary learning publication-title: Proc Int Conf Mach Learn – ident: ref36 doi: 10.1109/34.927464 – ident: ref31 doi: 10.1007/BF01584660 – start-page: 37 year: 0 ident: ref29 article-title: A general iterative shrinkage and thresholding algorithm for non-convex regularized optimization problems publication-title: Proc Int Conf Mach Learn – ident: ref32 doi: 10.1016/S0167-6377(99)00074-7 – start-page: 539 year: 0 ident: ref28 article-title: Scalable nonconvex inexact proximal splitting publication-title: Proc Adv Neural Inf Process Syst |
| SSID | ssj0014503 |
| Score | 2.5576873 |
| Snippet | In recent years, sparse coding has been widely used in many applications ranging from image processing to pattern recognition. Most existing sparse coding... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1356 |
| SubjectTerms | Algorithm design and analysis Convergence convergence analysis Dictionaries dictionary learning Encoding Image coding Learning systems non-convex optimization Numerical analysis Optimization sparse coding |
| Title | Dictionary Learning for Sparse Coding: Algorithms and Convergence Analysis |
| URI | https://ieeexplore.ieee.org/document/7293682 https://www.ncbi.nlm.nih.gov/pubmed/26452248 https://www.proquest.com/docview/1795932445 https://www.proquest.com/docview/1797257411 |
| Volume | 38 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2160-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014503 issn: 0162-8828 databaseCode: RIE dateStart: 19790101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bT9VAEJ4gT_AgAoIVJGvim_bQbXd78e2ES4AEYyIkvDV7mQIR25Nzekzk1zu7vYQYMb417bbddma633RmvgH4gEaTayzz0AiRhELHZFKJqsKUfGeVGlSR9QmyX9Kza3FxI29W4NNYC4OIPvkMJ27Tx_JtY5buV9khAcEkzemD-yLL065Wa4wYCOm7IBOCIQsnN2IokImKw6uv08tzl8UlJzHhcwL4jgLYRfRi1_bnyXrkG6w8jzX9mnO6AZfDbLtUk--TZasn5vEPIsf_fZxX8LIHn2zaacsmrGC9BRtDYwfW2_kWrD9hKdyGi-N7X_yg5r9YT8d6ywjrsm8z8oqRHTVu_fvMpg-3zfy-vfuxYKq2tLv-2ZV2IhuoT17D9enJ1dFZ2LdgCE0ieRsSfkCCkJXjM86SHDnqzCqjrapMSqIsYks-m46S3DhkqKtYKs61wMhmOkFMdmC1bmp8A8wKWeRRleVcWVFUQilyjnNd2CrTEossAD4IojQ9P7lrk_FQej8lKkovx9LJsezlGMDH8ZxZx87xz9HbTgjjyP79B7A_yLvsDXhRcteDncCmkAG8Hw-T6bl4iqqxWfoxGX3xBOcB7HZ6Ml57UK-3f7_nHqzRzNIu73cfVtv5Et8Rumn1gVfr32K88sE |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bT9VAEJ4QfFAfBMFLFXRNfNMeuu1uL7ydoOSAHGLiIeGt2csUidiSQ4-J_npmt5cQo8a3pt22285M95vOzDcAb9Foco1lHhohklDomEwqUVWYku-sUoMqsj5B9jSdnYnjc3m-Bu_HWhhE9MlnOHGbPpZvG7Nyv8r2CAgmaU4f3HtSCCG7aq0xZiCk74NMGIZsnByJoUQmKvYWn6fzI5fHJScxIXSC-I4E2MX0Ytf4586K5Fus_B1t-lXncAPmw3y7ZJNvk1WrJ-bXb1SO__tAm_Coh59s2unLY1jDegs2htYOrLf0LXh4h6dwG44_XPryB7X8yXpC1gtGaJd9uSa_GNlB41bAfTa9umiWl-3X7zdM1ZZ21z-64k5kA_nJEzg7_Lg4mIV9E4bQJJK3ISEIJBBZOUbjLMmRo86sMtqqyqQkzCK25LXpKMmNw4a6iqXiXAuMbKYTxOQprNdNjc-BWSGLPKqynCsrikooRe5xrgtbZVpikQXAB0GUpmcod40yrkrvqURF6eVYOjmWvRwDeDeec93xc_xz9LYTwjiyf_8B7AzyLnsTvim568JOcFPIAN6Mh8n4XERF1dis_JiMvnmC8wCedXoyXntQrxd_vudruD9bzE_Kk6PTTy_hAc0y7bKAd2C9Xa5wl7BOq195Fb8FPzX2Dg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dictionary+Learning+for+Sparse+Coding%3A+Algorithms+and+Convergence+Analysis&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Bao%2C+Chenglong&rft.au=Ji%2C+Hui&rft.au=Quan%2C+Yuhui&rft.au=Shen%2C+Zuowei&rft.date=2016-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0162-8828&rft.eissn=1939-3539&rft.volume=38&rft.issue=7&rft.spage=1356&rft_id=info:doi/10.1109%2FTPAMI.2015.2487966&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4086963721 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |