Dictionary Learning for Sparse Coding: Algorithms and Convergence Analysis

In recent years, sparse coding has been widely used in many applications ranging from image processing to pattern recognition. Most existing sparse coding based applications require solving a class of challenging non-smooth and non-convex optimization problems. Despite the fact that many numerical m...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 38; no. 7; pp. 1356 - 1369
Main Authors Bao, Chenglong, Ji, Hui, Quan, Yuhui, Shen, Zuowei
Format Journal Article
LanguageEnglish
Published United States IEEE 01.07.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0162-8828
1939-3539
2160-9292
1939-3539
DOI10.1109/TPAMI.2015.2487966

Cover

Abstract In recent years, sparse coding has been widely used in many applications ranging from image processing to pattern recognition. Most existing sparse coding based applications require solving a class of challenging non-smooth and non-convex optimization problems. Despite the fact that many numerical methods have been developed for solving these problems, it remains an open problem to find a numerical method which is not only empirically fast, but also has mathematically guaranteed strong convergence. In this paper, we propose an alternating iteration scheme for solving such problems. A rigorous convergence analysis shows that the proposed method satisfies the global convergence property: the whole sequence of iterates is convergent and converges to a critical point. Besides the theoretical soundness, the practical benefit of the proposed method is validated in applications including image restoration and recognition. Experiments show that the proposed method achieves similar results with less computation when compared to widely used methods such as K-SVD.
AbstractList In recent years, sparse coding has been widely used in many applications ranging from image processing to pattern recognition. Most existing sparse coding based applications require solving a class of challenging non-smooth and non-convex optimization problems. Despite the fact that many numerical methods have been developed for solving these problems, it remains an open problem to find a numerical method which is not only empirically fast, but also has mathematically guaranteed strong convergence. In this paper, we propose an alternating iteration scheme for solving such problems. A rigorous convergence analysis shows that the proposed method satisfies the global convergence property: the whole sequence of iterates is convergent and converges to a critical point. Besides the theoretical soundness, the practical benefit of the proposed method is validated in applications including image restoration and recognition. Experiments show that the proposed method achieves similar results with less computation when compared to widely used methods such as K-SVD.
In recent years, sparse coding has been widely used in many applications ranging from image processing to pattern recognition. Most existing sparse coding based applications require solving a class of challenging non-smooth and non-convex optimization problems. Despite the fact that many numerical methods have been developed for solving these problems, it remains an open problem to find a numerical method which is not only empirically fast, but also has mathematically guaranteed strong convergence. In this paper, we propose an alternating iteration scheme for solving such problems. A rigorous convergence analysis shows that the proposed method satisfies the global convergence property: the whole sequence of iterates is convergent and converges to a critical point. Besides the theoretical soundness, the practical benefit of the proposed method is validated in applications including image restoration and recognition. Experiments show that the proposed method achieves similar results with less computation when compared to widely used methods such as K-SVD.In recent years, sparse coding has been widely used in many applications ranging from image processing to pattern recognition. Most existing sparse coding based applications require solving a class of challenging non-smooth and non-convex optimization problems. Despite the fact that many numerical methods have been developed for solving these problems, it remains an open problem to find a numerical method which is not only empirically fast, but also has mathematically guaranteed strong convergence. In this paper, we propose an alternating iteration scheme for solving such problems. A rigorous convergence analysis shows that the proposed method satisfies the global convergence property: the whole sequence of iterates is convergent and converges to a critical point. Besides the theoretical soundness, the practical benefit of the proposed method is validated in applications including image restoration and recognition. Experiments show that the proposed method achieves similar results with less computation when compared to widely used methods such as K-SVD.
