A Real-Time Spike Sorting System Using Parallel OSort Clustering

This article presents an efficient design and implementation of a real-time spike sorting system using unsupervised clustering. We utilize the online sorting (OSort) algorithm and model it first in both floating-point and fixed-point numerical representations to accurately assess the feasibility of...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical circuits and systems Vol. 13; no. 6; pp. 1700 - 1713
Main Authors Valencia, Daniel, Alimohammad, Amirhossein
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1932-4545
1940-9990
1940-9990
DOI10.1109/TBCAS.2019.2947618

Cover

Abstract This article presents an efficient design and implementation of a real-time spike sorting system using unsupervised clustering. We utilize the online sorting (OSort) algorithm and model it first in both floating-point and fixed-point numerical representations to accurately assess the feasibility of our hardware architecture and also reliably analyze the sorting accuracy. For efficient hardware realization of OSort, we propose a modified parallel OSort algorithm. By reducing the number of required memory accesses, the number of computations performed for the management and upkeep of cluster averages and cluster merging is substantially reduced. By limiting the number of supported clusters per channel, the classification/clustering latency is significantly reduced compared to the previously published work, making the designed OSort system applicable for in-vivo spike sorting. The proposed OSort hardware architecture utilizes a novel memory configuration scheme to parallelize the OSort algorithm, which allows us to avoid using relatively large memory queues for storing detected spike waveforms and process them concurrently to the spike cluster management. The characteristics and implementation results of the designed OSort-based spike sorting system on a Xilinx Artix-7 field-programmable gate array (FPGA) are presented. The ASIC implementation of the designed system is estimated to occupy 2.57 mm 2 in a standard 32-nm CMOS process. Post-layout power estimation shows that the ASIC will dissipate 2.78 mW, while operating at 24 kHz.
AbstractList This article presents an efficient design and implementation of a real-time spike sorting system using unsupervised clustering. We utilize the online sorting (OSort) algorithm and model it first in both floating-point and fixed-point numerical representations to accurately assess the feasibility of our hardware architecture and also reliably analyze the sorting accuracy. For efficient hardware realization of OSort, we propose a modified parallel OSort algorithm. By reducing the number of required memory accesses, the number of computations performed for the management and upkeep of cluster averages and cluster merging is substantially reduced. By limiting the number of supported clusters per channel, the classification/clustering latency is significantly reduced compared to the previously published work, making the designed OSort system applicable for in-vivo spike sorting. The proposed OSort hardware architecture utilizes a novel memory configuration scheme to parallelize the OSort algorithm, which allows us to avoid using relatively large memory queues for storing detected spike waveforms and process them concurrently to the spike cluster management. The characteristics and implementation results of the designed OSort-based spike sorting system on a Xilinx Artix-7 field-programmable gate array (FPGA) are presented. The ASIC implementation of the designed system is estimated to occupy 2.57 mm in a standard 32-nm CMOS process. Post-layout power estimation shows that the ASIC will dissipate 2.78 mW, while operating at 24 kHz.
This article presents an efficient design and implementation of a real-time spike sorting system using unsupervised clustering. We utilize the online sorting (OSort) algorithm and model it first in both floating-point and fixed-point numerical representations to accurately assess the feasibility of our hardware architecture and also reliably analyze the sorting accuracy. For efficient hardware realization of OSort, we propose a modified parallel OSort algorithm. By reducing the number of required memory accesses, the number of computations performed for the management and upkeep of cluster averages and cluster merging is substantially reduced. By limiting the number of supported clusters per channel, the classification/clustering latency is significantly reduced compared to the previously published work, making the designed OSort system applicable for in-vivo spike sorting. The proposed OSort hardware architecture utilizes a novel memory configuration scheme to parallelize the OSort algorithm, which allows us to avoid using relatively large memory queues for storing detected spike waveforms and process them concurrently to the spike cluster management. The characteristics and implementation results of the designed OSort-based spike sorting system on a Xilinx Artix-7 field-programmable gate array (FPGA) are presented. The ASIC implementation of the designed system is estimated to occupy 2.57 mm 2 in a standard 32-nm CMOS process. Post-layout power estimation shows that the ASIC will dissipate 2.78 mW, while operating at 24 kHz.
This article presents an efficient design and implementation of a real-time spike sorting system using unsupervised clustering. We utilize the online sorting (OSort) algorithm and model it first in both floating-point and fixed-point numerical representations to accurately assess the feasibility of our hardware architecture and also reliably analyze the sorting accuracy. For efficient hardware realization of OSort, we propose a modified parallel OSort algorithm. By reducing the number of required memory accesses, the number of computations performed for the management and upkeep of cluster averages and cluster merging is substantially reduced. By limiting the number of supported clusters per channel, the classification/clustering latency is significantly reduced compared to the previously published work, making the designed OSort system applicable for in-vivo spike sorting. The proposed OSort hardware architecture utilizes a novel memory configuration scheme to parallelize the OSort algorithm, which allows us to avoid using relatively large memory queues for storing detected spike waveforms and process them concurrently to the spike cluster management. The characteristics and implementation results of the designed OSort-based spike sorting system on a Xilinx Artix-7 field-programmable gate array (FPGA) are presented. The ASIC implementation of the designed system is estimated to occupy 2.57 mm2 in a standard 32-nm CMOS process. Post-layout power estimation shows that the ASIC will dissipate 2.78 mW, while operating at 24 kHz.This article presents an efficient design and implementation of a real-time spike sorting system using unsupervised clustering. We utilize the online sorting (OSort) algorithm and model it first in both floating-point and fixed-point numerical representations to accurately assess the feasibility of our hardware architecture and also reliably analyze the sorting accuracy. For efficient hardware realization of OSort, we propose a modified parallel OSort algorithm. By reducing the number of required memory accesses, the number of computations performed for the management and upkeep of cluster averages and cluster merging is substantially reduced. By limiting the number of supported clusters per channel, the classification/clustering latency is significantly reduced compared to the previously published work, making the designed OSort system applicable for in-vivo spike sorting. The proposed OSort hardware architecture utilizes a novel memory configuration scheme to parallelize the OSort algorithm, which allows us to avoid using relatively large memory queues for storing detected spike waveforms and process them concurrently to the spike cluster management. The characteristics and implementation results of the designed OSort-based spike sorting system on a Xilinx Artix-7 field-programmable gate array (FPGA) are presented. The ASIC implementation of the designed system is estimated to occupy 2.57 mm2 in a standard 32-nm CMOS process. Post-layout power estimation shows that the ASIC will dissipate 2.78 mW, while operating at 24 kHz.
This article presents an efficient design and implementation of a real-time spike sorting system using unsupervised clustering. We utilize the online sorting (OSort) algorithm and model it first in both floating-point and fixed-point numerical representations to accurately assess the feasibility of our hardware architecture and also reliably analyze the sorting accuracy. For efficient hardware realization of OSort, we propose a modified parallel OSort algorithm. By reducing the number of required memory accesses, the number of computations performed for the management and upkeep of cluster averages and cluster merging is substantially reduced. By limiting the number of supported clusters per channel, the classification/clustering latency is significantly reduced compared to the previously published work, making the designed OSort system applicable for in-vivo spike sorting. The proposed OSort hardware architecture utilizes a novel memory configuration scheme to parallelize the OSort algorithm, which allows us to avoid using relatively large memory queues for storing detected spike waveforms and process them concurrently to the spike cluster management. The characteristics and implementation results of the designed OSort-based spike sorting system on a Xilinx Artix-7 field-programmable gate array (FPGA) are presented. The ASIC implementation of the designed system is estimated to occupy 2.57 mm2 in a standard 32-nm CMOS process. Post-layout power estimation shows that the ASIC will dissipate 2.78 mW, while operating at 24 kHz.
Author Alimohammad, Amirhossein
Valencia, Daniel
Author_xml – sequence: 1
  givenname: Daniel
  orcidid: 0000-0003-4539-8166
  surname: Valencia
  fullname: Valencia, Daniel
  email: dlvalencia@sdsu.edu
  organization: Department of Electrical and Computer Engineering, San Diego State University, San Diego, CA, USA
– sequence: 2
  givenname: Amirhossein
  orcidid: 0000-0002-0265-0774
  surname: Alimohammad
  fullname: Alimohammad, Amirhossein
  email: aalimohammad@sdsu.edu
  organization: Department of Electrical and Computer Engineering, San Diego State University, San Diego, CA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31634141$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtP3DAURq2Kqjz_AEgoUjfdZPAz8d11GPUlIYGYYW05yQ0yOMnUThb8-zrMwIJFN37oO-fK8ndMDvqhR0LOGV0wRuFqc71arhecMlhwkGXB9CdyxEDSHADowXwWPJdKqkNyHOMTpargwL-QQ8EKIZlkR-T7MrtH6_ON6zBbb91zWocwuv4xW7_EEbvsIc6XOxus9-iz2znOVn5KYUjJKfncWh_xbL-fkIefPzar3_nN7a8_q-VNXgvFxlyJWhd1oWRLQSpmQWPbWi2akkLRMC2gUqVteFtB1aJkFWBbW1pSiaJSuhEn5Ntu7jYMfyeMo-lcrNF72-MwRcMFLUvJoOQJ_foBfRqm0KfXJUoIJXmhVKIu99RUddiYbXCdDS_m7W8SoHdAHYYYA7amdqMd3dCPwTpvGDVzDea1BjPXYPY1JJV_UN-m_1e62EkOEd8FrQuAlP4DBhWQuw
CODEN ITBCCW
CitedBy_id crossref_primary_10_1088_1741_2552_ad8031
crossref_primary_10_1136_bmjopen_2023_071726
crossref_primary_10_1088_1741_2552_abc741
crossref_primary_10_1088_1741_2552_ad8b6c
crossref_primary_10_1109_JIOT_2022_3161050
crossref_primary_10_1007_s42486_021_00070_6
crossref_primary_10_1109_TBCAS_2022_3142987
crossref_primary_10_1088_1741_2552_ad0d15
crossref_primary_10_1088_1741_2552_abf521
crossref_primary_10_1109_TBCAS_2023_3292058
crossref_primary_10_1088_1741_2552_acc7cc
crossref_primary_10_3390_chips3010002
crossref_primary_10_1016_j_neunet_2023_02_036
crossref_primary_10_1109_TVLSI_2022_3170596
crossref_primary_10_1109_TBCAS_2024_3359994
crossref_primary_10_3390_digital1010003
crossref_primary_10_1007_s00701_020_04618_w
crossref_primary_10_1109_TNSRE_2020_3043403
crossref_primary_10_1109_ACCESS_2020_3042034
crossref_primary_10_1007_s13534_022_00255_7
crossref_primary_10_1109_OJCAS_2022_3184302
crossref_primary_10_1142_S0129065724500679
crossref_primary_10_1109_TBCAS_2024_3395353
crossref_primary_10_1109_TBME_2020_2996281
Cites_doi 10.1109/JETCAS.2012.2183430
10.1109/JSSC.2006.886567
10.1109/TBME.2003.814523
10.1109/TBCAS.2018.2825421
10.1109/TVLSI.2018.2875934
10.1109/IEMBS.2011.6091142
10.1109/TBCAS.2017.2679032
10.1109/ICASSP.1990.115702
10.1016/j.jneumeth.2005.12.033
10.1109/ISCAS.2017.8050608
10.1109/TNSRE.2007.908429
10.1109/TBCAS.2016.2574362
10.1109/CNE.2005.1419579
10.1109/TBCAS.2019.2907882
10.1016/j.jneumeth.2013.01.026
10.1037/h0071325
10.1109/JSSC.2011.2179451
10.1088/1741-2552/aabc23
10.1109/BioCAS.2016.7833847
10.1088/0954-898X/9/4/001
10.1016/j.jneumeth.2018.10.019
10.1109/TNSRE.2017.2697415
10.1109/JSSC.2011.2116410
10.1162/089976604774201631
10.1109/JSSC.2013.2264616
10.1146/annurev.neuro.24.1.139
10.1109/BIOCAS.2010.5709586
10.1109/TBME.2004.826683
10.1109/TNSRE.2014.2370510
10.1088/1741-2560/12/3/036005
10.1016/S1046-2023(03)00079-3
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SP
7TB
8FD
FR3
L7M
P64
7X8
DOI 10.1109/TBCAS.2019.2947618
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Biotechnology Research Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1940-9990
EndPage 1713
ExternalDocumentID 31634141
10_1109_TBCAS_2019_2947618
8869918
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GrantInformation_xml – fundername: Center for Neurotechnology
– fundername: National Science Foundation Engineering Research Center
  grantid: EEC-1028725
GroupedDBID ---
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QO
7SP
7TB
8FD
FR3
L7M
P64
7X8
ID FETCH-LOGICAL-c351t-53c86c654f09451a98effa83d7096d1839b57ad2fb9bfe41b9efca0704e3b58d3
IEDL.DBID RIE
ISSN 1932-4545
1940-9990
IngestDate Thu Oct 02 06:28:24 EDT 2025
Mon Jun 30 08:36:03 EDT 2025
Mon Jul 21 05:37:05 EDT 2025
Wed Oct 01 04:05:59 EDT 2025
Thu Apr 24 22:57:18 EDT 2025
Wed Aug 27 06:27:55 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-53c86c654f09451a98effa83d7096d1839b57ad2fb9bfe41b9efca0704e3b58d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4539-8166
0000-0002-0265-0774
PMID 31634141
PQID 2333542655
PQPubID 85510
PageCount 14
ParticipantIDs pubmed_primary_31634141
ieee_primary_8869918
proquest_miscellaneous_2307741972
crossref_citationtrail_10_1109_TBCAS_2019_2947618
proquest_journals_2333542655
crossref_primary_10_1109_TBCAS_2019_2947618
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical circuits and systems
PublicationTitleAbbrev TBCAS
PublicationTitleAlternate IEEE Trans Biomed Circuits Syst
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref34
ref12
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref17
ref16
ref19
kim (ref5) 2003; 50
kim (ref37) 2007; 15
rijsbergen (ref18) 1979
ref24
ref23
ref26
ref20
ref22
ref21
liu (ref28) 0
ref27
nadasdy (ref13) 2002
ref29
(ref25) 2010
ref7
ref9
ref4
ref3
gibson (ref1) 2012
ref6
capowski (ref8) 1976
References_xml – ident: ref21
  doi: 10.1109/JETCAS.2012.2183430
– year: 2002
  ident: ref13
  article-title: Comparison of unsupervised algorithms for on-line and off-line spike sorting
  publication-title: 32nd Annu Meeting Soc for Neurosci
– start-page: 1
  year: 0
  ident: ref28
  article-title: A hardware design for in-brain neural spike sorting
  publication-title: Proc IEEE High Perform Extreme Comput Conf
– ident: ref35
  doi: 10.1109/JSSC.2006.886567
– volume: 50
  start-page: 999
  year: 2003
  ident: ref5
  article-title: A wavelet-based method for action potential detection from extracellular neural signal recording with low signal-to-noise ratio
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2003.814523
– ident: ref29
  doi: 10.1109/TBCAS.2018.2825421
– ident: ref32
  doi: 10.1109/TVLSI.2018.2875934
– ident: ref20
  doi: 10.1109/IEMBS.2011.6091142
– ident: ref30
  doi: 10.1109/TBCAS.2017.2679032
– ident: ref4
  doi: 10.1109/ICASSP.1990.115702
– ident: ref16
  doi: 10.1016/j.jneumeth.2005.12.033
– ident: ref19
  doi: 10.1109/ISCAS.2017.8050608
– volume: 15
  start-page: 493
  year: 2007
  ident: ref37
  article-title: Thermal impact of an active 3-D microelectrode array implanted in the brain
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2007.908429
– ident: ref9
  doi: 10.1109/TBCAS.2016.2574362
– year: 2012
  ident: ref1
  article-title: Neural spike sorting in hardware: From theory to practice
– ident: ref14
  doi: 10.1109/CNE.2005.1419579
– ident: ref22
  doi: 10.1109/TBCAS.2019.2907882
– ident: ref24
  doi: 10.1016/j.jneumeth.2013.01.026
– ident: ref6
  doi: 10.1037/h0071325
– start-page: 237
  year: 1976
  ident: ref8
  article-title: The spike program: A computer system for analysis of neurophysiological action potentials
  publication-title: Computer Technology in Neuroscience
– ident: ref36
  doi: 10.1109/JSSC.2011.2179451
– ident: ref34
  doi: 10.1088/1741-2552/aabc23
– year: 1979
  ident: ref18
  publication-title: Information Retrieval
– ident: ref17
  doi: 10.1109/BioCAS.2016.7833847
– ident: ref2
  doi: 10.1088/0954-898X/9/4/001
– year: 2010
  ident: ref25
  publication-title: Spartan-6 FPGA Configurable Logic Block User Guide
– ident: ref31
  doi: 10.1016/j.jneumeth.2018.10.019
– ident: ref33
  doi: 10.1109/TNSRE.2017.2697415
– ident: ref26
  doi: 10.1109/JSSC.2011.2116410
– ident: ref7
  doi: 10.1162/089976604774201631
– ident: ref27
  doi: 10.1109/JSSC.2013.2264616
– ident: ref12
  doi: 10.1146/annurev.neuro.24.1.139
– ident: ref11
  doi: 10.1109/BIOCAS.2010.5709586
– ident: ref3
  doi: 10.1109/TBME.2004.826683
– ident: ref23
  doi: 10.1109/TNSRE.2014.2370510
– ident: ref10
  doi: 10.1088/1741-2560/12/3/036005
– ident: ref15
  doi: 10.1016/S1046-2023(03)00079-3
SSID ssj0056292
Score 2.3746436
Snippet This article presents an efficient design and implementation of a real-time spike sorting system using unsupervised clustering. We utilize the online sorting...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1700
SubjectTerms Acidity
Algorithms
Application specific integrated circuits
Biomedical signal processing
Classification
Cluster Analysis
Clustering
Clustering algorithms
CMOS
Computer architecture
Discrete wavelet transforms
Electronics
Feature extraction
Field programmable gate arrays
Floating point arithmetic
Hardware
Latency
low-power electronics
Models, Neurological
Neurons
Parallel processing
Principal Component Analysis
Queues
Real time
Real-time systems
Signal Processing, Computer-Assisted
Sodium channels
Sorting
Sorting algorithms
Spikes
very large scale integration
Waveforms
Title A Real-Time Spike Sorting System Using Parallel OSort Clustering
URI https://ieeexplore.ieee.org/document/8869918
https://www.ncbi.nlm.nih.gov/pubmed/31634141
https://www.proquest.com/docview/2333542655
https://www.proquest.com/docview/2307741972
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1940-9990
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056292
  issn: 1932-4545
  databaseCode: RIE
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PcGhUAoltEVG4tZm68R2Yt9YVlQVUgG1XWlvUfyqUFe7q2Vz4dfX4zxEq4K4RJHsJI5nbH9jz3wD8FFTo0stbVDeYKty7XxaW5GnzDiTZ7xWVmO88-W34mLKv87EbAtOh1gY51x0PnMjvI1n-XZpGtwqO5OyCHBGbsN2KYs2VqufdcMyHhMgIx5BHm_RB8hQdXbzeTK-Ri8uNcoVD3a7fLAIxawqfweYcaE5fwGXfRNb_5K7UbPRI_P7EXvj__7DS9jtECcZtyqyB1tu8Qqe_8FDuA-fxuQqAMYU40HI9ernXbgukV7glrSM5iR6FpAf9RpTr8zJdywmk3mDNAuh5DVMz7_cTC7SLrVCapjINqlgRhamENwH805ktZLO-1oyWwaTxiJq0qKsbe610t7xTCvnTR2mB-6YFtKyN7CzWC7cWyCKFlZqm2ujJLeskNQUzFDqbelNTlUCWd_Xlel4xzH9xbyK9gdVVZRPhfKpOvkkcDI8s2pZN_5Zex_7eajZdXECR71Iq25g_qpyxpgIqESIBD4MxWFI4TlJvXDLBuvQAIoxH1sCB60qDO9mAb_yjGfvnv7mITzDlrX-Lkews1k37jiglo1-H9X1HlPd5vc
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V9gAcKKU80hZqJG6QrRPbWfvW7arV0nYLoluptyh-IdTVblU2F349HuehggBxiSLZSRzP2P7GnvkG4J2mRg-1tEF5g63KtfNpZUWeMuNMnvFKWY3xztOLYnLFT6_F9Rp86GNhnHPR-cwN8Dae5dulqXGr7EDKIsAZ-QA2BOdcNNFa3bwbFvKYAhkRCTJ5iy5EhqqD2dF4dIl-XGqQKx4sd_nLMhTzqvwdYsal5mQTpl0jGw-Tm0G90gPz4zf-xv_9i6fwpMWcZNQoyRasucUzeHyPiXAbDkfkS4CMKUaEkMvbbzfhukSCga-k4TQn0beAfK7uMPnKnHzCYjKe10i0EEqew9XJ8Ww8SdvkCqlhIlulghlZmEJwHww8kVVKOu8ryewwGDUWcZMWw8rmXivtHc-0ct5UYYLgjmkhLXsB64vlwr0Comhhpba5NkpyywpJTcEMpd4OvcmpSiDr-ro0LfM4JsCYl9ECoaqM8ilRPmUrnwTe98_cNrwb_6y9jf3c12y7OIG9TqRlOzS_lzljTARcIkQCb_viMKjwpKRauGWNdWiAxZiRLYGXjSr072YBwfKMZzt__uY-PJzMpufl-ceLs114hK1svF_2YH11V7vXAcOs9Juouj8BlTfqRA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Real-Time+Spike+Sorting+System+Using+Parallel+OSort+Clustering&rft.jtitle=IEEE+transactions+on+biomedical+circuits+and+systems&rft.au=Valencia%2C+Daniel&rft.au=Alimohammad%2C+Amirhossein&rft.date=2019-12-01&rft.pub=IEEE&rft.issn=1932-4545&rft.volume=13&rft.issue=6&rft.spage=1700&rft.epage=1713&rft_id=info:doi/10.1109%2FTBCAS.2019.2947618&rft.externalDocID=8869918
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4545&client=summon