Adaptive Neural Sliding-Mode Controller for Alternative Control Strategies in Lower Limb Rehabilitation
Research on control strategies for rehabilitation robots has gradually shifted from providing therapies with fixed, relatively stiff assistance to compelling alternatives with assistance or challenge strategies to maximize subject participation. These alternative control strategies can promote neura...
Saved in:
| Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 28; no. 1; pp. 238 - 247 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1534-4320 1558-0210 1558-0210 |
| DOI | 10.1109/TNSRE.2019.2946407 |
Cover
| Abstract | Research on control strategies for rehabilitation robots has gradually shifted from providing therapies with fixed, relatively stiff assistance to compelling alternatives with assistance or challenge strategies to maximize subject participation. These alternative control strategies can promote neural plasticity and, in turn, increase the potential for recovery of motor coordination. In this paper, we propose a control strategy that dynamically switches between assistance and challenge modes based on the user's performance by amplifying or reducing the deviation between the user and the rehabilitation robot. For a seamless cognitive and physical interaction between the robot and the patient, we propose a multisensor fusion system to provide accurate activity and motor capability recognition, fall detection and physical fitness assessment in the rehabilitation training process. Moreover, an adaptive radial basis function (RBF) neural sliding-mode (ARNNSM) controller that dominates a mobile chaperonage lower limb rehabilitation training robot is proposed. The controller employs asynchronous deviation and functional assessment to determine the subject's capabilities and computes a corresponding assistance torque with a challenging factor for the desired locomotive function. Some sufficient conditions are derived based on algebraic graph theory and Lyapunov theory to ensure the asymptotic stability of the systems. Simulation examples illustrate the effectiveness of the proposed controllers. The ARNNSM controller and accompanying algorithm are demonstrated experimentally with healthy subjects in a new type of mobile chaperonage lower limb rehabilitation robot. |
|---|---|
| AbstractList | Research on control strategies for rehabilitation robots has gradually shifted from providing therapies with fixed, relatively stiff assistance to compelling alternatives with assistance or challenge strategies to maximize subject participation. These alternative control strategies can promote neural plasticity and, in turn, increase the potential for recovery of motor coordination. In this paper, we propose a control strategy that dynamically switches between assistance and challenge modes based on the user's performance by amplifying or reducing the deviation between the user and the rehabilitation robot. For a seamless cognitive and physical interaction between the robot and the patient, we propose a multisensor fusion system to provide accurate activity and motor capability recognition, fall detection and physical fitness assessment in the rehabilitation training process. Moreover, an adaptive radial basis function (RBF) neural sliding-mode (ARNNSM) controller that dominates a mobile chaperonage lower limb rehabilitation training robot is proposed. The controller employs asynchronous deviation and functional assessment to determine the subject's capabilities and computes a corresponding assistance torque with a challenging factor for the desired locomotive function. Some sufficient conditions are derived based on algebraic graph theory and Lyapunov theory to ensure the asymptotic stability of the systems. Simulation examples illustrate the effectiveness of the proposed controllers. The ARNNSM controller and accompanying algorithm are demonstrated experimentally with healthy subjects in a new type of mobile chaperonage lower limb rehabilitation robot. Research on control strategies for rehabilitation robots has gradually shifted from providing therapies with fixed, relatively stiff assistance to compelling alternatives with assistance or challenge strategies to maximize subject participation. These alternative control strategies can promote neural plasticity and, in turn, increase the potential for recovery of motor coordination. In this paper, we propose a control strategy that dynamically switches between assistance and challenge modes based on the user's performance by amplifying or reducing the deviation between the user and the rehabilitation robot. For a seamless cognitive and physical interaction between the robot and the patient, we propose a multisensor fusion system to provide accurate activity and motor capability recognition, fall detection and physical fitness assessment in the rehabilitation training process. Moreover, an adaptive radial basis function (RBF) neural sliding-mode (ARNNSM) controller that dominates a mobile chaperonage lower limb rehabilitation training robot is proposed. The controller employs asynchronous deviation and functional assessment to determine the subject's capabilities and computes a corresponding assistance torque with a challenging factor for the desired locomotive function. Some sufficient conditions are derived based on algebraic graph theory and Lyapunov theory to ensure the asymptotic stability of the systems. Simulation examples illustrate the effectiveness of the proposed controllers. The ARNNSM controller and accompanying algorithm are demonstrated experimentally with healthy subjects in a new type of mobile chaperonage lower limb rehabilitation robot.Research on control strategies for rehabilitation robots has gradually shifted from providing therapies with fixed, relatively stiff assistance to compelling alternatives with assistance or challenge strategies to maximize subject participation. These alternative control strategies can promote neural plasticity and, in turn, increase the potential for recovery of motor coordination. In this paper, we propose a control strategy that dynamically switches between assistance and challenge modes based on the user's performance by amplifying or reducing the deviation between the user and the rehabilitation robot. For a seamless cognitive and physical interaction between the robot and the patient, we propose a multisensor fusion system to provide accurate activity and motor capability recognition, fall detection and physical fitness assessment in the rehabilitation training process. Moreover, an adaptive radial basis function (RBF) neural sliding-mode (ARNNSM) controller that dominates a mobile chaperonage lower limb rehabilitation training robot is proposed. The controller employs asynchronous deviation and functional assessment to determine the subject's capabilities and computes a corresponding assistance torque with a challenging factor for the desired locomotive function. Some sufficient conditions are derived based on algebraic graph theory and Lyapunov theory to ensure the asymptotic stability of the systems. Simulation examples illustrate the effectiveness of the proposed controllers. The ARNNSM controller and accompanying algorithm are demonstrated experimentally with healthy subjects in a new type of mobile chaperonage lower limb rehabilitation robot. |
| Author | Yang, Tao Gao, Xueshan |
| Author_xml | – sequence: 1 givenname: Tao orcidid: 0000-0002-6840-6993 surname: Yang fullname: Yang, Tao email: ayngtao@126.com organization: School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China – sequence: 2 givenname: Xueshan orcidid: 0000-0003-0656-9460 surname: Gao fullname: Gao, Xueshan email: xueshan.gao@bit.edu.cn organization: School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31603825$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUtr3DAURkVJaB7tH2ihCLrpxtOr59jLYUgfMEkhk66FbF9PFTTWVLIb8u8rZ5wusuhKAp1z0f2-C3LShx4JecdgwRhUn-9utrdXCw6sWvBKagnLV-ScKVUWwBmcTHchCyk4nJGLlO4B2FKr5WtyJpgGUXJ1Tnar1h4G9wfpDY7Rerr1rnX9rrgOLdJ16IcYvMdIuxDpyg8Ye_uEz090O0Q74M5hoq6nm_CQ2Y3b1_QWf9naeTdkPvRvyGlnfcK383lJfn65ult_KzY_vn5frzZFIxQbCtmgQGUr4ErLtqoBu44B15WtO0Re2lJpQK2F1Pn7vG2l7XijreKNkFZbcUk-HeceYvg9YhrM3qUGvbc9hjEZLkCBFLLkGf34Ar0PY17PT5SohFBCT9SHmRrrPbbmEN3exkfzHGEGyiPQxJBSxM408845GecNAzO1ZZ7aMlNbZm4rq_yF-jz9v9L7o-QQ8Z9QljkTUOIv0d-f7Q |
| CODEN | ITNSB3 |
| CitedBy_id | crossref_primary_10_1007_s40435_021_00832_1 crossref_primary_10_1016_j_isatra_2025_02_007 crossref_primary_10_1007_s40998_022_00521_5 crossref_primary_10_1177_01423312241271888 crossref_primary_10_3390_en13184841 crossref_primary_10_1016_j_bspc_2024_106347 crossref_primary_10_1186_s10033_020_00511_w crossref_primary_10_35784_acs_2021_20 crossref_primary_10_1016_j_ijmecsci_2021_106942 crossref_primary_10_1007_s13369_022_07246_x crossref_primary_10_1115_1_4051788 crossref_primary_10_3390_machines10121125 crossref_primary_10_3390_math11132823 crossref_primary_10_3390_su12031102 crossref_primary_10_1016_j_ijmecsci_2022_107896 crossref_primary_10_1109_TMECH_2022_3233434 |
| Cites_doi | 10.3390/app9193986 10.1109/70.768190 10.1523/JNEUROSCI.2266-06.2006 10.1023/A:1024494031121 10.1109/TNSRE.2008.918389 10.1016/j.jbiomech.2006.05.021 10.1109/TNSRE.2008.2008288 10.1682/JRRD.2005.06.0103 10.1016/j.mechatronics.2015.06.011 10.1109/TIE.2019.2903778 10.1109/TRO.2012.2189496 10.1109/JSEN.2013.2245231 10.1299/jmtl.2.78 10.1186/1743-0003-6-20 10.1115/1.3140702 10.1109/TRO.2015.2503726 10.1109/ICORR.2005.1501094 10.1155/2011/759764 10.1186/1743-0003-12-1 10.1177/0300060516664241 10.1002/(SICI)1097-4563(199703)14:3<149::AID-ROB1>3.0.CO;2-R 10.1109/TNSRE.2005.848628 10.1177/1729881417700893 10.1097/01.NPT.0000281945.55816.e1 10.1109/TBME.2009.2034734 10.1002/rob.20150 10.1109/TSMCB.2008.2002851 10.1109/ROBIO.2006.340186 10.1682/JRRD.2005.02.0044 10.1177/1545968308315595 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
| DOI | 10.1109/TNSRE.2019.2946407 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Neurosciences Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Occupational Therapy & Rehabilitation |
| EISSN | 1558-0210 |
| EndPage | 247 |
| ExternalDocumentID | 31603825 10_1109_TNSRE_2019_2946407 8863405 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Beijing Municipal Science and Technology Commission grantid: Z161100002616018 funderid: 10.13039/501100009592 – fundername: State Key Laboratory of Robotics and System grantid: SKLRS-2017-KF-04 funderid: 10.13039/501100011381 |
| GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
| ID | FETCH-LOGICAL-c351t-4ce3e5a902564d9b0eff10269abfee28a8560e663468252dd4af2c6a52c34a6a3 |
| IEDL.DBID | RIE |
| ISSN | 1534-4320 1558-0210 |
| IngestDate | Thu Oct 02 09:40:17 EDT 2025 Fri Jul 25 02:57:31 EDT 2025 Wed Feb 19 02:31:10 EST 2025 Thu Apr 24 22:51:11 EDT 2025 Wed Oct 01 01:12:26 EDT 2025 Wed Aug 27 02:51:13 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c351t-4ce3e5a902564d9b0eff10269abfee28a8560e663468252dd4af2c6a52c34a6a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-6840-6993 0000-0003-0656-9460 |
| PMID | 31603825 |
| PQID | 2339335362 |
| PQPubID | 85423 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_2305043482 crossref_citationtrail_10_1109_TNSRE_2019_2946407 proquest_journals_2339335362 crossref_primary_10_1109_TNSRE_2019_2946407 pubmed_primary_31603825 ieee_primary_8863405 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-Jan. 2020-1-00 2020-01-00 20200101 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – month: 01 year: 2020 text: 2020-Jan. |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
| PublicationTitleAbbrev | TNSRE |
| PublicationTitleAlternate | IEEE Trans Neural Syst Rehabil Eng |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref30 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref22 doi: 10.3390/app9193986 – ident: ref26 doi: 10.1109/70.768190 – ident: ref8 doi: 10.1523/JNEUROSCI.2266-06.2006 – ident: ref14 doi: 10.1023/A:1024494031121 – ident: ref17 doi: 10.1109/TNSRE.2008.918389 – ident: ref12 doi: 10.1016/j.jbiomech.2006.05.021 – ident: ref9 doi: 10.1109/TNSRE.2008.2008288 – ident: ref5 doi: 10.1682/JRRD.2005.06.0103 – ident: ref30 doi: 10.1016/j.mechatronics.2015.06.011 – ident: ref27 doi: 10.1109/TIE.2019.2903778 – ident: ref15 doi: 10.1109/TRO.2012.2189496 – ident: ref23 doi: 10.1109/JSEN.2013.2245231 – ident: ref25 doi: 10.1299/jmtl.2.78 – ident: ref18 doi: 10.1186/1743-0003-6-20 – ident: ref13 doi: 10.1115/1.3140702 – ident: ref16 doi: 10.1109/TRO.2015.2503726 – ident: ref3 doi: 10.1109/ICORR.2005.1501094 – ident: ref2 doi: 10.1155/2011/759764 – ident: ref20 doi: 10.1186/1743-0003-12-1 – ident: ref1 doi: 10.1177/0300060516664241 – ident: ref24 doi: 10.1002/(SICI)1097-4563(199703)14:3<149::AID-ROB1>3.0.CO;2-R – ident: ref7 doi: 10.1109/TNSRE.2005.848628 – ident: ref29 doi: 10.1177/1729881417700893 – ident: ref19 doi: 10.1097/01.NPT.0000281945.55816.e1 – ident: ref21 doi: 10.1109/TBME.2009.2034734 – ident: ref11 doi: 10.1002/rob.20150 – ident: ref28 doi: 10.1109/TSMCB.2008.2002851 – ident: ref6 doi: 10.1109/ROBIO.2006.340186 – ident: ref4 doi: 10.1682/JRRD.2005.02.0044 – ident: ref10 doi: 10.1177/1545968308315595 |
| SSID | ssj0017657 |
| Score | 2.4377258 |
| Snippet | Research on control strategies for rehabilitation robots has gradually shifted from providing therapies with fixed, relatively stiff assistance to compelling... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 238 |
| SubjectTerms | activity recognition Adaptive control adaptive RBF neural network sliding-mode controller Algorithms asynchronous deviation challenge factor Cognitive ability Computer simulation Control systems Controllers Deviation Force Graph theory Multisensor fusion Physical fitness Physical training Plasticity (neural) Radial basis function Rehabilitation Rehabilitation robot Rehabilitation robotics Rehabilitation robots Robot control Robot sensing systems Robots Sliding mode control Switches System effectiveness Torque Training |
| Title | Adaptive Neural Sliding-Mode Controller for Alternative Control Strategies in Lower Limb Rehabilitation |
| URI | https://ieeexplore.ieee.org/document/8863405 https://www.ncbi.nlm.nih.gov/pubmed/31603825 https://www.proquest.com/docview/2339335362 https://www.proquest.com/docview/2305043482 |
| Volume | 28 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1558-0210 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017657 issn: 1534-4320 databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB6xHBCX5Q1dHjIScGFdUr-wjxUCIQQcoEjcIsdxUEVJEbR72F-_HuchQCziFsmT2MmM48-emW8A9oIdFHlhHeVM5lQUskctZ5ryTLAk06ywEvOdr67V-Z24uJf3M_C7zYXx3sfgM9_Fy-jLz8duikdlR1orLpCw9MexVlWuVusxOFaR1TNMYEEFZ0mTIJOYo8H17c0pRnGZLjMCPVfzMMexvrLGCtlv1qNYYOX_WDOuOWcLcNWMtgo1eexOJ1nX_f1A5Pjd11mEnzX4JP3KWpZgxpfLsP-WaJgMKpYBckBu3nF4r8BDP7fP-HMkSOgRRG9HQ1z4KJZTIydVyPvIv5AAg0l_VB80_mmbSEOE61_JsCSXWJ6NXA6fsg89rcLd2eng5JzWZRqo47I3ocJ57qVFf6USuckSXxQBtihjs8J7pq0OqMoHZCNU-N4sz4UtmFNWMseFVZavwWw5Lv0GEOscMhIqZQyy4gTs5ISTYQ_trAlrrOxAr1FW6upRYSmNURr3MolJo65T1HVa67oDh-09zxWDx5fSK6ioVrLWUQe2GptI60n-mjLODecyQIAO7LbNYXqiz8WWfjxFmQQ54oQOMuuVLbXPbkzw1-d9bsI8w819PO_ZgtnJy9RvBwQ0yXai6f8D2zn_tQ |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED5NQ4K9jMGAFQYYCXgBd6l9NvFjNW0q0PZh66S9RY7joGpdOm0tD_z1-Jwf2iZAvEXyJXZyd_Fnn-87gPfBDsqitI5LoQqOpRpwK0XKZY4iyVNRWkX5zpOpHp3ht3N1vgGfu1wY7308fOb7dBlj-cXSrWmr7CBNtUQiLH2gEFHV2VpdzOCLjryewYWRoxRJmyKTmIPZ9PTkiM5xmb4wSLGrLXgoqcJySjWyb81IscTK39FmnHWOH8OkHW992OSiv17lfffrHpXj_77QDmw38JMNa3t5Ahu-egofblMNs1nNM8A-spM7LN678GNY2Cv6PTKi9Aiip4s5TX2cCqqxw_rQ-8JfswCE2XDRbDX-7JpYS4Xrb9i8YmMq0MbG88v8Xk_P4Oz4aHY44k2hBu6kGqw4Oi-9shSx1FiYPPFlGYCLNjYvvRepTQOu8gHboA7fWxQF2lI4bZVwEq228jlsVsvK7wGzzhEnodbGEC9OQE8OnQqraGdNmGVVDwatsjLXjIqKaSyyuJpJTBZ1nZGus0bXPfjU3XNVc3j8U3qXFNVJNjrqwX5rE1nj5jeZkNJIqQII6MG7rjk4KEVdbOWXa5JJiCUO0yDzoral7tmtCb78c59v4dFoNhln46_T769gS9BSP-7-7MPm6nrtXwc8tMrfRDf4DWHXAxE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Neural+Sliding-Mode+Controller+for+Alternative+Control+Strategies+in+Lower+Limb+Rehabilitation&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Yang%2C+Tao&rft.au=Gao%2C+Xueshan&rft.date=2020-01-01&rft.issn=1558-0210&rft.eissn=1558-0210&rft.volume=28&rft.issue=1&rft.spage=238&rft_id=info:doi/10.1109%2FTNSRE.2019.2946407&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |