Learning Deep Gradient Descent Optimization for Image Deconvolution
As an integral component of blind image deblurring, non-blind deconvolution removes image blur with a given blur kernel, which is essential but difficult due to the ill-posed nature of the inverse problem. The predominant approach is based on optimization subject to regularization functions that are...
Saved in:
| Published in | IEEE transaction on neural networks and learning systems Vol. 31; no. 12; pp. 5468 - 5482 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.12.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2162-237X 2162-2388 2162-2388 |
| DOI | 10.1109/TNNLS.2020.2968289 |
Cover
| Abstract | As an integral component of blind image deblurring, non-blind deconvolution removes image blur with a given blur kernel, which is essential but difficult due to the ill-posed nature of the inverse problem. The predominant approach is based on optimization subject to regularization functions that are either manually designed or learned from examples. Existing learning-based methods have shown superior restoration quality but are not practical enough due to their restricted and static model design. They solely focus on learning a prior and require to know the noise level for deconvolution. We address the gap between the optimization- and learning-based approaches by learning a universal gradient descent optimizer. We propose a recurrent gradient descent network (RGDN) by systematically incorporating deep neural networks into a fully parameterized gradient descent scheme. A hyperparameter-free update unit shared across steps is used to generate the updates from the current estimates based on a convolutional neural network. By training on diverse examples, the RGDN learns an implicit image prior and a universal update rule through recursive supervision. The learned optimizer can be repeatedly used to improve the quality of diverse degenerated observations. The proposed method possesses strong interpretability and high generalization. Extensive experiments on synthetic benchmarks and challenging real-world images demonstrate that the proposed deep optimization method is effective and robust to produce favorable results as well as practical for real-world image deblurring applications. |
|---|---|
| AbstractList | As an integral component of blind image deblurring, non-blind deconvolution removes image blur with a given blur kernel, which is essential but difficult due to the ill-posed nature of the inverse problem. The predominant approach is based on optimization subject to regularization functions that are either manually designed or learned from examples. Existing learning-based methods have shown superior restoration quality but are not practical enough due to their restricted and static model design. They solely focus on learning a prior and require to know the noise level for deconvolution. We address the gap between the optimization- and learning-based approaches by learning a universal gradient descent optimizer. We propose a recurrent gradient descent network (RGDN) by systematically incorporating deep neural networks into a fully parameterized gradient descent scheme. A hyperparameter-free update unit shared across steps is used to generate the updates from the current estimates based on a convolutional neural network. By training on diverse examples, the RGDN learns an implicit image prior and a universal update rule through recursive supervision. The learned optimizer can be repeatedly used to improve the quality of diverse degenerated observations. The proposed method possesses strong interpretability and high generalization. Extensive experiments on synthetic benchmarks and challenging real-world images demonstrate that the proposed deep optimization method is effective and robust to produce favorable results as well as practical for real-world image deblurring applications.As an integral component of blind image deblurring, non-blind deconvolution removes image blur with a given blur kernel, which is essential but difficult due to the ill-posed nature of the inverse problem. The predominant approach is based on optimization subject to regularization functions that are either manually designed or learned from examples. Existing learning-based methods have shown superior restoration quality but are not practical enough due to their restricted and static model design. They solely focus on learning a prior and require to know the noise level for deconvolution. We address the gap between the optimization- and learning-based approaches by learning a universal gradient descent optimizer. We propose a recurrent gradient descent network (RGDN) by systematically incorporating deep neural networks into a fully parameterized gradient descent scheme. A hyperparameter-free update unit shared across steps is used to generate the updates from the current estimates based on a convolutional neural network. By training on diverse examples, the RGDN learns an implicit image prior and a universal update rule through recursive supervision. The learned optimizer can be repeatedly used to improve the quality of diverse degenerated observations. The proposed method possesses strong interpretability and high generalization. Extensive experiments on synthetic benchmarks and challenging real-world images demonstrate that the proposed deep optimization method is effective and robust to produce favorable results as well as practical for real-world image deblurring applications. As an integral component of blind image deblurring, non-blind deconvolution removes image blur with a given blur kernel, which is essential but difficult due to the ill-posed nature of the inverse problem. The predominant approach is based on optimization subject to regularization functions that are either manually designed or learned from examples. Existing learning-based methods have shown superior restoration quality but are not practical enough due to their restricted and static model design. They solely focus on learning a prior and require to know the noise level for deconvolution. We address the gap between the optimization- and learning-based approaches by learning a universal gradient descent optimizer. We propose a recurrent gradient descent network (RGDN) by systematically incorporating deep neural networks into a fully parameterized gradient descent scheme. A hyperparameter-free update unit shared across steps is used to generate the updates from the current estimates based on a convolutional neural network. By training on diverse examples, the RGDN learns an implicit image prior and a universal update rule through recursive supervision. The learned optimizer can be repeatedly used to improve the quality of diverse degenerated observations. The proposed method possesses strong interpretability and high generalization. Extensive experiments on synthetic benchmarks and challenging real-world images demonstrate that the proposed deep optimization method is effective and robust to produce favorable results as well as practical for real-world image deblurring applications. |
| Author | Shen, Chunhua Shi, Qinfeng Zhang, Yanning Zhang, Zhen van den Hengel, Anton Gong, Dong |
| Author_xml | – sequence: 1 givenname: Dong orcidid: 0000-0002-2668-9630 surname: Gong fullname: Gong, Dong email: edgong01@gmail.com organization: School of Computer Science and Engineering, Northwestern Polytechnical University, Xi'an, China – sequence: 2 givenname: Zhen surname: Zhang fullname: Zhang, Zhen email: zhangz@comp.nus.edu.sg organization: Department of Computer Science, National University of Singapore, Singapore – sequence: 3 givenname: Qinfeng surname: Shi fullname: Shi, Qinfeng email: javen.shi@adelaide.edu.au organization: Australian Institute for Machine Learning (AIML), The University of Adelaide, Adelaide, SA, Australia – sequence: 4 givenname: Anton orcidid: 0000-0003-3027-8364 surname: van den Hengel fullname: van den Hengel, Anton email: anton.vandenhengel@adelaide.edu.au organization: Australian Institute for Machine Learning (AIML), The University of Adelaide, Adelaide, SA, Australia – sequence: 5 givenname: Chunhua orcidid: 0000-0002-8648-8718 surname: Shen fullname: Shen, Chunhua email: chunhua.shen@adelaide.edu.au organization: Australian Institute for Machine Learning (AIML), The University of Adelaide, Adelaide, SA, Australia – sequence: 6 givenname: Yanning orcidid: 0000-0002-2977-8057 surname: Zhang fullname: Zhang, Yanning email: ynzhang@nwpu.edu.cn organization: School of Computer Science and Engineering, Northwestern Polytechnical University, Xi'an, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32078566$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUtLAzEQx4MoPmq_gIIUvHhpzWM3j6NUrYWiByt4C9nsVCK7Sc3uCvrpTV8ePJjLZGZ-_2GY_wna98EDQmcEjwjB6nr--Dh7HlFM8YgqLqlUe-iYEk6HlEm5__sXr0eo3zTvOD2Oc56pQ3TEKBYy5_wYjWdgonf-bXALsBxMoikd-DZljV3Fp2XravdtWhf8YBHiYFqbN0htG_xnqLpV_RQdLEzVQH8be-jl_m4-fhjOnibT8c1saFlO2iErBDUZ4xbnhEhCypKVVnGBlVCFUSCgKA3LgAmLjTQFM9YwSYtFwYigFlgPXW3mLmP46KBpde3SllVlPISu0ZTxDGc5ljShl3_Q99BFn7bTNOOCKsmwTNTFluqKGkq9jK428UvvzpMAuQFsDE0TYaGta9e3aKNxlSZYr8zQazP0ygy9NSNJ6R_pbvq_ovONyAHAr0Al6yQm7AccrZO5 |
| CODEN | ITNNAL |
| CitedBy_id | crossref_primary_10_1109_TGRS_2024_3426094 crossref_primary_10_1109_TCI_2022_3226947 crossref_primary_10_1109_TIM_2023_3304676 crossref_primary_10_1016_j_dsp_2023_103912 crossref_primary_10_1007_s11263_022_01633_5 crossref_primary_10_1016_j_sigpro_2025_109910 crossref_primary_10_1109_TGCN_2024_3386172 crossref_primary_10_1109_TMM_2020_3013383 crossref_primary_10_1109_ACCESS_2021_3129602 crossref_primary_10_1109_TCI_2022_3209939 crossref_primary_10_1117_1_JRS_14_036506 crossref_primary_10_1109_ACCESS_2020_3018446 crossref_primary_10_1016_j_oceaneng_2024_118901 crossref_primary_10_1109_TCI_2025_3545358 crossref_primary_10_1007_s41095_022_0277_5 crossref_primary_10_1364_OE_531819 crossref_primary_10_1016_j_dsp_2021_103285 crossref_primary_10_1145_3719204 crossref_primary_10_1016_j_jvcir_2024_104288 crossref_primary_10_1016_j_jvcir_2024_104248 crossref_primary_10_1002_cpe_7099 crossref_primary_10_1109_TIP_2023_3263109 crossref_primary_10_1109_TCI_2024_3369414 crossref_primary_10_3390_s22114285 crossref_primary_10_1109_TIP_2023_3244417 crossref_primary_10_1109_TIP_2021_3136623 crossref_primary_10_1109_TNNLS_2021_3070596 crossref_primary_10_1109_TNNLS_2021_3082928 crossref_primary_10_1109_TIP_2021_3049951 crossref_primary_10_1016_j_optcom_2022_129154 crossref_primary_10_1002_dac_5410 crossref_primary_10_1007_s11055_024_01745_0 crossref_primary_10_1109_TNNLS_2023_3244006 crossref_primary_10_1109_TSC_2023_3234623 crossref_primary_10_1109_TPAMI_2021_3138787 crossref_primary_10_1007_s10462_022_10302_5 crossref_primary_10_1007_s00371_023_03147_8 crossref_primary_10_1016_j_eswa_2022_119495 crossref_primary_10_1007_s10489_024_06173_8 crossref_primary_10_31857_S0235009224030027 crossref_primary_10_1007_s11760_023_02659_z crossref_primary_10_1364_OE_506841 crossref_primary_10_1109_TNNLS_2024_3359810 crossref_primary_10_1016_j_dsp_2023_104193 crossref_primary_10_1016_j_patcog_2023_109925 crossref_primary_10_1016_j_ins_2024_121713 crossref_primary_10_1016_j_asej_2024_103188 crossref_primary_10_1109_TGRS_2022_3207828 crossref_primary_10_1109_TPAMI_2024_3457856 crossref_primary_10_1109_TII_2022_3195896 crossref_primary_10_1109_TIP_2020_3048679 crossref_primary_10_1016_j_patrec_2022_11_018 crossref_primary_10_1016_j_tcs_2022_09_035 crossref_primary_10_1007_s11263_022_01621_9 crossref_primary_10_1039_D4NR00105B crossref_primary_10_1002_gamm_202470003 crossref_primary_10_3390_e23121673 crossref_primary_10_1007_s00521_024_09495_3 crossref_primary_10_1109_TGRS_2020_3047479 crossref_primary_10_1016_j_eswa_2023_123005 crossref_primary_10_1016_j_neunet_2023_07_036 crossref_primary_10_1016_j_sysarc_2021_102180 |
| Cites_doi | 10.1145/1276377.1276464 10.1109/TPAMI.2015.2441053 10.1109/CVPR.2017.405 10.1109/CVPR.2009.5206815 10.1109/ICCV.2015.179 10.1109/TPAMI.2010.161 10.1109/ICCV.2017.351 10.1109/ICCV.2017.34 10.1145/2897824.2925875 10.1109/GlobalSIP.2013.6737048 10.1109/ICCV.2017.184 10.1109/ICCV.2017.435 10.1109/TIP.2003.819861 10.1109/ICPR.2018.8545043 10.1109/CVPR.2017.300 10.1561/2400000003 10.1109/CVPR.2017.737 10.1109/CVPR.2005.160 10.1007/978-3-319-66709-6_23 10.1109/CVPR.2015.7299163 10.1109/CVPR.2014.371 10.1109/CVPR.2017.83 10.1109/TNNLS.2018.2862631 10.1109/TPAMI.2016.2596743 10.1109/CVPR.2016.181 10.1109/CVPR.2016.202 10.1109/CVPR.2010.5539844 10.1109/ICCV.2017.491 10.1007/978-3-319-46493-0_34 10.1109/TIP.2018.2875352 10.1137/080724265 10.1109/ICCV.2011.6126278 10.1109/CVPR.2017.408 10.1109/EUSIPCO.2015.7362905 10.1109/ICCPHOT.2016.7492871 10.1109/CVPR.2013.142 10.1109/83.392335 10.1007/s11263-014-0733-5 10.1109/CVPR.2014.349 10.1137/120896219 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1109/TNNLS.2020.2968289 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Materials Research Database PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2162-2388 |
| EndPage | 5482 |
| ExternalDocumentID | 32078566 10_1109_TNNLS_2020_2968289 9000801 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: Chang Jiang Scholars Program of China grantid: 100017GH030150; 15GH0301 – fundername: ARC Discovery Project grantid: DP160100703; DP200103797 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c351t-3b72a436c0511811dd3dc9670979ba9e7ebda34e37c0a8ab3aca382bfb3172ce3 |
| IEDL.DBID | RIE |
| ISSN | 2162-237X 2162-2388 |
| IngestDate | Thu Oct 02 05:43:18 EDT 2025 Sun Jun 29 16:53:01 EDT 2025 Thu Jan 02 23:00:00 EST 2025 Wed Oct 01 00:44:51 EDT 2025 Thu Apr 24 22:50:51 EDT 2025 Wed Aug 27 02:33:58 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c351t-3b72a436c0511811dd3dc9670979ba9e7ebda34e37c0a8ab3aca382bfb3172ce3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-2668-9630 0000-0002-2977-8057 0000-0002-8648-8718 0000-0003-3027-8364 |
| PMID | 32078566 |
| PQID | 2467298308 |
| PQPubID | 85436 |
| PageCount | 15 |
| ParticipantIDs | proquest_miscellaneous_2364045082 proquest_journals_2467298308 crossref_citationtrail_10_1109_TNNLS_2020_2968289 pubmed_primary_32078566 ieee_primary_9000801 crossref_primary_10_1109_TNNLS_2020_2968289 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-12-01 |
| PublicationDateYYYYMMDD | 2020-12-01 |
| PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE transaction on neural networks and learning systems |
| PublicationTitleAbbrev | TNNLS |
| PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref13 ref56 xu (ref10) 2014 ref15 ref14 ref53 heide (ref23) 2016; 35 ref55 ref11 ref54 ref17 krishnan (ref5) 2009 ref16 ravi (ref28) 2017 ref18 kinga (ref43) 2015 chambolle (ref52) 2010; 9 sun (ref44) 2013 ref51 (ref45) 0 ref46 ref48 ref42 gong (ref39) 2017 ref49 ref8 ref7 ref9 ref4 ref3 ref6 wright (ref40) 1999; 35 ioffe (ref41) 2015 ref35 ref34 ref37 ref36 ref31 andrychowicz (ref27) 2016 kobler (ref30) 2017 xu (ref2) 2010 ref33 ref32 ref1 ref38 sun (ref19) 2014 ref24 ref25 ref20 ref22 ref21 ref29 li (ref26) 2016 chakrabarti (ref47) 2016 sun (ref50) 2012 chang (ref12) 2017 |
| References_xml | – start-page: 1790 year: 2014 ident: ref10 article-title: Deep convolutional neural network for image deconvolution publication-title: Proc Adv Neural Inf Process Syst (NIPS) – start-page: 221 year: 2016 ident: ref47 article-title: A neural approach to blind motion deblurring publication-title: Proc Eur Conf Comput Vis (ECCV) – ident: ref4 doi: 10.1145/1276377.1276464 – ident: ref20 doi: 10.1109/TPAMI.2015.2441053 – ident: ref3 doi: 10.1109/CVPR.2017.405 – ident: ref48 doi: 10.1109/CVPR.2009.5206815 – ident: ref29 doi: 10.1109/ICCV.2015.179 – ident: ref51 doi: 10.1109/TPAMI.2010.161 – ident: ref42 doi: 10.1109/ICCV.2017.351 – ident: ref34 doi: 10.1109/ICCV.2017.34 – start-page: 5888 year: 2017 ident: ref12 article-title: One network to solve them all-Solving linear inverse problems using deep projection models publication-title: Proc IEEE Int Conf Comput Vis – volume: 35 start-page: 84 year: 2016 ident: ref23 article-title: Proximal: Efficient image optimization using proximal algorithms publication-title: ACM Trans Graph doi: 10.1145/2897824.2925875 – ident: ref22 doi: 10.1109/GlobalSIP.2013.6737048 – ident: ref55 doi: 10.1109/ICCV.2017.184 – ident: ref35 doi: 10.1109/ICCV.2017.435 – start-page: 1 year: 2012 ident: ref50 article-title: Super-resolution from Internet-scale scene matching publication-title: Proc IEEE Int Conf Comput Photography (ICCP) – ident: ref53 doi: 10.1109/TIP.2003.819861 – ident: ref32 doi: 10.1109/ICPR.2018.8545043 – ident: ref13 doi: 10.1109/CVPR.2017.300 – volume: 9 start-page: 227 year: 2010 ident: ref52 article-title: An introduction to total variation for image analysis publication-title: Theoretical Foundations and Numerical Methods for Sparse Recovery – ident: ref38 doi: 10.1561/2400000003 – ident: ref11 doi: 10.1109/CVPR.2017.737 – ident: ref56 doi: 10.1109/CVPR.2005.160 – start-page: 281 year: 2017 ident: ref30 article-title: Variational networks: Connecting variational methods and deep learning publication-title: Proc German Conf Pattern Recognit doi: 10.1007/978-3-319-66709-6_23 – year: 0 ident: ref45 publication-title: PyTorch – ident: ref21 doi: 10.1109/CVPR.2015.7299163 – ident: ref1 doi: 10.1109/CVPR.2014.371 – ident: ref33 doi: 10.1109/CVPR.2017.83 – year: 2016 ident: ref26 article-title: Learning to optimize publication-title: arXiv 1606 01885 – ident: ref14 doi: 10.1109/TNNLS.2018.2862631 – start-page: 157 year: 2010 ident: ref2 article-title: Two-phase kernel estimation for robust motion deblurring publication-title: Proc Eur Conf Comput Vis (ECCV) – ident: ref49 doi: 10.1109/TPAMI.2016.2596743 – start-page: 448 year: 2015 ident: ref41 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift publication-title: Proc Int Conf Mach Learn (ICML) – start-page: 1 year: 2013 ident: ref44 article-title: Edge-based blur kernel estimation using patch priors publication-title: Proc IEEE Int Conf Comput Photogr (ICCP) – ident: ref36 doi: 10.1109/CVPR.2016.181 – start-page: 1033 year: 2009 ident: ref5 article-title: Fast image deconvolution using hyper-Laplacian priors publication-title: Proc Adv Neural Inf Process Syst (NIPS) – ident: ref54 doi: 10.1109/CVPR.2016.202 – ident: ref16 doi: 10.1109/CVPR.2010.5539844 – ident: ref15 doi: 10.1109/ICCV.2017.491 – ident: ref37 doi: 10.1007/978-3-319-46493-0_34 – ident: ref17 doi: 10.1109/TIP.2018.2875352 – start-page: 3981 year: 2016 ident: ref27 article-title: Learning to learn by gradient descent by gradient descent publication-title: Proc Adv Neural Inf Process Syst (NIPS) – ident: ref6 doi: 10.1137/080724265 – ident: ref7 doi: 10.1109/ICCV.2011.6126278 – ident: ref25 doi: 10.1109/CVPR.2017.408 – year: 2017 ident: ref28 article-title: Optimization as a model for few-shot learning publication-title: Proc Int Conf Learn Represent (ICLR) – ident: ref57 doi: 10.1109/EUSIPCO.2015.7362905 – ident: ref31 doi: 10.1109/ICCPHOT.2016.7492871 – ident: ref9 doi: 10.1109/CVPR.2013.142 – ident: ref24 doi: 10.1109/83.392335 – ident: ref46 doi: 10.1007/s11263-014-0733-5 – ident: ref8 doi: 10.1109/CVPR.2014.349 – ident: ref18 doi: 10.1137/120896219 – volume: 35 start-page: 7 year: 1999 ident: ref40 publication-title: Numerical Optimization – start-page: 231 year: 2014 ident: ref19 article-title: Good image priors for non-blind deconvolution: Generic vs specific publication-title: Proc Eur Conf Comput Vis (ECCV) – start-page: 1 year: 2015 ident: ref43 article-title: A method for stochastic optimization publication-title: Proc Int Conf Learn Represent (ICLR) – start-page: 1934 year: 2017 ident: ref39 article-title: MPGL: An efficient matching pursuit method for generalized lasso publication-title: Proc AAAI |
| SSID | ssj0000605649 |
| Score | 2.6153407 |
| Snippet | As an integral component of blind image deblurring, non-blind deconvolution removes image blur with a given blur kernel, which is essential but difficult due... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 5468 |
| SubjectTerms | Artificial neural networks Benchmarks Blurring Deconvolution Deep gradient descent image deblurring image deconvolution Image restoration Inverse problems Kernel Learning learning to optimize Machine learning Neural networks Noise level Noise levels Optimization Regularization Static models |
| Title | Learning Deep Gradient Descent Optimization for Image Deconvolution |
| URI | https://ieeexplore.ieee.org/document/9000801 https://www.ncbi.nlm.nih.gov/pubmed/32078566 https://www.proquest.com/docview/2467298308 https://www.proquest.com/docview/2364045082 |
| Volume | 31 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2162-2388 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605649 issn: 2162-237X databaseCode: RIE dateStart: 20120101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0BB8SFbYGWUIpSqTfI4thZxz5WlE-V7QGQ9hbF9iwHYBdB9sKv79hxUgnRilsiO4njGXve2DPPAN9zx0pLss2YNSIrfG6PQSwzqxUZK2PRBZKky7E8uykuJqPJEhz0uTCIGILPcOgvw16-m9uFXyo71AHgkK-zXCrZ5mr16ymMcLkMaJfnkmdclJMuR4bpw-vx-NcVeYOcDbmW3stYg1XByT6OAj_iX5MUzlj5N9wMZudkAJddg9tok7vhojFD-_KKy_G9f_QB1iP-TH-0CvMRlnC2AYPubIc0DvVNOIrEq7fpT8TH9PQphIY1dBfon9LfNNU8xBzOlIBvev5AMxMV-zD2qM5bcHNyfH10lsUDFzIrRnmTCVPyuhDSMu935LlzwlntGd5KbWqNJRpXiwJFaVmtaiNqWwvFzdQQCuEWxSdYmc1nuA0pydmpKSopCyxybbUmXeEjq7hwU1KOBPKuzysb2cj9oRj3VfBKmK6CyCovsiqKLIH9_pnHlovjv7U3fX_3NWNXJ7DbibaKw_W54mQuuFaCqQS-9cU00PzuST3D-YLqCFkQ_iXIlMDnViX6d3eatPP2N7_Amm9ZGwWzCyvN0wK_EpZpzF5Q4j_XBux0 |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0hkCgXKKUtodCmUm-QxbGdDx8rWrq0u9tDF2lvUWzP9gDsIshe-PUdO04qVQVxS2QncTxjzxt75hngU2pZYUi2CTNaJNLl9mjEIjGqJGOlDVpPkjSe5MNL-X2WzdbgpM-FQUQffIYDd-n38u3SrNxS2anyAId8nY1MSpm12Vr9igojZJ57vMvTnCdcFLMuS4ap0-lkMvpF_iBnA65y52dswabgZCEzz5D41yj5U1YeB5ze8JzvwLhrchtvcjVYNXpgHv5hc3zuP72E7YBA48-tyuzCGi5ewU53ukMcBvsenAXq1d_xF8Tb-NudDw5r6M4TQMU_abK5CVmcMUHf-OKG5iYqdoHsQaFfw-X51-nZMAlHLiRGZGmTCF3wWorcMOd5pKm1whrlON4KpWuFBWpbC4miMKwuay1qU4uS67kmHMINijewvlgucB9ikrQt51jmuUSZKqMUaQvPTMmFnZN6RJB2fV6ZwEfujsW4rrxfwlTlRVY5kVVBZBEc98_ctmwcT9bec_3d1wxdHcFhJ9oqDNj7ipPB4KoUrIzgY19MQ83tn9QLXK6ojsglIWACTRG8bVWif3enSQf__-YHeDGcjkfV6GLy4x1suVa2MTGHsN7crfCIkE2j33uF_gNhQe_B |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+Deep+Gradient+Descent+Optimization+for+Image+Deconvolution&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Gong%2C+Dong&rft.au=Zhang%2C+Zhen&rft.au=Shi%2C+Qinfeng&rft.au=van+den+Hengel%2C+Anton&rft.date=2020-12-01&rft.eissn=2162-2388&rft_id=info:doi/10.1109%2FTNNLS.2020.2968289&rft_id=info%3Apmid%2F32078566&rft.externalDocID=32078566 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |