Kernel Error Path Algorithm
Tuning the values of kernel parameters plays a vital role in the performance of kernel methods. Kernel path algorithms have been proposed for several important learning algorithms, including support vector machine and kernelized Lasso, which can fit the piecewise nonlinear solutions of kernel method...
Saved in:
| Published in | IEEE transaction on neural networks and learning systems Vol. 34; no. 11; pp. 8866 - 8878 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.11.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2162-237X 2162-2388 2162-2388 |
| DOI | 10.1109/TNNLS.2022.3153953 |
Cover
| Abstract | Tuning the values of kernel parameters plays a vital role in the performance of kernel methods. Kernel path algorithms have been proposed for several important learning algorithms, including support vector machine and kernelized Lasso, which can fit the piecewise nonlinear solutions of kernel methods with respect to the kernel parameter in a continuous space. Although the error path algorithms have been proposed to ensure that the model with the minimum cross validation (CV) error can be found, which is usually the ultimate goal of model selection, they are limited to piecewise linear solution paths. To address this problem, in this article, we extend the classic error path algorithm to the nonlinear kernel solution paths and propose a new kernel error path algorithm (KEP) that can find the global optimal kernel parameter with the minimum CV error. Specifically, we first prove that error functions of binary classification and regression problems are piecewise constant or smooth w.r.t. the kernel parameter. Then, we propose KEP for support vector machine and kernelized Lasso and prove that it guarantees to find the model with the minimum CV error within the whole range of kernel parameter values. Experimental results on various datasets show that our KEP can find the model with minimum CV error with less time consumption. Finally, it would have better generalization error on the test set, compared with grid search and random search. |
|---|---|
| AbstractList | Tuning the values of kernel parameters plays a vital role in the performance of kernel methods. Kernel path algorithms have been proposed for several important learning algorithms, including support vector machine and kernelized Lasso, which can fit the piecewise nonlinear solutions of kernel methods with respect to the kernel parameter in a continuous space. Although the error path algorithms have been proposed to ensure that the model with the minimum cross validation (CV) error can be found, which is usually the ultimate goal of model selection, they are limited to piecewise linear solution paths. To address this problem, in this article, we extend the classic error path algorithm to the nonlinear kernel solution paths and propose a new kernel error path algorithm (KEP) that can find the global optimal kernel parameter with the minimum CV error. Specifically, we first prove that error functions of binary classification and regression problems are piecewise constant or smooth w.r.t. the kernel parameter. Then, we propose KEP for support vector machine and kernelized Lasso and prove that it guarantees to find the model with the minimum CV error within the whole range of kernel parameter values. Experimental results on various datasets show that our KEP can find the model with minimum CV error with less time consumption. Finally, it would have better generalization error on the test set, compared with grid search and random search. Tuning the values of kernel parameters plays a vital role in the performance of kernel methods. Kernel path algorithms have been proposed for several important learning algorithms, including support vector machine and kernelized Lasso, which can fit the piecewise nonlinear solutions of kernel methods with respect to the kernel parameter in a continuous space. Although the error path algorithms have been proposed to ensure that the model with the minimum cross validation (CV) error can be found, which is usually the ultimate goal of model selection, they are limited to piecewise linear solution paths. To address this problem, in this article, we extend the classic error path algorithm to the nonlinear kernel solution paths and propose a new kernel error path algorithm (KEP) that can find the global optimal kernel parameter with the minimum CV error. Specifically, we first prove that error functions of binary classification and regression problems are piecewise constant or smooth w.r.t. the kernel parameter. Then, we propose KEP for support vector machine and kernelized Lasso and prove that it guarantees to find the model with the minimum CV error within the whole range of kernel parameter values. Experimental results on various datasets show that our KEP can find the model with minimum CV error with less time consumption. Finally, it would have better generalization error on the test set, compared with grid search and random search.Tuning the values of kernel parameters plays a vital role in the performance of kernel methods. Kernel path algorithms have been proposed for several important learning algorithms, including support vector machine and kernelized Lasso, which can fit the piecewise nonlinear solutions of kernel methods with respect to the kernel parameter in a continuous space. Although the error path algorithms have been proposed to ensure that the model with the minimum cross validation (CV) error can be found, which is usually the ultimate goal of model selection, they are limited to piecewise linear solution paths. To address this problem, in this article, we extend the classic error path algorithm to the nonlinear kernel solution paths and propose a new kernel error path algorithm (KEP) that can find the global optimal kernel parameter with the minimum CV error. Specifically, we first prove that error functions of binary classification and regression problems are piecewise constant or smooth w.r.t. the kernel parameter. Then, we propose KEP for support vector machine and kernelized Lasso and prove that it guarantees to find the model with the minimum CV error within the whole range of kernel parameter values. Experimental results on various datasets show that our KEP can find the model with minimum CV error with less time consumption. Finally, it would have better generalization error on the test set, compared with grid search and random search. |
| Author | Gu, Bin Xiong, Ziran Ling, Charles X. |
| Author_xml | – sequence: 1 givenname: Ziran orcidid: 0000-0002-1302-0567 surname: Xiong fullname: Xiong, Ziran email: xiongziran@nuist.edu.cn organization: School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing, China – sequence: 2 givenname: Charles X. orcidid: 0000-0003-3797-1348 surname: Ling fullname: Ling, Charles X. email: charles.ling@uwo.ca organization: Department of Computer Science, University of Western Ontario, London, ON, Canada – sequence: 3 givenname: Bin orcidid: 0000-0002-7165-3143 surname: Gu fullname: Gu, Bin email: bin.gu@mbzuai.ac.ae organization: School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35275826$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kE1PwjAYxxuDEUS-gCSGxIuXYfs8a9ceCcGXSNBETLw13dbJyFix2w5-e4cgBw_28vTw-z0v_3PSKV1pCblkdMwYVbfLxWL-OgYKMEbGUXE8IT1gAgJAKTvHf_TeJYOqWtP2CcpFqM5IFzlEXILokeGT9aUtRjPvnR-9mHo1mhQfzuf1anNBTjNTVHZwqH3ydjdbTh-C-fP943QyDxLkrA4iQJuEkhoeIUuNEQmTNFMqMUoxgSyzsUiy0HCTCqsMQKxoGjOMqaRgeYZ9crPvu_Xus7FVrTd5ldiiMKV1TaVBoIxARBJb9PoPunaNL9vtNEgJPKKIYUtdHagm3thUb32-Mf5L_57dArAHEu-qytvsiDCqd_Hqn3j1Ll59iLeV5B8pyWtT566svcmL_9XhXs2ttcdZKkJkguM38aeEQw |
| CODEN | ITNNAL |
| CitedBy_id | crossref_primary_10_1007_s41105_024_00527_y |
| Cites_doi | 10.1214/09-SS054 10.7551/mitpress/4057.001.0001 10.1002/stc.1724 10.1109/TNNLS.2016.2527796 10.1109/TCYB.2014.2340433 10.1016/j.patcog.2021.107941 10.1109/TNN.2011.2106219 10.1109/TNN.2009.2039000 10.1145/1273496.1273616 10.1016/j.procs.2017.03.130 10.1109/TNN.2003.809398 10.1109/TPAMI.2016.2578326 10.1109/72.914517 10.1002/inf2.12028 10.1023/A:1018628609742 10.1109/TNNLS.2017.2771456 10.1109/TII.2019.2900479 10.1214/009053607000000677 10.1214/009053606000001370 10.1111/j.2517-6161.1996.tb02080.x 10.1016/j.asoc.2019.03.037 10.1109/TNNLS.2013.2250300 10.1145/3097983.3098010 10.1016/j.neunet.2017.11.008 10.1109/IACC.2016.25 10.7551/mitpress/4175.001.0001 10.1007/978-3-662-48993-2 10.1016/j.patcog.2021.108112 10.1145/1961189.1961199 10.1109/TNNLS.2012.2183644 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1109/TNNLS.2022.3153953 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2162-2388 |
| EndPage | 8878 |
| ExternalDocumentID | 35275826 10_1109_TNNLS_2022_3153953 9733165 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: 333 Project in Jiangsu Province grantid: BRA2017455 funderid: 10.13039/501100017534 – fundername: National Natural Science Foundation of China grantid: 62076138 funderid: 10.13039/501100001809 – fundername: Qing Lan Project grantid: R2020Q04 funderid: 10.13039/501100013088 – fundername: Six Talent Peaks Project grantid: XYDXX-042 funderid: 10.13039/501100010014 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c351t-723ec480a5731daa6c180f99ca991631feb6cf4a5ad6e9a22b90db13b0802e5f3 |
| IEDL.DBID | RIE |
| ISSN | 2162-237X 2162-2388 |
| IngestDate | Thu Oct 02 09:30:40 EDT 2025 Mon Jun 30 04:20:54 EDT 2025 Thu Apr 03 06:55:04 EDT 2025 Wed Oct 01 00:45:03 EDT 2025 Thu Apr 24 22:50:51 EDT 2025 Wed Aug 27 02:35:08 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c351t-723ec480a5731daa6c180f99ca991631feb6cf4a5ad6e9a22b90db13b0802e5f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-3797-1348 0000-0002-7165-3143 0000-0002-1302-0567 |
| PMID | 35275826 |
| PQID | 2882570334 |
| PQPubID | 85436 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_2638726783 crossref_primary_10_1109_TNNLS_2022_3153953 pubmed_primary_35275826 crossref_citationtrail_10_1109_TNNLS_2022_3153953 ieee_primary_9733165 proquest_journals_2882570334 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-11-01 |
| PublicationDateYYYYMMDD | 2023-11-01 |
| PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE transaction on neural networks and learning systems |
| PublicationTitleAbbrev | TNNLS |
| PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref15 ref14 ref36 ref30 ref33 ref10 wang (ref19) 2007 ref2 ref1 ref17 ref16 ref38 ref18 gu (ref23) 2015 gu (ref29) 0; 2015 bergstra (ref11) 2012; 13 ong (ref32) 2010; 21 sentelle (ref21) 2014 ref24 han (ref6) 2012 ref26 ref25 ref20 ref41 karasuyama (ref37) 2011 ref28 giesen (ref22) 2014 ref27 asuncion (ref39) 2007 ref8 ref7 gu (ref31) 2012; 23 ref9 ref4 ref3 ref5 ref40 giesen (ref34) 2012 |
| References_xml | – ident: ref8 doi: 10.1214/09-SS054 – ident: ref4 doi: 10.7551/mitpress/4057.001.0001 – ident: ref3 doi: 10.1002/stc.1724 – ident: ref36 doi: 10.1109/TNNLS.2016.2527796 – ident: ref7 doi: 10.1109/TCYB.2014.2340433 – ident: ref20 doi: 10.1016/j.patcog.2021.107941 – ident: ref28 doi: 10.1109/TNN.2011.2106219 – year: 2011 ident: ref37 article-title: Suboptimal solution path algorithm for support vector machine publication-title: arXiv 1105 0471 – year: 2014 ident: ref21 article-title: Practical implementations of the active set method for support vector machine training with semi-definite kernels – start-page: 2105 year: 2012 ident: ref34 article-title: Approximating concavely parameterized optimization problems publication-title: Proc Adv Neural Inf Process Syst – volume: 21 start-page: 451 year: 2010 ident: ref32 article-title: An improved algorithm for the solution of the regularization path of support vector machine publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2009.2039000 – ident: ref18 doi: 10.1145/1273496.1273616 – ident: ref12 doi: 10.1016/j.procs.2017.03.130 – ident: ref26 doi: 10.1109/TNN.2003.809398 – ident: ref33 doi: 10.1109/TPAMI.2016.2578326 – volume: 2015 start-page: 2549 year: 0 ident: ref29 article-title: A new generalized error path algorithm for model selection publication-title: Proc Int Conf Mach Learn – ident: ref1 doi: 10.1109/72.914517 – start-page: 1296 year: 2014 ident: ref22 article-title: Robust and efficient kernel hyperparameter paths with guarantees publication-title: Proc Int Conf on Mach Learn – ident: ref13 doi: 10.1002/inf2.12028 – ident: ref38 doi: 10.1023/A:1018628609742 – ident: ref17 doi: 10.1109/TNNLS.2017.2771456 – ident: ref10 doi: 10.1109/TII.2019.2900479 – ident: ref5 doi: 10.1214/009053607000000677 – ident: ref15 doi: 10.1214/009053606000001370 – ident: ref27 doi: 10.1111/j.2517-6161.1996.tb02080.x – ident: ref14 doi: 10.1016/j.asoc.2019.03.037 – ident: ref24 doi: 10.1109/TNNLS.2013.2250300 – ident: ref25 doi: 10.1145/3097983.3098010 – start-page: 3532 year: 2015 ident: ref23 article-title: Bi-parameter space partition for cost-sensitive SVM publication-title: Proc 24th Int Joint Conf Artif Intell – start-page: 580 year: 2007 ident: ref19 article-title: The kernel path in kernelized LASSO publication-title: Proc Int Conf Artif Intell Statist – ident: ref35 doi: 10.1016/j.neunet.2017.11.008 – ident: ref9 doi: 10.1109/IACC.2016.25 – ident: ref2 doi: 10.7551/mitpress/4175.001.0001 – ident: ref41 doi: 10.1007/978-3-662-48993-2 – ident: ref30 doi: 10.1016/j.patcog.2021.108112 – start-page: 1 year: 2012 ident: ref6 article-title: Parameter selection in SVM with RBF kernel function publication-title: Proc World Automat Congr – volume: 13 start-page: 281 year: 2012 ident: ref11 article-title: Random search for hyper-parameter optimization publication-title: J Mach Learn Res – year: 2007 ident: ref39 article-title: UCI machine learning repository – ident: ref40 doi: 10.1145/1961189.1961199 – ident: ref16 doi: 10.1109/TNNLS.2016.2527796 – volume: 23 start-page: 800 year: 2012 ident: ref31 article-title: Regularization Path for $\nu$ -support vector classification publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2012.2183644 |
| SSID | ssj0000605649 |
| Score | 2.4343417 |
| Snippet | Tuning the values of kernel parameters plays a vital role in the performance of kernel methods. Kernel path algorithms have been proposed for several important... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 8866 |
| SubjectTerms | Algorithms Approximation algorithms Computational modeling Cross validation (CV) Error functions error path Kernel Kernel functions kernel path (KP) Machine learning Machine learning algorithms Mathematical models model selection Parameters Support vector machines Training Tuning |
| Title | Kernel Error Path Algorithm |
| URI | https://ieeexplore.ieee.org/document/9733165 https://www.ncbi.nlm.nih.gov/pubmed/35275826 https://www.proquest.com/docview/2882570334 https://www.proquest.com/docview/2638726783 |
| Volume | 34 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2162-2388 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605649 issn: 2162-237X databaseCode: RIE dateStart: 20120101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS-UwEB7UJ1_W6-4eb1TwTXts7s2jiCJeDgurcN5KkqaueGyl9rz4603SCyKr-FboNG1mks43SWY-gAPs4x5mUIwZwTGVRsUy5SSWtPB43aZ5KJJ0M-EXd_RyyqYLcDTkwlhrw-EzO_aXYS8_r8zcL5UdS08wyNkiLIqUt7law3pK4nA5D2gXI45jTMS0z5FJ5PHtZHL910WDGLsglRHJPH-Owx4OLfuyCu9cUuBY-RxuBrdzvgI3_Qe3p00ex_NGj83rh1qO3-3RKvzo8Gd00g6YNViw5Tqs9NwOUTfVN2D7ytalnUVndV3V0R-HE6OT2X1VPzT_njbh7vzs9vQi7ogUYkMYamKBiTU0TRQTBOVKcYPSpJDOMB4dElRYzU1BFVM5t1JhrGWSa0S0T8S1rCA_YamsSvsbIsFNLlGqU0ELKghVOaFCa-JgVioTikaAel1mpqsy7skuZlmINhKZBVNk3hRZZ4oRHA7PPLc1Nr6U3vB6HCQ7FY5gpzdZ1k3Dlwy7-MGXGCN0BPvDbTeB_K6IKm01dzLuDySw89mu5V-tqYe2-xGy9f93bsOyZ59vUxN3YKmp53bXYZRG74XB-QYPJtsk |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7xOMAFyqtsoRAkbpAlfiY-ogq0LbsrpC7S3iLbcaBiSao0e-mvr-08VCFacYuUiRPP2JlvbM98AOfYxT1MoxAzgkMqtAxFwkkoaO7wukkyXyRpMuWjB_ptzuYrcNnnwhhj_OEzM3SXfi8_K_XSLZVdCUcwyNkqrDNKKWuytfoVlcgic-7xLkYch5jE8y5LJhJXs-l0_N3GgxjbMJURwRyDjkUfFi-7wgp_OSXPsvJvwOkdz-02TLpPbs6bPA-XtRrq36-qOb63Tx9gq0WgwXUzZHZgxRS7sN2xOwTtZN-DoztTFWYR3FRVWQX3FikG14vHsvpRP73sw8PtzezLKGypFEJNGKrDGBOjaRJJFhOUSck1SqJcWNM4fEhQbhTXOZVMZtwIibESUaYQUS4V17CcHMBaURbmEIKY60ygRCUxzWlMqMwIjZUiFmglIqJoAKjTZarbOuOO7mKR-ngjEqk3RepMkbamGMBF_8zPpsrGf6X3nB57yVaFAzjuTJa2E_FXim0E4YqMETqAs_62nUJuX0QWplxaGfsPirH12rblj42p-7a7EfLp7XeewsZoNhmn46_TuyPYdFz0TaLiMazV1dJ8toilVid-oP4Bt_HecQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kernel+Error+Path+Algorithm&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Xiong%2C+Ziran&rft.au=Ling%2C+Charles+X&rft.au=Gu%2C+Bin&rft.date=2023-11-01&rft.issn=2162-2388&rft.eissn=2162-2388&rft.volume=34&rft.issue=11&rft.spage=8866&rft_id=info:doi/10.1109%2FTNNLS.2022.3153953&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |