Adaptive Neural Sliding-Mode Controller for Alternative Control Strategies in Lower Limb Rehabilitation

Research on control strategies for rehabilitation robots has gradually shifted from providing therapies with fixed, relatively stiff assistance to compelling alternatives with assistance or challenge strategies to maximize subject participation. These alternative control strategies can promote neura...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 28; no. 1; pp. 238 - 247
Main Authors Yang, Tao, Gao, Xueshan
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1534-4320
1558-0210
1558-0210
DOI10.1109/TNSRE.2019.2946407

Cover

Abstract Research on control strategies for rehabilitation robots has gradually shifted from providing therapies with fixed, relatively stiff assistance to compelling alternatives with assistance or challenge strategies to maximize subject participation. These alternative control strategies can promote neural plasticity and, in turn, increase the potential for recovery of motor coordination. In this paper, we propose a control strategy that dynamically switches between assistance and challenge modes based on the user's performance by amplifying or reducing the deviation between the user and the rehabilitation robot. For a seamless cognitive and physical interaction between the robot and the patient, we propose a multisensor fusion system to provide accurate activity and motor capability recognition, fall detection and physical fitness assessment in the rehabilitation training process. Moreover, an adaptive radial basis function (RBF) neural sliding-mode (ARNNSM) controller that dominates a mobile chaperonage lower limb rehabilitation training robot is proposed. The controller employs asynchronous deviation and functional assessment to determine the subject's capabilities and computes a corresponding assistance torque with a challenging factor for the desired locomotive function. Some sufficient conditions are derived based on algebraic graph theory and Lyapunov theory to ensure the asymptotic stability of the systems. Simulation examples illustrate the effectiveness of the proposed controllers. The ARNNSM controller and accompanying algorithm are demonstrated experimentally with healthy subjects in a new type of mobile chaperonage lower limb rehabilitation robot.
AbstractList Research on control strategies for rehabilitation robots has gradually shifted from providing therapies with fixed, relatively stiff assistance to compelling alternatives with assistance or challenge strategies to maximize subject participation. These alternative control strategies can promote neural plasticity and, in turn, increase the potential for recovery of motor coordination. In this paper, we propose a control strategy that dynamically switches between assistance and challenge modes based on the user's performance by amplifying or reducing the deviation between the user and the rehabilitation robot. For a seamless cognitive and physical interaction between the robot and the patient, we propose a multisensor fusion system to provide accurate activity and motor capability recognition, fall detection and physical fitness assessment in the rehabilitation training process. Moreover, an adaptive radial basis function (RBF) neural sliding-mode (ARNNSM) controller that dominates a mobile chaperonage lower limb rehabilitation training robot is proposed. The controller employs asynchronous deviation and functional assessment to determine the subject's capabilities and computes a corresponding assistance torque with a challenging factor for the desired locomotive function. Some sufficient conditions are derived based on algebraic graph theory and Lyapunov theory to ensure the asymptotic stability of the systems. Simulation examples illustrate the effectiveness of the proposed controllers. The ARNNSM controller and accompanying algorithm are demonstrated experimentally with healthy subjects in a new type of mobile chaperonage lower limb rehabilitation robot.
Research on control strategies for rehabilitation robots has gradually shifted from providing therapies with fixed, relatively stiff assistance to compelling alternatives with assistance or challenge strategies to maximize subject participation. These alternative control strategies can promote neural plasticity and, in turn, increase the potential for recovery of motor coordination. In this paper, we propose a control strategy that dynamically switches between assistance and challenge modes based on the user's performance by amplifying or reducing the deviation between the user and the rehabilitation robot. For a seamless cognitive and physical interaction between the robot and the patient, we propose a multisensor fusion system to provide accurate activity and motor capability recognition, fall detection and physical fitness assessment in the rehabilitation training process. Moreover, an adaptive radial basis function (RBF) neural sliding-mode (ARNNSM) controller that dominates a mobile chaperonage lower limb rehabilitation training robot is proposed. The controller employs asynchronous deviation and functional assessment to determine the subject's capabilities and computes a corresponding assistance torque with a challenging factor for the desired locomotive function. Some sufficient conditions are derived based on algebraic graph theory and Lyapunov theory to ensure the asymptotic stability of the systems. Simulation examples illustrate the effectiveness of the proposed controllers. The ARNNSM controller and accompanying algorithm are demonstrated experimentally with healthy subjects in a new type of mobile chaperonage lower limb rehabilitation robot.Research on control strategies for rehabilitation robots has gradually shifted from providing therapies with fixed, relatively stiff assistance to compelling alternatives with assistance or challenge strategies to maximize subject participation. These alternative control strategies can promote neural plasticity and, in turn, increase the potential for recovery of motor coordination. In this paper, we propose a control strategy that dynamically switches between assistance and challenge modes based on the user's performance by amplifying or reducing the deviation between the user and the rehabilitation robot. For a seamless cognitive and physical interaction between the robot and the patient, we propose a multisensor fusion system to provide accurate activity and motor capability recognition, fall detection and physical fitness assessment in the rehabilitation training process. Moreover, an adaptive radial basis function (RBF) neural sliding-mode (ARNNSM) controller that dominates a mobile chaperonage lower limb rehabilitation training robot is proposed. The controller employs asynchronous deviation and functional assessment to determine the subject's capabilities and computes a corresponding assistance torque with a challenging factor for the desired locomotive function. Some sufficient conditions are derived based on algebraic graph theory and Lyapunov theory to ensure the asymptotic stability of the systems. Simulation examples illustrate the effectiveness of the proposed controllers. The ARNNSM controller and accompanying algorithm are demonstrated experimentally with healthy subjects in a new type of mobile chaperonage lower limb rehabilitation robot.
Author Yang, Tao
Gao, Xueshan
Author_xml – sequence: 1
  givenname: Tao
  orcidid: 0000-0002-6840-6993
  surname: Yang
  fullname: Yang, Tao
  email: ayngtao@126.com
  organization: School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
– sequence: 2
  givenname: Xueshan
  orcidid: 0000-0003-0656-9460
  surname: Gao
  fullname: Gao, Xueshan
  email: xueshan.gao@bit.edu.cn
  organization: School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31603825$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtr3DAURkVJaB7tH2ihCLrpxtOr59jLYUgfMEkhk66FbF9PFTTWVLIb8u8rZ5wusuhKAp1z0f2-C3LShx4JecdgwRhUn-9utrdXCw6sWvBKagnLV-ScKVUWwBmcTHchCyk4nJGLlO4B2FKr5WtyJpgGUXJ1Tnar1h4G9wfpDY7Rerr1rnX9rrgOLdJ16IcYvMdIuxDpyg8Ye_uEz090O0Q74M5hoq6nm_CQ2Y3b1_QWf9naeTdkPvRvyGlnfcK383lJfn65ult_KzY_vn5frzZFIxQbCtmgQGUr4ErLtqoBu44B15WtO0Re2lJpQK2F1Pn7vG2l7XijreKNkFZbcUk-HeceYvg9YhrM3qUGvbc9hjEZLkCBFLLkGf34Ar0PY17PT5SohFBCT9SHmRrrPbbmEN3exkfzHGEGyiPQxJBSxM408845GecNAzO1ZZ7aMlNbZm4rq_yF-jz9v9L7o-QQ8Z9QljkTUOIv0d-f7Q
CODEN ITNSB3
CitedBy_id crossref_primary_10_1007_s40435_021_00832_1
crossref_primary_10_1016_j_isatra_2025_02_007
crossref_primary_10_1007_s40998_022_00521_5
crossref_primary_10_1177_01423312241271888
crossref_primary_10_3390_en13184841
crossref_primary_10_1016_j_bspc_2024_106347
crossref_primary_10_1186_s10033_020_00511_w
crossref_primary_10_35784_acs_2021_20
crossref_primary_10_1016_j_ijmecsci_2021_106942
crossref_primary_10_1007_s13369_022_07246_x
crossref_primary_10_1115_1_4051788
crossref_primary_10_3390_machines10121125
crossref_primary_10_3390_math11132823
crossref_primary_10_3390_su12031102
crossref_primary_10_1016_j_ijmecsci_2022_107896
crossref_primary_10_1109_TMECH_2022_3233434
Cites_doi 10.3390/app9193986
10.1109/70.768190
10.1523/JNEUROSCI.2266-06.2006
10.1023/A:1024494031121
10.1109/TNSRE.2008.918389
10.1016/j.jbiomech.2006.05.021
10.1109/TNSRE.2008.2008288
10.1682/JRRD.2005.06.0103
10.1016/j.mechatronics.2015.06.011
10.1109/TIE.2019.2903778
10.1109/TRO.2012.2189496
10.1109/JSEN.2013.2245231
10.1299/jmtl.2.78
10.1186/1743-0003-6-20
10.1115/1.3140702
10.1109/TRO.2015.2503726
10.1109/ICORR.2005.1501094
10.1155/2011/759764
10.1186/1743-0003-12-1
10.1177/0300060516664241
10.1002/(SICI)1097-4563(199703)14:3<149::AID-ROB1>3.0.CO;2-R
10.1109/TNSRE.2005.848628
10.1177/1729881417700893
10.1097/01.NPT.0000281945.55816.e1
10.1109/TBME.2009.2034734
10.1002/rob.20150
10.1109/TSMCB.2008.2002851
10.1109/ROBIO.2006.340186
10.1682/JRRD.2005.02.0044
10.1177/1545968308315595
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TNSRE.2019.2946407
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 247
ExternalDocumentID 31603825
10_1109_TNSRE_2019_2946407
8863405
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Beijing Municipal Science and Technology Commission
  grantid: Z161100002616018
  funderid: 10.13039/501100009592
– fundername: State Key Laboratory of Robotics and System
  grantid: SKLRS-2017-KF-04
  funderid: 10.13039/501100011381
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c351t-4ce3e5a902564d9b0eff10269abfee28a8560e663468252dd4af2c6a52c34a6a3
IEDL.DBID RIE
ISSN 1534-4320
1558-0210
IngestDate Thu Oct 02 09:40:17 EDT 2025
Fri Jul 25 02:57:31 EDT 2025
Wed Feb 19 02:31:10 EST 2025
Thu Apr 24 22:51:11 EDT 2025
Wed Oct 01 01:12:26 EDT 2025
Wed Aug 27 02:51:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-4ce3e5a902564d9b0eff10269abfee28a8560e663468252dd4af2c6a52c34a6a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6840-6993
0000-0003-0656-9460
PMID 31603825
PQID 2339335362
PQPubID 85423
PageCount 10
ParticipantIDs proquest_miscellaneous_2305043482
crossref_citationtrail_10_1109_TNSRE_2019_2946407
proquest_journals_2339335362
crossref_primary_10_1109_TNSRE_2019_2946407
pubmed_primary_31603825
ieee_primary_8863405
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-Jan.
2020-1-00
2020-01-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-Jan.
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref30
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref22
  doi: 10.3390/app9193986
– ident: ref26
  doi: 10.1109/70.768190
– ident: ref8
  doi: 10.1523/JNEUROSCI.2266-06.2006
– ident: ref14
  doi: 10.1023/A:1024494031121
– ident: ref17
  doi: 10.1109/TNSRE.2008.918389
– ident: ref12
  doi: 10.1016/j.jbiomech.2006.05.021
– ident: ref9
  doi: 10.1109/TNSRE.2008.2008288
– ident: ref5
  doi: 10.1682/JRRD.2005.06.0103
– ident: ref30
  doi: 10.1016/j.mechatronics.2015.06.011
– ident: ref27
  doi: 10.1109/TIE.2019.2903778
– ident: ref15
  doi: 10.1109/TRO.2012.2189496
– ident: ref23
  doi: 10.1109/JSEN.2013.2245231
– ident: ref25
  doi: 10.1299/jmtl.2.78
– ident: ref18
  doi: 10.1186/1743-0003-6-20
– ident: ref13
  doi: 10.1115/1.3140702
– ident: ref16
  doi: 10.1109/TRO.2015.2503726
– ident: ref3
  doi: 10.1109/ICORR.2005.1501094
– ident: ref2
  doi: 10.1155/2011/759764
– ident: ref20
  doi: 10.1186/1743-0003-12-1
– ident: ref1
  doi: 10.1177/0300060516664241
– ident: ref24
  doi: 10.1002/(SICI)1097-4563(199703)14:3<149::AID-ROB1>3.0.CO;2-R
– ident: ref7
  doi: 10.1109/TNSRE.2005.848628
– ident: ref29
  doi: 10.1177/1729881417700893
– ident: ref19
  doi: 10.1097/01.NPT.0000281945.55816.e1
– ident: ref21
  doi: 10.1109/TBME.2009.2034734
– ident: ref11
  doi: 10.1002/rob.20150
– ident: ref28
  doi: 10.1109/TSMCB.2008.2002851
– ident: ref6
  doi: 10.1109/ROBIO.2006.340186
– ident: ref4
  doi: 10.1682/JRRD.2005.02.0044
– ident: ref10
  doi: 10.1177/1545968308315595
SSID ssj0017657
Score 2.4377258
Snippet Research on control strategies for rehabilitation robots has gradually shifted from providing therapies with fixed, relatively stiff assistance to compelling...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 238
SubjectTerms activity recognition
Adaptive control
adaptive RBF neural network sliding-mode controller
Algorithms
asynchronous deviation
challenge factor
Cognitive ability
Computer simulation
Control systems
Controllers
Deviation
Force
Graph theory
Multisensor fusion
Physical fitness
Physical training
Plasticity (neural)
Radial basis function
Rehabilitation
Rehabilitation robot
Rehabilitation robotics
Rehabilitation robots
Robot control
Robot sensing systems
Robots
Sliding mode control
Switches
System effectiveness
Torque
Training
Title Adaptive Neural Sliding-Mode Controller for Alternative Control Strategies in Lower Limb Rehabilitation
URI https://ieeexplore.ieee.org/document/8863405
https://www.ncbi.nlm.nih.gov/pubmed/31603825
https://www.proquest.com/docview/2339335362
https://www.proquest.com/docview/2305043482
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1558-0210
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017657
  issn: 1534-4320
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB6xHBCX5Q1dHjIScGFdUr-wjxUCIQQcoEjcIsdxUEVJEbR72F-_HuchQCziFsmT2MmM48-emW8A9oIdFHlhHeVM5lQUskctZ5ryTLAk06ywEvOdr67V-Z24uJf3M_C7zYXx3sfgM9_Fy-jLz8duikdlR1orLpCw9MexVlWuVusxOFaR1TNMYEEFZ0mTIJOYo8H17c0pRnGZLjMCPVfzMMexvrLGCtlv1qNYYOX_WDOuOWcLcNWMtgo1eexOJ1nX_f1A5Pjd11mEnzX4JP3KWpZgxpfLsP-WaJgMKpYBckBu3nF4r8BDP7fP-HMkSOgRRG9HQ1z4KJZTIydVyPvIv5AAg0l_VB80_mmbSEOE61_JsCSXWJ6NXA6fsg89rcLd2eng5JzWZRqo47I3ocJ57qVFf6USuckSXxQBtihjs8J7pq0OqMoHZCNU-N4sz4UtmFNWMseFVZavwWw5Lv0GEOscMhIqZQyy4gTs5ISTYQ_trAlrrOxAr1FW6upRYSmNURr3MolJo65T1HVa67oDh-09zxWDx5fSK6ioVrLWUQe2GptI60n-mjLODecyQIAO7LbNYXqiz8WWfjxFmQQ54oQOMuuVLbXPbkzw1-d9bsI8w819PO_ZgtnJy9RvBwQ0yXai6f8D2zn_tQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED5NQ4K9jMGAFQYYCXgBd6l9NvFjNW0q0PZh66S9RY7joGpdOm0tD_z1-Jwf2iZAvEXyJXZyd_Fnn-87gPfBDsqitI5LoQqOpRpwK0XKZY4iyVNRWkX5zpOpHp3ht3N1vgGfu1wY7308fOb7dBlj-cXSrWmr7CBNtUQiLH2gEFHV2VpdzOCLjryewYWRoxRJmyKTmIPZ9PTkiM5xmb4wSLGrLXgoqcJySjWyb81IscTK39FmnHWOH8OkHW992OSiv17lfffrHpXj_77QDmw38JMNa3t5Ahu-egofblMNs1nNM8A-spM7LN678GNY2Cv6PTKi9Aiip4s5TX2cCqqxw_rQ-8JfswCE2XDRbDX-7JpYS4Xrb9i8YmMq0MbG88v8Xk_P4Oz4aHY44k2hBu6kGqw4Oi-9shSx1FiYPPFlGYCLNjYvvRepTQOu8gHboA7fWxQF2lI4bZVwEq228jlsVsvK7wGzzhEnodbGEC9OQE8OnQqraGdNmGVVDwatsjLXjIqKaSyyuJpJTBZ1nZGus0bXPfjU3XNVc3j8U3qXFNVJNjrqwX5rE1nj5jeZkNJIqQII6MG7rjk4KEVdbOWXa5JJiCUO0yDzoral7tmtCb78c59v4dFoNhln46_T769gS9BSP-7-7MPm6nrtXwc8tMrfRDf4DWHXAxE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Neural+Sliding-Mode+Controller+for+Alternative+Control+Strategies+in+Lower+Limb+Rehabilitation&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Yang%2C+Tao&rft.au=Gao%2C+Xueshan&rft.date=2020-01-01&rft.issn=1558-0210&rft.eissn=1558-0210&rft.volume=28&rft.issue=1&rft.spage=238&rft_id=info:doi/10.1109%2FTNSRE.2019.2946407&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon