Neural Rendering for Game Character Auto-Creation
Many role-playing games feature character creation systems where players are allowed to edit the facial appearance of their in-game characters. This paper proposes a novel method to automatically create game characters based on a single face photo. We frame this "artistic creation" process...
        Saved in:
      
    
          | Published in | IEEE transactions on pattern analysis and machine intelligence Vol. 44; no. 3; pp. 1489 - 1502 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          IEEE
    
        01.03.2022
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0162-8828 1939-3539 2160-9292 1939-3539  | 
| DOI | 10.1109/TPAMI.2020.3024009 | 
Cover
| Abstract | Many role-playing games feature character creation systems where players are allowed to edit the facial appearance of their in-game characters. This paper proposes a novel method to automatically create game characters based on a single face photo. We frame this "artistic creation" process under a self-supervised learning paradigm by leveraging the differentiable neural rendering. Considering the rendering process of a typical game engine is not differentiable, an "imitator" network is introduced to imitate the behavior of the engine so that the in-game characters can be smoothly optimized by gradient descent in an end-to-end fashion. Different from previous monocular 3D face reconstruction which focuses on generating 3D mesh-grid and ignores user interaction, our method produces fine-grained facial parameters with a clear physical significance where users can optionally fine-tune their auto-created characters by manually adjusting those parameters. Experiments on multiple large-scale face datasets show that our method can generate highly robust and vivid game characters. Our method has been applied to two games and has now provided over 10 million times of online services. | 
    
|---|---|
| AbstractList | Many role-playing games feature character creation systems where players are allowed to edit the facial appearance of their in-game characters. This paper proposes a novel method to automatically create game characters based on a single face photo. We frame this "artistic creation" process under a self-supervised learning paradigm by leveraging the differentiable neural rendering. Considering the rendering process of a typical game engine is not differentiable, an "imitator" network is introduced to imitate the behavior of the engine so that the in-game characters can be smoothly optimized by gradient descent in an end-to-end fashion. Different from previous monocular 3D face reconstruction which focuses on generating 3D mesh-grid and ignores user interaction, our method produces fine-grained facial parameters with a clear physical significance where users can optionally fine-tune their auto-created characters by manually adjusting those parameters. Experiments on multiple large-scale face datasets show that our method can generate highly robust and vivid game characters. Our method has been applied to two games and has now provided over 10 million times of online services.Many role-playing games feature character creation systems where players are allowed to edit the facial appearance of their in-game characters. This paper proposes a novel method to automatically create game characters based on a single face photo. We frame this "artistic creation" process under a self-supervised learning paradigm by leveraging the differentiable neural rendering. Considering the rendering process of a typical game engine is not differentiable, an "imitator" network is introduced to imitate the behavior of the engine so that the in-game characters can be smoothly optimized by gradient descent in an end-to-end fashion. Different from previous monocular 3D face reconstruction which focuses on generating 3D mesh-grid and ignores user interaction, our method produces fine-grained facial parameters with a clear physical significance where users can optionally fine-tune their auto-created characters by manually adjusting those parameters. Experiments on multiple large-scale face datasets show that our method can generate highly robust and vivid game characters. Our method has been applied to two games and has now provided over 10 million times of online services. Many role-playing games feature character creation systems where players are allowed to edit the facial appearance of their in-game characters. This paper proposes a novel method to automatically create game characters based on a single face photo. We frame this “artistic creation” process under a self-supervised learning paradigm by leveraging the differentiable neural rendering. Considering the rendering process of a typical game engine is not differentiable, an “imitator” network is introduced to imitate the behavior of the engine so that the in-game characters can be smoothly optimized by gradient descent in an end-to-end fashion. Different from previous monocular 3D face reconstruction which focuses on generating 3D mesh-grid and ignores user interaction, our method produces fine-grained facial parameters with a clear physical significance where users can optionally fine-tune their auto-created characters by manually adjusting those parameters. Experiments on multiple large-scale face datasets show that our method can generate highly robust and vivid game characters. Our method has been applied to two games and has now provided over 10 million times of online services.  | 
    
| Author | Zou, Zhengxia Shi, Zhenwei Shi, Tianyang Yuan, Yi  | 
    
| Author_xml | – sequence: 1 givenname: Tianyang orcidid: 0000-0002-4587-7792 surname: Shi fullname: Shi, Tianyang email: shitianyang@corp.netease.com organization: Fuxi AI Lab, NetEase, Hangzhou, Zhejiang, China – sequence: 2 givenname: Zhengxia orcidid: 0000-0003-1774-552X surname: Zou fullname: Zou, Zhengxia email: zzhengxi@umich.edu organization: Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA – sequence: 3 givenname: Zhenwei orcidid: 0000-0002-4772-3172 surname: Shi fullname: Shi, Zhenwei email: shizhenwei@buaa.edu.cn organization: Image Processing Center, School of Astronautics, Beihang University, Beijing, China – sequence: 4 givenname: Yi orcidid: 0000-0003-2507-8181 surname: Yuan fullname: Yuan, Yi email: yuanyi@corp.netease.com organization: Fuxi AI Lab, NetEase, Hangzhou, Zhejiang, China  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32931428$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp9kD1PwzAURS1UBG3hD4CEIrGwpNjPrmOPVQUFiS8hmC3HfoZUaQJOMvDvSWnpwMD0lnPfvTojMqjqCgk5YXTCGNWXL0-z-9sJUKATTkFQqvfIEJikqQYNAzKkTEKqFKhDMmqaJaVMTCk_IIccNGcC1JCwB-yiLZNnrDzGonpLQh2ThV1hMn-30boWYzLr2jqdR7RtUVdHZD_YssHj7R2T1-url_lNeve4uJ3P7lLHp6xNZchZBrnLpXAZ6NxNg1RMeuEDZJ71ewNH6kOmc-lz4XOFPFjFVWYDOOf5mFxs_n7E-rPDpjWronFYlrbCumsMCNEXZZJlPXr-B13WXaz6dQYkTLmUkomeOttSXb5Cbz5isbLxy_zK6AHYAC7WTRMx7BBGzdq4-TFu1sbN1ngfUn9Crmh_RLXRFuX_0dNNtEDEXZdmOpOa82_11Yvr | 
    
| CODEN | ITPIDJ | 
    
| CitedBy_id | crossref_primary_10_1109_TPAMI_2024_3398998 crossref_primary_10_1145_3708499 crossref_primary_10_1109_TPAMI_2024_3480151 crossref_primary_10_1007_s10489_023_05094_2 crossref_primary_10_1111_cgf_15245 crossref_primary_10_3390_computers13110304  | 
    
| Cites_doi | 10.1109/CVPRW.2017.250 10.1145/311535.311556 10.1109/ICCV.2015.425 10.1109/CVPR.2017.163 10.1109/ICCV.2017.401 10.1109/TPAMI.2003.1227983 10.1007/978-3-642-33712-3_49 10.1109/CVPR.2016.90 10.1109/CVPR.2017.164 10.1109/CVPR.2018.00767 10.1109/CVPR.2018.00235 10.1109/CVPR.2009.5206848 10.1145/3272127.3275109 10.1609/aaai.v34i02.5537 10.1109/ICCV.2017.117 10.1109/CVPR.2018.00414 10.1111/cgf.14071 10.1109/CVPR.2017.585 10.1109/CVPR.2019.00125 10.1109/CVPR.2017.580 10.1007/978-3-319-10584-0_11 10.1109/ICCV.2017.170 10.1007/978-3-319-46475-6_43 10.1109/CVPR.2018.00874 10.1109/CVPR.2018.00745 10.1109/CVPR.2016.265 10.1109/WACV.2016.7477558 10.1109/CVPR.2018.00411 10.24963/ijcai.2019/611 10.1109/ICCV.2019.00025 10.1109/FG.2018.00020 10.1109/TPAMI.2019.2927975 10.1109/TPAMI.2012.68 10.1109/CVPR.2017.589 10.1109/TPAMI.2012.206 10.1609/aaai.v33i01.33019251 10.1109/AVSS.2009.58 10.1109/ICCV.2019.00780 10.1109/TIFS.2018.2833032 10.1126/science.aar6170 10.1109/CVPR.2017.19 10.1145/1577069.1755843  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 | 
    
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8  | 
    
| DOI | 10.1109/TPAMI.2020.3024009 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic Technology Research Database MEDLINE  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Computer Science  | 
    
| EISSN | 2160-9292 1939-3539  | 
    
| EndPage | 1502 | 
    
| ExternalDocumentID | 32931428 10_1109_TPAMI_2020_3024009 9197693  | 
    
| Genre | orig-research Journal Article  | 
    
| GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB ~02 AAYXX CITATION 5VS 9M8 ABFSI ADRHT AETEA AETIX AGSQL AI. AIBXA ALLEH CGR CUY CVF ECM EIF FA8 H~9 IBMZZ ICLAB IFJZH NPM RIG RNI RZB VH1 XJT 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8  | 
    
| ID | FETCH-LOGICAL-c351t-6fb172bcb64c729bc5f6816d4df27d1024f3e0df79b6db4db8e3fa8387af2ccd3 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 0162-8828 1939-3539  | 
    
| IngestDate | Sun Sep 28 01:51:32 EDT 2025 Sun Jun 29 12:19:58 EDT 2025 Mon Jul 21 06:04:57 EDT 2025 Thu Apr 24 23:04:08 EDT 2025 Wed Oct 01 03:57:34 EDT 2025 Wed Aug 27 03:00:15 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c351t-6fb172bcb64c729bc5f6816d4df27d1024f3e0df79b6db4db8e3fa8387af2ccd3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0002-4587-7792 0000-0002-4772-3172 0000-0003-2507-8181 0000-0003-1774-552X  | 
    
| PMID | 32931428 | 
    
| PQID | 2625366614 | 
    
| PQPubID | 85458 | 
    
| PageCount | 14 | 
    
| ParticipantIDs | proquest_miscellaneous_2443517617 pubmed_primary_32931428 proquest_journals_2625366614 crossref_primary_10_1109_TPAMI_2020_3024009 ieee_primary_9197693 crossref_citationtrail_10_1109_TPAMI_2020_3024009  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022-03-01 | 
    
| PublicationDateYYYYMMDD | 2022-03-01 | 
    
| PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: New York  | 
    
| PublicationTitle | IEEE transactions on pattern analysis and machine intelligence | 
    
| PublicationTitleAbbrev | TPAMI | 
    
| PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell | 
    
| PublicationYear | 2022 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 ref12 ref15 Paszke (ref40) ref53 ref52 ref11 Huang (ref44) 2008 ref10 ref17 ref16 ref19 ref18 ref51 ref50 Yosinski (ref37) 2015 ref46 ref45 ref42 ref41 ref43 Radford (ref31) 2015 ref49 ref8 ref7 Kingma (ref39) 2014 ref9 ref4 ref3 ref6 ref5 Nguyen-Phuoc (ref28) ref35 ref34 ref36 Zheng (ref48) 2018 ref30 ref33 ref32 ref2 ref1 ref38 Goodfellow (ref22) ref24 Zheng (ref47) 2017 ref23 ref26 ref25 ref20 ref21 ref29 Krizhevsky (ref14) Yan (ref27)  | 
    
| References_xml | – ident: ref46 doi: 10.1109/CVPRW.2017.250 – ident: ref1 doi: 10.1145/311535.311556 – ident: ref38 doi: 10.1109/ICCV.2015.425 – ident: ref2 doi: 10.1109/CVPR.2017.163 – ident: ref19 doi: 10.1109/ICCV.2017.401 – ident: ref7 doi: 10.1109/TPAMI.2003.1227983 – ident: ref42 doi: 10.1007/978-3-642-33712-3_49 – ident: ref15 doi: 10.1109/CVPR.2016.90 – start-page: 1097 volume-title: Proc. Advances Neural Inf. Process. Syst. ident: ref14 article-title: Imagenet classification with deep convolutional neural networks – ident: ref16 doi: 10.1109/CVPR.2017.164 – ident: ref21 doi: 10.1109/CVPR.2018.00767 – ident: ref53 doi: 10.1109/CVPR.2018.00235 – ident: ref41 doi: 10.1109/CVPR.2009.5206848 – ident: ref26 doi: 10.1145/3272127.3275109 – year: 2014 ident: ref39 article-title: Adam: A method for stochastic optimization – ident: ref6 doi: 10.1609/aaai.v34i02.5537 – ident: ref17 doi: 10.1109/ICCV.2017.117 – ident: ref20 doi: 10.1109/CVPR.2018.00414 – ident: ref30 doi: 10.1111/cgf.14071 – ident: ref12 doi: 10.1109/CVPR.2017.585 – ident: ref4 doi: 10.1109/CVPR.2019.00125 – ident: ref11 doi: 10.1109/CVPR.2017.580 – ident: ref23 doi: 10.1007/978-3-319-10584-0_11 – ident: ref51 doi: 10.1109/ICCV.2017.170 – ident: ref35 doi: 10.1007/978-3-319-46475-6_43 – ident: ref3 doi: 10.1109/CVPR.2018.00874 – start-page: 7891 volume-title: Proc. Advances Neural Inf. Process. Syst. ident: ref28 article-title: Rendernet: A deep convolutional network for differentiable rendering from 3D shapes – ident: ref32 doi: 10.1109/CVPR.2018.00745 – ident: ref34 doi: 10.1109/CVPR.2016.265 – ident: ref45 doi: 10.1109/WACV.2016.7477558 – year: 2008 ident: ref44 article-title: Labeled faces in the wild: A database forstudying face recognition in unconstrained environments – ident: ref24 doi: 10.1109/CVPR.2018.00411 – ident: ref52 doi: 10.24963/ijcai.2019/611 – ident: ref5 doi: 10.1109/ICCV.2019.00025 – year: 2018 ident: ref48 article-title: Cross-pose LFW: A database for studying crosspose face recognition in unconstrained environments – ident: ref49 doi: 10.1109/FG.2018.00020 – ident: ref13 doi: 10.1109/TPAMI.2019.2927975 – ident: ref10 doi: 10.1109/TPAMI.2012.68 – ident: ref18 doi: 10.1109/CVPR.2017.589 – ident: ref9 doi: 10.1109/TPAMI.2012.206 – year: 2015 ident: ref31 article-title: Unsupervised representation learning with deep convolutional generative adversarial networks – start-page: 8024 volume-title: Advances in Neural Information Processing Systems ident: ref40 article-title: PyTorch: An imperative style, high-performance deep learning library – year: 2017 ident: ref47 article-title: Cross-age LFW: A database for studying cross-age face recognition in unconstrained environments – ident: ref50 doi: 10.1609/aaai.v33i01.33019251 – ident: ref8 doi: 10.1109/AVSS.2009.58 – ident: ref25 doi: 10.1109/ICCV.2019.00780 – start-page: 2672 volume-title: Proc. Advances Neural Inf. Process. Syst. ident: ref22 article-title: Generative adversarial nets – year: 2015 ident: ref37 article-title: Understanding neural networks through deep visualization – ident: ref33 doi: 10.1109/TIFS.2018.2833032 – start-page: 1696 volume-title: Proc. Advances Neural Inf. Process. Syst. ident: ref27 article-title: Perspective transformer nets: Learning single-view 3D object reconstruction without 3D supervision – ident: ref29 doi: 10.1126/science.aar6170 – ident: ref36 doi: 10.1109/CVPR.2017.19 – ident: ref43 doi: 10.1145/1577069.1755843  | 
    
| SSID | ssj0014503 | 
    
| Score | 2.4322848 | 
    
| Snippet | Many role-playing games feature character creation systems where players are allowed to edit the facial appearance of their in-game characters. This paper... | 
    
| SourceID | proquest pubmed crossref ieee  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 1489 | 
    
| SubjectTerms | Algorithms deep learning Engines Face recognition Faces Game character customization Games Image reconstruction Mesh generation neural rendering Parameters Rendering Rendering (computer graphics) role-playing games Solid modeling Three-dimensional displays Video Games  | 
    
| Title | Neural Rendering for Game Character Auto-Creation | 
    
| URI | https://ieeexplore.ieee.org/document/9197693 https://www.ncbi.nlm.nih.gov/pubmed/32931428 https://www.proquest.com/docview/2625366614 https://www.proquest.com/docview/2443517617  | 
    
| Volume | 44 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2160-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014503 issn: 0162-8828 databaseCode: RIE dateStart: 19790101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT4QwEJ7onvTgqusDX8HEm7IChRaOm43PZI0xa-KN9MVFBaNw8dc7LY-oUeONQAulM8N8QzvfABylLBCacO6hM5Ue-mvf40xEHvqmhId-rKklcZ3d0Mv76PohfliAkz4XRmttN5_psTm0a_mqlLX5VXaaBqkp3bcIiyyhTa5Wv2IQxbYKMiIYtHAMI7oEGT89nd9OZlcYCoYYoRpKL99QhRL0c4Zt7Is_sgVWfsea1uecD2HWjbbZavI4risxlu_fiBz_-zqrsNKCT3fSaMsaLOhiHYZdYQe3tfN1WP7EUjiCwBB4YLc7W3UOT7kIdN0L_qzdaUf37E7qqvSmLQLdgPvzs_n00msrLXiSxEHl0VwgkBFS0Egi2hYyzmkSUBWpPGQKMUiUE-2rnKWCKhEpkWiS84QkjOehlIpswqAoC70NLosZSQSVJg7C2I0mIvV9HkuJHwKlJXUg6OY7ky0NuamG8ZTZcMRPMyuuzIgra8XlwHHf56Uh4fiz9cjMdd-ynWYH9jqxZq2dvmUhhn-EGoziwGF_GS3MLJvwQpc1tokQUgYMoZ4DW4069PfutGjn52fuwlJo0iXsnrU9GFSvtd5HEFOJA6u9H_iT6As | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB7xOAAHoEkBA21diRs4sb0P28coKg0tQQglUm7WvnyhTRDYF349s-uHKKJVb5a9a693ZjzfeHe-ATjLkkgaIkSAzlQF6K_DQCSSBuibUhGHzHBH4jq94ZM5_bFgizW46HJhjDFu85kZ2EO3lq9XqrK_yoZZlNnSfeuwySilrM7W6tYMKHN1kBHDoI1jINGmyITZcHY7ml5hMBhjjGpJvUJLFkrQ01m-sT88kiux8ne06bzO5R5M2_HWm03uB1UpB-r5DZXj_77QPuw28NMf1fryAdbMsgd7bWkHv7H0Huy84insQ2QpPLDbnas7h6d8hLr-d_Hb-OOW8NkfVeUqGDcY9CPML7_NxpOgqbUQKMKiMuCFRCgjleRUId6WihU8jbimuogTjSiEFsSEukgyybWkWqaGFCIlaSKKWClNDmBjuVqaI_ATlpBUcmUjIYzeeCqzMBRMKfwUaKO4B1E737lqiMhtPYxfuQtIwix34sqtuPJGXB6cd30eahqOf7bu27nuWjbT7MFpK9a8sdSnPMYAkHCLUjz42l1GG7MLJ2JpVhW2oQgqowTBngeHtTp092616Pj9Z36Brclsep1fX938PIHt2CZPuB1sp7BRPlbmE0KaUn52mvwCSfnrWA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+Rendering+for+Game+Character+Auto-Creation&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Shi%2C+Tianyang&rft.au=Zou%2C+Zhengxia&rft.au=Shi%2C+Zhenwei&rft.au=Yuan%2C+Yi&rft.date=2022-03-01&rft.eissn=1939-3539&rft.volume=44&rft.issue=3&rft.spage=1489&rft_id=info:doi/10.1109%2FTPAMI.2020.3024009&rft_id=info%3Apmid%2F32931428&rft.externalDocID=32931428 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |