Distributed Neural Networks Training for Robotic Manipulation With Consensus Algorithm

In this article, we propose an algorithm that combines actor-critic-based off-policy method with consensus-based distributed training to deal with multiagent deep reinforcement learning problems. Specifically, convergence analysis of a consensus algorithm for a type of nonlinear system with a Lyapun...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 35; no. 2; pp. 2732 - 2746
Main Authors Liu, Wenxing, Niu, Hanlin, Jang, Inmo, Herrmann, Guido, Carrasco, Joaquin
Format Journal Article
LanguageEnglish
Published United States IEEE 01.02.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2162-237X
2162-2388
2162-2388
DOI10.1109/TNNLS.2022.3191021

Cover

Abstract In this article, we propose an algorithm that combines actor-critic-based off-policy method with consensus-based distributed training to deal with multiagent deep reinforcement learning problems. Specifically, convergence analysis of a consensus algorithm for a type of nonlinear system with a Lyapunov method is developed, and we use this result to analyze the convergence properties of the actor training parameters and the critic training parameters in our algorithm. Through the convergence analysis, it can be verified that all agents will converge to the same optimal model as the training time goes to infinity. To validate the implementation of our algorithm, a multiagent training framework is proposed to train each Universal Robot 5 (UR5) robot arm to reach the random target position. Finally, experiments are provided to demonstrate the effectiveness and feasibility of the proposed algorithm.
AbstractList In this article, we propose an algorithm that combines actor–critic-based off-policy method with consensus-based distributed training to deal with multiagent deep reinforcement learning problems. Specifically, convergence analysis of a consensus algorithm for a type of nonlinear system with a Lyapunov method is developed, and we use this result to analyze the convergence properties of the actor training parameters and the critic training parameters in our algorithm. Through the convergence analysis, it can be verified that all agents will converge to the same optimal model as the training time goes to infinity. To validate the implementation of our algorithm, a multiagent training framework is proposed to train each Universal Robot 5 (UR5) robot arm to reach the random target position. Finally, experiments are provided to demonstrate the effectiveness and feasibility of the proposed algorithm.
In this article, we propose an algorithm that combines actor-critic-based off-policy method with consensus-based distributed training to deal with multiagent deep reinforcement learning problems. Specifically, convergence analysis of a consensus algorithm for a type of nonlinear system with a Lyapunov method is developed, and we use this result to analyze the convergence properties of the actor training parameters and the critic training parameters in our algorithm. Through the convergence analysis, it can be verified that all agents will converge to the same optimal model as the training time goes to infinity. To validate the implementation of our algorithm, a multiagent training framework is proposed to train each Universal Robot 5 (UR5) robot arm to reach the random target position. Finally, experiments are provided to demonstrate the effectiveness and feasibility of the proposed algorithm.In this article, we propose an algorithm that combines actor-critic-based off-policy method with consensus-based distributed training to deal with multiagent deep reinforcement learning problems. Specifically, convergence analysis of a consensus algorithm for a type of nonlinear system with a Lyapunov method is developed, and we use this result to analyze the convergence properties of the actor training parameters and the critic training parameters in our algorithm. Through the convergence analysis, it can be verified that all agents will converge to the same optimal model as the training time goes to infinity. To validate the implementation of our algorithm, a multiagent training framework is proposed to train each Universal Robot 5 (UR5) robot arm to reach the random target position. Finally, experiments are provided to demonstrate the effectiveness and feasibility of the proposed algorithm.
Author Herrmann, Guido
Niu, Hanlin
Jang, Inmo
Liu, Wenxing
Carrasco, Joaquin
Author_xml – sequence: 1
  givenname: Wenxing
  orcidid: 0000-0002-3195-3862
  surname: Liu
  fullname: Liu, Wenxing
  email: wenxing.liu@manchester.ac.uk
  organization: Department of Electrical and Electronic Engineering, The University of Manchester, Manchester, U.K
– sequence: 2
  givenname: Hanlin
  orcidid: 0000-0003-0457-0871
  surname: Niu
  fullname: Niu, Hanlin
  email: hanlin.niu@manchester.ac.uk
  organization: Department of Electrical and Electronic Engineering, The University of Manchester, Manchester, U.K
– sequence: 3
  givenname: Inmo
  orcidid: 0000-0002-7492-3938
  surname: Jang
  fullname: Jang, Inmo
  email: inmo.jang@manchester.ac.uk
  organization: Department of Electrical and Electronic Engineering, The University of Manchester, Manchester, U.K
– sequence: 4
  givenname: Guido
  surname: Herrmann
  fullname: Herrmann, Guido
  email: guido.herrmann@manchester.ac.uk
  organization: Department of Electrical and Electronic Engineering, The University of Manchester, Manchester, U.K
– sequence: 5
  givenname: Joaquin
  orcidid: 0000-0002-7499-6408
  surname: Carrasco
  fullname: Carrasco, Joaquin
  email: joaquin.carrasco@manchester.ac.uk
  organization: Department of Electrical and Electronic Engineering, The University of Manchester, Manchester, U.K
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35853061$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1uEzEUha2qqH_0BUBCI7HpJsG-_hl7WQVakEKQILTsLGfGLi4TO9geVX173Cbtogu8uZb1fVfWOcdoP8RgEXpD8JQQrD4sF4v5jylggCklimAge-gIiIAJUCn3n-_tr0N0mvMtrkdgLpg6QIeUS06xIEfo6qPPJfnVWGzfLOyYzFBHuYvpT26Wyfjgw03jYmq-x1Usvmu-muA342CKj6G59uV3M4sh25DH3JwPNzHVp_Vr9MqZIdvT3TxBPy8-LWefJ_Nvl19m5_NJRzkpE2Z6ThQ4wShu-6530BFnhWsdYMMx693KcSmZoy1jrWoNsxIIV1yCFNT09ASdbfduUvw72lz02ufODoMJNo5Zg1CklYpzXtH3L9DbOKZQf6dBASWUtQCVerejxtXa9nqT_Nqke_2UWAXkFuhSzDlZpztfHsMoNa1BE6wf-tGP_eiHfvSun6rCC_Vp-3-lt1vJW2ufBSUpZQLTf3bNmmE
CODEN ITNNAL
CitedBy_id crossref_primary_10_1038_s41598_023_49266_z
crossref_primary_10_1109_TITS_2024_3364356
crossref_primary_10_1002_acs_3958
crossref_primary_10_1007_s10846_024_02161_9
crossref_primary_10_1109_TIE_2024_3398674
Cites_doi 10.1109/TCSII.2021.3066555
10.1109/tnnls.2021.3107600
10.1007/BF00992698
10.1109/CDC40024.2019.9029969
10.1109/IEEECONF49454.2021.9382674
10.1109/TNNLS.2020.3044196
10.1017/CBO9781139020411
10.56021/9781421407944
10.1109/IROS40897.2019.8968488
10.1109/TNNLS.2021.3068762
10.1109/TVT.2020.3034800
10.1109/tnnls.2021.3059912
10.1109/TNNLS.2020.3047941
10.1109/IROS.2018.8593986
10.1007/s10846-021-01368-4
10.1109/tnnls.2021.3056046
10.1109/TSMC.2018.2883801
10.1515/9781400841042
10.1145/3133956.3133982
10.1109/TNNLS.2019.2955400
10.1016/j.sysconle.2007.01.002
10.1109/tnnls.2021.3054402
10.1109/TSMC.1983.6313077
10.1109/CDC.2018.8619581
10.1007/s11432-019-2714-7
10.1109/TAC.2009.2037462
10.1109/TSMCC.2012.2218595
10.1109/TAC.2004.834113
10.1109/IROS.2004.1389727
10.1007/s12555-018-0666-9
10.1016/B978-1-55860-307-3.50049-6
10.1007/978-1-4615-3618-5_1
10.1109/tnn.1998.712192
10.1109/IROS40897.2019.8967834
10.1109/TNNLS.2021.3057424
10.1609/aaai.v32i1.11794
10.1109/ICRA.2018.8460756
10.1371/journal.pone.0172395
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2022.3191021
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 2746
ExternalDocumentID 35853061
10_1109_TNNLS_2022_3191021
9833460
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Robotics and Artificial Intelligence for Nuclear (RAIN) hub
  grantid: EP/R026084/1
– fundername: Engineering and Physical Sciences Research Council (EPSRC)
  grantid: EP/S03286X/1
  funderid: 10.13039/501100000266
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-4ad5192f64307dcdf2c1fe6f7f20a504dfbf5884f3744797a4e82159582863ad3
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Sun Sep 28 10:29:24 EDT 2025
Mon Jun 30 05:36:02 EDT 2025
Thu Jul 24 03:21:18 EDT 2025
Thu Apr 24 23:03:49 EDT 2025
Wed Oct 01 00:45:09 EDT 2025
Wed Aug 27 02:07:44 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-4ad5192f64307dcdf2c1fe6f7f20a504dfbf5884f3744797a4e82159582863ad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7492-3938
0000-0003-0457-0871
0000-0002-7499-6408
0000-0002-3195-3862
PMID 35853061
PQID 2923134722
PQPubID 85436
PageCount 15
ParticipantIDs crossref_citationtrail_10_1109_TNNLS_2022_3191021
ieee_primary_9833460
proquest_miscellaneous_2691789555
proquest_journals_2923134722
pubmed_primary_35853061
crossref_primary_10_1109_TNNLS_2022_3191021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref14
Foerster (ref10)
ref11
ref17
Sukhbaatar (ref12); 29
ref16
ref19
ref18
Watkins (ref32) 1992; 8
Nair (ref47)
ref51
ref42
Golovin (ref13)
ref41
ref44
ref43
ref49
ref8
ref7
Maei (ref45)
ref9
ref4
ref3
ref6
ref5
Sutton (ref31); 12
ref40
ref34
ref37
ref36
ref30
ref33
ref2
ref1
Konda (ref39)
Degris (ref46) 2012
ref24
ref23
ref26
ref25
ref20
ref22
ref21
Zhu (ref15)
Peng (ref50) 2017
ref28
ref27
Lewis (ref35) 2013
ref29
Quigley (ref48); 3
Silver (ref38)
References_xml – ident: ref20
  doi: 10.1109/TCSII.2021.3066555
– start-page: 2137
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref10
  article-title: Learning to communicate with deep multi-agent reinforcement learning
– ident: ref16
  doi: 10.1109/tnnls.2021.3107600
– volume: 8
  start-page: 279
  issue: 3
  year: 1992
  ident: ref32
  article-title: Q-learning
  publication-title: Mach. Learn.
  doi: 10.1007/BF00992698
– ident: ref33
  doi: 10.1109/CDC40024.2019.9029969
– ident: ref2
  doi: 10.1109/IEEECONF49454.2021.9382674
– ident: ref26
  doi: 10.1109/TNNLS.2020.3044196
– ident: ref42
  doi: 10.1017/CBO9781139020411
– ident: ref43
  doi: 10.56021/9781421407944
– ident: ref4
  doi: 10.1109/IROS40897.2019.8968488
– ident: ref5
  doi: 10.1109/TNNLS.2021.3068762
– start-page: 1
  volume-title: Proc. ICML
  ident: ref47
  article-title: Rectified linear units improve restricted Boltzmann machines
– start-page: 1
  volume-title: Proc. ICML
  ident: ref45
  article-title: Toward off-policy learning control with function approximation
– ident: ref8
  doi: 10.1109/TVT.2020.3034800
– ident: ref23
  doi: 10.1109/tnnls.2021.3059912
– ident: ref27
  doi: 10.1109/TNNLS.2020.3047941
– ident: ref3
  doi: 10.1109/IROS.2018.8593986
– ident: ref18
  doi: 10.1007/s10846-021-01368-4
– ident: ref25
  doi: 10.1109/tnnls.2021.3056046
– ident: ref29
  doi: 10.1109/TSMC.2018.2883801
– ident: ref44
  doi: 10.1515/9781400841042
– ident: ref14
  doi: 10.1145/3133956.3133982
– ident: ref22
  doi: 10.1109/TNNLS.2019.2955400
– start-page: 387
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref38
  article-title: Deterministic policy gradient algorithms
– year: 2012
  ident: ref46
  article-title: Off-policy actor-critic
  publication-title: arXiv:1205.4839
– ident: ref21
  doi: 10.1016/j.sysconle.2007.01.002
– volume-title: Cooperative Control of Multi-Agent Systems: Optimal and Adaptive Design Approaches
  year: 2013
  ident: ref35
– ident: ref7
  doi: 10.1109/tnnls.2021.3054402
– ident: ref37
  doi: 10.1109/TSMC.1983.6313077
– start-page: 3837
  volume-title: Proc. Int. Conf. Artif. Intell. Statist.
  ident: ref15
  article-title: Federated heavy hitters discovery with differential privacy
– ident: ref36
  doi: 10.1109/CDC.2018.8619581
– ident: ref17
  doi: 10.1007/s11432-019-2714-7
– ident: ref30
  doi: 10.1109/TAC.2009.2037462
– ident: ref41
  doi: 10.1109/TSMCC.2012.2218595
– ident: ref34
  doi: 10.1109/TAC.2004.834113
– ident: ref49
  doi: 10.1109/IROS.2004.1389727
– volume: 12
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref31
  article-title: Policy gradient methods for reinforcement learning with function approximation
– volume: 29
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref12
  article-title: Learning multiagent communication with backpropagation
– start-page: 1008
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref39
  article-title: Actor-critic algorithms
– ident: ref19
  doi: 10.1007/s12555-018-0666-9
– ident: ref9
  doi: 10.1016/B978-1-55860-307-3.50049-6
– ident: ref28
  doi: 10.1007/978-1-4615-3618-5_1
– volume: 3
  start-page: 5
  volume-title: Proc. ICRA Workshop Open Source Softw.
  ident: ref48
  article-title: ROS: An open-source robot operating system
– ident: ref40
  doi: 10.1109/tnn.1998.712192
– ident: ref6
  doi: 10.1109/IROS40897.2019.8967834
– start-page: 325
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref13
  article-title: Large-scale learning with less ram via randomization
– ident: ref24
  doi: 10.1109/TNNLS.2021.3057424
– ident: ref51
  doi: 10.1609/aaai.v32i1.11794
– year: 2017
  ident: ref50
  article-title: Multiagent bidirectionally-coordinated nets: Emergence of human-level coordination in learning to play StarCraft combat games
  publication-title: arXiv:1703.10069
– ident: ref1
  doi: 10.1109/ICRA.2018.8460756
– ident: ref11
  doi: 10.1371/journal.pone.0172395
SSID ssj0000605649
Score 2.5088024
Snippet In this article, we propose an algorithm that combines actor-critic-based off-policy method with consensus-based distributed training to deal with multiagent...
In this article, we propose an algorithm that combines actor–critic-based off-policy method with consensus-based distributed training to deal with multiagent...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2732
SubjectTerms Algorithms
Consensus
Convergence
deep reinforcement learning
Lyapunov methods
Machine learning
manipulator
Manipulators
Multiagent systems
Neural networks
Nonlinear systems
Parameters
Privacy
Reinforcement learning
Robot arms
Robot kinematics
Task analysis
Training
Title Distributed Neural Networks Training for Robotic Manipulation With Consensus Algorithm
URI https://ieeexplore.ieee.org/document/9833460
https://www.ncbi.nlm.nih.gov/pubmed/35853061
https://www.proquest.com/docview/2923134722
https://www.proquest.com/docview/2691789555
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore Digital Library
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VHlAvFCiP0BYZiRtkGz9ir48VpaoQuwfYwt6ixA-oKAnqZi_8-s7kJYEAcYsS23EyY_kbz-MDeGmk9iYECpXiFg0U5dJSKZO6yvksKKMcp2zkxVJfXKp363y9A6-nXJgQQhd8FmZ02fnyfeO2dFR2YudSKo0G-h0z132u1nSekiEu1x3aFVyLVEizHnNkMnuyWi7ff0RrUAg0Ui3RWe_BXYlQGREz_2VL6jhW_g43u23nfB8W44T7aJNvs21bzdzP32o5_u8X3Yd7A_5kp73CPICdUD-E_ZHbgQ1L_QA-nVFFXSLDCp5RBQ_stOxDxjdsNfBKMES87ENTNTgYW5T11UgGxj5ftV8ZkYESk8aGnV5_aW7w1vdHcHn-dvXmIh04GFInc96mqvSI8URE4JIZ73wUjsego4kiK_NM-VhFynWN0qCIrSlVmCOKsOSN07L08jHs1k0dngKTwaP1Zp2zKirEqZXx1pmACMJn3EueAB_FULihQDnxZFwXnaGS2aKTYkFSLAYpJvBq6vOjL8_xz9YHJIKp5fD3EzgapV0MK3hTCEK-kkppJvBieoxrjxwqZR2aLbbRaOzObZ7nCTzptWQae1SuZ39-5yHs4cxUH_99BLvtzTYcI7xpq-edXt8CaVzyuw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5VRYJeKFAoaQsYiRtkGz8Sr48VUC2wmwNsYW9RYjtQtU2qbvbCr-9MXhIIELcosR0nM5a_8Tw-gFdaJk57T6FS3KCBomyYK6VDW1gXeaWV5ZSNvEiT2Zn6uIpXW_BmzIXx3rfBZ35Cl60v39V2Q0dlx2YqpUrQQL8TK6XiLltrPFGJEJknLd4VPBGhkHo1ZMlE5niZpvMvaA8KgWaqIULrHbgrESwjZua_bEoty8rfAWe78ZzuwmKYchdvcjHZNMXE_vytmuP_ftMDuN8jUHbSqcxD2PLVI9gd2B1Yv9j34Os7qqlLdFjeMarhgZ3SLmh8zZY9swRDzMs-10WNg7FFXp0PdGDs23nzgxEdKHFprNnJ5ff6Bm9dPYaz0_fLt7OwZ2EIrYx5E6rcIcoTJUKXSDvrSmF56ZNSlyLK40i5sigp27WUGoVsdK78FHGEIX9cInMnn8B2VVf-KTDpHdpvxlqjSoVItdDOWO0RQ7iIO8kD4IMYMtuXKCemjMusNVUik7VSzEiKWS_FAF6Pfa67Ah3_bL1HIhhb9n8_gKNB2lm_hteZIOwrqZhmAC_Hx7j6yKWSV77eYJsEzd2pieM4gP1OS8axB-U6-PM7X8C92XIxz-Yf0k-HsIOzVF00-BFsNzcb_wzBTlM8b3X8FkYW9gg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Neural+Networks+Training+for+Robotic+Manipulation+With+Consensus+Algorithm&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Liu%2C+Wenxing&rft.au=Niu%2C+Hanlin&rft.au=Jang%2C+Inmo&rft.au=Herrmann%2C+Guido&rft.date=2024-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=35&rft.issue=2&rft.spage=2732&rft_id=info:doi/10.1109%2FTNNLS.2022.3191021&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon