MadGraph 5: going beyond
M ad G raph 5 is the new version of the M ad G raph matrix element generator, written in the Python programming language. It implements a number of new, efficient algorithms that provide improved performance and functionality in all aspects of the program. It features a new user interface, several n...
Saved in:
| Published in | The journal of high energy physics Vol. 2011; no. 6 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer-Verlag
01.06.2011
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1029-8479 1126-6708 1127-2236 1029-8479 |
| DOI | 10.1007/JHEP06(2011)128 |
Cover
| Abstract | M
ad
G
raph
5 is the new version of the M
ad
G
raph
matrix element generator, written in the Python programming language. It implements a number of new, efficient algorithms that provide improved performance and functionality in all aspects of the program. It features a new user interface, several new output formats including C++ process libraries for P
ythia
8, and full compatibility with F
eyn
R
ules
for new physics models implementation, allowing for event generation for any model that can be written in the form of a Lagrangian. M
ad
G
raph
5 builds on the same philosophy as the previous versions, and its design allows it to be used as a collaborative platform where theoretical, phenomenological and simulation projects can be developed and then distributed to the high-energy community. We describe the ideas and the most important developments of the code and illustrate its capabilities through a few simple phenomenological examples. |
|---|---|
| AbstractList | M
ad
G
raph
5 is the new version of the M
ad
G
raph
matrix element generator, written in the Python programming language. It implements a number of new, efficient algorithms that provide improved performance and functionality in all aspects of the program. It features a new user interface, several new output formats including C++ process libraries for P
ythia
8, and full compatibility with F
eyn
R
ules
for new physics models implementation, allowing for event generation for any model that can be written in the form of a Lagrangian. M
ad
G
raph
5 builds on the same philosophy as the previous versions, and its design allows it to be used as a collaborative platform where theoretical, phenomenological and simulation projects can be developed and then distributed to the high-energy community. We describe the ideas and the most important developments of the code and illustrate its capabilities through a few simple phenomenological examples. MadGraph 5 is the new version of the MadGraph matrix element generator, written in the Python programming language. It implements a number of new, efficient algorithms that provide improved performance and functionality in all aspects of the program. It features a new user interface, several new output formats including C++ process libraries for Pythia 8, and full compatibility with FeynRules for new physics models implementation, allowing for event generation for any model that can be written in the form of a Lagrangian. MadGraph 5 builds on the same philosophy as the previous versions, and its design allows it to be used as a collaborative platform where theoretical, phenomenological and simulation projects can be developed and then distributed to the high-energy community. We describe the ideas and the most important developments of the code and illustrate its capabilities through a few simple phenomenological examples. |
| ArticleNumber | 128 |
| Author | Mattelaer, Olivier Alwall, Johan Herquet, Michel Maltoni, Fabio Stelzer, Tim |
| Author_xml | – sequence: 1 givenname: Johan surname: Alwall fullname: Alwall, Johan organization: Theoretical Physics Department, Fermi National Accelerator Laboratory – sequence: 2 givenname: Michel surname: Herquet fullname: Herquet, Michel organization: Nikhef Theory Group – sequence: 3 givenname: Fabio surname: Maltoni fullname: Maltoni, Fabio organization: Centre for Cosmology, Particle Physics and Phenomenology (CP3), Université Catholique de Louvain – sequence: 4 givenname: Olivier surname: Mattelaer fullname: Mattelaer, Olivier organization: Centre for Cosmology, Particle Physics and Phenomenology (CP3), Université Catholique de Louvain – sequence: 5 givenname: Tim surname: Stelzer fullname: Stelzer, Tim organization: Department of Physics, University of Illinois at Urbana-Champaign |
| BookMark | eNp1kDFPwzAQhS1UJNrCDGMlFhhC75w4sdlQVVpQEQwwW05it6mCE-xUqP-eVKkAFTHdDe97994NSM9WVhNyjnCDAMn4cT59gfiKAuI1Un5E-ghUBDxKRO_XfkIG3q8BkKGAPrl4UvnMqXo1YrejZVXY5SjV28rmp-TYqNLrs_0ckrf76etkHiyeZw-Tu0WQhQybIAyBKcpMliihsjjTwiDGCXLDmTYp0zmLOUUTCZVyHUUYp4kwwIXOQUWahkMCne_G1mr7qcpS1q54V24rEeSumVyvdA2x3DWTbbMWueyQ2lUfG-0bua42zrYpJQ0Fp1F7ZmfMOlXmKu-dNjIrGtUUlW2cKspv9-5vv93HB9xhnr_EvoJvlXap3U-e_5AvOA18HA |
| CitedBy_id | crossref_primary_10_1103_PhysRevD_87_055006 crossref_primary_10_1103_PhysRevD_102_123020 crossref_primary_10_1103_PhysRevD_109_114036 crossref_primary_10_1103_PhysRevD_109_093003 crossref_primary_10_1140_epjc_s10052_014_3060_7 crossref_primary_10_1007_JHEP07_2017_012 crossref_primary_10_1103_PhysRevD_106_032015 crossref_primary_10_1007_s12043_017_1451_7 crossref_primary_10_1140_epjc_s10052_018_5963_1 crossref_primary_10_1016_j_nuclphysbps_2013_10_075 crossref_primary_10_1007_JHEP04_2013_151 crossref_primary_10_1103_PhysRevD_93_115004 crossref_primary_10_1007_JHEP12_2013_039 crossref_primary_10_1088_1742_6596_368_1_012058 crossref_primary_10_1103_PhysRevD_86_093010 crossref_primary_10_1007_JHEP02_2017_028 crossref_primary_10_1007_JHEP11_2012_154 crossref_primary_10_1016_j_ppnp_2017_04_001 crossref_primary_10_1103_PhysRevD_105_115001 crossref_primary_10_1103_PhysRevD_91_052018 crossref_primary_10_1007_JHEP08_2013_091 crossref_primary_10_1103_PhysRevD_111_015002 crossref_primary_10_1103_PhysRevD_93_013001 crossref_primary_10_1103_PhysRevLett_114_141802 crossref_primary_10_1103_PhysRevD_100_015009 crossref_primary_10_1103_PhysRevD_92_014033 crossref_primary_10_1103_PhysRevD_93_115032 crossref_primary_10_1103_PhysRevD_93_115035 crossref_primary_10_1140_epjc_s10052_016_4349_5 crossref_primary_10_1140_epjc_s10052_013_2455_1 crossref_primary_10_1140_epjc_s10052_022_10805_z crossref_primary_10_1016_j_nuclphysb_2012_01_018 crossref_primary_10_1016_j_nuclphysbps_2015_04_015 crossref_primary_10_1088_1361_6471_aa5f7a crossref_primary_10_1016_j_cpc_2015_09_011 crossref_primary_10_1103_PhysRevD_100_015016 crossref_primary_10_1103_PhysRevD_91_052008 crossref_primary_10_1103_PhysRevD_105_115012 crossref_primary_10_1103_PhysRevD_105_115011 crossref_primary_10_1007_JHEP05_2014_033 crossref_primary_10_1103_PhysRevD_85_094027 crossref_primary_10_1007_JHEP08_2013_085 crossref_primary_10_1103_PhysRevD_111_015035 crossref_primary_10_1103_PhysRevD_93_115029 crossref_primary_10_1007_JHEP08_2013_084 crossref_primary_10_1007_JHEP08_2013_087 crossref_primary_10_1103_PhysRevD_93_013019 crossref_primary_10_1140_epjc_s10052_014_3203_x crossref_primary_10_1140_epjc_s10052_015_3459_9 crossref_primary_10_1140_epjc_s10052_020_8316_9 crossref_primary_10_1142_S0217751X14300610 crossref_primary_10_1007_JHEP10_2012_091 crossref_primary_10_1103_PhysRevD_100_015021 crossref_primary_10_1103_PhysRevD_105_115021 crossref_primary_10_1007_JHEP08_2019_163 crossref_primary_10_1007_JHEP03_2013_079 crossref_primary_10_1103_PhysRevD_111_015023 crossref_primary_10_1088_1748_0221_12_04_P04014 crossref_primary_10_1007_JHEP08_2013_072 crossref_primary_10_1007_JHEP03_2020_025 crossref_primary_10_1103_PhysRevD_93_013021 crossref_primary_10_1007_JHEP08_2013_058 crossref_primary_10_1088_1748_0221_18_10_P10033 crossref_primary_10_1007_JHEP05_2014_062 crossref_primary_10_1142_S0217751X17501068 crossref_primary_10_1088_0253_6102_61_3_14 crossref_primary_10_1140_epjc_s10052_022_11100_7 crossref_primary_10_1007_JHEP02_2017_079 crossref_primary_10_1016_j_aop_2013_04_016 crossref_primary_10_1007_JHEP04_2013_117 crossref_primary_10_1103_PhysRevD_100_015033 crossref_primary_10_1103_PhysRevD_86_036011 crossref_primary_10_1103_PhysRevD_103_L051703 crossref_primary_10_1007_JHEP04_2020_165 crossref_primary_10_1016_j_dark_2019_100371 crossref_primary_10_1007_JHEP04_2013_110 crossref_primary_10_1140_epjst_e2020_900267_5 crossref_primary_10_1103_PhysRevD_85_115023 crossref_primary_10_1007_JHEP06_2014_120 crossref_primary_10_1103_PhysRevD_86_117504 crossref_primary_10_1142_S0217751X22502244 crossref_primary_10_1103_PhysRevD_109_036026 crossref_primary_10_1103_PhysRevD_103_015022 crossref_primary_10_1007_JHEP12_2019_120 crossref_primary_10_1007_JHEP12_2013_077 crossref_primary_10_1007_JHEP12_2013_075 crossref_primary_10_1007_JHEP05_2014_066 crossref_primary_10_1007_JHEP04_2013_108 crossref_primary_10_1088_1475_7516_2015_07_023 crossref_primary_10_1134_S1547477121040051 crossref_primary_10_1103_PhysRevD_92_014015 crossref_primary_10_1140_epjc_s10052_016_4099_4 crossref_primary_10_1007_JHEP05_2014_083 crossref_primary_10_1103_PhysRevD_89_093022 crossref_primary_10_1007_JHEP02_2017_057 crossref_primary_10_1007_JHEP05_2014_086 crossref_primary_10_1103_PhysRevD_108_115028 crossref_primary_10_1140_epjc_s10052_018_5549_y crossref_primary_10_1007_JHEP07_2019_041 crossref_primary_10_21468_SciPostPhys_16_5_130 crossref_primary_10_1007_JHEP05_2024_292 crossref_primary_10_1007_JHEP12_2024_098 crossref_primary_10_1103_PhysRevD_89_093019 crossref_primary_10_1103_PhysRevD_92_014021 crossref_primary_10_1007_JHEP06_2016_177 crossref_primary_10_1103_PhysRevD_98_035003 crossref_primary_10_1007_JHEP11_2012_147 crossref_primary_10_1088_1475_7516_2013_04_050 crossref_primary_10_1140_epjc_s10052_013_2677_2 crossref_primary_10_1103_PhysRevD_95_075021 crossref_primary_10_1140_epjp_s13360_023_04088_w crossref_primary_10_1007_JHEP05_2014_092 crossref_primary_10_1016_j_nuclphysbps_2014_09_043 crossref_primary_10_1103_PhysRevD_98_035011 crossref_primary_10_1007_JHEP11_2012_134 crossref_primary_10_1103_PhysRevD_89_093006 crossref_primary_10_1007_JHEP08_2020_067 crossref_primary_10_1016_j_nuclphysb_2012_10_012 crossref_primary_10_1051_epjconf_20136014002 crossref_primary_10_1103_PhysRevD_92_091501 