Author Yuhui Quan
Zuowei Shen
Hui Ji
Chenglong Bao
Author_xml – sequence: 1
  givenname: Chenglong
  surname: Bao
  fullname: Bao, Chenglong
– sequence: 2
  givenname: Hui
  surname: Ji
  fullname: Ji, Hui
– sequence: 3
  givenname: Yuhui
  surname: Quan
  fullname: Quan, Yuhui
– sequence: 4
  givenname: Zuowei
  surname: Shen
  fullname: Shen, Zuowei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26452248$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1rGzEQhkVJaJy0f6CFstBLL-tIo5VW6s24XwkOLTQ9C6121lVYS460LuTfV46dHnLoaWB4nmF433NyEmJAQt4wOmeM6svbH4ubqzlQJubQqFZL-YLMgElaa9BwQmaUSaiVAnVGznO-o5Q1gvKX5AxkI6A4M3L9ybvJx2DTQ7VCm4IP62qIqfq5tSljtYx92XysFuM6Jj_93uTKhr6swx9MawwOq0Ww40P2-RU5HeyY8fVxXpBfXz7fLr_Vq-9fr5aLVe24YFPdKkCt9UClpi1XyLBre-u63g5OSocaelDQUa6ckEJ2AwjLWNcg7duOI_IL8uFwd5vi_Q7zZDY-OxxHGzDusmGtbkG0DWMFff8MvYu7VP59pITm0DSiUO-O1K7bYG-2yW9KHuYppQKoA-BSzDnhYJyf7D62KVk_GkbNvhDzWIjZF2KOhRQVnqlP1_8rvT1IHhH_CS1oLhXwv0xBlW0
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1007_s11227_020_03398_5
crossref_primary_10_1109_TNNLS_2021_3114400
crossref_primary_10_3233_XST_190639
crossref_primary_10_1016_j_patcog_2020_107640
crossref_primary_10_3390_math12081155
crossref_primary_10_1109_TIP_2020_2978645
crossref_primary_10_1016_j_ins_2024_121059
crossref_primary_10_1049_iet_rsn_2019_0550
crossref_primary_10_1002_wics_1646
crossref_primary_10_1109_TNSE_2021_3098738
crossref_primary_10_1109_TNNLS_2023_3236641
crossref_primary_10_1007_s11424_024_3568_3
crossref_primary_10_1007_s13042_021_01406_5
crossref_primary_10_1109_TCI_2017_2697206
crossref_primary_10_3390_s21134279
crossref_primary_10_1109_TCSVT_2023_3316279
crossref_primary_10_1137_19M1298524
crossref_primary_10_1007_s12652_021_03262_1
crossref_primary_10_1093_imaiai_iaz028
crossref_primary_10_1109_TMI_2020_2968770
crossref_primary_10_1109_TNNLS_2021_3104837
crossref_primary_10_1007_s10115_021_01561_9
crossref_primary_10_1108_IJIUS_12_2019_0067
crossref_primary_10_1109_TSP_2016_2620967
crossref_primary_10_1109_TMM_2018_2871948
crossref_primary_10_1016_j_bspc_2024_107364
crossref_primary_10_1016_j_sigpro_2020_107796
crossref_primary_10_1080_02331934_2023_2282176
crossref_primary_10_1109_TCYB_2018_2853122
crossref_primary_10_1016_j_neucom_2020_12_003
crossref_primary_10_1016_j_petrol_2022_110536
crossref_primary_10_1109_TMRB_2022_3170210
crossref_primary_10_1109_TCYB_2021_3067352
crossref_primary_10_1109_TCYB_2022_3204894
crossref_primary_10_3390_jimaging5110085
crossref_primary_10_1016_j_cviu_2018_04_004
crossref_primary_10_1088_0031_9155_61_17_6347
crossref_primary_10_1109_TIP_2023_3245323
crossref_primary_10_1016_j_jneumeth_2020_109047
crossref_primary_10_1109_TITS_2022_3215636
crossref_primary_10_3390_app9081669
crossref_primary_10_3390_s22114255
crossref_primary_10_1016_j_apm_2023_10_023
crossref_primary_10_1109_TIM_2021_3135319
crossref_primary_10_3390_s23187922
crossref_primary_10_1109_TIP_2019_2896541
crossref_primary_10_1190_geo2022_0198_1
crossref_primary_10_1137_16M105928X
crossref_primary_10_1049_el_2017_2917
crossref_primary_10_1186_s13640_019_0425_8
crossref_primary_10_1109_TMI_2021_3096142
crossref_primary_10_1109_LSP_2019_2959225
crossref_primary_10_1038_s41377_020_0267_2
crossref_primary_10_1016_j_eswa_2025_126889
crossref_primary_10_1007_s00034_019_01058_5
crossref_primary_10_1364_OPTICA_6_000921
crossref_primary_10_3389_fnins_2016_00188
crossref_primary_10_1109_TCSVT_2016_2643009
crossref_primary_10_1109_TMM_2020_2994512
crossref_primary_10_1109_TCI_2018_2884809
crossref_primary_10_1109_TNNLS_2020_2997289
crossref_primary_10_1109_TGRS_2023_3237865
crossref_primary_10_1109_TNNLS_2022_3153310
crossref_primary_10_1007_s00521_016_2764_z
crossref_primary_10_1109_ACCESS_2020_2978875
crossref_primary_10_1109_TCSVT_2019_2918852
crossref_primary_10_1109_LSP_2018_2890765
crossref_primary_10_1016_j_dsp_2019_102611
crossref_primary_10_1016_j_neucom_2019_08_028
crossref_primary_10_1007_s10489_022_03714_x
crossref_primary_10_1016_j_neucom_2018_02_022
crossref_primary_10_1088_1361_6560_aa5c24
crossref_primary_10_1109_TCSVT_2018_2886600
crossref_primary_10_1080_09540091_2020_1772722
crossref_primary_10_1016_j_sigpro_2020_107756
crossref_primary_10_1109_TCSVT_2017_2722232
crossref_primary_10_1109_TIM_2021_3097416
crossref_primary_10_3390_ijgi7030095
crossref_primary_10_1007_s00521_018_3479_0
crossref_primary_10_1137_17M1148426
crossref_primary_10_1109_TNNLS_2019_2906074
crossref_primary_10_1109_TPAMI_2019_2893953
crossref_primary_10_1109_ACCESS_2018_2880454
crossref_primary_10_1109_TNNLS_2019_2910146
crossref_primary_10_1137_23M1592377
crossref_primary_10_1137_17M1131453
crossref_primary_10_1016_j_dsp_2021_103220
crossref_primary_10_1109_ACCESS_2022_3194651
crossref_primary_10_3390_s20051536
crossref_primary_10_1186_s13636_018_0132_x
crossref_primary_10_1016_j_compag_2017_11_013
crossref_primary_10_1109_JPHOT_2019_2900549
crossref_primary_10_1109_TPAMI_2022_3149445
crossref_primary_10_3390_math11122674
crossref_primary_10_1016_j_ins_2019_06_046
crossref_primary_10_1137_23M1614456
crossref_primary_10_1142_S0129065720500409
crossref_primary_10_1002_mp_13804
crossref_primary_10_1109_TSP_2021_3093769
crossref_primary_10_1109_ACCESS_2020_3021081
crossref_primary_10_1109_TIP_2017_2681436
Cites_doi 10.1007/978-3-642-02431-3
10.1109/CVPR.2006.68
10.1109/TIP.2007.911828
10.1109/MSP.2010.939537
10.1137/080716542
10.1109/TSP.2006.881199
10.1109/CVPR.2010.5539989
10.1109/TSP.2013.2245663
10.1007/s10107-013-0701-9
10.1287/moor.1100.0449
10.1198/016214501753382273
10.1214/09-AOS729
10.1109/TIP.2006.881969
10.1109/CVPR.2010.5539964
10.1137/120887795
10.1109/TIT.2004.834793
10.1137/S1064827596304010
10.1016/j.patcog.2009.09.023
10.1109/CVPR.2011.5995592
10.1109/TSP.2013.2278158
10.1109/ICASSP.2012.6288688
10.1137/1.9780898719468
10.1109/ICCV.2009.5459452
10.1214/009053604000000067
10.1007/s10107-011-0484-9
10.1016/j.cviu.2005.09.012
10.1007/BFb0030287
10.1109/34.927464
10.1007/BF01584660
10.1016/S0167-6377(99)00074-7
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2015.2487966
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Technology Research Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 1369
ExternalDocumentID 4086963721
26452248
10_1109_TPAMI_2015_2487966
7293682
Genre orig-research
Journal Article
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AGSQL
AHBIQ
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
AAYXX
CITATION
5VS
9M8
AAYOK
ABFSI
ADRHT
AETEA
AETIX
AI.
AIBXA
AKJIK
ALLEH
FA8
H~9
IBMZZ
ICLAB
IFJZH
NPM
RIG
RNI
RZB
VH1
XJT
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c351t-782e999f0690738e1eb7dacbdafc66ce92d282b038c5656bf25a11b4e0d7b3ee3
IEDL.DBID RIE
ISSN 0162-8828
1939-3539
IngestDate Sun Sep 28 00:54:37 EDT 2025
Mon Jun 30 04:14:41 EDT 2025
Thu Apr 03 07:05:18 EDT 2025
Wed Oct 01 03:57:31 EDT 2025
Thu Apr 24 22:51:27 EDT 2025
Wed Aug 27 02:47:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords non-convex optimization
convergence analysis
sparse coding
Dictionary learning
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-782e999f0690738e1eb7dacbdafc66ce92d282b038c5656bf25a11b4e0d7b3ee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 26452248
PQID 1795932445
PQPubID 85458
PageCount 14
ParticipantIDs ieee_primary_7293682
proquest_miscellaneous_1797257411
crossref_citationtrail_10_1109_TPAMI_2015_2487966
crossref_primary_10_1109_TPAMI_2015_2487966
proquest_journals_1795932445
pubmed_primary_26452248
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-July-1
2016-7-1
2016-07-00
20160701
PublicationDateYYYYMMDD 2016-07-01
PublicationDate_xml – month: 07
  year: 2016
  text: 2016-July-1
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
gong (ref29) 0
ref15
ref36
mairal (ref7) 0
ref31
rubinstein (ref35) 2008
ref30
ref32
ref10
ref2
rockafellar (ref33) 1998; 317
ref1
ref39
ref38
ref16
bao (ref17) 0
ref19
ref18
mairal (ref5) 2010; 11
ref24
efron (ref21) 2004; 32
jiang (ref14) 0
ref26
ref25
ref20
ref41
ref22
sra (ref28) 0
ref27
ref8
aharon (ref11) 2006; 54
ref9
ref4
ref3
ref40
martínez (ref37) 1998; 24
jenatton (ref6) 0
xu (ref23) 2013
References_xml – volume: 317
  year: 1998
  ident: ref33
  publication-title: Variational Analysis Grundlehren der Mathematischen Wissenschaften
  doi: 10.1007/978-3-642-02431-3
– ident: ref40
  doi: 10.1109/CVPR.2006.68
– ident: ref20
  doi: 10.1109/TIP.2007.911828
– ident: ref1
  doi: 10.1109/MSP.2010.939537
– year: 2013
  ident: ref23
  article-title: A fast patch-dictionary method for the whole image recovery
– ident: ref22
  doi: 10.1137/080716542
– volume: 54
  start-page: 4311
  year: 2006
  ident: ref11
  article-title: K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2006.881199
– ident: ref15
  doi: 10.1109/CVPR.2010.5539989
– ident: ref10
  doi: 10.1109/TSP.2013.2245663
– ident: ref13
  doi: 10.1007/s10107-013-0701-9
– ident: ref12
  doi: 10.1287/moor.1100.0449
– ident: ref24
  doi: 10.1198/016214501753382273
– ident: ref25
  doi: 10.1214/09-AOS729
– ident: ref34
  doi: 10.1109/TIP.2006.881969
– year: 2008
  ident: ref35
  article-title: Efficient implementation of the K-SVD algorithm using batch orthogonal matching pursuit
– volume: 24
  year: 1998
  ident: ref37
  article-title: The AR face database
  publication-title: CVC Tech Rep
– ident: ref8
  doi: 10.1109/CVPR.2010.5539964
– ident: ref16
  doi: 10.1137/120887795
– ident: ref18
  doi: 10.1109/TIT.2004.834793
– ident: ref4
  doi: 10.1137/S1064827596304010
– volume: 11
  start-page: 19
  year: 2010
  ident: ref5
  article-title: Online learning for matrix factorization and sparse coding
  publication-title: J Mach Learn Res
– start-page: 1033
  year: 0
  ident: ref7
  article-title: Supervised dictionary learning
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref39
  doi: 10.1016/j.patcog.2009.09.023
– ident: ref26
  doi: 10.1109/CVPR.2011.5995592
– start-page: 1697
  year: 0
  ident: ref14
  article-title: Learning a dicscriminative dictionary for sparse coding via label consistent K-SVD
  publication-title: Proc IEEE Conf Comput Vis Pattern Recog
– start-page: 3858
  year: 0
  ident: ref17
  article-title: $\ell _0$ norm based dictioanry learning by proximal method with global convergence
  publication-title: Proc IEEE Conf Comput Vis Pattern Recog
– ident: ref27
  doi: 10.1109/TSP.2013.2278158
– ident: ref9
  doi: 10.1109/ICASSP.2012.6288688
– ident: ref30
  doi: 10.1137/1.9780898719468
– ident: ref19
  doi: 10.1109/ICCV.2009.5459452
– volume: 32
  start-page: 407
  year: 2004
  ident: ref21
  article-title: Least angle regression
  publication-title: Ann Statist
  doi: 10.1214/009053604000000067
– ident: ref41
  doi: 10.1007/s10107-011-0484-9
– ident: ref3
  doi: 10.1109/TIT.2004.834793
– ident: ref38
  doi: 10.1016/j.cviu.2005.09.012
– ident: ref2
  doi: 10.1007/BFb0030287
– start-page: 487
  year: 0
  ident: ref6
  article-title: Proximal methods for sparse hierarchical dictionary learning
  publication-title: Proc Int Conf Mach Learn
– ident: ref36
  doi: 10.1109/34.927464
– ident: ref31
  doi: 10.1007/BF01584660
– start-page: 37
  year: 0
  ident: ref29
  article-title: A general iterative shrinkage and thresholding algorithm for non-convex regularized optimization problems
  publication-title: Proc Int Conf Mach Learn
– ident: ref32
  doi: 10.1016/S0167-6377(99)00074-7
– start-page: 539
  year: 0
  ident: ref28
  article-title: Scalable nonconvex inexact proximal splitting
  publication-title: Proc Adv Neural Inf Process Syst
SSID ssj0014503
Score 2.5576873
Snippet In recent years, sparse coding has been widely used in many applications ranging from image processing to pattern recognition. Most existing sparse coding...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1356
SubjectTerms Algorithm design and analysis
Convergence
convergence analysis
Dictionaries
dictionary learning
Encoding
Image coding
Learning systems
non-convex optimization
Numerical analysis
Optimization
sparse coding
Title Dictionary Learning for Sparse Coding: Algorithms and Convergence Analysis
URI https://ieeexplore.ieee.org/document/7293682
https://www.ncbi.nlm.nih.gov/pubmed/26452248
https://www.proquest.com/docview/1795932445
https://www.proquest.com/docview/1797257411
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bT9VAEJ4gT_AgAoIVJGvim_bQbXd78e2ES4AEYyIkvDV7mQIR25Nzekzk1zu7vYQYMb417bbddma633RmvgH4gEaTayzz0AiRhELHZFKJqsKUfGeVGlSR9QmyX9Kza3FxI29W4NNYC4OIPvkMJ27Tx_JtY5buV9khAcEkzemD-yLL065Wa4wYCOm7IBOCIQsnN2IokImKw6uv08tzl8UlJzHhcwL4jgLYRfRi1_bnyXrkG6w8jzX9mnO6AZfDbLtUk--TZasn5vEPIsf_fZxX8LIHn2zaacsmrGC9BRtDYwfW2_kWrD9hKdyGi-N7X_yg5r9YT8d6ywjrsm8z8oqRHTVu_fvMpg-3zfy-vfuxYKq2tLv-2ZV2IhuoT17D9enJ1dFZ2LdgCE0ieRsSfkCCkJXjM86SHDnqzCqjrapMSqIsYks-m46S3DhkqKtYKs61wMhmOkFMdmC1bmp8A8wKWeRRleVcWVFUQilyjnNd2CrTEossAD4IojQ9P7lrk_FQej8lKkovx9LJsezlGMDH8ZxZx87xz9HbTgjjyP79B7A_yLvsDXhRcteDncCmkAG8Hw-T6bl4iqqxWfoxGX3xBOcB7HZ6Ml57UK-3f7_nHqzRzNIu73cfVtv5Et8Rumn1gVfr32K88sE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bT9VAEJ4QfFAfBMFLFXRNfNMeuu1uL7ydoOSAHGLiIeGt2csUidiSQ4-J_npmt5cQo8a3pt22285M95vOzDcAb9Foco1lHhohklDomEwqUVWYku-sUoMqsj5B9jSdnYnjc3m-Bu_HWhhE9MlnOHGbPpZvG7Nyv8r2CAgmaU4f3HtSCCG7aq0xZiCk74NMGIZsnByJoUQmKvYWn6fzI5fHJScxIXSC-I4E2MX0Ytf4586K5Fus_B1t-lXncAPmw3y7ZJNvk1WrJ-bXb1SO__tAm_Coh59s2unLY1jDegs2htYOrLf0LXh4h6dwG44_XPryB7X8yXpC1gtGaJd9uSa_GNlB41bAfTa9umiWl-3X7zdM1ZZ21z-64k5kA_nJEzg7_Lg4mIV9E4bQJJK3ISEIJBBZOUbjLMmRo86sMtqqyqQkzCK25LXpKMmNw4a6iqXiXAuMbKYTxOQprNdNjc-BWSGLPKqynCsrikooRe5xrgtbZVpikQXAB0GUpmcod40yrkrvqURF6eVYOjmWvRwDeDeec93xc_xz9LYTwjiyf_8B7AzyLnsTvim568JOcFPIAN6Mh8n4XERF1dis_JiMvnmC8wCedXoyXntQrxd_vudruD9bzE_Kk6PTTy_hAc0y7bKAd2C9Xa5wl7BOq195Fb8FPzX2Dg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dictionary+Learning+for+Sparse+Coding%3A+Algorithms+and+Convergence+Analysis&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Bao%2C+Chenglong&rft.au=Ji%2C+Hui&rft.au=Quan%2C+Yuhui&rft.au=Shen%2C+Zuowei&rft.date=2016-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0162-8828&rft.eissn=1939-3539&rft.volume=38&rft.issue=7&rft.spage=1356&rft_id=info:doi/10.1109%2FTPAMI.2015.2487966&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4086963721
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon