Kernel Error Path Algorithm

Tuning the values of kernel parameters plays a vital role in the performance of kernel methods. Kernel path algorithms have been proposed for several important learning algorithms, including support vector machine and kernelized Lasso, which can fit the piecewise nonlinear solutions of kernel method...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 34; no. 11; pp. 8866 - 8878
Main Authors Xiong, Ziran, Ling, Charles X., Gu, Bin
Format Journal Article
LanguageEnglish
Published United States IEEE 01.11.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2162-237X
2162-2388
2162-2388
DOI10.1109/TNNLS.2022.3153953

Cover

Abstract Tuning the values of kernel parameters plays a vital role in the performance of kernel methods. Kernel path algorithms have been proposed for several important learning algorithms, including support vector machine and kernelized Lasso, which can fit the piecewise nonlinear solutions of kernel methods with respect to the kernel parameter in a continuous space. Although the error path algorithms have been proposed to ensure that the model with the minimum cross validation (CV) error can be found, which is usually the ultimate goal of model selection, they are limited to piecewise linear solution paths. To address this problem, in this article, we extend the classic error path algorithm to the nonlinear kernel solution paths and propose a new kernel error path algorithm (KEP) that can find the global optimal kernel parameter with the minimum CV error. Specifically, we first prove that error functions of binary classification and regression problems are piecewise constant or smooth w.r.t. the kernel parameter. Then, we propose KEP for support vector machine and kernelized Lasso and prove that it guarantees to find the model with the minimum CV error within the whole range of kernel parameter values. Experimental results on various datasets show that our KEP can find the model with minimum CV error with less time consumption. Finally, it would have better generalization error on the test set, compared with grid search and random search.
AbstractList Tuning the values of kernel parameters plays a vital role in the performance of kernel methods. Kernel path algorithms have been proposed for several important learning algorithms, including support vector machine and kernelized Lasso, which can fit the piecewise nonlinear solutions of kernel methods with respect to the kernel parameter in a continuous space. Although the error path algorithms have been proposed to ensure that the model with the minimum cross validation (CV) error can be found, which is usually the ultimate goal of model selection, they are limited to piecewise linear solution paths. To address this problem, in this article, we extend the classic error path algorithm to the nonlinear kernel solution paths and propose a new kernel error path algorithm (KEP) that can find the global optimal kernel parameter with the minimum CV error. Specifically, we first prove that error functions of binary classification and regression problems are piecewise constant or smooth w.r.t. the kernel parameter. Then, we propose KEP for support vector machine and kernelized Lasso and prove that it guarantees to find the model with the minimum CV error within the whole range of kernel parameter values. Experimental results on various datasets show that our KEP can find the model with minimum CV error with less time consumption. Finally, it would have better generalization error on the test set, compared with grid search and random search.
Tuning the values of kernel parameters plays a vital role in the performance of kernel methods. Kernel path algorithms have been proposed for several important learning algorithms, including support vector machine and kernelized Lasso, which can fit the piecewise nonlinear solutions of kernel methods with respect to the kernel parameter in a continuous space. Although the error path algorithms have been proposed to ensure that the model with the minimum cross validation (CV) error can be found, which is usually the ultimate goal of model selection, they are limited to piecewise linear solution paths. To address this problem, in this article, we extend the classic error path algorithm to the nonlinear kernel solution paths and propose a new kernel error path algorithm (KEP) that can find the global optimal kernel parameter with the minimum CV error. Specifically, we first prove that error functions of binary classification and regression problems are piecewise constant or smooth w.r.t. the kernel parameter. Then, we propose KEP for support vector machine and kernelized Lasso and prove that it guarantees to find the model with the minimum CV error within the whole range of kernel parameter values. Experimental results on various datasets show that our KEP can find the model with minimum CV error with less time consumption. Finally, it would have better generalization error on the test set, compared with grid search and random search.Tuning the values of kernel parameters plays a vital role in the performance of kernel methods. Kernel path algorithms have been proposed for several important learning algorithms, including support vector machine and kernelized Lasso, which can fit the piecewise nonlinear solutions of kernel methods with respect to the kernel parameter in a continuous space. Although the error path algorithms have been proposed to ensure that the model with the minimum cross validation (CV) error can be found, which is usually the ultimate goal of model selection, they are limited to piecewise linear solution paths. To address this problem, in this article, we extend the classic error path algorithm to the nonlinear kernel solution paths and propose a new kernel error path algorithm (KEP) that can find the global optimal kernel parameter with the minimum CV error. Specifically, we first prove that error functions of binary classification and regression problems are piecewise constant or smooth w.r.t. the kernel parameter. Then, we propose KEP for support vector machine and kernelized Lasso and prove that it guarantees to find the model with the minimum CV error within the whole range of kernel parameter values. Experimental results on various datasets show that our KEP can find the model with minimum CV error with less time consumption. Finally, it would have better generalization error on the test set, compared with grid search and random search.
Author Gu, Bin
Xiong, Ziran
Ling, Charles X.
Author_xml – sequence: 1
  givenname: Ziran
  orcidid: 0000-0002-1302-0567
  surname: Xiong
  fullname: Xiong, Ziran
  email: xiongziran@nuist.edu.cn
  organization: School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing, China
– sequence: 2
  givenname: Charles X.
  orcidid: 0000-0003-3797-1348
  surname: Ling
  fullname: Ling, Charles X.
  email: charles.ling@uwo.ca
  organization: Department of Computer Science, University of Western Ontario, London, ON, Canada
– sequence: 3
  givenname: Bin
  orcidid: 0000-0002-7165-3143
  surname: Gu
  fullname: Gu, Bin
  email: bin.gu@mbzuai.ac.ae
  organization: School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35275826$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1PwjAYxxuDEUS-gCSGxIuXYfs8a9ceCcGXSNBETLw13dbJyFix2w5-e4cgBw_28vTw-z0v_3PSKV1pCblkdMwYVbfLxWL-OgYKMEbGUXE8IT1gAgJAKTvHf_TeJYOqWtP2CcpFqM5IFzlEXILokeGT9aUtRjPvnR-9mHo1mhQfzuf1anNBTjNTVHZwqH3ydjdbTh-C-fP943QyDxLkrA4iQJuEkhoeIUuNEQmTNFMqMUoxgSyzsUiy0HCTCqsMQKxoGjOMqaRgeYZ9crPvu_Xus7FVrTd5ldiiMKV1TaVBoIxARBJb9PoPunaNL9vtNEgJPKKIYUtdHagm3thUb32-Mf5L_57dArAHEu-qytvsiDCqd_Hqn3j1Ll59iLeV5B8pyWtT566svcmL_9XhXs2ttcdZKkJkguM38aeEQw
CODEN ITNNAL
CitedBy_id crossref_primary_10_1007_s41105_024_00527_y
Cites_doi 10.1214/09-SS054
10.7551/mitpress/4057.001.0001
10.1002/stc.1724
10.1109/TNNLS.2016.2527796
10.1109/TCYB.2014.2340433
10.1016/j.patcog.2021.107941
10.1109/TNN.2011.2106219
10.1109/TNN.2009.2039000
10.1145/1273496.1273616
10.1016/j.procs.2017.03.130
10.1109/TNN.2003.809398
10.1109/TPAMI.2016.2578326
10.1109/72.914517
10.1002/inf2.12028
10.1023/A:1018628609742
10.1109/TNNLS.2017.2771456
10.1109/TII.2019.2900479
10.1214/009053607000000677
10.1214/009053606000001370
10.1111/j.2517-6161.1996.tb02080.x
10.1016/j.asoc.2019.03.037
10.1109/TNNLS.2013.2250300
10.1145/3097983.3098010
10.1016/j.neunet.2017.11.008
10.1109/IACC.2016.25
10.7551/mitpress/4175.001.0001
10.1007/978-3-662-48993-2
10.1016/j.patcog.2021.108112
10.1145/1961189.1961199
10.1109/TNNLS.2012.2183644
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2022.3153953
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 8878
ExternalDocumentID 35275826
10_1109_TNNLS_2022_3153953
9733165
Genre orig-research
Journal Article
GrantInformation_xml – fundername: 333 Project in Jiangsu Province
  grantid: BRA2017455
  funderid: 10.13039/501100017534
– fundername: National Natural Science Foundation of China
  grantid: 62076138
  funderid: 10.13039/501100001809
– fundername: Qing Lan Project
  grantid: R2020Q04
  funderid: 10.13039/501100013088
– fundername: Six Talent Peaks Project
  grantid: XYDXX-042
  funderid: 10.13039/501100010014
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-723ec480a5731daa6c180f99ca991631feb6cf4a5ad6e9a22b90db13b0802e5f3
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Thu Oct 02 09:30:40 EDT 2025
Mon Jun 30 04:20:54 EDT 2025
Thu Apr 03 06:55:04 EDT 2025
Wed Oct 01 00:45:03 EDT 2025
Thu Apr 24 22:50:51 EDT 2025
Wed Aug 27 02:35:08 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-723ec480a5731daa6c180f99ca991631feb6cf4a5ad6e9a22b90db13b0802e5f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3797-1348
0000-0002-7165-3143
0000-0002-1302-0567
PMID 35275826
PQID 2882570334
PQPubID 85436
PageCount 13
ParticipantIDs proquest_miscellaneous_2638726783
crossref_primary_10_1109_TNNLS_2022_3153953
pubmed_primary_35275826
crossref_citationtrail_10_1109_TNNLS_2022_3153953
ieee_primary_9733165
proquest_journals_2882570334
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref15
ref14
ref36
ref30
ref33
ref10
wang (ref19) 2007
ref2
ref1
ref17
ref16
ref38
ref18
gu (ref23) 2015
gu (ref29) 0; 2015
bergstra (ref11) 2012; 13
ong (ref32) 2010; 21
sentelle (ref21) 2014
ref24
han (ref6) 2012
ref26
ref25
ref20
ref41
karasuyama (ref37) 2011
ref28
giesen (ref22) 2014
ref27
asuncion (ref39) 2007
ref8
ref7
gu (ref31) 2012; 23
ref9
ref4
ref3
ref5
ref40
giesen (ref34) 2012
References_xml – ident: ref8
  doi: 10.1214/09-SS054
– ident: ref4
  doi: 10.7551/mitpress/4057.001.0001
– ident: ref3
  doi: 10.1002/stc.1724
– ident: ref36
  doi: 10.1109/TNNLS.2016.2527796
– ident: ref7
  doi: 10.1109/TCYB.2014.2340433
– ident: ref20
  doi: 10.1016/j.patcog.2021.107941
– ident: ref28
  doi: 10.1109/TNN.2011.2106219
– year: 2011
  ident: ref37
  article-title: Suboptimal solution path algorithm for support vector machine
  publication-title: arXiv 1105 0471
– year: 2014
  ident: ref21
  article-title: Practical implementations of the active set method for support vector machine training with semi-definite kernels
– start-page: 2105
  year: 2012
  ident: ref34
  article-title: Approximating concavely parameterized optimization problems
  publication-title: Proc Adv Neural Inf Process Syst
– volume: 21
  start-page: 451
  year: 2010
  ident: ref32
  article-title: An improved algorithm for the solution of the regularization path of support vector machine
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2009.2039000
– ident: ref18
  doi: 10.1145/1273496.1273616
– ident: ref12
  doi: 10.1016/j.procs.2017.03.130
– ident: ref26
  doi: 10.1109/TNN.2003.809398
– ident: ref33
  doi: 10.1109/TPAMI.2016.2578326
– volume: 2015
  start-page: 2549
  year: 0
  ident: ref29
  article-title: A new generalized error path algorithm for model selection
  publication-title: Proc Int Conf Mach Learn
– ident: ref1
  doi: 10.1109/72.914517
– start-page: 1296
  year: 2014
  ident: ref22
  article-title: Robust and efficient kernel hyperparameter paths with guarantees
  publication-title: Proc Int Conf on Mach Learn
– ident: ref13
  doi: 10.1002/inf2.12028
– ident: ref38
  doi: 10.1023/A:1018628609742
– ident: ref17
  doi: 10.1109/TNNLS.2017.2771456
– ident: ref10
  doi: 10.1109/TII.2019.2900479
– ident: ref5
  doi: 10.1214/009053607000000677
– ident: ref15
  doi: 10.1214/009053606000001370
– ident: ref27
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: ref14
  doi: 10.1016/j.asoc.2019.03.037
– ident: ref24
  doi: 10.1109/TNNLS.2013.2250300
– ident: ref25
  doi: 10.1145/3097983.3098010
– start-page: 3532
  year: 2015
  ident: ref23
  article-title: Bi-parameter space partition for cost-sensitive SVM
  publication-title: Proc 24th Int Joint Conf Artif Intell
– start-page: 580
  year: 2007
  ident: ref19
  article-title: The kernel path in kernelized LASSO
  publication-title: Proc Int Conf Artif Intell Statist
– ident: ref35
  doi: 10.1016/j.neunet.2017.11.008
– ident: ref9
  doi: 10.1109/IACC.2016.25
– ident: ref2
  doi: 10.7551/mitpress/4175.001.0001
– ident: ref41
  doi: 10.1007/978-3-662-48993-2
– ident: ref30
  doi: 10.1016/j.patcog.2021.108112
– start-page: 1
  year: 2012
  ident: ref6
  article-title: Parameter selection in SVM with RBF kernel function
  publication-title: Proc World Automat Congr
– volume: 13
  start-page: 281
  year: 2012
  ident: ref11
  article-title: Random search for hyper-parameter optimization
  publication-title: J Mach Learn Res
– year: 2007
  ident: ref39
  article-title: UCI machine learning repository
– ident: ref40
  doi: 10.1145/1961189.1961199
– ident: ref16
  doi: 10.1109/TNNLS.2016.2527796
– volume: 23
  start-page: 800
  year: 2012
  ident: ref31
  article-title: Regularization Path for $\nu$ -support vector classification
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2012.2183644
SSID ssj0000605649
Score 2.4343417
Snippet Tuning the values of kernel parameters plays a vital role in the performance of kernel methods. Kernel path algorithms have been proposed for several important...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8866
SubjectTerms Algorithms
Approximation algorithms
Computational modeling
Cross validation (CV)
Error functions
error path
Kernel
Kernel functions
kernel path (KP)
Machine learning
Machine learning algorithms
Mathematical models
model selection
Parameters
Support vector machines
Training
Tuning
Title Kernel Error Path Algorithm
URI https://ieeexplore.ieee.org/document/9733165
https://www.ncbi.nlm.nih.gov/pubmed/35275826
https://www.proquest.com/docview/2882570334
https://www.proquest.com/docview/2638726783
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS-UwEB7UJ1_W6-4eb1TwTXts7s2jiCJeDgurcN5KkqaueGyl9rz4603SCyKr-FboNG1mks43SWY-gAPs4x5mUIwZwTGVRsUy5SSWtPB43aZ5KJJ0M-EXd_RyyqYLcDTkwlhrw-EzO_aXYS8_r8zcL5UdS08wyNkiLIqUt7law3pK4nA5D2gXI45jTMS0z5FJ5PHtZHL910WDGLsglRHJPH-Owx4OLfuyCu9cUuBY-RxuBrdzvgI3_Qe3p00ex_NGj83rh1qO3-3RKvzo8Gd00g6YNViw5Tqs9NwOUTfVN2D7ytalnUVndV3V0R-HE6OT2X1VPzT_njbh7vzs9vQi7ogUYkMYamKBiTU0TRQTBOVKcYPSpJDOMB4dElRYzU1BFVM5t1JhrGWSa0S0T8S1rCA_YamsSvsbIsFNLlGqU0ELKghVOaFCa-JgVioTikaAel1mpqsy7skuZlmINhKZBVNk3hRZZ4oRHA7PPLc1Nr6U3vB6HCQ7FY5gpzdZ1k3Dlwy7-MGXGCN0BPvDbTeB_K6IKm01dzLuDySw89mu5V-tqYe2-xGy9f93bsOyZ59vUxN3YKmp53bXYZRG74XB-QYPJtsk
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7xOMAFyqtsoRAkbpAlfiY-ogq0LbsrpC7S3iLbcaBiSao0e-mvr-08VCFacYuUiRPP2JlvbM98AOfYxT1MoxAzgkMqtAxFwkkoaO7wukkyXyRpMuWjB_ptzuYrcNnnwhhj_OEzM3SXfi8_K_XSLZVdCUcwyNkqrDNKKWuytfoVlcgic-7xLkYch5jE8y5LJhJXs-l0_N3GgxjbMJURwRyDjkUfFi-7wgp_OSXPsvJvwOkdz-02TLpPbs6bPA-XtRrq36-qOb63Tx9gq0WgwXUzZHZgxRS7sN2xOwTtZN-DoztTFWYR3FRVWQX3FikG14vHsvpRP73sw8PtzezLKGypFEJNGKrDGBOjaRJJFhOUSck1SqJcWNM4fEhQbhTXOZVMZtwIibESUaYQUS4V17CcHMBaURbmEIKY60ygRCUxzWlMqMwIjZUiFmglIqJoAKjTZarbOuOO7mKR-ngjEqk3RepMkbamGMBF_8zPpsrGf6X3nB57yVaFAzjuTJa2E_FXim0E4YqMETqAs_62nUJuX0QWplxaGfsPirH12rblj42p-7a7EfLp7XeewsZoNhmn46_TuyPYdFz0TaLiMazV1dJ8toilVid-oP4Bt_HecQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kernel+Error+Path+Algorithm&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Xiong%2C+Ziran&rft.au=Ling%2C+Charles+X&rft.au=Gu%2C+Bin&rft.date=2023-11-01&rft.issn=2162-2388&rft.eissn=2162-2388&rft.volume=34&rft.issue=11&rft.spage=8866&rft_id=info:doi/10.1109%2FTNNLS.2022.3153953&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon