Neural Rendering for Game Character Auto-Creation

Many role-playing games feature character creation systems where players are allowed to edit the facial appearance of their in-game characters. This paper proposes a novel method to automatically create game characters based on a single face photo. We frame this "artistic creation" process...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 44; no. 3; pp. 1489 - 1502
Main Authors Shi, Tianyang, Zou, Zhengxia, Shi, Zhenwei, Yuan, Yi
Format Journal Article
LanguageEnglish
Published United States IEEE 01.03.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0162-8828
1939-3539
2160-9292
1939-3539
DOI10.1109/TPAMI.2020.3024009

Cover

Abstract Many role-playing games feature character creation systems where players are allowed to edit the facial appearance of their in-game characters. This paper proposes a novel method to automatically create game characters based on a single face photo. We frame this "artistic creation" process under a self-supervised learning paradigm by leveraging the differentiable neural rendering. Considering the rendering process of a typical game engine is not differentiable, an "imitator" network is introduced to imitate the behavior of the engine so that the in-game characters can be smoothly optimized by gradient descent in an end-to-end fashion. Different from previous monocular 3D face reconstruction which focuses on generating 3D mesh-grid and ignores user interaction, our method produces fine-grained facial parameters with a clear physical significance where users can optionally fine-tune their auto-created characters by manually adjusting those parameters. Experiments on multiple large-scale face datasets show that our method can generate highly robust and vivid game characters. Our method has been applied to two games and has now provided over 10 million times of online services.
AbstractList Many role-playing games feature character creation systems where players are allowed to edit the facial appearance of their in-game characters. This paper proposes a novel method to automatically create game characters based on a single face photo. We frame this "artistic creation" process under a self-supervised learning paradigm by leveraging the differentiable neural rendering. Considering the rendering process of a typical game engine is not differentiable, an "imitator" network is introduced to imitate the behavior of the engine so that the in-game characters can be smoothly optimized by gradient descent in an end-to-end fashion. Different from previous monocular 3D face reconstruction which focuses on generating 3D mesh-grid and ignores user interaction, our method produces fine-grained facial parameters with a clear physical significance where users can optionally fine-tune their auto-created characters by manually adjusting those parameters. Experiments on multiple large-scale face datasets show that our method can generate highly robust and vivid game characters. Our method has been applied to two games and has now provided over 10 million times of online services.Many role-playing games feature character creation systems where players are allowed to edit the facial appearance of their in-game characters. This paper proposes a novel method to automatically create game characters based on a single face photo. We frame this "artistic creation" process under a self-supervised learning paradigm by leveraging the differentiable neural rendering. Considering the rendering process of a typical game engine is not differentiable, an "imitator" network is introduced to imitate the behavior of the engine so that the in-game characters can be smoothly optimized by gradient descent in an end-to-end fashion. Different from previous monocular 3D face reconstruction which focuses on generating 3D mesh-grid and ignores user interaction, our method produces fine-grained facial parameters with a clear physical significance where users can optionally fine-tune their auto-created characters by manually adjusting those parameters. Experiments on multiple large-scale face datasets show that our method can generate highly robust and vivid game characters. Our method has been applied to two games and has now provided over 10 million times of online services.
Many role-playing games feature character creation systems where players are allowed to edit the facial appearance of their in-game characters. This paper proposes a novel method to automatically create game characters based on a single face photo. We frame this “artistic creation” process under a self-supervised learning paradigm by leveraging the differentiable neural rendering. Considering the rendering process of a typical game engine is not differentiable, an “imitator” network is introduced to imitate the behavior of the engine so that the in-game characters can be smoothly optimized by gradient descent in an end-to-end fashion. Different from previous monocular 3D face reconstruction which focuses on generating 3D mesh-grid and ignores user interaction, our method produces fine-grained facial parameters with a clear physical significance where users can optionally fine-tune their auto-created characters by manually adjusting those parameters. Experiments on multiple large-scale face datasets show that our method can generate highly robust and vivid game characters. Our method has been applied to two games and has now provided over 10 million times of online services.
Author Zou, Zhengxia
Shi, Zhenwei
Shi, Tianyang
Yuan, Yi
Author_xml – sequence: 1
  givenname: Tianyang
  orcidid: 0000-0002-4587-7792
  surname: Shi
  fullname: Shi, Tianyang
  email: shitianyang@corp.netease.com
  organization: Fuxi AI Lab, NetEase, Hangzhou, Zhejiang, China
– sequence: 2
  givenname: Zhengxia
  orcidid: 0000-0003-1774-552X
  surname: Zou
  fullname: Zou, Zhengxia
  email: zzhengxi@umich.edu
  organization: Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
– sequence: 3
  givenname: Zhenwei
  orcidid: 0000-0002-4772-3172
  surname: Shi
  fullname: Shi, Zhenwei
  email: shizhenwei@buaa.edu.cn
  organization: Image Processing Center, School of Astronautics, Beihang University, Beijing, China
– sequence: 4
  givenname: Yi
  orcidid: 0000-0003-2507-8181
  surname: Yuan
  fullname: Yuan, Yi
  email: yuanyi@corp.netease.com
  organization: Fuxi AI Lab, NetEase, Hangzhou, Zhejiang, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32931428$$D View this record in MEDLINE/PubMed
BookMark eNp9kD1PwzAURS1UBG3hD4CEIrGwpNjPrmOPVQUFiS8hmC3HfoZUaQJOMvDvSWnpwMD0lnPfvTojMqjqCgk5YXTCGNWXL0-z-9sJUKATTkFQqvfIEJikqQYNAzKkTEKqFKhDMmqaJaVMTCk_IIccNGcC1JCwB-yiLZNnrDzGonpLQh2ThV1hMn-30boWYzLr2jqdR7RtUVdHZD_YssHj7R2T1-url_lNeve4uJ3P7lLHp6xNZchZBrnLpXAZ6NxNg1RMeuEDZJ71ewNH6kOmc-lz4XOFPFjFVWYDOOf5mFxs_n7E-rPDpjWronFYlrbCumsMCNEXZZJlPXr-B13WXaz6dQYkTLmUkomeOttSXb5Cbz5isbLxy_zK6AHYAC7WTRMx7BBGzdq4-TFu1sbN1ngfUn9Crmh_RLXRFuX_0dNNtEDEXZdmOpOa82_11Yvr
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1109_TPAMI_2024_3398998
crossref_primary_10_1145_3708499
crossref_primary_10_1109_TPAMI_2024_3480151
crossref_primary_10_1007_s10489_023_05094_2
crossref_primary_10_1111_cgf_15245
crossref_primary_10_3390_computers13110304
Cites_doi 10.1109/CVPRW.2017.250
10.1145/311535.311556
10.1109/ICCV.2015.425
10.1109/CVPR.2017.163
10.1109/ICCV.2017.401
10.1109/TPAMI.2003.1227983
10.1007/978-3-642-33712-3_49
10.1109/CVPR.2016.90
10.1109/CVPR.2017.164
10.1109/CVPR.2018.00767
10.1109/CVPR.2018.00235
10.1109/CVPR.2009.5206848
10.1145/3272127.3275109
10.1609/aaai.v34i02.5537
10.1109/ICCV.2017.117
10.1109/CVPR.2018.00414
10.1111/cgf.14071
10.1109/CVPR.2017.585
10.1109/CVPR.2019.00125
10.1109/CVPR.2017.580
10.1007/978-3-319-10584-0_11
10.1109/ICCV.2017.170
10.1007/978-3-319-46475-6_43
10.1109/CVPR.2018.00874
10.1109/CVPR.2018.00745
10.1109/CVPR.2016.265
10.1109/WACV.2016.7477558
10.1109/CVPR.2018.00411
10.24963/ijcai.2019/611
10.1109/ICCV.2019.00025
10.1109/FG.2018.00020
10.1109/TPAMI.2019.2927975
10.1109/TPAMI.2012.68
10.1109/CVPR.2017.589
10.1109/TPAMI.2012.206
10.1609/aaai.v33i01.33019251
10.1109/AVSS.2009.58
10.1109/ICCV.2019.00780
10.1109/TIFS.2018.2833032
10.1126/science.aar6170
10.1109/CVPR.2017.19
10.1145/1577069.1755843
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2020.3024009
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Technology Research Database
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 1502
ExternalDocumentID 32931428
10_1109_TPAMI_2020_3024009
9197693
Genre orig-research
Journal Article
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
AAYXX
CITATION
5VS
9M8
ABFSI
ADRHT
AETEA
AETIX
AGSQL
AI.
AIBXA
ALLEH
CGR
CUY
CVF
ECM
EIF
FA8
H~9
IBMZZ
ICLAB
IFJZH
NPM
RIG
RNI
RZB
VH1
XJT
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c351t-6fb172bcb64c729bc5f6816d4df27d1024f3e0df79b6db4db8e3fa8387af2ccd3
IEDL.DBID RIE
ISSN 0162-8828
1939-3539
IngestDate Sun Sep 28 01:51:32 EDT 2025
Sun Jun 29 12:19:58 EDT 2025
Mon Jul 21 06:04:57 EDT 2025
Thu Apr 24 23:04:08 EDT 2025
Wed Oct 01 03:57:34 EDT 2025
Wed Aug 27 03:00:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-6fb172bcb64c729bc5f6816d4df27d1024f3e0df79b6db4db8e3fa8387af2ccd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4587-7792
0000-0002-4772-3172
0000-0003-2507-8181
0000-0003-1774-552X
PMID 32931428
PQID 2625366614
PQPubID 85458
PageCount 14
ParticipantIDs proquest_miscellaneous_2443517617
pubmed_primary_32931428
proquest_journals_2625366614
crossref_primary_10_1109_TPAMI_2020_3024009
ieee_primary_9197693
crossref_citationtrail_10_1109_TPAMI_2020_3024009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
Paszke (ref40)
ref53
ref52
ref11
Huang (ref44) 2008
ref10
ref17
ref16
ref19
ref18
ref51
ref50
Yosinski (ref37) 2015
ref46
ref45
ref42
ref41
ref43
Radford (ref31) 2015
ref49
ref8
ref7
Kingma (ref39) 2014
ref9
ref4
ref3
ref6
ref5
Nguyen-Phuoc (ref28)
ref35
ref34
ref36
Zheng (ref48) 2018
ref30
ref33
ref32
ref2
ref1
ref38
Goodfellow (ref22)
ref24
Zheng (ref47) 2017
ref23
ref26
ref25
ref20
ref21
ref29
Krizhevsky (ref14)
Yan (ref27)
References_xml – ident: ref46
  doi: 10.1109/CVPRW.2017.250
– ident: ref1
  doi: 10.1145/311535.311556
– ident: ref38
  doi: 10.1109/ICCV.2015.425
– ident: ref2
  doi: 10.1109/CVPR.2017.163
– ident: ref19
  doi: 10.1109/ICCV.2017.401
– ident: ref7
  doi: 10.1109/TPAMI.2003.1227983
– ident: ref42
  doi: 10.1007/978-3-642-33712-3_49
– ident: ref15
  doi: 10.1109/CVPR.2016.90
– start-page: 1097
  volume-title: Proc. Advances Neural Inf. Process. Syst.
  ident: ref14
  article-title: Imagenet classification with deep convolutional neural networks
– ident: ref16
  doi: 10.1109/CVPR.2017.164
– ident: ref21
  doi: 10.1109/CVPR.2018.00767
– ident: ref53
  doi: 10.1109/CVPR.2018.00235
– ident: ref41
  doi: 10.1109/CVPR.2009.5206848
– ident: ref26
  doi: 10.1145/3272127.3275109
– year: 2014
  ident: ref39
  article-title: Adam: A method for stochastic optimization
– ident: ref6
  doi: 10.1609/aaai.v34i02.5537
– ident: ref17
  doi: 10.1109/ICCV.2017.117
– ident: ref20
  doi: 10.1109/CVPR.2018.00414
– ident: ref30
  doi: 10.1111/cgf.14071
– ident: ref12
  doi: 10.1109/CVPR.2017.585
– ident: ref4
  doi: 10.1109/CVPR.2019.00125
– ident: ref11
  doi: 10.1109/CVPR.2017.580
– ident: ref23
  doi: 10.1007/978-3-319-10584-0_11
– ident: ref51
  doi: 10.1109/ICCV.2017.170
– ident: ref35
  doi: 10.1007/978-3-319-46475-6_43
– ident: ref3
  doi: 10.1109/CVPR.2018.00874
– start-page: 7891
  volume-title: Proc. Advances Neural Inf. Process. Syst.
  ident: ref28
  article-title: Rendernet: A deep convolutional network for differentiable rendering from 3D shapes
– ident: ref32
  doi: 10.1109/CVPR.2018.00745
– ident: ref34
  doi: 10.1109/CVPR.2016.265
– ident: ref45
  doi: 10.1109/WACV.2016.7477558
– year: 2008
  ident: ref44
  article-title: Labeled faces in the wild: A database forstudying face recognition in unconstrained environments
– ident: ref24
  doi: 10.1109/CVPR.2018.00411
– ident: ref52
  doi: 10.24963/ijcai.2019/611
– ident: ref5
  doi: 10.1109/ICCV.2019.00025
– year: 2018
  ident: ref48
  article-title: Cross-pose LFW: A database for studying crosspose face recognition in unconstrained environments
– ident: ref49
  doi: 10.1109/FG.2018.00020
– ident: ref13
  doi: 10.1109/TPAMI.2019.2927975
– ident: ref10
  doi: 10.1109/TPAMI.2012.68
– ident: ref18
  doi: 10.1109/CVPR.2017.589
– ident: ref9
  doi: 10.1109/TPAMI.2012.206
– year: 2015
  ident: ref31
  article-title: Unsupervised representation learning with deep convolutional generative adversarial networks
– start-page: 8024
  volume-title: Advances in Neural Information Processing Systems
  ident: ref40
  article-title: PyTorch: An imperative style, high-performance deep learning library
– year: 2017
  ident: ref47
  article-title: Cross-age LFW: A database for studying cross-age face recognition in unconstrained environments
– ident: ref50
  doi: 10.1609/aaai.v33i01.33019251
– ident: ref8
  doi: 10.1109/AVSS.2009.58
– ident: ref25
  doi: 10.1109/ICCV.2019.00780
– start-page: 2672
  volume-title: Proc. Advances Neural Inf. Process. Syst.
  ident: ref22
  article-title: Generative adversarial nets
– year: 2015
  ident: ref37
  article-title: Understanding neural networks through deep visualization
– ident: ref33
  doi: 10.1109/TIFS.2018.2833032
– start-page: 1696
  volume-title: Proc. Advances Neural Inf. Process. Syst.
  ident: ref27
  article-title: Perspective transformer nets: Learning single-view 3D object reconstruction without 3D supervision
– ident: ref29
  doi: 10.1126/science.aar6170
– ident: ref36
  doi: 10.1109/CVPR.2017.19
– ident: ref43
  doi: 10.1145/1577069.1755843
SSID ssj0014503
Score 2.4322848
Snippet Many role-playing games feature character creation systems where players are allowed to edit the facial appearance of their in-game characters. This paper...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1489
SubjectTerms Algorithms
deep learning
Engines
Face recognition
Faces
Game character customization
Games
Image reconstruction
Mesh generation
neural rendering
Parameters
Rendering
Rendering (computer graphics)
role-playing games
Solid modeling
Three-dimensional displays
Video Games
Title Neural Rendering for Game Character Auto-Creation
URI https://ieeexplore.ieee.org/document/9197693
https://www.ncbi.nlm.nih.gov/pubmed/32931428
https://www.proquest.com/docview/2625366614
https://www.proquest.com/docview/2443517617
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT4QwEJ7onvTgqusDX8HEm7IChRaOm43PZI0xa-KN9MVFBaNw8dc7LY-oUeONQAulM8N8QzvfABylLBCacO6hM5Ue-mvf40xEHvqmhId-rKklcZ3d0Mv76PohfliAkz4XRmttN5_psTm0a_mqlLX5VXaaBqkp3bcIiyyhTa5Wv2IQxbYKMiIYtHAMI7oEGT89nd9OZlcYCoYYoRpKL99QhRL0c4Zt7Is_sgVWfsea1uecD2HWjbbZavI4risxlu_fiBz_-zqrsNKCT3fSaMsaLOhiHYZdYQe3tfN1WP7EUjiCwBB4YLc7W3UOT7kIdN0L_qzdaUf37E7qqvSmLQLdgPvzs_n00msrLXiSxEHl0VwgkBFS0Egi2hYyzmkSUBWpPGQKMUiUE-2rnKWCKhEpkWiS84QkjOehlIpswqAoC70NLosZSQSVJg7C2I0mIvV9HkuJHwKlJXUg6OY7ky0NuamG8ZTZcMRPMyuuzIgra8XlwHHf56Uh4fiz9cjMdd-ynWYH9jqxZq2dvmUhhn-EGoziwGF_GS3MLJvwQpc1tokQUgYMoZ4DW4069PfutGjn52fuwlJo0iXsnrU9GFSvtd5HEFOJA6u9H_iT6As
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB7xOAAHoEkBA21diRs4sb0P28coKg0tQQglUm7WvnyhTRDYF349s-uHKKJVb5a9a693ZjzfeHe-ATjLkkgaIkSAzlQF6K_DQCSSBuibUhGHzHBH4jq94ZM5_bFgizW46HJhjDFu85kZ2EO3lq9XqrK_yoZZlNnSfeuwySilrM7W6tYMKHN1kBHDoI1jINGmyITZcHY7ml5hMBhjjGpJvUJLFkrQ01m-sT88kiux8ne06bzO5R5M2_HWm03uB1UpB-r5DZXj_77QPuw28NMf1fryAdbMsgd7bWkHv7H0Huy84insQ2QpPLDbnas7h6d8hLr-d_Hb-OOW8NkfVeUqGDcY9CPML7_NxpOgqbUQKMKiMuCFRCgjleRUId6WihU8jbimuogTjSiEFsSEukgyybWkWqaGFCIlaSKKWClNDmBjuVqaI_ATlpBUcmUjIYzeeCqzMBRMKfwUaKO4B1E737lqiMhtPYxfuQtIwix34sqtuPJGXB6cd30eahqOf7bu27nuWjbT7MFpK9a8sdSnPMYAkHCLUjz42l1GG7MLJ2JpVhW2oQgqowTBngeHtTp092616Pj9Z36Brclsep1fX938PIHt2CZPuB1sp7BRPlbmE0KaUn52mvwCSfnrWA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+Rendering+for+Game+Character+Auto-Creation&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Shi%2C+Tianyang&rft.au=Zou%2C+Zhengxia&rft.au=Shi%2C+Zhenwei&rft.au=Yuan%2C+Yi&rft.date=2022-03-01&rft.eissn=1939-3539&rft.volume=44&rft.issue=3&rft.spage=1489&rft_id=info:doi/10.1109%2FTPAMI.2020.3024009&rft_id=info%3Apmid%2F32931428&rft.externalDocID=32931428
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon