Learning Deep Gradient Descent Optimization for Image Deconvolution

As an integral component of blind image deblurring, non-blind deconvolution removes image blur with a given blur kernel, which is essential but difficult due to the ill-posed nature of the inverse problem. The predominant approach is based on optimization subject to regularization functions that are...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 31; no. 12; pp. 5468 - 5482
Main Authors Gong, Dong, Zhang, Zhen, Shi, Qinfeng, van den Hengel, Anton, Shen, Chunhua, Zhang, Yanning
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2162-237X
2162-2388
2162-2388
DOI10.1109/TNNLS.2020.2968289

Cover

Abstract As an integral component of blind image deblurring, non-blind deconvolution removes image blur with a given blur kernel, which is essential but difficult due to the ill-posed nature of the inverse problem. The predominant approach is based on optimization subject to regularization functions that are either manually designed or learned from examples. Existing learning-based methods have shown superior restoration quality but are not practical enough due to their restricted and static model design. They solely focus on learning a prior and require to know the noise level for deconvolution. We address the gap between the optimization- and learning-based approaches by learning a universal gradient descent optimizer. We propose a recurrent gradient descent network (RGDN) by systematically incorporating deep neural networks into a fully parameterized gradient descent scheme. A hyperparameter-free update unit shared across steps is used to generate the updates from the current estimates based on a convolutional neural network. By training on diverse examples, the RGDN learns an implicit image prior and a universal update rule through recursive supervision. The learned optimizer can be repeatedly used to improve the quality of diverse degenerated observations. The proposed method possesses strong interpretability and high generalization. Extensive experiments on synthetic benchmarks and challenging real-world images demonstrate that the proposed deep optimization method is effective and robust to produce favorable results as well as practical for real-world image deblurring applications.
AbstractList As an integral component of blind image deblurring, non-blind deconvolution removes image blur with a given blur kernel, which is essential but difficult due to the ill-posed nature of the inverse problem. The predominant approach is based on optimization subject to regularization functions that are either manually designed or learned from examples. Existing learning-based methods have shown superior restoration quality but are not practical enough due to their restricted and static model design. They solely focus on learning a prior and require to know the noise level for deconvolution. We address the gap between the optimization- and learning-based approaches by learning a universal gradient descent optimizer. We propose a recurrent gradient descent network (RGDN) by systematically incorporating deep neural networks into a fully parameterized gradient descent scheme. A hyperparameter-free update unit shared across steps is used to generate the updates from the current estimates based on a convolutional neural network. By training on diverse examples, the RGDN learns an implicit image prior and a universal update rule through recursive supervision. The learned optimizer can be repeatedly used to improve the quality of diverse degenerated observations. The proposed method possesses strong interpretability and high generalization. Extensive experiments on synthetic benchmarks and challenging real-world images demonstrate that the proposed deep optimization method is effective and robust to produce favorable results as well as practical for real-world image deblurring applications.As an integral component of blind image deblurring, non-blind deconvolution removes image blur with a given blur kernel, which is essential but difficult due to the ill-posed nature of the inverse problem. The predominant approach is based on optimization subject to regularization functions that are either manually designed or learned from examples. Existing learning-based methods have shown superior restoration quality but are not practical enough due to their restricted and static model design. They solely focus on learning a prior and require to know the noise level for deconvolution. We address the gap between the optimization- and learning-based approaches by learning a universal gradient descent optimizer. We propose a recurrent gradient descent network (RGDN) by systematically incorporating deep neural networks into a fully parameterized gradient descent scheme. A hyperparameter-free update unit shared across steps is used to generate the updates from the current estimates based on a convolutional neural network. By training on diverse examples, the RGDN learns an implicit image prior and a universal update rule through recursive supervision. The learned optimizer can be repeatedly used to improve the quality of diverse degenerated observations. The proposed method possesses strong interpretability and high generalization. Extensive experiments on synthetic benchmarks and challenging real-world images demonstrate that the proposed deep optimization method is effective and robust to produce favorable results as well as practical for real-world image deblurring applications.
As an integral component of blind image deblurring, non-blind deconvolution removes image blur with a given blur kernel, which is essential but difficult due to the ill-posed nature of the inverse problem. The predominant approach is based on optimization subject to regularization functions that are either manually designed or learned from examples. Existing learning-based methods have shown superior restoration quality but are not practical enough due to their restricted and static model design. They solely focus on learning a prior and require to know the noise level for deconvolution. We address the gap between the optimization- and learning-based approaches by learning a universal gradient descent optimizer. We propose a recurrent gradient descent network (RGDN) by systematically incorporating deep neural networks into a fully parameterized gradient descent scheme. A hyperparameter-free update unit shared across steps is used to generate the updates from the current estimates based on a convolutional neural network. By training on diverse examples, the RGDN learns an implicit image prior and a universal update rule through recursive supervision. The learned optimizer can be repeatedly used to improve the quality of diverse degenerated observations. The proposed method possesses strong interpretability and high generalization. Extensive experiments on synthetic benchmarks and challenging real-world images demonstrate that the proposed deep optimization method is effective and robust to produce favorable results as well as practical for real-world image deblurring applications.
Author Shen, Chunhua
Shi, Qinfeng
Zhang, Yanning
Zhang, Zhen
van den Hengel, Anton
Gong, Dong
Author_xml – sequence: 1
  givenname: Dong
  orcidid: 0000-0002-2668-9630
  surname: Gong
  fullname: Gong, Dong
  email: edgong01@gmail.com
  organization: School of Computer Science and Engineering, Northwestern Polytechnical University, Xi'an, China
– sequence: 2
  givenname: Zhen
  surname: Zhang
  fullname: Zhang, Zhen
  email: zhangz@comp.nus.edu.sg
  organization: Department of Computer Science, National University of Singapore, Singapore
– sequence: 3
  givenname: Qinfeng
  surname: Shi
  fullname: Shi, Qinfeng
  email: javen.shi@adelaide.edu.au
  organization: Australian Institute for Machine Learning (AIML), The University of Adelaide, Adelaide, SA, Australia
– sequence: 4
  givenname: Anton
  orcidid: 0000-0003-3027-8364
  surname: van den Hengel
  fullname: van den Hengel, Anton
  email: anton.vandenhengel@adelaide.edu.au
  organization: Australian Institute for Machine Learning (AIML), The University of Adelaide, Adelaide, SA, Australia
– sequence: 5
  givenname: Chunhua
  orcidid: 0000-0002-8648-8718
  surname: Shen
  fullname: Shen, Chunhua
  email: chunhua.shen@adelaide.edu.au
  organization: Australian Institute for Machine Learning (AIML), The University of Adelaide, Adelaide, SA, Australia
– sequence: 6
  givenname: Yanning
  orcidid: 0000-0002-2977-8057
  surname: Zhang
  fullname: Zhang, Yanning
  email: ynzhang@nwpu.edu.cn
  organization: School of Computer Science and Engineering, Northwestern Polytechnical University, Xi'an, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32078566$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtLAzEQx4MoPmq_gIIUvHhpzWM3j6NUrYWiByt4C9nsVCK7Sc3uCvrpTV8ePJjLZGZ-_2GY_wna98EDQmcEjwjB6nr--Dh7HlFM8YgqLqlUe-iYEk6HlEm5__sXr0eo3zTvOD2Oc56pQ3TEKBYy5_wYjWdgonf-bXALsBxMoikd-DZljV3Fp2XravdtWhf8YBHiYFqbN0htG_xnqLpV_RQdLEzVQH8be-jl_m4-fhjOnibT8c1saFlO2iErBDUZ4xbnhEhCypKVVnGBlVCFUSCgKA3LgAmLjTQFM9YwSYtFwYigFlgPXW3mLmP46KBpde3SllVlPISu0ZTxDGc5ljShl3_Q99BFn7bTNOOCKsmwTNTFluqKGkq9jK428UvvzpMAuQFsDE0TYaGta9e3aKNxlSZYr8zQazP0ygy9NSNJ6R_pbvq_ovONyAHAr0Al6yQm7AccrZO5
CODEN ITNNAL
CitedBy_id crossref_primary_10_1109_TGRS_2024_3426094
crossref_primary_10_1109_TCI_2022_3226947
crossref_primary_10_1109_TIM_2023_3304676
crossref_primary_10_1016_j_dsp_2023_103912
crossref_primary_10_1007_s11263_022_01633_5
crossref_primary_10_1016_j_sigpro_2025_109910
crossref_primary_10_1109_TGCN_2024_3386172
crossref_primary_10_1109_TMM_2020_3013383
crossref_primary_10_1109_ACCESS_2021_3129602
crossref_primary_10_1109_TCI_2022_3209939
crossref_primary_10_1117_1_JRS_14_036506
crossref_primary_10_1109_ACCESS_2020_3018446
crossref_primary_10_1016_j_oceaneng_2024_118901
crossref_primary_10_1109_TCI_2025_3545358
crossref_primary_10_1007_s41095_022_0277_5
crossref_primary_10_1364_OE_531819
crossref_primary_10_1016_j_dsp_2021_103285
crossref_primary_10_1145_3719204
crossref_primary_10_1016_j_jvcir_2024_104288
crossref_primary_10_1016_j_jvcir_2024_104248
crossref_primary_10_1002_cpe_7099
crossref_primary_10_1109_TIP_2023_3263109
crossref_primary_10_1109_TCI_2024_3369414
crossref_primary_10_3390_s22114285
crossref_primary_10_1109_TIP_2023_3244417
crossref_primary_10_1109_TIP_2021_3136623
crossref_primary_10_1109_TNNLS_2021_3070596
crossref_primary_10_1109_TNNLS_2021_3082928
crossref_primary_10_1109_TIP_2021_3049951
crossref_primary_10_1016_j_optcom_2022_129154
crossref_primary_10_1002_dac_5410
crossref_primary_10_1007_s11055_024_01745_0
crossref_primary_10_1109_TNNLS_2023_3244006
crossref_primary_10_1109_TSC_2023_3234623
crossref_primary_10_1109_TPAMI_2021_3138787
crossref_primary_10_1007_s10462_022_10302_5
crossref_primary_10_1007_s00371_023_03147_8
crossref_primary_10_1016_j_eswa_2022_119495
crossref_primary_10_1007_s10489_024_06173_8
crossref_primary_10_31857_S0235009224030027
crossref_primary_10_1007_s11760_023_02659_z
crossref_primary_10_1364_OE_506841
crossref_primary_10_1109_TNNLS_2024_3359810
crossref_primary_10_1016_j_dsp_2023_104193
crossref_primary_10_1016_j_patcog_2023_109925
crossref_primary_10_1016_j_ins_2024_121713
crossref_primary_10_1016_j_asej_2024_103188
crossref_primary_10_1109_TGRS_2022_3207828
crossref_primary_10_1109_TPAMI_2024_3457856
crossref_primary_10_1109_TII_2022_3195896
crossref_primary_10_1109_TIP_2020_3048679
crossref_primary_10_1016_j_patrec_2022_11_018
crossref_primary_10_1016_j_tcs_2022_09_035
crossref_primary_10_1007_s11263_022_01621_9
crossref_primary_10_1039_D4NR00105B
crossref_primary_10_1002_gamm_202470003
crossref_primary_10_3390_e23121673
crossref_primary_10_1007_s00521_024_09495_3
crossref_primary_10_1109_TGRS_2020_3047479
crossref_primary_10_1016_j_eswa_2023_123005
crossref_primary_10_1016_j_neunet_2023_07_036
crossref_primary_10_1016_j_sysarc_2021_102180
Cites_doi 10.1145/1276377.1276464
10.1109/TPAMI.2015.2441053
10.1109/CVPR.2017.405
10.1109/CVPR.2009.5206815
10.1109/ICCV.2015.179
10.1109/TPAMI.2010.161
10.1109/ICCV.2017.351
10.1109/ICCV.2017.34
10.1145/2897824.2925875
10.1109/GlobalSIP.2013.6737048
10.1109/ICCV.2017.184
10.1109/ICCV.2017.435
10.1109/TIP.2003.819861
10.1109/ICPR.2018.8545043
10.1109/CVPR.2017.300
10.1561/2400000003
10.1109/CVPR.2017.737
10.1109/CVPR.2005.160
10.1007/978-3-319-66709-6_23
10.1109/CVPR.2015.7299163
10.1109/CVPR.2014.371
10.1109/CVPR.2017.83
10.1109/TNNLS.2018.2862631
10.1109/TPAMI.2016.2596743
10.1109/CVPR.2016.181
10.1109/CVPR.2016.202
10.1109/CVPR.2010.5539844
10.1109/ICCV.2017.491
10.1007/978-3-319-46493-0_34
10.1109/TIP.2018.2875352
10.1137/080724265
10.1109/ICCV.2011.6126278
10.1109/CVPR.2017.408
10.1109/EUSIPCO.2015.7362905
10.1109/ICCPHOT.2016.7492871
10.1109/CVPR.2013.142
10.1109/83.392335
10.1007/s11263-014-0733-5
10.1109/CVPR.2014.349
10.1137/120896219
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2020.2968289
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Materials Research Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 5482
ExternalDocumentID 32078566
10_1109_TNNLS_2020_2968289
9000801
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Chang Jiang Scholars Program of China
  grantid: 100017GH030150; 15GH0301
– fundername: ARC Discovery Project
  grantid: DP160100703; DP200103797
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-3b72a436c0511811dd3dc9670979ba9e7ebda34e37c0a8ab3aca382bfb3172ce3
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Thu Oct 02 05:43:18 EDT 2025
Sun Jun 29 16:53:01 EDT 2025
Thu Jan 02 23:00:00 EST 2025
Wed Oct 01 00:44:51 EDT 2025
Thu Apr 24 22:50:51 EDT 2025
Wed Aug 27 02:33:58 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-3b72a436c0511811dd3dc9670979ba9e7ebda34e37c0a8ab3aca382bfb3172ce3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2668-9630
0000-0002-2977-8057
0000-0002-8648-8718
0000-0003-3027-8364
PMID 32078566
PQID 2467298308
PQPubID 85436
PageCount 15
ParticipantIDs proquest_miscellaneous_2364045082
proquest_journals_2467298308
crossref_citationtrail_10_1109_TNNLS_2020_2968289
pubmed_primary_32078566
ieee_primary_9000801
crossref_primary_10_1109_TNNLS_2020_2968289
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
xu (ref10) 2014
ref15
ref14
ref53
heide (ref23) 2016; 35
ref55
ref11
ref54
ref17
krishnan (ref5) 2009
ref16
ravi (ref28) 2017
ref18
kinga (ref43) 2015
chambolle (ref52) 2010; 9
sun (ref44) 2013
ref51
(ref45) 0
ref46
ref48
ref42
gong (ref39) 2017
ref49
ref8
ref7
ref9
ref4
ref3
ref6
wright (ref40) 1999; 35
ioffe (ref41) 2015
ref35
ref34
ref37
ref36
ref31
andrychowicz (ref27) 2016
kobler (ref30) 2017
xu (ref2) 2010
ref33
ref32
ref1
ref38
sun (ref19) 2014
ref24
ref25
ref20
ref22
ref21
ref29
li (ref26) 2016
chakrabarti (ref47) 2016
sun (ref50) 2012
chang (ref12) 2017
References_xml – start-page: 1790
  year: 2014
  ident: ref10
  article-title: Deep convolutional neural network for image deconvolution
  publication-title: Proc Adv Neural Inf Process Syst (NIPS)
– start-page: 221
  year: 2016
  ident: ref47
  article-title: A neural approach to blind motion deblurring
  publication-title: Proc Eur Conf Comput Vis (ECCV)
– ident: ref4
  doi: 10.1145/1276377.1276464
– ident: ref20
  doi: 10.1109/TPAMI.2015.2441053
– ident: ref3
  doi: 10.1109/CVPR.2017.405
– ident: ref48
  doi: 10.1109/CVPR.2009.5206815
– ident: ref29
  doi: 10.1109/ICCV.2015.179
– ident: ref51
  doi: 10.1109/TPAMI.2010.161
– ident: ref42
  doi: 10.1109/ICCV.2017.351
– ident: ref34
  doi: 10.1109/ICCV.2017.34
– start-page: 5888
  year: 2017
  ident: ref12
  article-title: One network to solve them all-Solving linear inverse problems using deep projection models
  publication-title: Proc IEEE Int Conf Comput Vis
– volume: 35
  start-page: 84
  year: 2016
  ident: ref23
  article-title: Proximal: Efficient image optimization using proximal algorithms
  publication-title: ACM Trans Graph
  doi: 10.1145/2897824.2925875
– ident: ref22
  doi: 10.1109/GlobalSIP.2013.6737048
– ident: ref55
  doi: 10.1109/ICCV.2017.184
– ident: ref35
  doi: 10.1109/ICCV.2017.435
– start-page: 1
  year: 2012
  ident: ref50
  article-title: Super-resolution from Internet-scale scene matching
  publication-title: Proc IEEE Int Conf Comput Photography (ICCP)
– ident: ref53
  doi: 10.1109/TIP.2003.819861
– ident: ref32
  doi: 10.1109/ICPR.2018.8545043
– ident: ref13
  doi: 10.1109/CVPR.2017.300
– volume: 9
  start-page: 227
  year: 2010
  ident: ref52
  article-title: An introduction to total variation for image analysis
  publication-title: Theoretical Foundations and Numerical Methods for Sparse Recovery
– ident: ref38
  doi: 10.1561/2400000003
– ident: ref11
  doi: 10.1109/CVPR.2017.737
– ident: ref56
  doi: 10.1109/CVPR.2005.160
– start-page: 281
  year: 2017
  ident: ref30
  article-title: Variational networks: Connecting variational methods and deep learning
  publication-title: Proc German Conf Pattern Recognit
  doi: 10.1007/978-3-319-66709-6_23
– year: 0
  ident: ref45
  publication-title: PyTorch
– ident: ref21
  doi: 10.1109/CVPR.2015.7299163
– ident: ref1
  doi: 10.1109/CVPR.2014.371
– ident: ref33
  doi: 10.1109/CVPR.2017.83
– year: 2016
  ident: ref26
  article-title: Learning to optimize
  publication-title: arXiv 1606 01885
– ident: ref14
  doi: 10.1109/TNNLS.2018.2862631
– start-page: 157
  year: 2010
  ident: ref2
  article-title: Two-phase kernel estimation for robust motion deblurring
  publication-title: Proc Eur Conf Comput Vis (ECCV)
– ident: ref49
  doi: 10.1109/TPAMI.2016.2596743
– start-page: 448
  year: 2015
  ident: ref41
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: Proc Int Conf Mach Learn (ICML)
– start-page: 1
  year: 2013
  ident: ref44
  article-title: Edge-based blur kernel estimation using patch priors
  publication-title: Proc IEEE Int Conf Comput Photogr (ICCP)
– ident: ref36
  doi: 10.1109/CVPR.2016.181
– start-page: 1033
  year: 2009
  ident: ref5
  article-title: Fast image deconvolution using hyper-Laplacian priors
  publication-title: Proc Adv Neural Inf Process Syst (NIPS)
– ident: ref54
  doi: 10.1109/CVPR.2016.202
– ident: ref16
  doi: 10.1109/CVPR.2010.5539844
– ident: ref15
  doi: 10.1109/ICCV.2017.491
– ident: ref37
  doi: 10.1007/978-3-319-46493-0_34
– ident: ref17
  doi: 10.1109/TIP.2018.2875352
– start-page: 3981
  year: 2016
  ident: ref27
  article-title: Learning to learn by gradient descent by gradient descent
  publication-title: Proc Adv Neural Inf Process Syst (NIPS)
– ident: ref6
  doi: 10.1137/080724265
– ident: ref7
  doi: 10.1109/ICCV.2011.6126278
– ident: ref25
  doi: 10.1109/CVPR.2017.408
– year: 2017
  ident: ref28
  article-title: Optimization as a model for few-shot learning
  publication-title: Proc Int Conf Learn Represent (ICLR)
– ident: ref57
  doi: 10.1109/EUSIPCO.2015.7362905
– ident: ref31
  doi: 10.1109/ICCPHOT.2016.7492871
– ident: ref9
  doi: 10.1109/CVPR.2013.142
– ident: ref24
  doi: 10.1109/83.392335
– ident: ref46
  doi: 10.1007/s11263-014-0733-5
– ident: ref8
  doi: 10.1109/CVPR.2014.349
– ident: ref18
  doi: 10.1137/120896219
– volume: 35
  start-page: 7
  year: 1999
  ident: ref40
  publication-title: Numerical Optimization
– start-page: 231
  year: 2014
  ident: ref19
  article-title: Good image priors for non-blind deconvolution: Generic vs specific
  publication-title: Proc Eur Conf Comput Vis (ECCV)
– start-page: 1
  year: 2015
  ident: ref43
  article-title: A method for stochastic optimization
  publication-title: Proc Int Conf Learn Represent (ICLR)
– start-page: 1934
  year: 2017
  ident: ref39
  article-title: MPGL: An efficient matching pursuit method for generalized lasso
  publication-title: Proc AAAI
SSID ssj0000605649
Score 2.6153407
Snippet As an integral component of blind image deblurring, non-blind deconvolution removes image blur with a given blur kernel, which is essential but difficult due...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5468
SubjectTerms Artificial neural networks
Benchmarks
Blurring
Deconvolution
Deep gradient descent
image deblurring
image deconvolution
Image restoration
Inverse problems
Kernel
Learning
learning to optimize
Machine learning
Neural networks
Noise level
Noise levels
Optimization
Regularization
Static models
Title Learning Deep Gradient Descent Optimization for Image Deconvolution
URI https://ieeexplore.ieee.org/document/9000801
https://www.ncbi.nlm.nih.gov/pubmed/32078566
https://www.proquest.com/docview/2467298308
https://www.proquest.com/docview/2364045082
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0BB8SFbYGWUIpSqTfI4thZxz5WlE-V7QGQ9hbF9iwHYBdB9sKv79hxUgnRilsiO4njGXve2DPPAN9zx0pLss2YNSIrfG6PQSwzqxUZK2PRBZKky7E8uykuJqPJEhz0uTCIGILPcOgvw16-m9uFXyo71AHgkK-zXCrZ5mr16ymMcLkMaJfnkmdclJMuR4bpw-vx-NcVeYOcDbmW3stYg1XByT6OAj_iX5MUzlj5N9wMZudkAJddg9tok7vhojFD-_KKy_G9f_QB1iP-TH-0CvMRlnC2AYPubIc0DvVNOIrEq7fpT8TH9PQphIY1dBfon9LfNNU8xBzOlIBvev5AMxMV-zD2qM5bcHNyfH10lsUDFzIrRnmTCVPyuhDSMu935LlzwlntGd5KbWqNJRpXiwJFaVmtaiNqWwvFzdQQCuEWxSdYmc1nuA0pydmpKSopCyxybbUmXeEjq7hwU1KOBPKuzysb2cj9oRj3VfBKmK6CyCovsiqKLIH9_pnHlovjv7U3fX_3NWNXJ7DbibaKw_W54mQuuFaCqQS-9cU00PzuST3D-YLqCFkQ_iXIlMDnViX6d3eatPP2N7_Amm9ZGwWzCyvN0wK_EpZpzF5Q4j_XBux0
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0hkCgXKKUtodCmUm-QxbGdDx8rWrq0u9tDF2lvUWzP9gDsIshe-PUdO04qVQVxS2QncTxjzxt75hngU2pZYUi2CTNaJNLl9mjEIjGqJGOlDVpPkjSe5MNL-X2WzdbgpM-FQUQffIYDd-n38u3SrNxS2anyAId8nY1MSpm12Vr9igojZJ57vMvTnCdcFLMuS4ap0-lkMvpF_iBnA65y52dswabgZCEzz5D41yj5U1YeB5ze8JzvwLhrchtvcjVYNXpgHv5hc3zuP72E7YBA48-tyuzCGi5ewU53ukMcBvsenAXq1d_xF8Tb-NudDw5r6M4TQMU_abK5CVmcMUHf-OKG5iYqdoHsQaFfw-X51-nZMAlHLiRGZGmTCF3wWorcMOd5pKm1whrlON4KpWuFBWpbC4miMKwuay1qU4uS67kmHMINijewvlgucB9ikrQt51jmuUSZKqMUaQvPTMmFnZN6RJB2fV6ZwEfujsW4rrxfwlTlRVY5kVVBZBEc98_ctmwcT9bec_3d1wxdHcFhJ9oqDNj7ipPB4KoUrIzgY19MQ83tn9QLXK6ojsglIWACTRG8bVWif3enSQf__-YHeDGcjkfV6GLy4x1suVa2MTGHsN7crfCIkE2j33uF_gNhQe_B
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+Deep+Gradient+Descent+Optimization+for+Image+Deconvolution&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Gong%2C+Dong&rft.au=Zhang%2C+Zhen&rft.au=Shi%2C+Qinfeng&rft.au=van+den+Hengel%2C+Anton&rft.date=2020-12-01&rft.eissn=2162-2388&rft_id=info:doi/10.1109%2FTNNLS.2020.2968289&rft_id=info%3Apmid%2F32078566&rft.externalDocID=32078566
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon