Feature Selection Based on Neighborhood Discrimination Index

Feature selection is viewed as an important preprocessing step for pattern recognition, machine learning, and data mining. Neighborhood is one of the most important concepts in classification learning and can be used to distinguish samples with different decisions. In this paper, a neighborhood disc...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 29; no. 7; pp. 2986 - 2999
Main Authors Wang, Changzhong, Hu, Qinghua, Wang, Xizhao, Chen, Degang, Qian, Yuhua, Dong, Zhe
Format Journal Article
LanguageEnglish
Published United States IEEE 01.07.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2162-237X
2162-2388
2162-2388
DOI10.1109/TNNLS.2017.2710422

Cover

Abstract Feature selection is viewed as an important preprocessing step for pattern recognition, machine learning, and data mining. Neighborhood is one of the most important concepts in classification learning and can be used to distinguish samples with different decisions. In this paper, a neighborhood discrimination index is proposed to characterize the distinguishing information of a neighborhood relation. It reflects the distinguishing ability of a feature subset. The proposed discrimination index is computed by considering the cardinality of a neighborhood relation rather than neighborhood similarity classes. Variants of the discrimination index, including joint discrimination index, conditional discrimination index, and mutual discrimination index, are introduced to compute the change of distinguishing information caused by the combination of multiple feature subsets. They have the similar properties as Shannon entropy and its variants. A parameter, named neighborhood radius, is introduced in these discrimination measures to address the analysis of real-valued data. Based on the proposed discrimination measures, the significance measure of a candidate feature is defined and a greedy forward algorithm for feature selection is designed. Data sets selected from public data sources are used to compare the proposed algorithm with existing algorithms. The experimental results confirm that the discrimination index-based algorithm yields superior performance compared to other classical algorithms.
AbstractList Feature selection is viewed as an important preprocessing step for pattern recognition, machine learning, and data mining. Neighborhood is one of the most important concepts in classification learning and can be used to distinguish samples with different decisions. In this paper, a neighborhood discrimination index is proposed to characterize the distinguishing information of a neighborhood relation. It reflects the distinguishing ability of a feature subset. The proposed discrimination index is computed by considering the cardinality of a neighborhood relation rather than neighborhood similarity classes. Variants of the discrimination index, including joint discrimination index, conditional discrimination index, and mutual discrimination index, are introduced to compute the change of distinguishing information caused by the combination of multiple feature subsets. They have the similar properties as Shannon entropy and its variants. A parameter, named neighborhood radius, is introduced in these discrimination measures to address the analysis of real-valued data. Based on the proposed discrimination measures, the significance measure of a candidate feature is defined and a greedy forward algorithm for feature selection is designed. Data sets selected from public data sources are used to compare the proposed algorithm with existing algorithms. The experimental results confirm that the discrimination index-based algorithm yields superior performance compared to other classical algorithms.
Feature selection is viewed as an important preprocessing step for pattern recognition, machine learning, and data mining. Neighborhood is one of the most important concepts in classification learning and can be used to distinguish samples with different decisions. In this paper, a neighborhood discrimination index is proposed to characterize the distinguishing information of a neighborhood relation. It reflects the distinguishing ability of a feature subset. The proposed discrimination index is computed by considering the cardinality of a neighborhood relation rather than neighborhood similarity classes. Variants of the discrimination index, including joint discrimination index, conditional discrimination index, and mutual discrimination index, are introduced to compute the change of distinguishing information caused by the combination of multiple feature subsets. They have the similar properties as Shannon entropy and its variants. A parameter, named neighborhood radius, is introduced in these discrimination measures to address the analysis of real-valued data. Based on the proposed discrimination measures, the significance measure of a candidate feature is defined and a greedy forward algorithm for feature selection is designed. Data sets selected from public data sources are used to compare the proposed algorithm with existing algorithms. The experimental results confirm that the discrimination index-based algorithm yields superior performance compared to other classical algorithms.Feature selection is viewed as an important preprocessing step for pattern recognition, machine learning, and data mining. Neighborhood is one of the most important concepts in classification learning and can be used to distinguish samples with different decisions. In this paper, a neighborhood discrimination index is proposed to characterize the distinguishing information of a neighborhood relation. It reflects the distinguishing ability of a feature subset. The proposed discrimination index is computed by considering the cardinality of a neighborhood relation rather than neighborhood similarity classes. Variants of the discrimination index, including joint discrimination index, conditional discrimination index, and mutual discrimination index, are introduced to compute the change of distinguishing information caused by the combination of multiple feature subsets. They have the similar properties as Shannon entropy and its variants. A parameter, named neighborhood radius, is introduced in these discrimination measures to address the analysis of real-valued data. Based on the proposed discrimination measures, the significance measure of a candidate feature is defined and a greedy forward algorithm for feature selection is designed. Data sets selected from public data sources are used to compare the proposed algorithm with existing algorithms. The experimental results confirm that the discrimination index-based algorithm yields superior performance compared to other classical algorithms.
Author Wang, Xizhao
Chen, Degang
Qian, Yuhua
Dong, Zhe
Wang, Changzhong
Hu, Qinghua
Author_xml – sequence: 1
  givenname: Changzhong
  orcidid: 0000-0002-4136-2433
  surname: Wang
  fullname: Wang, Changzhong
  email: changzhongwang@126.com
  organization: Department of Mathematics, Bohai University, Jinzhou, China
– sequence: 2
  givenname: Qinghua
  surname: Hu
  fullname: Hu, Qinghua
  email: huqinghua@hit.edu.cn
  organization: School of Computer Science and Technology, Tianjin University, Tianjin, China
– sequence: 3
  givenname: Xizhao
  orcidid: 0000-0001-6036-4728
  surname: Wang
  fullname: Wang, Xizhao
  email: xizhaowang@ieee.org
  organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
– sequence: 4
  givenname: Degang
  surname: Chen
  fullname: Chen, Degang
  email: chengdegang@263.net
  organization: Department of Mathematics and Physics, North China Electric Power University, Beijing, China
– sequence: 5
  givenname: Yuhua
  surname: Qian
  fullname: Qian, Yuhua
  email: jinchengqyh@126.com
  organization: School of Computer and Information Technology, Shanxi University, Taiyuan, China
– sequence: 6
  givenname: Zhe
  surname: Dong
  fullname: Dong, Zhe
  organization: Department of Mathematics, Bohai University, Jinzhou, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28650830$$D View this record in MEDLINE/PubMed
BookMark eNp9kT1PwzAQhi0Eonz0D4CEKrGwtJztxHEkFr6pVJWhRWKzHPsCQWkMdiLBv8e0pQMDXnzD85zu7t0n241rkJAjCiNKIT-fT6eT2YgBzUYso5AwtkX2GBVsyLiU25s6e-6RfghvEJ-AVCT5LukxKVKQHPbIxR3qtvM4mGGNpq1cM7jSAe0gFlOsXl4L51-ds4ObKhhfLapGL6FxY_HzkOyUug7YX_8H5Onudn79MJw83o-vLydDw1PaDlPDDS8NT6yWqZaFBm4z1AkHqnVR2rKQLBdYFBazQpYagHLNrTZWQGIg5QfkbNX33buPDkOrFnEarGvdoOuCojlNmMwTChE9_YO-uc43cTrFIM0Zy6mQkTpZU12xQKve42baf6nfu0RArgDjXQgeS2Wqdrl563VVKwrqJwW1TEH9pKDWKUSV_VF_u_8rHa-kChE3QpanggnKvwFbVZHp
CODEN ITNNAL
CitedBy_id crossref_primary_10_1007_s13042_024_02406_x
crossref_primary_10_1109_TNNLS_2023_3325199
crossref_primary_10_1109_TCYB_2020_3040803
crossref_primary_10_1007_s13042_018_0838_1
crossref_primary_10_1109_TNNLS_2023_3333537
crossref_primary_10_3390_sym10060208
crossref_primary_10_1109_ACCESS_2023_3349270
crossref_primary_10_1007_s10489_024_06171_w
crossref_primary_10_1007_s13042_019_00948_z
crossref_primary_10_1007_s13042_024_02362_6
crossref_primary_10_1109_TKDE_2024_3428485
crossref_primary_10_1016_j_knosys_2018_03_032
crossref_primary_10_1109_TNNLS_2022_3171614
crossref_primary_10_1109_ACCESS_2022_3231871
crossref_primary_10_1109_TKDE_2024_3397878
crossref_primary_10_1016_j_knosys_2018_03_015
crossref_primary_10_1109_TNNLS_2022_3193929
crossref_primary_10_1007_s00500_018_3156_3
crossref_primary_10_7717_peerj_cs_1711
crossref_primary_10_1007_s13042_018_0783_z
crossref_primary_10_1109_TNNLS_2022_3175922
crossref_primary_10_1109_TFUZZ_2024_3394709
crossref_primary_10_1109_TETCI_2023_3314548
crossref_primary_10_1007_s13042_018_0884_8
crossref_primary_10_1109_TBDATA_2023_3342643
crossref_primary_10_1109_TNNLS_2020_3048080
crossref_primary_10_1109_TCYB_2021_3054742
crossref_primary_10_1109_TEVC_2021_3100056
crossref_primary_10_1007_s13042_018_0827_4
crossref_primary_10_1109_TNNLS_2021_3054063
crossref_primary_10_1080_21655979_2017_1403678
crossref_primary_10_1007_s00500_018_3451_z
crossref_primary_10_1109_TSMC_2023_3321315
crossref_primary_10_1080_03081079_2023_2206654
crossref_primary_10_1007_s10462_023_10626_w
crossref_primary_10_1155_2018_1342562
crossref_primary_10_1109_TFUZZ_2024_3381993
crossref_primary_10_1007_s13042_017_0712_6
crossref_primary_10_1007_s40747_022_00763_0
crossref_primary_10_1016_j_ijar_2017_11_015
crossref_primary_10_1155_jama_5534285
crossref_primary_10_1007_s13042_017_0758_5
crossref_primary_10_1109_TCYB_2020_3042243
crossref_primary_10_1109_TFUZZ_2022_3193448
crossref_primary_10_1109_TNNLS_2020_3025922
crossref_primary_10_1109_TNNLS_2020_3041636
Cites_doi 10.1016/S0031-3203(00)00057-1
10.1109/TKDE.2011.67
10.1109/TPAMI.2009.190
10.1109/34.990132
10.1109/TFUZZ.2006.889761
10.1016/j.ins.2015.08.011
10.1109/72.977291
10.1109/TNNLS.2015.2469100
10.1109/TKDE.2009.118
10.1109/TPAMI.2007.70811
10.1109/TPAMI.2002.1114861
10.1002/int.10014
10.1109/TPAMI.2005.159
10.1016/j.ins.2013.06.012
10.1109/TSMCB.2012.2228480
10.1109/TKDE.2005.66
10.1109/TKDE.2012.146
10.1016/j.ijar.2009.02.003
10.1016/S0020-0255(98)10006-3
10.1080/03081079208945039
10.1080/03081070512331318329
10.1109/TFUZZ.2012.2231417
10.1016/j.ins.2008.03.013
10.1109/TFUZZ.2011.2173695
10.1109/TPAMI.2006.126
10.1016/j.asoc.2009.03.007
10.1016/S0165-0114(01)00143-9
10.1109/TNNLS.2012.2212721
10.1016/j.eswa.2011.01.023
10.1016/S0004-3702(03)00079-1
10.1109/TNNLS.2015.2424721
10.1109/34.990133
10.1109/TKDE.2004.96
10.1016/j.knosys.2016.08.009
10.1109/TFUZZ.2016.2574918
10.1016/j.knosys.2015.07.024
10.1016/S0020-0255(98)00019-X
10.1109/TNNLS.2015.2461552
10.1016/j.ins.2012.04.018
10.1109/TNNLS.2015.2504382
10.1109/72.298224
10.1109/TNNLS.2013.2241788
10.1109/TPAMI.2004.105
10.1109/TFUZZ.2005.864086
10.1109/TNNLS.2015.2451151
10.1016/j.ins.2008.03.022
10.1007/s13042-013-0206-0
10.1016/S0004-3702(98)00091-5
10.1109/TKDE.2015.2426703
10.1142/S0218488508005121
10.1109/TSMCB.2005.854499
10.1109/TKDE.2009.119
10.1016/S0020-0255(02)00180-9
10.1016/j.ins.2008.05.024
10.1016/j.ins.2003.07.004
10.1145/1015330.1015352
10.1109/69.842271
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2017.2710422
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 2999
ExternalDocumentID 28650830
10_1109_TNNLS_2017_2710422
7956261
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Foundation of Educational Committee of Liaoning Province
  grantid: LZ2016003
– fundername: Natural Science Foundation of Liaoning Province
  grantid: 2014020142
  funderid: 10.13039/501100005047
– fundername: National Natural Science Foundation of China
  grantid: 61572082; 61673396; 61363056; 61473111
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-5c3c3fc34da85a8ba03d7ea4301aabfdfb8296ebbde7b8fa0013a3dacd604c053
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Wed Oct 01 13:59:13 EDT 2025
Mon Jun 30 04:03:03 EDT 2025
Thu Jan 02 23:00:29 EST 2025
Wed Oct 01 00:44:43 EDT 2025
Thu Apr 24 23:09:19 EDT 2025
Wed Aug 27 02:50:36 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-5c3c3fc34da85a8ba03d7ea4301aabfdfb8296ebbde7b8fa0013a3dacd604c053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4136-2433
0000-0001-6036-4728
PMID 28650830
PQID 2059229168
PQPubID 85436
PageCount 14
ParticipantIDs proquest_journals_2059229168
proquest_miscellaneous_1914289410
pubmed_primary_28650830
crossref_citationtrail_10_1109_TNNLS_2017_2710422
ieee_primary_7956261
crossref_primary_10_1109_TNNLS_2017_2710422
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-07-01
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref59
ref15
ref58
ref14
ref52
ref55
ho (ref64) 2008; 30
ref17
xu (ref54) 2009; 9
ref16
ref19
ref18
wu (ref53) 2012; 115
pawlak (ref37) 1991
sun (ref44) 2010; 32
ref51
ref50
ref45
ref48
ref47
ref42
ref41
ref43
nie (ref35) 2010
ref49
ref8
(ref65) 2015
ref7
ref9
ref4
ref6
ref5
ref40
guyon (ref10) 2003; 3
ref34
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
torkkola (ref46) 2003; 3
ref24
ref23
ref26
ref25
ref20
ref63
ref22
ref21
ref28
ref27
ref29
blake (ref3) 1998
ref60
ref62
hall (ref11) 2000
ref61
References_xml – ident: ref22
  doi: 10.1016/S0031-3203(00)00057-1
– ident: ref47
  doi: 10.1109/TKDE.2011.67
– volume: 32
  start-page: 1610
  year: 2010
  ident: ref44
  article-title: Local-learning-based feature selection for high-dimensional data analysis
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2009.190
– volume: 115
  start-page: 203
  year: 2012
  ident: ref53
  article-title: Knowledge reduction in random incomplete decision tables via evidence theory
  publication-title: Fundam Inf
– ident: ref13
  doi: 10.1109/34.990132
– ident: ref21
  doi: 10.1109/TFUZZ.2006.889761
– ident: ref57
  doi: 10.1016/j.ins.2015.08.011
– ident: ref24
  doi: 10.1109/72.977291
– ident: ref26
  doi: 10.1109/TNNLS.2015.2469100
– year: 1998
  ident: ref3
  publication-title: UCI repository of machine learning databases
– ident: ref60
  doi: 10.1109/TKDE.2009.118
– volume: 30
  start-page: 1557
  year: 2008
  ident: ref64
  article-title: Query by transduction
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2007.70811
– ident: ref23
  doi: 10.1109/TPAMI.2002.1114861
– ident: ref9
  doi: 10.1002/int.10014
– ident: ref39
  doi: 10.1109/TPAMI.2005.159
– ident: ref63
  doi: 10.1016/j.ins.2013.06.012
– ident: ref6
  doi: 10.1109/TSMCB.2012.2228480
– ident: ref28
  doi: 10.1109/TKDE.2005.66
– ident: ref27
  doi: 10.1109/TKDE.2012.146
– ident: ref19
  doi: 10.1016/j.ijar.2009.02.003
– ident: ref56
  doi: 10.1016/S0020-0255(98)10006-3
– ident: ref58
  doi: 10.1080/03081079208945039
– ident: ref30
  doi: 10.1080/03081070512331318329
– ident: ref59
  doi: 10.1109/TFUZZ.2012.2231417
– ident: ref29
  doi: 10.1016/j.ins.2008.03.013
– ident: ref4
  doi: 10.1109/TFUZZ.2011.2173695
– ident: ref51
  doi: 10.1109/TPAMI.2006.126
– volume: 9
  start-page: 1244
  year: 2009
  ident: ref54
  article-title: Knowledge granulation, knowledge entropy and knowledge uncertainty measure in ordered information systems
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2009.03.007
– start-page: 1813
  year: 2010
  ident: ref35
  article-title: Efficient and robust feature selection via joint $\ell 2$ , 1-norms minimization
  publication-title: Proc Adv Neural Inf Process Syst (NIPS)
– ident: ref18
  doi: 10.1016/S0165-0114(01)00143-9
– ident: ref55
  doi: 10.1109/TNNLS.2012.2212721
– ident: ref16
  doi: 10.1016/j.eswa.2011.01.023
– ident: ref5
  doi: 10.1016/S0004-3702(03)00079-1
– ident: ref45
  doi: 10.1109/TNNLS.2015.2424721
– ident: ref32
  doi: 10.1109/34.990133
– year: 1991
  ident: ref37
  publication-title: Rough Sets Theoretical Aspects of Reasoning about Data
– ident: ref20
  doi: 10.1109/TKDE.2004.96
– start-page: 359
  year: 2000
  ident: ref11
  article-title: Correlation-based feature selection for discrete and numeric class machine learning
  publication-title: Proc 17th Int Conf Mach Learn
– ident: ref48
  doi: 10.1016/j.knosys.2016.08.009
– ident: ref49
  doi: 10.1109/TFUZZ.2016.2574918
– ident: ref25
  doi: 10.1016/j.knosys.2015.07.024
– ident: ref2
  doi: 10.1016/S0020-0255(98)00019-X
– ident: ref14
  doi: 10.1109/TNNLS.2015.2461552
– ident: ref62
  doi: 10.1016/j.ins.2012.04.018
– ident: ref34
  doi: 10.1109/TNNLS.2015.2504382
– ident: ref1
  doi: 10.1109/72.298224
– volume: 3
  start-page: 1157
  year: 2003
  ident: ref10
  article-title: An introduction to variable and feature selection
  publication-title: J Mach Learn Res
– ident: ref12
  doi: 10.1109/TNNLS.2013.2241788
– volume: 3
  start-page: 1415
  year: 2003
  ident: ref46
  article-title: Feature extraction by non-parametric mutual information maximization
  publication-title: J Mach Learn Res
– ident: ref36
  doi: 10.1109/TPAMI.2004.105
– ident: ref17
  doi: 10.1109/TFUZZ.2005.864086
– ident: ref41
  doi: 10.1109/TNNLS.2015.2451151
– ident: ref61
  doi: 10.1016/j.ins.2008.03.022
– ident: ref43
  doi: 10.1007/s13042-013-0206-0
– ident: ref7
  doi: 10.1016/S0004-3702(98)00091-5
– ident: ref50
  doi: 10.1109/TKDE.2015.2426703
– ident: ref40
  doi: 10.1142/S0218488508005121
– ident: ref33
  doi: 10.1109/TSMCB.2005.854499
– year: 2015
  ident: ref65
  publication-title: Kent Ridge Bio-medical Dataset
– ident: ref38
  doi: 10.1109/TKDE.2009.119
– ident: ref52
  doi: 10.1016/S0020-0255(02)00180-9
– ident: ref15
  doi: 10.1016/j.ins.2008.05.024
– ident: ref31
  doi: 10.1016/j.ins.2003.07.004
– ident: ref8
  doi: 10.1145/1015330.1015352
– ident: ref42
  doi: 10.1109/69.842271
SSID ssj0000605649
Score 2.651993
Snippet Feature selection is viewed as an important preprocessing step for pattern recognition, machine learning, and data mining. Neighborhood is one of the most...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2986
SubjectTerms Algorithm design and analysis
Algorithms
Data mining
Data processing
Discrimination
Discrimination index
distinguishing information
Entropy
Entropy (Information theory)
feature selection
Greedy algorithms
Indexes
Learning algorithms
Machine learning
Manganese
Mutual information
neighborhood relation
Neighborhoods
Pattern recognition
Preprocessing
Uncertainty
Title Feature Selection Based on Neighborhood Discrimination Index
URI https://ieeexplore.ieee.org/document/7956261
https://www.ncbi.nlm.nih.gov/pubmed/28650830
https://www.proquest.com/docview/2059229168
https://www.proquest.com/docview/1914289410
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BJy6lPAopDwWJW5slsR3HkbjwFKCyF0DaW-RXJATarZbNpb-eGechUbWIm6XYieOZ8XxjzwPgKOM1c6w0ifZeJkJrFClbuMQwo5jJjVCWopHvxvL6UdxO8skS_BxiYbz3wfnMj6gZ7vLdzDZ0VHZcIJhnZOssF0q2sVrDeUqKuFwGtMsyyRLGi0kfI5OWxw_j8a97cuQqRgx1qmBUxYaCMhGBpO9UUqix8n-4GdTO1Rrc9RNuvU2eR83CjOyfv3I5fvaPvsKXDn_Gpy3DrMOSn27AWl_bIe5EfRNOCBs2cx_fh0I5SL34DBWei7ExpuNU5B3KiBxfPNHGQw41odMNZV_cgsery4fz66SrtJBYnmeLJLfc8tpy4bTKtTI65a7wWqD0a21qVyPhSumNcb4wqtYEHDV32jqZCoty_A1WprOp34GYcy2sy00qjcZN2Ku8lKK2hbSh3BWPIOsXu7JdGnKqhvFSBXMkLatAq4poVXW0iuDHMOZ3m4Tjw96btNBDz26NI9jraVp1cvqK4_KSMYTIKoLD4TFKGF2b6KmfNa8VZcBDs1RkaQTbLS8M7-5Z6Pu_v7kLqzgz1br37sHKYt74fQQxC3MQuPcNg7_q-A
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V7QEutFAooS2kEjfINvEridRLeVRbuptLt9LeIr8ioVa7qN1c-PXMOA8JBBU3S7ETxzPj-caeB8D7jDfMsdIk2nuVCK1RpGzuEsNMwYw0orAUjTyv1PRGfFvK5RZ8HGNhvPfB-cxPqBnu8t3atnRUdpojmGdk6-xIIYTsorXGE5UUkbkKeJdliiWM58shSiYtTxdVNbsmV658wlCrCkZ1bCgsEzFI-ptSClVW_g04g-K52IX5MOXO3-R20m7MxP78I5vj__7THjzrEWh83rHMc9jyqxewO1R3iHth34czQoftvY-vQ6kcpF_8CVWei7FR0YEqcg_lRI6_fKeth1xqQqdLyr_4Em4uvi4-T5O-1kJiucw2ibTc8sZy4XQhdWF0yl3utUD519o0rkHSlcob43xuikYTdNTcaetUKixK8ivYXq1X_jXEnGthnTSpMhq3YV_IUonG5sqGglc8gmxY7Nr2icipHsZdHQyStKwDrWqiVd3TKoIP45gfXRqOR3vv00KPPfs1juBooGndS-oDjpMlYwiSiwhOxscoY3Rxold-3T7UlAMPDVORpREcdLwwvntgoTd__-Y7eDJdzGf17LK6OoSnOMuic_Y9gu3NfeuPEdJszNvAyb8A-nTuRQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+Selection+Based+on+Neighborhood+Discrimination+Index&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Wang%2C+Changzhong&rft.au=Hu%2C+Qinghua&rft.au=Wang%2C+Xizhao&rft.au=Chen%2C+Degang&rft.date=2018-07-01&rft.issn=2162-237X&rft.eissn=2162-2388&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FTNNLS.2017.2710422&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNNLS_2017_2710422
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon