GeCo: Classification Restricted Boltzmann Machine Hardware for On-Chip Semisupervised Learning and Bayesian Inference
The probabilistic Bayesian inference of real-time input data is becoming more popular, and the importance of semisupervised learning is growing. We present a classification restricted Boltzmann machine (ClassRBM)-based hardware accelerator with on-chip semisupervised learning and Bayesian inference...
        Saved in:
      
    
          | Published in | IEEE transaction on neural networks and learning systems Vol. 31; no. 1; pp. 53 - 65 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          IEEE
    
        01.01.2020
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2162-237X 2162-2388 2162-2388  | 
| DOI | 10.1109/TNNLS.2019.2899386 | 
Cover
| Summary: | The probabilistic Bayesian inference of real-time input data is becoming more popular, and the importance of semisupervised learning is growing. We present a classification restricted Boltzmann machine (ClassRBM)-based hardware accelerator with on-chip semisupervised learning and Bayesian inference capability. ClassRBM is a specific type of Markov network that can perform classification tasks and reconstruct its input data. ClassRBM has several advantages in terms of hardware implementation compared to other backpropagation-based neural networks. However, its accuracy is relatively low compared to backpropagation-based learning. To improve the accuracy of ClassRBM, we propose the multi-neuron-per-class (multi-NPC) voting scheme. We also reveal that the contrastive divergence (CD) algorithm, which is commonly used to train RBM, shows poor performance in this multi-NPC ClassRBM. As an alternative, we propose an asymmetric contrastive divergence (ACD) training algorithm that improves the accuracy of multi-NPC ClassRBM. With the ACD learning algorithm, ClassRBM operates in the form of a combination of Markov Chain training and Bayesian inference. The experimental results on a field-programmable gate array (FPGA) board for a Modified National Institute of Standards and Technology data set confirm that the inference accuracy of the proposed ACD algorithm is 5.82% higher for a supervised learning case and 12.78% higher for a 1% labeled semisupervised learning case than the conventional CD algorithm. Also, the GeCo ver.2 hardware implemented on a Xilinx ZCU102 FPGA board was 349.04 times faster than the C simulation on CPU. | 
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
| ISSN: | 2162-237X 2162-2388 2162-2388  | 
| DOI: | 10.1109/TNNLS.2019.2899386 |