crossref_primary_10_1007_JHEP04_2022_129 crossref_primary_10_1142_S0217732318500396 crossref_primary_10_1007_JHEP04_2015_172 crossref_primary_10_1103_PhysRevD_88_112009 crossref_primary_10_1103_PhysRevD_91_015008 crossref_primary_10_1007_JHEP01_2014_168 crossref_primary_10_1103_PhysRevD_91_015009 crossref_primary_10_1007_JHEP09_2015_156 crossref_primary_10_1007_JHEP01_2014_163 crossref_primary_10_1103_PhysRevD_101_095024 crossref_primary_10_1103_PhysRevLett_108_261803 crossref_primary_10_1007_JHEP05_2014_098 crossref_primary_10_1007_JHEP03_2013_026 crossref_primary_10_1103_PhysRevD_87_075006 crossref_primary_10_1140_epjc_s10052_015_3709_x crossref_primary_10_1016_j_physletb_2014_11_059 crossref_primary_10_1103_PhysRevD_87_035006 crossref_primary_10_3389_fphy_2019_00090 crossref_primary_10_1016_j_physletb_2012_03_050 crossref_primary_10_1103_PhysRevD_87_035005 crossref_primary_10_1103_PhysRevD_87_035008 crossref_primary_10_1103_PhysRevD_87_035007 crossref_primary_10_1103_PhysRevD_91_015017 crossref_primary_10_1007_JHEP01_2016_102 crossref_primary_10_21468_SciPostPhys_10_6_151 crossref_primary_10_1103_PhysRevLett_133_221601 crossref_primary_10_1007_JHEP01_2014_158 crossref_primary_10_1016_j_physletb_2012_10_021 crossref_primary_10_1007_JHEP01_2014_151 crossref_primary_10_1103_PhysRevD_101_095033 crossref_primary_10_1038_ncomms5308 crossref_primary_10_1007_JHEP03_2013_015 crossref_primary_10_1088_1742_6596_623_1_012010 crossref_primary_10_1103_PhysRevD_84_095026 crossref_primary_10_1103_PhysRevD_95_095022 crossref_primary_10_3389_fphy_2019_00080 crossref_primary_10_1016_j_cpc_2014_03_023 crossref_primary_10_1103_PhysRevLett_111_062003 crossref_primary_10_1007_JHEP10_2012_018 crossref_primary_10_1007_JHEP01_2016_111 crossref_primary_10_1007_JHEP10_2012_016 crossref_primary_10_1007_JHEP12_2021_209 crossref_primary_10_1103_PhysRevD_101_095002 crossref_primary_10_1007_JHEP01_2014_140 crossref_primary_10_1007_s10773_024_05732_6 crossref_primary_10_1007_JHEP04_2015_148 crossref_primary_10_1103_PhysRevD_103_015019 crossref_primary_10_1007_JHEP03_2013_004 crossref_primary_10_1007_JHEP02_2023_237 crossref_primary_10_1007_JHEP06_2014_125 crossref_primary_10_1007_JHEP06_2014_126 crossref_primary_10_1155_2015_840780 crossref_primary_10_1016_j_physletb_2014_11_035 crossref_primary_10_1103_PhysRevD_93_033003 crossref_primary_10_1007_JHEP10_2012_008 crossref_primary_10_1103_PhysRevD_88_054021 crossref_primary_10_1007_JHEP10_2012_004 crossref_primary_10_1016_j_physrep_2024_12_002 crossref_primary_10_1007_JHEP01_2016_120 crossref_primary_10_1007_JHEP11_2021_112 crossref_primary_10_1007_JHEP11_2021_113 crossref_primary_10_1103_PhysRevD_91_015002 crossref_primary_10_1134_S1063779624700102 crossref_primary_10_1103_PhysRevLett_111_211804 crossref_primary_10_1007_JHEP06_2012_109 crossref_primary_10_35414_akufemubid_1182938 crossref_primary_10_1007_JHEP10_2014_087 crossref_primary_10_1016_j_physletb_2014_06_076 crossref_primary_10_1016_j_physletb_2014_06_075 crossref_primary_10_1007_JHEP03_2015_083 crossref_primary_10_1007_JHEP10_2012_081 crossref_primary_10_1007_JHEP08_2019_110 crossref_primary_10_1051_epjconf_201612900002 crossref_primary_10_1007_JHEP11_2014_136 crossref_primary_10_1007_JHEP11_2021_168 crossref_primary_10_1142_S0217751X17470224 crossref_primary_10_1007_JHEP04_2015_124 crossref_primary_10_1007_JHEP06_2012_112 crossref_primary_10_1088_0954_3899_43_1_013002 crossref_primary_10_31466_kfbd_1240083 crossref_primary_10_1007_JHEP01_2014_115 crossref_primary_10_1140_epjc_s10052_014_3243_2 crossref_primary_10_1007_JHEP06_2012_117 crossref_primary_10_1007_JHEP10_2012_065 crossref_primary_10_1007_JHEP03_2020_090 crossref_primary_10_1140_epjp_s13360_022_02452_w crossref_primary_10_1103_PhysRevLett_116_151801 crossref_primary_10_1016_j_physletb_2012_10_070 crossref_primary_10_1016_j_physletb_2014_06_058 crossref_primary_10_1140_epjc_s10052_012_1863_y crossref_primary_10_1007_JHEP06_2014_175 crossref_primary_10_1016_j_cpc_2012_09_009 crossref_primary_10_1103_PhysRevLett_111_091802 crossref_primary_10_1103_PhysRevD_87_055022 crossref_primary_10_1007_JHEP01_2014_104 crossref_primary_10_1103_PhysRevD_107_095003 crossref_primary_10_1007_JHEP03_2013_052 crossref_primary_10_1016_j_cpc_2014_10_018 crossref_primary_10_1007_JHEP02_2019_059 crossref_primary_10_1016_j_physletb_2012_10_082 crossref_primary_10_1103_PhysRevD_89_016020 crossref_primary_10_1007_JHEP06_2014_169 crossref_primary_10_1103_PhysRevD_98_055010 crossref_primary_10_1103_PhysRevD_95_095015 crossref_primary_10_1007_JHEP04_2015_103 crossref_primary_10_1007_JHEP11_2014_117 crossref_primary_10_1007_JHEP04_2022_150 crossref_primary_10_1140_epjc_s10052_021_09930_y crossref_primary_10_1103_PhysRevD_89_073020 crossref_primary_10_1088_1475_7516_2014_10_063 crossref_primary_10_1016_j_physletb_2014_06_041 crossref_primary_10_1007_JHEP05_2024_215 crossref_primary_10_1007_JHEP06_2021_084 crossref_primary_10_1103_PhysRevD_84_095001 crossref_primary_10_1007_JHEP09_2015_196 crossref_primary_10_1103_PhysRevD_90_094010 crossref_primary_10_1007_JHEP03_2013_037 crossref_primary_10_1007_JHEP11_2014_124 crossref_primary_10_1103_PhysRevD_90_094016 crossref_primary_10_1103_PhysRevD_90_094015 crossref_primary_10_1007_JHEP08_2019_129 crossref_primary_10_1103_PhysRevD_87_055007 crossref_primary_10_1103_PhysRevD_95_095005 crossref_primary_10_1007_JHEP04_2015_114 crossref_primary_10_1007_JHEP11_2014_127 crossref_primary_10_1103_PhysRevD_91_035011 crossref_primary_10_1103_PhysRevD_86_052013 crossref_primary_10_1007_JHEP04_2024_137 crossref_primary_10_1103_PhysRevD_101_075017 crossref_primary_10_1007_JHEP03_2015_157 crossref_primary_10_1007_JHEP10_2014_160 crossref_primary_10_1007_JHEP10_2014_164 crossref_primary_10_1088_1748_0221_15_01_P01021 crossref_primary_10_1140_epjc_s10052_023_11377_2 crossref_primary_10_1103_PhysRevD_87_014021 crossref_primary_10_1103_PhysRevD_87_095016 crossref_primary_10_1103_PhysRevD_89_037702 crossref_primary_10_1103_PhysRevD_91_035008 crossref_primary_10_1007_JHEP08_2015_016 crossref_primary_10_1103_PhysRevD_94_015012 crossref_primary_10_1007_JHEP05_2012_081 crossref_primary_10_1103_PhysRevD_91_035023 crossref_primary_10_1103_PhysRevD_91_035020 crossref_primary_10_1016_j_dark_2013_03_003 crossref_primary_10_1007_JHEP05_2018_049 crossref_primary_10_1016_j_dark_2013_03_002 crossref_primary_10_1103_PhysRevD_110_115009 crossref_primary_10_1007_JHEP03_2015_166 crossref_primary_10_1103_PhysRevD_87_095013 crossref_primary_10_1007_JHEP10_2014_173 crossref_primary_10_1103_PhysRevD_87_095008 crossref_primary_10_1007_JHEP11_2023_125 crossref_primary_10_1088_1748_0221_14_11_P11015 crossref_primary_10_1103_PhysRevD_87_095006 crossref_primary_10_1103_PhysRevD_99_116007 crossref_primary_10_1103_PhysRevD_91_093003 crossref_primary_10_1214_24_AOAS1916 crossref_primary_10_1007_JHEP08_2015_003 crossref_primary_10_1103_PhysRevD_91_035016 crossref_primary_10_1103_PhysRevD_91_093006 crossref_primary_10_1007_JHEP10_2014_188 crossref_primary_10_1007_JHEP06_2014_090 crossref_primary_10_1103_PhysRevD_108_L111703 crossref_primary_10_1007_JHEP02_2013_036 crossref_primary_10_1103_PhysRevD_91_114018 crossref_primary_10_1007_s12043_017_1459_z crossref_primary_10_1088_1402_4896_aadfcf crossref_primary_10_1103_PhysRevD_87_014002 crossref_primary_10_1088_1674_1137_40_3_033002 crossref_primary_10_1103_PhysRevD_87_014004 crossref_primary_10_1103_PhysRevD_93_053013 crossref_primary_10_1007_JHEP07_2022_037 crossref_primary_10_1103_PhysRevD_106_096006 crossref_primary_10_1007_JHEP07_2012_110 crossref_primary_10_1103_PhysRevD_105_016019 crossref_primary_10_1007_JHEP01_2019_032 crossref_primary_10_1209_0295_5075_132_61001 crossref_primary_10_1103_PhysRevD_87_014015 crossref_primary_10_1103_PhysRevD_88_116009 crossref_primary_10_1140_epjc_s10052_022_10809_9 crossref_primary_10_1103_PhysRevD_88_116001 crossref_primary_10_1007_JHEP06_2021_027 crossref_primary_10_1007_JHEP10_2012_112 crossref_primary_10_1103_PhysRevD_84_113011 crossref_primary_10_1007_JHEP12_2011_061 crossref_primary_10_1103_PhysRevD_88_094007 crossref_primary_10_1103_PhysRevD_90_074014 crossref_primary_10_1007_JHEP05_2018_081 crossref_primary_10_1016_j_physletb_2012_03_011 crossref_primary_10_1007_JHEP03_2013_105 crossref_primary_10_1007_JHEP06_2012_072 crossref_primary_10_1103_PhysRevD_99_094025 crossref_primary_10_1140_epjc_s10052_023_11399_w crossref_primary_10_1007_JHEP11_2023_179 crossref_primary_10_1142_S0217751X1541002X crossref_primary_10_1140_epjc_s10052_022_10964_z crossref_primary_10_3390_sym13122341 crossref_primary_10_1103_PhysRevD_109_015027 crossref_primary_10_1103_PhysRevD_102_074014 crossref_primary_10_1007_JHEP10_2012_104 crossref_primary_10_1103_PhysRevLett_124_221801 crossref_primary_10_1103_PhysRevD_86_015023 crossref_primary_10_1103_PhysRevD_86_015028 crossref_primary_10_1103_PhysRevD_86_015025 crossref_primary_10_1103_PhysRevD_109_015017 crossref_primary_10_1103_PhysRevD_98_075012 crossref_primary_10_1007_JHEP05_2018_058 crossref_primary_10_1103_PhysRevD_98_075010 crossref_primary_10_1103_PhysRevLett_110_232002 crossref_primary_10_1103_PhysRevD_92_113012 crossref_primary_10_1103_PhysRevD_86_015010 crossref_primary_10_1103_PhysRevD_86_015011 crossref_primary_10_1016_j_astropartphys_2023_102821 crossref_primary_10_1007_JHEP01_2019_080 crossref_primary_10_1007_JHEP08_2024_176 crossref_primary_10_1103_PhysRevD_88_033003 crossref_primary_10_1103_PhysRevD_98_075008 crossref_primary_10_1016_j_physletb_2013_12_013 crossref_primary_10_1140_epjc_s10052_022_10448_0 crossref_primary_10_1007_JHEP10_2014_155 crossref_primary_10_1007_JHEP10_2014_156 crossref_primary_10_1016_j_physletb_2013_12_011 crossref_primary_10_1103_PhysRevD_91_055030 crossref_primary_10_1103_PhysRevD_87_075003 crossref_primary_10_1007_JHEP01_2014_177 crossref_primary_10_1007_JHEP10_2014_154 crossref_primary_10_1007_JHEP12_2011_030 crossref_primary_10_1140_epjc_s10052_020_8368_x crossref_primary_10_1103_PhysRevD_87_034041 crossref_primary_10_1103_PhysRevD_91_055025 crossref_primary_10_1140_epjc_s10052_017_5155_4 crossref_primary_10_1007_JHEP07_2014_142 crossref_primary_10_1140_epjc_s10052_019_7277_3 crossref_primary_10_1103_PhysRevD_106_015028 crossref_primary_10_1103_PhysRevD_86_015008 crossref_primary_10_1016_j_physletb_2012_05_052 crossref_primary_10_1103_PhysRevD_88_033015 crossref_primary_10_1103_PhysRevD_86_015005 crossref_primary_10_1103_PhysRevD_101_055008 crossref_primary_10_1103_PhysRevD_90_017701 crossref_primary_10_1093_ptep_ptv134 crossref_primary_10_1103_PhysRevD_106_035002 crossref_primary_10_1142_S0217751X17500178 crossref_primary_10_1103_PhysRevD_90_115012 crossref_primary_10_1007_JHEP04_2020_082 crossref_primary_10_1103_PhysRevD_90_115008 crossref_primary_10_1103_PhysRevD_91_055019 crossref_primary_10_1103_PhysRevD_90_115006 crossref_primary_10_1103_PhysRevD_90_115007 crossref_primary_10_1007_JHEP07_2012_164 crossref_primary_10_1103_PhysRevD_90_115005 crossref_primary_10_31857_S1234567823190011 crossref_primary_10_1103_PhysRevD_94_035023 crossref_primary_10_1103_PhysRevD_89_012003 crossref_primary_10_1140_epjc_s10052_017_4752_6 crossref_primary_10_1103_PhysRevD_101_055015 crossref_primary_10_1103_PhysRevLett_113_061801 crossref_primary_10_1007_JHEP08_2013_008 crossref_primary_10_1103_PhysRevD_86_072010 crossref_primary_10_1103_PhysRevD_90_115025 crossref_primary_10_1103_PhysRevD_90_115023 crossref_primary_10_1007_JHEP02_2015_038 crossref_primary_10_1007_JHEP09_2022_246 crossref_primary_10_1103_PhysRevLett_116_162001 crossref_primary_10_1103_PhysRevD_97_015024 crossref_primary_10_1103_PhysRevD_91_055009 crossref_primary_10_1007_JHEP11_2017_010 crossref_primary_10_1103_PhysRevD_90_115015 crossref_primary_10_1103_PhysRevLett_110_212001 crossref_primary_10_1007_JHEP07_2012_175 crossref_primary_10_1007_JHEP12_2011_009 crossref_primary_10_1007_JHEP05_2016_018 crossref_primary_10_1103_PhysRevD_103_055008 crossref_primary_10_1140_epjp_s13360_021_01902_1 crossref_primary_10_3390_universe8060301 crossref_primary_10_1103_PhysRevD_91_055007 crossref_primary_10_1103_PhysRevD_91_073015 crossref_primary_10_1103_PhysRevD_91_073016 crossref_primary_10_1007_JHEP10_2014_100 crossref_primary_10_1103_PhysRevLett_131_171801 crossref_primary_10_1088_1475_7516_2022_10_055 crossref_primary_10_1140_epjc_s10052_016_3969_0 crossref_primary_10_1007_JHEP02_2017_096 crossref_primary_10_1103_PhysRevD_101_055028 crossref_primary_10_1103_PhysRevD_89_115013 crossref_primary_10_1103_PhysRevD_89_115014 crossref_primary_10_1007_JHEP02_2015_007 crossref_primary_10_1103_PhysRevD_89_115016 crossref_primary_10_1103_PhysRevD_90_115026 crossref_primary_10_1007_JHEP06_2012_096 crossref_primary_10_1103_PhysRevD_84_105012 crossref_primary_10_1007_JHEP10_2014_113 crossref_primary_10_1103_PhysRevD_89_115006 crossref_primary_10_1007_JHEP03_2015_102 crossref_primary_10_1140_epjc_s10052_024_12527_w crossref_primary_10_1007_JHEP02_2015_019 crossref_primary_10_1007_JHEP02_2015_016 crossref_primary_10_1103_PhysRevD_89_115001 crossref_primary_10_1007_JHEP05_2016_030 crossref_primary_10_1007_JHEP07_2012_196 crossref_primary_10_1051_epjconf_20159007003 crossref_primary_10_1051_epjconf_20159007002 crossref_primary_10_1007_JHEP05_2016_036 crossref_primary_10_1088_1748_0221_11_09_P09012 crossref_primary_10_1016_j_physletb_2015_05_073 crossref_primary_10_1007_JHEP02_2017_091 crossref_primary_10_1140_epjc_s10052_013_2380_3 crossref_primary_10_1016_j_ppnp_2016_05_001 crossref_primary_10_1007_JHEP08_2017_074 crossref_primary_10_1007_JHEP02_2015_061 crossref_primary_10_1142_S0217732314500667 crossref_primary_10_1007_JHEP12_2015_072 crossref_primary_10_1007_JHEP07_2012_119 crossref_primary_10_1103_PhysRevD_101_055043 crossref_primary_10_1007_JHEP03_2024_037 crossref_primary_10_1103_PhysRevD_92_074015 crossref_primary_10_1103_PhysRevD_90_054008 crossref_primary_10_1051_epjconf_201612604020 crossref_primary_10_1016_j_nuclphysb_2013_07_019 crossref_primary_10_1007_JHEP06_2018_128 crossref_primary_10_1007_JHEP02_2021_184 crossref_primary_10_1103_PhysRevD_88_013016 crossref_primary_10_1103_PhysRevD_88_013015 crossref_primary_10_1140_epjc_s10052_018_5785_1 crossref_primary_10_1088_1748_0221_12_02_P02014 crossref_primary_10_1142_S0217751X17500142 crossref_primary_10_1016_j_physletb_2015_03_017 crossref_primary_10_1103_PhysRevD_89_115024 crossref_primary_10_1088_1361_6382_ad6740 crossref_primary_10_1016_j_cpc_2012_05_004 crossref_primary_10_1016_j_physletb_2012_07_021 crossref_primary_10_1103_PhysRevD_86_096011 crossref_primary_10_1007_JHEP07_2012_136 crossref_primary_10_1007_JHEP02_2015_049 crossref_primary_10_1103_PhysRevD_103_075031 crossref_primary_10_1007_JHEP05_2016_089 crossref_primary_10_1007_JHEP07_2012_143 crossref_primary_10_1103_PhysRevD_102_115010 crossref_primary_10_1140_epjc_s10052_014_3193_8 crossref_primary_10_1103_PhysRevD_90_054023 crossref_primary_10_1140_epjc_s10052_013_2710_5 crossref_primary_10_1209_0295_5075_99_61001 crossref_primary_10_1140_epjc_s10052_021_09828_9 crossref_primary_10_1103_PhysRevD_90_115002 crossref_primary_10_1007_JHEP12_2013_013 crossref_primary_10_1016_j_dark_2015_08_001 crossref_primary_10_1007_JHEP12_2015_087 crossref_primary_10_1007_JHEP05_2014_005 crossref_primary_10_1051_epjconf_201714104003 crossref_primary_10_1016_j_nuclphysb_2012_12_003 crossref_primary_10_1103_PhysRevD_89_056011 crossref_primary_10_1140_epjc_s10052_024_13211_9 crossref_primary_10_1103_PhysRevD_94_035012 crossref_primary_10_1007_JHEP07_2018_185 crossref_primary_10_1103_PhysRevD_92_015005 crossref_primary_10_1140_epjc_s10052_012_2222_8 crossref_primary_10_1007_JHEP12_2012_102 crossref_primary_10_1007_JHEP01_2016_051 crossref_primary_10_1007_JHEP12_2012_105 crossref_primary_10_1209_0295_5075_107_41002 crossref_primary_10_1088_1742_6596_1271_1_012005 crossref_primary_10_1007_JHEP09_2021_039 crossref_primary_10_1007_JHEP06_2023_001 crossref_primary_10_1209_0295_5075_111_21003 crossref_primary_10_1103_PhysRevD_89_077703 crossref_primary_10_1103_PhysRevD_92_015013 crossref_primary_10_1103_PhysRevD_92_015012 crossref_primary_10_1103_PhysRevD_94_033008 crossref_primary_10_1007_JHEP10_2018_073 crossref_primary_10_1140_epjc_s10052_023_11534_7 crossref_primary_10_1007_JHEP05_2013_100 crossref_primary_10_1016_j_ppnp_2013_04_001 crossref_primary_10_1103_PhysRevD_89_015004 crossref_primary_10_1007_JHEP09_2013_020 crossref_primary_10_1103_PhysRevD_84_074025 crossref_primary_10_1103_PhysRevD_86_115019 crossref_primary_10_1007_JHEP02_2017_135 crossref_primary_10_1103_PhysRevD_109_115029 crossref_primary_10_1007_JHEP03_2019_031 crossref_primary_10_1088_1475_7516_2014_05_009 crossref_primary_10_1103_PhysRevD_109_115028 crossref_primary_10_1142_S021773232450144X crossref_primary_10_1103_PhysRevD_89_015015 crossref_primary_10_1103_PhysRevD_89_015011 crossref_primary_10_1103_PhysRevD_89_015019 crossref_primary_10_1103_PhysRevD_89_015018 crossref_primary_10_1103_PhysRevD_95_052002 crossref_primary_10_1007_JHEP09_2019_120 crossref_primary_10_1140_epjc_s10052_014_2909_0 crossref_primary_10_1103_PhysRevD_89_077701 crossref_primary_10_1103_PhysRevD_92_015016 crossref_primary_10_1088_1674_1137_ad20d5 crossref_primary_10_1103_PhysRevD_110_052001 crossref_primary_10_1016_j_physletb_2013_03_037 crossref_primary_10_1007_JHEP01_2016_087 crossref_primary_10_1103_PhysRevD_86_115022 crossref_primary_10_1016_j_ppnp_2015_07_002 crossref_primary_10_1103_PhysRevD_89_015021 crossref_primary_10_1103_PhysRevD_89_015020 crossref_primary_10_1140_epjc_s10052_014_3181_z crossref_primary_10_1103_PhysRevD_92_072006 crossref_primary_10_1103_PhysRevD_86_051501 crossref_primary_10_1103_PhysRevD_87_011301 crossref_primary_10_1007_JHEP05_2013_138 crossref_primary_10_1103_PhysRevD_93_034003 crossref_primary_10_1140_epjc_s10052_020_7722_3 crossref_primary_10_1016_j_physletb_2015_06_077 crossref_primary_10_1016_j_physletb_2015_06_070 crossref_primary_10_1007_JHEP10_2018_026 crossref_primary_10_1016_j_physletb_2013_01_016 crossref_primary_10_1007_JHEP08_2018_037 crossref_primary_10_1088_1742_6596_523_1_012028 crossref_primary_10_1007_JHEP06_2015_041 crossref_primary_10_1103_PhysRevD_94_065034 crossref_primary_10_1103_PhysRevD_85_016006 crossref_primary_10_1007_JHEP05_2013_145 crossref_primary_10_1007_JHEP06_2015_025 crossref_primary_10_1007_JHEP02_2015_118 crossref_primary_10_1142_S0217751X16501517 crossref_primary_10_1007_JHEP04_2014_059 crossref_primary_10_1007_JHEP04_2014_063 crossref_primary_10_1007_JHEP09_2013_065 crossref_primary_10_1051_epjconf_20159009001 crossref_primary_10_1140_epjc_s10052_023_11303_6 crossref_primary_10_1007_JHEP09_2023_076 crossref_primary_10_1007_JHEP07_2012_091 crossref_primary_10_1088_1742_6596_802_1_012001 crossref_primary_10_1088_1742_6596_523_1_012040 crossref_primary_10_1088_1742_6596_523_1_012044 crossref_primary_10_1103_PhysRevD_88_073011 crossref_primary_10_1007_JHEP08_2018_056 crossref_primary_10_1140_epjc_s10052_012_1903_7 crossref_primary_10_1007_JHEP09_2022_248 crossref_primary_10_1007_s10773_020_04473_6 crossref_primary_10_1103_PhysRevD_88_073007 crossref_primary_10_1007_JHEP09_2013_094 crossref_primary_10_1103_PhysRevD_91_016008 crossref_primary_10_1103_PhysRevD_93_034014 crossref_primary_10_1007_JHEP11_2013_043 crossref_primary_10_1103_PhysRevLett_110_122003 crossref_primary_10_1007_JHEP05_2013_167 crossref_primary_10_1088_1742_6596_523_1_012032 crossref_primary_10_1007_JHEP11_2020_080 crossref_primary_10_1140_epjc_s10052_023_11787_2 crossref_primary_10_1007_JHEP04_2021_077 crossref_primary_10_1088_0034_4885_79_12_124201 crossref_primary_10_1140_epjp_s13360_023_04779_4 crossref_primary_10_1007_JHEP11_2013_047 crossref_primary_10_1103_PhysRevD_106_055002 crossref_primary_10_1007_JHEP06_2017_082 crossref_primary_10_1140_epjc_s10052_015_3776_z crossref_primary_10_1103_PhysRevD_99_055025 crossref_primary_10_1007_JHEP03_2012_103 crossref_primary_10_1088_0253_6102_63_3_331 crossref_primary_10_1103_PhysRevD_108_012001 crossref_primary_10_1103_PhysRevD_92_115013 crossref_primary_10_1007_JHEP11_2013_018 crossref_primary_10_1007_JHEP04_2014_004 crossref_primary_10_1007_JHEP11_2013_014 crossref_primary_10_1007_JHEP01_2014_040 crossref_primary_10_1007_JHEP06_2015_078 crossref_primary_10_1051_epjconf_20136005003 crossref_primary_10_1007_JHEP06_2015_080 crossref_primary_10_1051_epjconf_20134906004 crossref_primary_10_1103_PhysRevD_106_075028 crossref_primary_10_1007_JHEP10_2013_196 crossref_primary_10_1103_PhysRevD_92_115008 crossref_primary_10_1140_epjc_s10052_021_09152_2 crossref_primary_10_1103_PhysRevD_87_034039 crossref_primary_10_1103_PhysRevD_99_095035 crossref_primary_10_1007_JHEP10_2013_191 crossref_primary_10_1103_PhysRevD_93_054044 crossref_primary_10_1103_PhysRevD_92_115024 crossref_primary_10_1007_JHEP10_2011_101 crossref_primary_10_1007_JHEP11_2015_099 crossref_primary_10_1007_JHEP04_2014_011 crossref_primary_10_1007_JHEP02_2013_086 crossref_primary_10_1007_JHEP01_2014_030 crossref_primary_10_1088_1674_1137_42_7_073103 crossref_primary_10_1007_JHEP04_2014_013 crossref_primary_10_1007_JHEP02_2013_091 crossref_primary_10_1007_JHEP09_2015_055 crossref_primary_10_1016_j_physletb_2013_05_057 crossref_primary_10_1088_1742_6596_934_1_012030 crossref_primary_10_1103_PhysRevD_92_115018 crossref_primary_10_1103_PhysRevD_95_015028 crossref_primary_10_1007_JHEP10_2019_275 crossref_primary_10_1007_JHEP12_2023_171 crossref_primary_10_1103_PhysRevD_86_055020 crossref_primary_10_1007_JHEP01_2014_025 crossref_primary_10_1016_j_physletb_2015_08_020 crossref_primary_10_1088_1742_6596_889_1_012020 crossref_primary_10_1103_PhysRevLett_112_161802 crossref_primary_10_1140_epjc_s10052_014_2980_6 crossref_primary_10_1103_PhysRevLett_110_081801 crossref_primary_10_1103_PhysRevD_110_056024 crossref_primary_10_1007_JHEP02_2019_132 crossref_primary_10_1088_1742_6596_452_1_012032 crossref_primary_10_1103_PhysRevLett_112_082002 crossref_primary_10_1007_JHEP01_2014_014 crossref_primary_10_1103_PhysRevD_106_075031 crossref_primary_10_1140_epjc_s10052_021_08991_3 crossref_primary_10_1007_JHEP10_2013_167 crossref_primary_10_1103_PhysRevLett_128_069901 crossref_primary_10_1007_JHEP10_2013_164 crossref_primary_10_1209_0295_5075_ac8ecf crossref_primary_10_1038_s41598_022_10966_7 crossref_primary_10_1007_JHEP12_2023_110 crossref_primary_10_1140_epjc_s10052_012_1862_z crossref_primary_10_1007_JHEP04_2016_056 crossref_primary_10_1103_PhysRevD_108_036014 crossref_primary_10_1007_JHEP11_2015_068 crossref_primary_10_1007_JHEP11_2015_067 crossref_primary_10_1016_j_physletb_2013_03_027 crossref_primary_10_1140_epjc_s10052_013_2310_4 crossref_primary_10_1016_j_cpc_2015_05_015 crossref_primary_10_1103_PhysRevD_91_092005 crossref_primary_10_1007_JHEP07_2022_137 crossref_primary_10_1007_JHEP11_2015_051 crossref_primary_10_1103_PhysRevD_109_055047 crossref_primary_10_1007_JHEP04_2023_083 crossref_primary_10_1140_epjc_s10052_023_11889_x crossref_primary_10_1140_epjc_s10052_013_2608_2 crossref_primary_10_1051_epjconf_20136017013 crossref_primary_10_1088_1748_0221_15_01_P01009 crossref_primary_10_1016_j_nuclphysb_2015_07_005 crossref_primary_10_1007_JHEP07_2024_192 crossref_primary_10_1140_epjc_s10052_017_5416_2 crossref_primary_10_1007_JHEP01_2016_030 crossref_primary_10_1103_PhysRevD_102_015016 crossref_primary_10_1007_JHEP06_2013_006 crossref_primary_10_1103_PhysRevD_99_075020 crossref_primary_10_1103_PhysRevD_89_096007 crossref_primary_10_1103_PhysRevD_89_096009 crossref_primary_10_1051_epjconf_20136017002 crossref_primary_10_3390_sym15081475 crossref_primary_10_1140_epjc_s10052_015_3706_0 crossref_primary_10_1007_JHEP11_2015_036 crossref_primary_10_1007_JHEP06_2013_022 crossref_primary_10_1142_S0218271821300044 crossref_primary_10_1103_PhysRevD_94_085031 crossref_primary_10_1007_JHEP09_2021_069 crossref_primary_10_1016_j_cpc_2013_02_019 crossref_primary_10_1103_PhysRevD_99_075014 crossref_primary_10_1103_PhysRevD_89_055007 crossref_primary_10_1007_JHEP02_2013_138 crossref_primary_10_1007_JHEP07_2014_046 crossref_primary_10_1103_PhysRevD_86_075013 crossref_primary_10_1007_JHEP05_2020_093 crossref_primary_10_1103_PhysRevD_102_095027 crossref_primary_10_1103_RevModPhys_86_479 crossref_primary_10_1007_JHEP10_2014_044 crossref_primary_10_21468_SciPostPhys_13_2_026 crossref_primary_10_1140_epjc_s10052_023_11859_3 crossref_primary_10_1103_PhysRevD_99_115028 crossref_primary_10_1103_PhysRevLett_111_121802 crossref_primary_10_1103_PhysRevD_86_075008 crossref_primary_10_1103_PhysRevD_95_035026 crossref_primary_10_24136_oc_3137 crossref_primary_10_1007_JHEP08_2015_133 crossref_primary_10_1007_JHEP10_2022_152 crossref_primary_10_1016_j_physletb_2012_12_011 crossref_primary_10_1103_PhysRevC_92_044902 crossref_primary_10_1007_JHEP10_2014_057 crossref_primary_10_1007_JHEP07_2014_036 crossref_primary_10_1140_epjc_s10052_018_5949_z crossref_primary_10_1007_JHEP11_2024_074 crossref_primary_10_1103_PhysRevD_88_093008 crossref_primary_10_1016_j_dark_2016_09_002 crossref_primary_10_1103_PhysRevD_88_093006 crossref_primary_10_1103_PhysRevD_89_103528 crossref_primary_10_1103_PhysRevD_99_115033 crossref_primary_10_1103_PhysRevD_102_015004 crossref_primary_10_1103_PhysRevD_98_015008 crossref_primary_10_1103_PhysRevD_95_035012 crossref_primary_10_1103_PhysRevD_92_055023 crossref_primary_10_1103_PhysRevD_92_055025 crossref_primary_10_1103_PhysRevD_95_035014 crossref_primary_10_1007_JHEP09_2017_026 crossref_primary_10_1016_j_physletb_2012_12_044 crossref_primary_10_1016_j_physletb_2012_12_045 crossref_primary_10_1016_j_nuclphysb_2014_08_009 crossref_primary_10_1103_PhysRevD_89_055024 crossref_primary_10_1007_JHEP03_2015_059 crossref_primary_10_1007_JHEP06_2019_031 crossref_primary_10_1103_PhysRevD_89_055022 crossref_primary_10_1140_epjc_s10052_018_6234_x crossref_primary_10_1088_1475_7516_2014_10_039 crossref_primary_10_1103_PhysRevD_89_055020 crossref_primary_10_1007_JHEP04_2016_116 crossref_primary_10_1088_1475_7516_2016_06_050 crossref_primary_10_1007_JHEP01_2012_011 crossref_primary_10_1007_JHEP10_2013_216 crossref_primary_10_1007_JHEP05_2019_179 crossref_primary_10_1007_JHEP11_2023_235 crossref_primary_10_1103_PhysRevD_106_095040 crossref_primary_10_1007_JHEP05_2017_128 crossref_primary_10_1007_JHEP06_2021_176 crossref_primary_10_1088_0954_3899_42_12_125003 crossref_primary_10_1103_PhysRevD_111_055011 crossref_primary_10_1007_JHEP01_2012_018 crossref_primary_10_1103_PhysRevD_86_075026 crossref_primary_10_1103_PhysRevD_111_055017 crossref_primary_10_1140_epjp_s13360_021_01775_4 crossref_primary_10_1007_JHEP10_2014_078 crossref_primary_10_1103_PhysRevD_106_095038 crossref_primary_10_1140_epjc_s10052_015_3451_4 crossref_primary_10_1103_PhysRevD_89_055011 crossref_primary_10_1103_PhysRevLett_113_151801 crossref_primary_10_1007_JHEP01_2014_096 crossref_primary_10_21468_SciPostPhys_9_5_077 crossref_primary_10_1140_epjc_s10052_016_4376_2 crossref_primary_10_1103_PhysRevLett_112_221803 crossref_primary_10_1007_JHEP07_2014_065 crossref_primary_10_1103_PhysRevD_86_075016 crossref_primary_10_21468_SciPostPhys_7_3_036 crossref_primary_10_1103_PhysRevD_85_011104 crossref_primary_10_1103_PhysRevD_85_056011 crossref_primary_10_1103_PhysRevD_103_094014 crossref_primary_10_1103_PhysRevD_99_095002 crossref_primary_10_1007_JHEP07_2014_005 crossref_primary_10_1007_JHEP03_2023_198 crossref_primary_10_1088_0954_3899_42_6_065004 crossref_primary_10_1088_0954_3899_42_6_065006 crossref_primary_10_1103_PhysRevD_101_076023 crossref_primary_10_1103_PhysRevLett_116_131801 crossref_primary_10_1140_epjc_s10052_023_12277_1 crossref_primary_10_1103_PhysRevLett_114_229901 crossref_primary_10_1007_JHEP10_2014_012 crossref_primary_10_1103_PhysRevD_90_013015 crossref_primary_10_1007_s10773_020_04664_1 crossref_primary_10_1007_JHEP03_2017_077 crossref_primary_10_1007_JHEP09_2015_008 crossref_primary_10_1016_j_physletb_2013_07_042 crossref_primary_10_1103_PhysRevD_87_074005 crossref_primary_10_1103_PhysRevD_87_074004 crossref_primary_10_21468_SciPostPhysProc_12_044 crossref_primary_10_1103_PhysRevD_90_013020 crossref_primary_10_1088_1742_6596_452_1_012021 crossref_primary_10_1007_JHEP06_2012_169 crossref_primary_10_1140_epjc_s10052_024_13082_0 crossref_primary_10_1007_JHEP01_2014_069 crossref_primary_10_1103_PhysRevLett_122_131803 crossref_primary_10_1007_JHEP03_2021_123 crossref_primary_10_1103_PhysRevD_103_115017 crossref_primary_10_1016_j_ppnp_2013_02_001 crossref_primary_10_1140_epjc_s10052_024_12860_0 crossref_primary_10_1103_PhysRevD_99_115001 crossref_primary_10_1103_PhysRevD_87_074015 crossref_primary_10_1103_PhysRevD_99_095017 crossref_primary_10_1051_epjconf_20134917011 crossref_primary_10_1051_epjconf_20136008001 crossref_primary_10_1103_PhysRevD_102_075005 crossref_primary_10_1140_epjc_s10052_022_10778_z crossref_primary_10_1140_epjc_s10052_014_3163_1 crossref_primary_10_1007_JHEP03_2015_025 crossref_primary_10_1007_JHEP05_2020_087 crossref_primary_10_1007_JHEP01_2014_060 crossref_primary_10_1016_j_dark_2014_04_001 crossref_primary_10_1103_PhysRevD_103_115020 crossref_primary_10_1103_PhysRevD_92_075033 crossref_primary_10_1007_JHEP07_2014_020 crossref_primary_10_1088_0954_3899_43_3_035001 crossref_primary_10_1016_j_cpc_2013_08_023 crossref_primary_10_1007_JHEP02_2015_142 crossref_primary_10_1007_JHEP07_2012_038 crossref_primary_10_1016_j_physrep_2016_06_001 crossref_primary_10_1007_JHEP07_2012_036 crossref_primary_10_1007_JHEP07_2018_107 crossref_primary_10_1103_PhysRevD_86_112003 crossref_primary_10_1007_JHEP04_2012_079 crossref_primary_10_1103_PhysRevD_108_L091704 crossref_primary_10_1103_PhysRevD_102_075011 crossref_primary_10_1103_PhysRevD_109_095023 crossref_primary_10_1088_1475_7516_2014_12_025 crossref_primary_10_1103_PhysRevD_86_095017 crossref_primary_10_1103_PhysRevD_86_095019 crossref_primary_10_1007_JHEP12_2014_108 crossref_primary_10_1103_PhysRevD_111_035024 crossref_primary_10_1007_JHEP08_2022_068 crossref_primary_10_1103_PhysRevD_102_035006 crossref_primary_10_1103_PhysRevD_86_103536 crossref_primary_10_1007_JHEP08_2017_145 crossref_primary_10_1140_epjc_s10052_013_2404_z crossref_primary_10_1016_j_physletb_2014_02_016 crossref_primary_10_1103_PhysRevD_89_035004 crossref_primary_10_1103_PhysRevD_92_075024 crossref_primary_10_1103_PhysRevD_98_035026 crossref_primary_10_1140_epjp_s13360_025_06015_7 crossref_primary_10_1103_PhysRevD_89_035008 crossref_primary_10_1103_PhysRevD_89_035007 crossref_primary_10_1103_PhysRevD_102_075026 crossref_primary_10_1142_S0217751X19501574 crossref_primary_10_1007_JHEP08_2013_129 crossref_primary_10_1103_PhysRevD_102_075029 crossref_primary_10_1103_PhysRevD_96_115020 crossref_primary_10_1007_JHEP02_2015_157 crossref_primary_10_1007_JHEP04_2012_067 crossref_primary_10_1103_PhysRevD_102_075021 crossref_primary_10_1007_JHEP04_2012_076 crossref_primary_10_1140_epjc_s10052_013_2283_3 crossref_primary_10_1140_epjc_s10052_017_5478_1 crossref_primary_10_1140_epjc_s10052_014_2745_2 crossref_primary_10_1088_1361_6471_ab7769 crossref_primary_10_1007_JHEP08_2013_130 crossref_primary_10_1103_PhysRevLett_119_021102 crossref_primary_10_1103_PhysRevD_90_053003 crossref_primary_10_1103_PhysRevD_95_055002 crossref_primary_10_1140_epjc_s10052_024_13376_3 crossref_primary_10_1016_j_ppnp_2018_01_009 crossref_primary_10_1140_epjc_s10052_024_12428_y crossref_primary_10_1007_JHEP02_2015_128 crossref_primary_10_1103_PhysRevD_89_092010 crossref_primary_10_1007_JHEP02_2020_070 crossref_primary_10_1016_j_cpc_2017_12_021 crossref_primary_10_1103_PhysRevD_92_075008 crossref_primary_10_1016_j_physletb_2013_07_011 crossref_primary_10_1016_j_physletb_2013_07_014 crossref_primary_10_1103_PhysRevD_89_092005 crossref_primary_10_1140_epjc_s10052_014_3119_5 crossref_primary_10_1007_JHEP12_2014_126 crossref_primary_10_1016_j_physletb_2014_02_033 crossref_primary_10_1103_PhysRevD_92_075002 crossref_primary_10_1103_PhysRevD_92_075006 crossref_primary_10_1103_PhysRevD_96_115009 crossref_primary_10_1007_JHEP11_2024_017 crossref_primary_10_1103_PhysRevD_96_115008 crossref_primary_10_21468_SciPostPhys_15_2_053 crossref_primary_10_1007_JHEP05_2015_119 crossref_primary_10_1103_PhysRevD_106_115034 crossref_primary_10_1103_PhysRevD_109_095014 crossref_primary_10_1103_PhysRevD_92_083004 crossref_primary_10_1103_PhysRevD_88_017302 crossref_primary_10_1007_JHEP04_2012_095 crossref_primary_10_1016_j_physletb_2014_02_023 crossref_primary_10_1016_j_nuclphysb_2015_03_006 crossref_primary_10_3390_particles8010031 crossref_primary_10_1007_JHEP05_2015_142 crossref_primary_10_1103_PhysRevD_90_065020 crossref_primary_10_1007_JHEP04_2012_037 crossref_primary_10_1007_JHEP10_2016_015 crossref_primary_10_1007_JHEP04_2012_043 crossref_primary_10_1016_j_cpc_2012_11_004 crossref_primary_10_1007_JHEP12_2014_148 crossref_primary_10_1007_JHEP12_2014_140 crossref_primary_10_1103_PhysRevD_105_015020 crossref_primary_10_1007_JHEP07_2014_079 crossref_primary_10_1007_JHEP11_2011_031 crossref_primary_10_1007_JHEP10_2016_006 crossref_primary_10_1007_JHEP01_2012_092 crossref_primary_10_1007_JHEP03_2016_207 crossref_primary_10_1007_JHEP04_2012_032 crossref_primary_10_1007_JHEP07_2020_191 crossref_primary_10_1103_PhysRevD_92_095009 crossref_primary_10_1103_PhysRevD_85_125019 crossref_primary_10_1140_epjp_s13360_024_05067_5 crossref_primary_10_21468_SciPostPhysCodeb_13 crossref_primary_10_1016_j_physletb_2012_12_008 crossref_primary_10_1007_JHEP07_2012_016 crossref_primary_10_1088_1674_1137_43_12_123101 crossref_primary_10_1007_JHEP03_2019_076 crossref_primary_10_1007_s41781_022_00087_1 crossref_primary_10_1007_JHEP12_2014_168 crossref_primary_10_1103_PhysRevD_93_031701 crossref_primary_10_1140_epjc_s10052_015_3514_6 crossref_primary_10_1007_JHEP08_2015_156 crossref_primary_10_1142_S0217751X21500123 crossref_primary_10_1007_JHEP02_2015_177 crossref_primary_10_1007_JHEP02_2013_104 crossref_primary_10_1140_epjc_s10052_014_2714_9 crossref_primary_10_1140_epjc_s10052_015_3491_9 crossref_primary_10_1007_JHEP04_2012_049 crossref_primary_10_1103_PhysRevD_87_094023 crossref_primary_10_1142_S0217732320500650 crossref_primary_10_1007_JHEP02_2013_100 crossref_primary_10_1007_JHEP11_2019_147 crossref_primary_10_1103_PhysRevD_87_094013 crossref_primary_10_1103_PhysRevD_92_095021 crossref_primary_10_1103_PhysRevD_98_015029 crossref_primary_10_1103_PhysRevD_92_095022 crossref_primary_10_1103_PhysRevD_95_055028 crossref_primary_10_1103_PhysRevD_95_055026 crossref_primary_10_1103_PhysRevD_88_052012 crossref_primary_10_1103_PhysRevD_88_057701 crossref_primary_10_1103_PhysRevD_89_095021 crossref_primary_10_1103_PhysRevD_93_035018 crossref_primary_10_1103_PhysRevD_86_034020 crossref_primary_10_1103_PhysRevD_102_055003 crossref_primary_10_1016_j_physletb_2014_12_021 crossref_primary_10_1103_PhysRevD_90_055019 crossref_primary_10_1007_JHEP07_2024_209 crossref_primary_10_1007_JHEP01_2015_125 crossref_primary_10_1103_PhysRevD_90_055010 crossref_primary_10_1007_JHEP09_2021_154 crossref_primary_10_1103_PhysRevD_90_055015 crossref_primary_10_1103_PhysRevD_92_073008 crossref_primary_10_1103_PhysRevD_89_014028 crossref_primary_10_1140_epjc_s10052_015_3511_9 crossref_primary_10_1007_JHEP10_2011_063 crossref_primary_10_1140_epjc_s10052_012_2049_3 crossref_primary_10_1103_PhysRevD_93_035024 crossref_primary_10_1007_JHEP12_2014_080 crossref_primary_10_1007_JHEP11_2011_117 crossref_primary_10_1103_PhysRevD_89_095011 crossref_primary_10_1103_PhysRevD_89_095012 crossref_primary_10_1103_PhysRevD_108_015002 crossref_primary_10_21468_SciPostPhys_6_2_020 crossref_primary_10_1140_epjc_s10052_017_4964_9 crossref_primary_10_1007_JHEP08_2012_059 crossref_primary_10_1088_0954_3899_42_10_103101 crossref_primary_10_1103_PhysRevD_90_055021 crossref_primary_10_1103_PhysRevD_90_055024 crossref_primary_10_1103_PhysRevD_89_095009 crossref_primary_10_1103_PhysRevD_86_034008 crossref_primary_10_1007_JHEP11_2018_009 crossref_primary_10_1103_PhysRevD_90_055027 crossref_primary_10_1103_PhysRevD_89_095002 crossref_primary_10_1142_S0217751X24500799 crossref_primary_10_1142_S0217751X22501147 crossref_primary_10_1007_JHEP04_2014_188 crossref_primary_10_1007_JHEP04_2021_144 crossref_primary_10_1103_PhysRevLett_116_091801 crossref_primary_10_1016_j_physletb_2014_12_003 crossref_primary_10_1103_PhysRevLett_109_111806 crossref_primary_10_1007_JHEP04_2014_191 crossref_primary_10_1103_PhysRevD_96_015035 crossref_primary_10_1007_JHEP05_2024_094 crossref_primary_10_1103_PhysRevLett_111_081802 crossref_primary_10_46810_tdfd_1019096 crossref_primary_10_1007_JHEP05_2022_040 crossref_primary_10_1007_s00180_017_0731_5 crossref_primary_10_1103_PhysRevD_85_015013 crossref_primary_10_1103_PhysRevD_92_016005 crossref_primary_10_1007_JHEP05_2015_078 crossref_primary_10_1103_PhysRevLett_114_061801 crossref_primary_10_1007_JHEP07_2018_032 crossref_primary_10_1142_S0217732318300070 crossref_primary_10_1007_JHEP05_2013_005 crossref_primary_10_1140_epjc_s10052_024_13176_9 crossref_primary_10_1103_PhysRevD_108_015022 crossref_primary_10_1007_JHEP12_2012_015 crossref_primary_10_1007_JHEP12_2012_017 crossref_primary_10_1051_epjconf_201612005003 crossref_primary_10_1051_epjconf_201612005005 crossref_primary_10_1093_ptep_ptw164 crossref_primary_10_1016_j_cpc_2013_05_008 crossref_primary_10_1103_PhysRevD_94_034001 crossref_primary_10_1007_JHEP10_2017_142 crossref_primary_10_1007_JHEP12_2014_097 crossref_primary_10_1103_PhysRevD_96_015021 crossref_primary_10_1103_PhysRevD_96_072004 crossref_primary_10_1007_JHEP07_2024_253 crossref_primary_10_1007_JHEP11_2013_171 crossref_primary_10_1103_PhysRevD_88_011901 crossref_primary_10_1007_JHEP05_2013_012 crossref_primary_10_1016_j_physletb_2014_03_026 crossref_primary_10_1007_JHEP12_2012_029 crossref_primary_10_1007_JHEP08_2012_014 crossref_primary_10_1016_j_dark_2013_06_001 crossref_primary_10_1007_JHEP05_2013_019 crossref_primary_10_1007_JHEP05_2024_072 crossref_primary_10_1007_JHEP10_2024_128 crossref_primary_10_1103_PhysRevD_88_015031 crossref_primary_10_1103_PhysRevD_93_092009 crossref_primary_10_1103_PhysRevD_102_113008 crossref_primary_10_1103_PhysRevD_87_053015 crossref_primary_10_1103_PhysRevD_110_075001 crossref_primary_10_1007_JHEP12_2012_035 crossref_primary_10_1007_JHEP05_2013_022 crossref_primary_10_1103_PhysRevD_102_113002 crossref_primary_10_1007_JHEP08_2014_093 crossref_primary_10_1007_JHEP08_2014_095 crossref_primary_10_1142_S0217751X20410110 crossref_primary_10_1088_1742_6596_2105_1_012014 crossref_primary_10_1103_PhysRevD_88_015022 crossref_primary_10_1007_JHEP06_2015_152 crossref_primary_10_1103_PhysRevD_88_015023 crossref_primary_10_1140_epjc_s10052_014_3103_0 crossref_primary_10_1103_PhysRevD_88_015021 crossref_primary_10_1103_PhysRevD_94_054018 crossref_primary_10_1088_1674_1137_ac538c crossref_primary_10_1103_PhysRevLett_110_172002 crossref_primary_10_1088_1742_6596_2105_1_012011 crossref_primary_10_1007_s41781_024_00122_3 crossref_primary_10_1007_JHEP11_2018_055 crossref_primary_10_1016_j_physletb_2016_06_014 crossref_primary_10_1140_epjc_s10052_012_1990_5 crossref_primary_10_1007_JHEP08_2014_079 crossref_primary_10_1140_epjc_s10052_013_2568_6 crossref_primary_10_1007_JHEP05_2024_051 crossref_primary_10_1140_epjp_s13360_024_05353_2 crossref_primary_10_1088_1674_1137_ada0b4 crossref_primary_10_1007_JHEP04_2019_049 crossref_primary_10_1051_epjconf_201921406028 crossref_primary_10_1103_PhysRevD_93_035003 crossref_primary_10_1007_JHEP03_2012_092 crossref_primary_10_1007_JHEP10_2019_168 crossref_primary_10_1007_JHEP11_2013_167 crossref_primary_10_1103_PhysRevD_110_075029 crossref_primary_10_1007_JHEP12_2012_055 crossref_primary_10_1016_j_physletb_2014_03_010 crossref_primary_10_1007_JHEP12_2012_058 crossref_primary_10_1007_JHEP04_2021_199 crossref_primary_10_1007_JHEP08_2012_003 crossref_primary_10_1007_JHEP08_2014_073 crossref_primary_10_1103_PhysRevD_110_075020 crossref_primary_10_1007_JHEP06_2015_122 crossref_primary_10_1007_JHEP08_2014_078 crossref_primary_10_1007_JHEP08_2014_069 crossref_primary_10_1007_JHEP02_2018_083 crossref_primary_10_1007_JHEP02_2016_018 crossref_primary_10_1007_JHEP12_2012_061 crossref_primary_10_1103_PhysRevD_89_014016 crossref_primary_10_1103_PhysRevLett_112_101802 crossref_primary_10_1103_PhysRevD_93_055020 crossref_primary_10_1103_PhysRevD_89_075017 crossref_primary_10_1103_PhysRevD_98_053006 crossref_primary_10_1103_PhysRevD_108_035003 crossref_primary_10_1103_PhysRevLett_114_041802 crossref_primary_10_1155_2015_136093 crossref_primary_10_1140_epjc_s10052_017_5067_3 crossref_primary_10_1103_PhysRevD_98_115013 crossref_primary_10_1007_JHEP04_2014_126 crossref_primary_10_1103_PhysRevD_105_055014 crossref_primary_10_1103_PhysRevD_107_073004 crossref_primary_10_1007_JHEP06_2013_108 crossref_primary_10_1007_JHEP10_2020_040 crossref_primary_10_1007_JHEP05_2013_065 crossref_primary_10_1103_PhysRevD_107_073007 crossref_primary_10_1007_JHEP10_2013_077 crossref_primary_10_1088_0954_3899_42_7_075003 crossref_primary_10_1103_PhysRevD_89_075007 crossref_primary_10_1103_PhysRevD_95_073006 crossref_primary_10_1007_JHEP02_2023_011 crossref_primary_10_1007_JHEP10_2013_072 crossref_primary_10_1103_PhysRevD_92_012004 crossref_primary_10_1142_S2010194514602816 crossref_primary_10_1007_JHEP12_2012_077 crossref_primary_10_1103_PhysRevD_85_035002 crossref_primary_10_1016_j_physletb_2014_10_027 crossref_primary_10_1007_JHEP04_2014_140 crossref_primary_10_1007_JHEP10_2013_068 crossref_primary_10_1016_j_cpc_2014_02_018 crossref_primary_10_1007_JHEP05_2024_043 crossref_primary_10_1016_j_physletb_2012_11_063 crossref_primary_10_1007_JHEP10_2019_154 crossref_primary_10_1103_PhysRevD_96_035033 crossref_primary_10_1007_JHEP10_2013_062 crossref_primary_10_1140_epjc_s10052_014_3232_5 crossref_primary_10_1103_PhysRevD_93_055044 crossref_primary_10_1155_2017_1572053 crossref_primary_10_1103_PhysRevD_93_118702 crossref_primary_10_1103_PhysRevD_93_118701 crossref_primary_10_1103_PhysRevD_98_115038 crossref_primary_10_1007_JHEP04_2014_100 crossref_primary_10_1007_JHEP12_2023_018 crossref_primary_10_1103_PhysRevD_100_115018 crossref_primary_10_1103_PhysRevD_108_035027 crossref_primary_10_1016_j_physletb_2014_07_053 crossref_primary_10_1103_PhysRevD_93_055038 crossref_primary_10_1007_JHEP11_2015_191 crossref_primary_10_1088_1742_6596_455_1_012029 crossref_primary_10_1103_PhysRevD_89_075004 crossref_primary_10_1007_JHEP04_2014_117 crossref_primary_10_1140_epjc_s10052_014_3036_7 crossref_primary_10_1007_JHEP10_2019_139 crossref_primary_10_4236_ojm_2014_44006 crossref_primary_10_1007_JHEP02_2025_081 crossref_primary_10_1007_JHEP06_2015_168 crossref_primary_10_1007_JHEP04_2014_110 crossref_primary_10_3390_universe8050286 crossref_primary_10_1088_2632_2153_ac3dde crossref_primary_10_1103_PhysRevD_105_055024 crossref_primary_10_1007_JHEP05_2013_090 crossref_primary_10_1103_PhysRevD_96_035016 crossref_primary_10_1088_1742_6596_455_1_012026 crossref_primary_10_1016_j_physletb_2014_07_041 crossref_primary_10_1103_PhysRevD_93_055026 crossref_primary_10_1140_epjc_s10052_012_1887_3 crossref_primary_10_1103_PhysRevD_108_035043 crossref_primary_10_1007_JHEP03_2014_032 crossref_primary_10_1103_PhysRevD_94_074020 crossref_primary_10_1007_JHEP07_2016_016 crossref_primary_10_1103_PhysRevD_107_016002 crossref_primary_10_1103_PhysRevLett_114_111801 crossref_primary_10_1155_2016_3279568 crossref_primary_10_1140_epjc_s10052_014_2981_5 crossref_primary_10_1140_epjp_s13360_020_00344_5 crossref_primary_10_1016_j_physrep_2024_11_005 crossref_primary_10_1103_PhysRevD_87_033007 crossref_primary_10_1103_PhysRevD_87_115026 crossref_primary_10_1007_JHEP07_2016_027 crossref_primary_10_1140_epjc_s10052_012_2232_6 crossref_primary_10_1007_JHEP01_2020_102 crossref_primary_10_1007_JHEP11_2013_108 crossref_primary_10_1103_PhysRevD_90_063512 crossref_primary_10_1007_JHEP01_2022_139 crossref_primary_10_1007_JHEP04_2016_169 crossref_primary_10_1103_PhysRevD_88_076009 crossref_primary_10_1103_PhysRevD_110_055006 crossref_primary_10_1007_s40042_024_01037_3 crossref_primary_10_1103_PhysRevD_87_115017 crossref_primary_10_1007_JHEP03_2014_054 crossref_primary_10_1103_PhysRevD_87_115016 crossref_primary_10_1007_JHEP09_2014_175 crossref_primary_10_1103_PhysRevD_88_076003 crossref_primary_10_1007_JHEP08_2012_078 crossref_primary_10_1016_j_physletb_2014_12_044 crossref_primary_10_1007_JHEP08_2012_073 crossref_primary_10_1103_PhysRevLett_113_152001 crossref_primary_10_1007_JHEP02_2025_049 crossref_primary_10_1103_PhysRevD_90_072011 crossref_primary_10_1007_JHEP01_2015_144 crossref_primary_10_1103_PhysRevD_87_033001 crossref_primary_10_1007_JHEP03_2014_060 crossref_primary_10_1007_JHEP10_2013_093 crossref_primary_10_1007_JHEP05_2019_132 crossref_primary_10_1007_JHEP09_2021_175 crossref_primary_10_1103_PhysRevD_89_095031 crossref_primary_10_1103_PhysRevD_90_014046 crossref_primary_10_1140_epjp_s13360_020_00499_1 crossref_primary_10_1007_JHEP11_2015_150 crossref_primary_10_1103_PhysRevD_87_115004 crossref_primary_10_1007_JHEP08_2012_083 crossref_primary_10_1007_JHEP09_2014_161 crossref_primary_10_1103_PhysRevD_89_095033 crossref_primary_10_1103_PhysRevD_98_115006 crossref_primary_10_1007_JHEP11_2015_158 crossref_primary_10_1142_S021773232450113X crossref_primary_10_1103_PhysRevD_92_044036 crossref_primary_10_1103_PhysRevD_90_072001 crossref_primary_10_1007_JHEP10_2011_015 crossref_primary_10_1103_PhysRevD_89_095027 crossref_primary_10_1103_PhysRevD_94_112005 crossref_primary_10_1140_epjc_s10052_013_2707_0 crossref_primary_10_1103_PhysRevD_110_055026 crossref_primary_10_1103_PhysRevD_86_034029 crossref_primary_10_1103_PhysRevD_88_114026 crossref_primary_10_1007_JHEP02_2014_060 crossref_primary_10_1007_JHEP06_2013_072 crossref_primary_10_1007_JHEP06_2013_073 crossref_primary_10_1140_epjc_s10052_016_4573_z crossref_primary_10_1103_PhysRevD_110_035022 crossref_primary_10_1007_JHEP10_2013_114 crossref_primary_10_1016_j_physletb_2015_02_011 crossref_primary_10_1007_JHEP02_2014_053 crossref_primary_10_1007_JHEP05_2019_072 crossref_primary_10_1088_1742_6596_1690_1_012157 crossref_primary_10_1140_epjc_s10052_024_12401_9 crossref_primary_10_1007_JHEP02_2014_055 crossref_primary_10_1103_PhysRevD_88_035008 crossref_primary_10_1007_JHEP07_2013_116 crossref_primary_10_1007_JHEP02_2014_057 crossref_primary_10_1007_JHEP06_2019_120 crossref_primary_10_1140_epjc_s10052_016_3914_2 crossref_primary_10_1140_epjc_s10052_016_4048_2 crossref_primary_10_1016_j_cpc_2012_01_022 crossref_primary_10_1007_JHEP06_2013_081 crossref_primary_10_1103_PhysRevD_84_115007 crossref_primary_10_1103_PhysRevD_108_055024 crossref_primary_10_1140_epjp_i2018_12290_8 crossref_primary_10_1140_epjc_s10052_013_2386_x crossref_primary_10_1016_j_cpc_2014_04_012 crossref_primary_10_1007_JHEP02_2014_048 crossref_primary_10_1007_JHEP10_2013_105 crossref_primary_10_1103_PhysRevD_92_023531 crossref_primary_10_1007_JHEP02_2014_049 crossref_primary_10_1103_PhysRevD_108_055027 crossref_primary_10_1103_PhysRevD_88_035011 crossref_primary_10_1016_j_physletb_2015_02_020 crossref_primary_10_1103_PhysRevD_92_032008 crossref_primary_10_1103_PhysRevD_88_035016 crossref_primary_10_1088_1742_6596_1690_1_012168 crossref_primary_10_1103_PhysRevD_86_074029 crossref_primary_10_1016_j_nuclphysbps_2012_03_018 crossref_primary_10_1103_PhysRevD_93_075037 crossref_primary_10_1007_JHEP07_2013_129 crossref_primary_10_1103_PhysRevD_85_055020 crossref_primary_10_1103_PhysRevD_88_114005 crossref_primary_10_1007_JHEP07_2013_144 crossref_primary_10_1103_PhysRevD_88_114002 crossref_primary_10_1088_0954_3899_41_7_075011 crossref_primary_10_1016_j_nuclphysb_2013_06_001 crossref_primary_10_1140_epjc_s10052_012_2063_5 crossref_primary_10_1103_PhysRevD_95_012003 crossref_primary_10_1007_JHEP02_2014_077 crossref_primary_10_1103_PhysRevD_99_035001 crossref_primary_10_1007_JHEP03_2014_141 crossref_primary_10_1103_PhysRevD_95_012009 crossref_primary_10_1088_0954_3899_41_7_075009 crossref_primary_10_1007_JHEP08_2023_173 crossref_primary_10_1007_JHEP02_2022_165 crossref_primary_10_1007_JHEP04_2017_022 crossref_primary_10_1103_PhysRevD_93_075019 crossref_primary_10_1134_S106377881601021X crossref_primary_10_1007_JHEP07_2013_148 crossref_primary_10_1007_JHEP12_2024_225 crossref_primary_10_1007_JHEP01_2013_181 crossref_primary_10_1103_PhysRevD_95_012011 crossref_primary_10_1007_JHEP01_2013_182 crossref_primary_10_1016_j_physletb_2012_06_078 crossref_primary_10_1007_JHEP01_2013_164 crossref_primary_10_1007_JHEP07_2021_044 crossref_primary_10_1007_JHEP07_2015_174 crossref_primary_10_1103_PhysRevD_101_065019 crossref_primary_10_1051_epjconf_20136020031 crossref_primary_10_1140_epjc_s10052_016_4431_z crossref_primary_10_1007_JHEP03_2016_157 crossref_primary_10_1007_JHEP04_2017_018 crossref_primary_10_1016_j_physletb_2014_09_044 crossref_primary_10_1103_PhysRevLett_115_211801 crossref_primary_10_1007_JHEP01_2013_154 crossref_primary_10_1103_PhysRevD_86_054004 crossref_primary_10_1088_1361_6471_ab4574 crossref_primary_10_1140_epjc_s10052_019_6837_x crossref_primary_10_1016_j_cpc_2013_10_020 crossref_primary_10_1140_epjc_s10052_015_3376_y crossref_primary_10_1007_JHEP10_2015_178 crossref_primary_10_1016_j_physletb_2019_134832 crossref_primary_10_1103_PhysRevLett_123_141801 crossref_primary_10_1088_1475_7516_2014_09_022 crossref_primary_10_1103_PhysRevD_89_054011 crossref_primary_10_1140_epjp_i2019_12614_2 crossref_primary_10_1007_JHEP01_2013_148 crossref_primary_10_1007_JHEP01_2020_057 crossref_primary_10_1007_JHEP11_2022_112 crossref_primary_10_1103_PhysRevD_88_055021 crossref_primary_10_1007_JHEP01_2013_149 crossref_primary_10_1016_j_physletb_2014_10_032 crossref_primary_10_1007_JHEP10_2020_018 crossref_primary_10_1103_PhysRevD_101_015018 crossref_primary_10_1016_j_cpc_2020_107465 crossref_primary_10_1103_PhysRevD_86_054022 crossref_primary_10_1007_JHEP10_2022_095 crossref_primary_10_1103_PhysRevD_85_081301 crossref_primary_10_1103_PhysRevD_89_054002 crossref_primary_10_1142_S0217751X22501974 crossref_primary_10_3390_sym13060991 crossref_primary_10_1007_JHEP08_2023_135 crossref_primary_10_1088_0031_8949_90_9_098001 crossref_primary_10_1007_JHEP12_2016_046 crossref_primary_10_1103_PhysRevD_91_095003 crossref_primary_10_1103_PhysRevD_91_095002 crossref_primary_10_1103_PhysRevD_91_095007 crossref_primary_10_1103_PhysRevD_110_092016 crossref_primary_10_1007_JHEP10_2013_122 crossref_primary_10_1103_PhysRevD_91_095009 crossref_primary_10_1007_JHEP03_2025_046 crossref_primary_10_1103_PhysRevD_96_075032 crossref_primary_10_1103_PhysRevD_96_075035 crossref_primary_10_1103_PhysRevD_103_095027 crossref_primary_10_1007_s11433_022_1927_9 crossref_primary_10_3390_universe10060243 crossref_primary_10_1038_s41467_021_22616_z crossref_primary_10_1103_PhysRevD_85_075011 crossref_primary_10_1007_JHEP08_2014_067 crossref_primary_10_1103_PhysRevD_110_015017 crossref_primary_10_1007_JHEP02_2016_060 crossref_primary_10_1103_PhysRevD_108_075027 crossref_primary_10_1103_PhysRevD_85_075004 crossref_primary_10_1142_S0217732316501741 crossref_primary_10_1103_PhysRevD_99_015011 crossref_primary_10_1103_PhysRevD_99_055034 crossref_primary_10_1155_2013_690254 crossref_primary_10_1103_PhysRevD_99_055036 crossref_primary_10_1103_PhysRevD_105_095031 crossref_primary_10_1140_epjc_s10052_023_11784_5 crossref_primary_10_1103_PhysRevD_105_095036 crossref_primary_10_1103_PhysRevD_85_075020 crossref_primary_10_1007_JHEP08_2014_047 crossref_primary_10_1007_JHEP08_2014_046 crossref_primary_10_1103_PhysRevD_85_075018 crossref_primary_10_1007_JHEP03_2016_125 crossref_primary_10_1088_1742_6596_447_1_012033 crossref_primary_10_1103_PhysRevLett_111_061801 crossref_primary_10_1140_epjc_s10052_021_09443_8 crossref_primary_10_1007_JHEP08_2014_042 crossref_primary_10_1007_JHEP06_2022_009 crossref_primary_10_1007_JHEP08_2014_035 crossref_primary_10_1007_s11467_013_0298_8 crossref_primary_10_1134_S1063778813040066 crossref_primary_10_1103_PhysRevD_88_015012 crossref_primary_10_1103_PhysRevD_93_095011 crossref_primary_10_1103_PhysRevD_105_095017 crossref_primary_10_1103_PhysRevD_86_113005 crossref_primary_10_1103_PhysRevD_97_113004 crossref_primary_10_1140_epjc_s10052_013_2610_8 crossref_primary_10_1007_JHEP07_2021_098 crossref_primary_10_1007_JHEP08_2014_030 crossref_primary_10_1007_JHEP09_2012_092 crossref_primary_10_1140_epjc_s10052_015_3417_6 crossref_primary_10_1103_PhysRevD_86_094040 crossref_primary_10_1103_PhysRevD_90_076004 crossref_primary_10_1016_j_dark_2015_09_001 crossref_primary_10_1103_PhysRevD_87_093005 crossref_primary_10_1103_PhysRevD_93_095005 crossref_primary_10_1103_PhysRevD_99_015006 crossref_primary_10_1007_JHEP03_2016_145 crossref_primary_10_1103_PhysRevD_90_034007 crossref_primary_10_1103_PhysRevD_88_015006 crossref_primary_10_1007_JHEP12_2016_088 crossref_primary_10_1103_PhysRevLett_119_141804 crossref_primary_10_1007_JHEP07_2013_160 crossref_primary_10_1007_JHEP01_2019_227 crossref_primary_10_1103_PhysRevD_104_015034 crossref_primary_10_1007_JHEP08_2014_022 crossref_primary_10_1016_j_physletb_2015_04_062 crossref_primary_10_1007_JHEP03_2018_167 crossref_primary_10_1103_PhysRevD_88_063510 crossref_primary_10_1007_JHEP12_2014_022 crossref_primary_10_1103_PhysRevLett_113_211802 crossref_primary_10_1007_JHEP02_2014_010 crossref_primary_10_1051_epjconf_20136012013 crossref_primary_10_1088_1742_6596_645_1_012017 crossref_primary_10_1007_JHEP02_2014_013 crossref_primary_10_1140_epjc_s10052_020_8424_6 crossref_primary_10_1140_epjc_s10052_015_3622_3 crossref_primary_10_1007_JHEP08_2016_037 crossref_primary_10_1103_PhysRevLett_114_151802 crossref_primary_10_1140_epjc_s10052_015_3439_0 crossref_primary_10_1007_JHEP02_2014_006 crossref_primary_10_1142_S0217751X15460082 crossref_primary_10_1088_1361_6471_aa9873 crossref_primary_10_1007_JHEP12_2014_037 crossref_primary_10_1140_epjc_s10052_021_08975_3 crossref_primary_10_1140_epjp_s13360_024_05910_9 crossref_primary_10_1007_JHEP12_2014_039 crossref_primary_10_1140_epjc_s10052_022_10855_3 crossref_primary_10_1140_epjc_s10052_021_08853_y crossref_primary_10_1007_JHEP06_2017_106 crossref_primary_10_1103_PhysRevD_94_013005 crossref_primary_10_1103_PhysRevD_93_014018 crossref_primary_10_1103_PhysRevD_84_115018 crossref_primary_10_1103_PhysRevD_107_115026 crossref_primary_10_1016_j_nuclphysb_2013_08_010 crossref_primary_10_1007_JHEP09_2018_148 crossref_primary_10_1103_PhysRevC_88_025203 crossref_primary_10_1103_PhysRevD_84_115009 crossref_primary_10_1103_PhysRevD_88_035021 crossref_primary_10_1007_JHEP07_2013_179 crossref_primary_10_1103_PhysRevD_88_035026 crossref_primary_10_1007_JHEP07_2013_178 crossref_primary_10_1140_epjc_s10052_018_5752_x crossref_primary_10_1103_PhysRevD_88_035024 crossref_primary_10_1103_PhysRevD_93_014020 crossref_primary_10_1103_PhysRevD_91_075007 crossref_primary_10_1007_JHEP03_2022_203 crossref_primary_10_1142_S0217751X17450038 crossref_primary_10_1016_j_nuclphysbps_2015_03_024 crossref_primary_10_1103_PhysRevD_86_074010 crossref_primary_10_1155_2012_853706 crossref_primary_10_1088_1361_6471_ab00cb crossref_primary_10_1007_JHEP03_2023_004 crossref_primary_10_1103_PhysRevD_91_053009 crossref_primary_10_1140_epjc_s10052_014_3129_3 crossref_primary_10_1140_epjc_s10052_024_12756_z crossref_primary_10_1103_PhysRevD_85_091501 crossref_primary_10_1103_PhysRevD_86_074003 crossref_primary_10_1007_JHEP03_2018_172 crossref_primary_10_1016_j_cpc_2015_01_024 crossref_primary_10_1103_PhysRevD_86_074004 crossref_primary_10_1103_PhysRevD_89_034002 crossref_primary_10_1007_JHEP02_2014_024 crossref_primary_10_1007_JHEP02_2014_025 crossref_primary_10_1103_PhysRevD_88_075012 crossref_primary_10_1007_JHEP01_2024_051 crossref_primary_10_1103_PhysRevD_88_075015 crossref_primary_10_1103_PhysRevLett_113_201803 crossref_primary_10_1103_PhysRevD_108_095025 crossref_primary_10_1088_1475_7516_2014_06_030 crossref_primary_10_1016_j_cpc_2014_08_024 crossref_primary_10_1007_JHEP02_2025_149 crossref_primary_10_3390_info16040258 crossref_primary_10_1007_JHEP11_2012_043 crossref_primary_10_1103_PhysRevD_100_014024 crossref_primary_10_1103_PhysRevD_85_014025 crossref_primary_10_1103_PhysRevD_97_035026 crossref_primary_10_1007_JHEP01_2017_094 crossref_primary_10_1103_PhysRevD_85_014022 crossref_primary_10_1007_JHEP04_2013_035 crossref_primary_10_1007_JHEP08_2020_170 crossref_primary_10_1007_JHEP04_2013_031 crossref_primary_10_1103_PhysRevD_88_075004 crossref_primary_10_1007_JHEP05_2014_150 crossref_primary_10_1007_JHEP09_2014_060 crossref_primary_10_1140_epjc_s10052_013_2325_x crossref_primary_10_1103_PhysRevD_85_095001 crossref_primary_10_1103_PhysRevLett_110_141802 crossref_primary_10_1140_epjc_s10052_023_11656_y crossref_primary_10_1103_PhysRevD_85_014031 crossref_primary_10_1016_j_physletb_2013_02_021 crossref_primary_10_1103_PhysRevD_90_032008 crossref_primary_10_1103_PhysRevD_85_014030 crossref_primary_10_1142_S0217751X15460045 crossref_primary_10_1007_JHEP04_2013_028 crossref_primary_10_1103_PhysRevD_90_032004 crossref_primary_10_1103_PhysRevD_87_032001 crossref_primary_10_1103_PhysRevD_97_035012 crossref_primary_10_1007_JHEP11_2012_039 crossref_primary_10_1103_PhysRevD_89_051302 crossref_primary_10_1103_PhysRevD_104_015009 crossref_primary_10_1140_epjc_s10052_023_12093_7 crossref_primary_10_1007_JHEP04_2013_063 crossref_primary_10_1088_1674_1137_39_11_113101 crossref_primary_10_1142_S0217732318501742 crossref_primary_10_1016_j_cpc_2015_02_020 crossref_primary_10_1103_PhysRevLett_124_041802 crossref_primary_10_1103_PhysRevD_101_115012 crossref_primary_10_1007_JHEP08_2012_151 crossref_primary_10_1007_JHEP09_2022_059 crossref_primary_10_1007_JHEP06_2016_019 crossref_primary_10_1142_S0217751X15460070 crossref_primary_10_1007_JHEP11_2012_067 crossref_primary_10_1103_PhysRevD_104_015017 crossref_primary_10_1103_PhysRevD_104_015016 crossref_primary_10_1140_epjc_s10052_017_5160_7 crossref_primary_10_1007_JHEP12_2020_115 crossref_primary_10_1007_JHEP03_2018_022 crossref_primary_10_1016_j_physletb_2015_07_053 crossref_primary_10_1007_JHEP04_2019_129 crossref_primary_10_1007_JHEP08_2012_160 crossref_primary_10_1007_JHEP09_2014_087 crossref_primary_10_1140_epjc_s10052_021_09577_9 crossref_primary_10_1007_JHEP11_2018_144 crossref_primary_10_1007_s40042_021_00095_1 crossref_primary_10_1103_PhysRevD_101_115027 crossref_primary_10_1103_PhysRevD_89_094017 crossref_primary_10_1007_JHEP08_2020_141 crossref_primary_10_1016_j_physletb_2013_02_003 crossref_primary_10_1016_j_physletb_2015_07_065 crossref_primary_10_1140_epjc_s10052_014_2973_5 crossref_primary_10_1140_epjc_s10052_015_3338_4 crossref_primary_10_1007_JHEP04_2013_043 crossref_primary_10_1088_1475_7516_2023_02_002 crossref_primary_10_1007_JHEP06_2016_080 crossref_primary_10_1155_2018_9785318 crossref_primary_10_1007_JHEP05_2023_142 crossref_primary_10_1103_PhysRevD_86_033010 crossref_primary_10_1103_PhysRevD_86_113010 crossref_primary_10_1007_JHEP11_2012_003 crossref_primary_10_1016_j_physletb_2013_02_052 crossref_primary_10_1016_j_physrep_2016_07_004 crossref_primary_10_1103_PhysRevD_86_094006 crossref_primary_10_1103_PhysRevD_89_094005 crossref_primary_10_1103_PhysRevLett_110_022003 crossref_primary_10_1007_JHEP04_2015_088 crossref_primary_10_1007_JHEP02_2016_145 crossref_primary_10_1051_epjconf_202431501025 crossref_primary_10_1007_JHEP09_2012_035 crossref_primary_10_1088_0954_3899_42_8_085001 crossref_primary_10_1007_JHEP11_2018_161 crossref_primary_10_1103_PhysRevD_104_035033 crossref_primary_10_1140_epjc_s10052_015_3774_1 crossref_primary_10_1140_epjc_s10052_024_12591_2 crossref_primary_10_1007_JHEP12_2022_132 crossref_primary_10_1007_JHEP10_2019_073 crossref_primary_10_1103_PhysRevD_97_072008 crossref_primary_10_1051_epjconf_201921407027 crossref_primary_10_1007_JHEP09_2012_027 crossref_primary_10_1016_j_physletb_2012_09_028 crossref_primary_10_1007_JHEP07_2019_170 crossref_primary_10_1007_s12043_015_1170_x crossref_primary_10_1007_JHEP08_2019_098 crossref_primary_10_1007_JHEP12_2022_166 crossref_primary_10_1007_JHEP02_2016_127 crossref_primary_10_1140_epjc_s10052_021_09204_7 crossref_primary_10_1103_PhysRevLett_112_081801 crossref_primary_10_1103_PhysRevD_93_012001 crossref_primary_10_1140_epjc_s10052_019_7436_6 crossref_primary_10_21468_SciPostPhysCore_5_4_050 crossref_primary_10_1088_1361_6471_ad0c62 crossref_primary_10_1103_PhysRevD_93_012003 crossref_primary_10_1103_PhysRevLett_133_231901 crossref_primary_10_1088_1475_7516_2014_06_060 crossref_primary_10_1146_annurev_nucl_102711_094913 crossref_primary_10_1103_PhysRevD_85_095023 crossref_primary_10_1007_JHEP04_2013_004 crossref_primary_10_1140_epjc_s10052_023_11291_7 crossref_primary_10_1007_JHEP04_2015_079 crossref_primary_10_1007_JHEP06_2016_048 crossref_primary_10_1016_j_physletb_2012_09_033 crossref_primary_10_1140_epjc_s10052_012_2202_z crossref_primary_10_1142_S0217751X15460021 crossref_primary_10_3390_sym15010027 crossref_primary_10_1016_j_physletb_2013_04_027 crossref_primary_10_1016_j_physletb_2013_04_028 crossref_primary_10_1088_1748_0221_17_12_P12002 crossref_primary_10_1016_j_physletb_2013_04_025 crossref_primary_10_1007_JHEP01_2022_044 crossref_primary_10_1007_JHEP11_2018_198 crossref_primary_10_1007_JHEP03_2022_195 crossref_primary_10_1103_PhysRevD_85_034021 crossref_primary_10_1007_JHEP11_2018_195 crossref_primary_10_1140_epjc_s10052_016_4361_9 crossref_primary_10_1103_PhysRevD_104_035008 crossref_primary_10_1007_JHEP03_2013_148 crossref_primary_10_1103_PhysRevD_88_095018 crossref_primary_10_1134_S1547477123050424 crossref_primary_10_1103_PhysRevD_104_035004 crossref_primary_10_1007_JHEP11_2014_059 crossref_primary_10_1007_JHEP02_2023_135 crossref_primary_10_21468_SciPostPhys_9_2_026 crossref_primary_10_1103_PhysRevD_97_055035 crossref_primary_10_1016_j_physletb_2013_04_017 crossref_primary_10_1007_JHEP08_2024_212 crossref_primary_10_1140_epjc_s10052_012_1899_z crossref_primary_10_1103_PhysRevC_94_024913 crossref_primary_10_1140_epjc_s10052_015_3587_2 crossref_primary_10_1140_epjc_s10052_022_11087_1 crossref_primary_10_1007_JHEP03_2013_139 crossref_primary_10_1016_j_physletb_2012_09_012 crossref_primary_10_1103_PhysRevD_96_036003 crossref_primary_10_1007_JHEP10_2019_004 crossref_primary_10_1088_1742_6596_1586_1_012023 crossref_primary_10_1103_PhysRevD_92_013004 crossref_primary_10_1103_PhysRevD_97_055007 crossref_primary_10_1088_1674_1137_ad13f8 crossref_primary_10_1016_j_cpc_2013_01_014 crossref_primary_10_1007_JHEP04_2015_029 crossref_primary_10_1007_JHEP09_2014_006 crossref_primary_10_1103_PhysRevD_107_015018 crossref_primary_10_1103_PhysRevD_91_014022 crossref_primary_10_1103_PhysRevD_100_075001 crossref_primary_10_1103_PhysRevD_89_074038 crossref_primary_10_1103_PhysRevD_100_075007 crossref_primary_10_1016_j_dark_2025_101852 crossref_primary_10_1007_JHEP03_2013_111 crossref_primary_10_1007_JHEP01_2017_044 crossref_primary_10_1007_JHEP01_2017_048 crossref_primary_10_1007_JHEP01_2015_053 crossref_primary_10_1103_PhysRevD_97_055023 crossref_primary_10_1007_JHEP03_2013_117 crossref_primary_10_1103_PhysRevD_89_074028 crossref_primary_10_1140_epjc_s10052_014_2916_1 crossref_primary_10_1140_epjc_s10052_024_13009_9 crossref_primary_10_1103_PhysRevD_89_074001 crossref_primary_10_1088_1748_0221_16_08_P08039 crossref_primary_10_3390_universe9050242 crossref_primary_10_1016_j_physletb_2013_04_060 crossref_primary_10_1088_1361_6471_ad2276 crossref_primary_10_1103_PhysRevD_107_015025 crossref_primary_10_1103_PhysRevD_107_015026 crossref_primary_10_1007_JHEP06_2014_083 crossref_primary_10_1140_epjc_s10052_013_2489_4 crossref_primary_10_1007_JHEP06_2014_081 crossref_primary_10_1140_epjc_s10052_015_3454_1 crossref_primary_10_1103_PhysRevD_103_036020 crossref_primary_10_1103_PhysRevD_97_115040 crossref_primary_10_1140_epjc_s10052_021_09613_8 crossref_primary_10_1007_JHEP11_2014_021 crossref_primary_10_1103_PhysRevD_90_095006 crossref_primary_10_1103_PhysRevD_89_074007 crossref_primary_10_1007_JHEP11_2014_024 crossref_primary_10_1103_PhysRevD_92_033016 crossref_primary_10_1103_PhysRevD_86_013006 crossref_primary_10_1103_PhysRevD_92_033014 crossref_primary_10_1007_JHEP06_2014_078 crossref_primary_10_1103_PhysRevD_90_015026 crossref_primary_10_1103_PhysRevD_90_015025 crossref_primary_10_1103_PhysRevLett_112_171802 crossref_primary_10_1103_PhysRevLett_112_171801 crossref_primary_10_1016_j_physletb_2013_10_034 crossref_primary_10_1103_PhysRevD_110_115039 crossref_primary_10_1007_JHEP05_2024_324 crossref_primary_10_1142_S0217751X19502191 crossref_primary_10_1103_PhysRevD_105_114002 crossref_primary_10_1007_JHEP10_2012_181 crossref_primary_10_1103_PhysRevD_110_115031 crossref_primary_10_1016_j_physletb_2015_07_011 crossref_primary_10_1088_1361_6633_ab28d6 crossref_primary_10_1140_epjc_s10052_015_3708_y crossref_primary_10_21468_SciPostPhys_8_2_025 crossref_primary_10_1007_JHEP01_2022_034 crossref_primary_10_1007_JHEP10_2012_162 crossref_primary_10_1007_JHEP03_2013_161 crossref_primary_10_1142_S0217751X14300531 crossref_primary_10_1007_JHEP04_2017_065 crossref_primary_10_1007_JHEP05_2019_028 crossref_primary_10_1103_PhysRevD_93_032004 crossref_primary_10_1103_PhysRevLett_112_231802 crossref_primary_10_1016_j_nuclphysb_2015_02_001 crossref_primary_10_1007_JHEP01_2013_088 crossref_primary_10_1103_PhysRevD_90_015009 crossref_primary_10_1103_PhysRevD_91_115014 crossref_primary_10_1103_PhysRevD_100_055001 crossref_primary_10_1088_1361_6471_abc3d5 crossref_primary_10_1103_PhysRevD_91_115011 crossref_primary_10_1103_PhysRevLett_112_182001 crossref_primary_10_1098_rsbm_2019_0031 crossref_primary_10_1103_PhysRevD_91_115009 crossref_primary_10_1051_epjconf_202125103045 crossref_primary_10_1103_PhysRevD_88_034033 crossref_primary_10_1016_j_cpc_2018_04_016 crossref_primary_10_1103_PhysRevD_91_115006 crossref_primary_10_1007_JHEP08_2023_015 crossref_primary_10_1016_j_physletb_2014_01_060 crossref_primary_10_1103_PhysRevD_104_055019 crossref_primary_10_1103_PhysRevD_90_015011 crossref_primary_10_1007_JHEP10_2015_086 crossref_primary_10_1103_PhysRevD_90_015012 crossref_primary_10_1103_PhysRevD_107_035010 crossref_primary_10_1103_PhysRevLett_131_231801 crossref_primary_10_1007_JHEP01_2013_078 crossref_primary_10_1007_JHEP06_2020_155 crossref_primary_10_1103_PhysRevD_91_115002 crossref_primary_10_1007_JHEP09_2015_204 crossref_primary_10_1007_JHEP04_2017_164 crossref_primary_10_1140_epjc_s10052_025_13943_2 crossref_primary_10_1088_1674_1137_43_10_103102 crossref_primary_10_1007_JHEP07_2013_003 crossref_primary_10_1088_0031_8949_2013_T158_014002 crossref_primary_10_1016_j_physletb_2014_01_051 crossref_primary_10_1088_0031_8949_2013_T158_014007 crossref_primary_10_1103_PhysRevD_90_015002 crossref_primary_10_1016_j_physletb_2019_02_029 crossref_primary_10_1103_PhysRevLett_108_201802 crossref_primary_10_1007_JHEP01_2013_063 crossref_primary_10_1140_epjc_s10052_021_09712_6 crossref_primary_10_1134_S1063778819010046 crossref_primary_10_1016_j_physletb_2013_06_058 crossref_primary_10_1016_j_physletb_2013_06_052 crossref_primary_10_1007_JHEP09_2024_101 crossref_primary_10_1051_epjconf_20159004004 crossref_primary_10_1103_PhysRevD_94_095013 crossref_primary_10_1051_epjconf_202125103022 crossref_primary_10_1140_epjc_s10052_015_3364_2 crossref_primary_10_1103_PhysRevD_92_033008 crossref_primary_10_1103_PhysRevD_91_034014 crossref_primary_10_1103_PhysRevD_97_075006 crossref_primary_10_1103_PhysRevD_88_034019 crossref_primary_10_1103_PhysRevD_90_095018 crossref_primary_10_1103_PhysRevD_91_094007 crossref_primary_10_1103_PhysRevD_100_055018 crossref_primary_10_1007_JHEP03_2014_022 crossref_primary_10_1016_j_physletb_2014_01_069 crossref_primary_10_1007_JHEP03_2014_024 crossref_primary_10_1016_j_cpc_2016_01_005 crossref_primary_10_1103_PhysRevD_87_096002 crossref_primary_10_1007_JHEP03_2014_027 crossref_primary_10_1140_epjc_s10052_015_3266_3 crossref_primary_10_1103_PhysRevD_90_095022 crossref_primary_10_1140_epjc_s10052_013_2494_7 crossref_primary_10_1103_PhysRevD_104_055008 crossref_primary_10_1103_PhysRevD_104_055009 crossref_primary_10_1007_JHEP11_2016_147 crossref_primary_10_1088_1475_7516_2014_02_050 crossref_primary_10_1140_epjc_s10052_019_7574_x crossref_primary_10_1007_JHEP09_2016_036 crossref_primary_10_1016_j_cpc_2012_10_032 crossref_primary_10_1007_JHEP02_2012_129 crossref_primary_10_1007_JHEP10_2013_033 crossref_primary_10_1007_JHEP05_2016_108 crossref_primary_10_1007_JHEP02_2012_140 crossref_primary_10_1103_PhysRevD_89_053012 crossref_primary_10_1103_PhysRevD_89_053010 crossref_primary_10_1103_PhysRevLett_114_051301 crossref_primary_10_1088_1475_7516_2022_05_033 crossref_primary_10_1007_JHEP09_2016_051 crossref_primary_10_1140_epjc_s10052_015_3649_5 crossref_primary_10_1007_JHEP02_2012_135 crossref_primary_10_1016_j_physletb_2012_11_029 crossref_primary_10_1016_j_physletb_2012_11_026 crossref_primary_10_1103_PhysRevD_88_034006 crossref_primary_10_21468_SciPostPhysCodeb_3 crossref_primary_10_1103_PhysRevD_89_114006 crossref_primary_10_1007_JHEP01_2013_026 crossref_primary_10_1007_JHEP07_2015_074 crossref_primary_10_1103_PhysRevD_88_095003 crossref_primary_10_1007_JHEP10_2021_182 crossref_primary_10_1103_PhysRevD_88_095001 crossref_primary_10_1140_epjc_s10052_021_09507_9 crossref_primary_10_1103_PhysRevD_88_115013 crossref_primary_10_1007_JHEP04_2017_110 crossref_primary_10_1103_PhysRevD_90_075004 crossref_primary_10_1103_PhysRevLett_113_161802 crossref_primary_10_1103_PhysRevD_93_052007 crossref_primary_10_1007_JHEP07_2015_066 crossref_primary_10_1007_JHEP04_2017_118 crossref_primary_10_1103_PhysRevD_90_035027 crossref_primary_10_1103_PhysRevD_90_075009 crossref_primary_10_1103_PhysRevD_90_075007 crossref_primary_10_1103_PhysRevD_90_075005 crossref_primary_10_1016_j_physletb_2013_06_023 crossref_primary_10_1103_PhysRevD_90_035020 crossref_primary_10_1088_1674_1137_40_12_123104 crossref_primary_10_1103_PhysRevD_107_035033 crossref_primary_10_1007_JHEP12_2015_129 crossref_primary_10_1088_1475_7516_2013_07_006 crossref_primary_10_1007_JHEP01_2013_013 crossref_primary_10_1140_epjc_s10052_019_6858_5 crossref_primary_10_1016_j_nuclphysbps_2012_11_022 crossref_primary_10_1007_JHEP09_2016_033 crossref_primary_10_1016_j_cpc_2015_08_031 crossref_primary_10_1103_PhysRevD_88_095011 crossref_primary_10_1103_PhysRevD_91_115021 crossref_primary_10_1088_1742_6596_631_1_012045 crossref_primary_10_1134_S0021364023602518 crossref_primary_10_1088_1742_6596_2438_1_012001 crossref_primary_10_1140_epjc_s10052_015_3351_7 crossref_primary_10_1103_PhysRevD_91_115018 crossref_primary_10_1007_JHEP05_2016_114 crossref_primary_10_1016_j_nuclphysb_2014_07_007 crossref_primary_10_1103_PhysRevD_87_035014 crossref_primary_10_1103_PhysRevD_87_035016 crossref_primary_10_1007_JHEP05_2012_139 crossref_primary_10_1007_JHEP10_2015_076 crossref_primary_10_1103_PhysRevD_94_115014 crossref_primary_10_1088_1475_7516_2016_01_051 crossref_primary_10_1088_1742_6596_1390_1_012044 crossref_primary_10_1103_PhysRevD_97_095041 crossref_primary_10_1007_JHEP12_2015_151 crossref_primary_10_1088_1748_0221_14_06_P06032 crossref_primary_10_1140_epjc_s10052_016_4018_8 crossref_primary_10_1103_PhysRevD_107_055018 crossref_primary_10_1140_epjc_s10052_013_2339_4 crossref_primary_10_1007_JHEP06_2018_042 crossref_primary_10_1140_epjc_s10052_015_3591_6 crossref_primary_10_1088_1742_6596_798_1_012094 crossref_primary_10_1007_JHEP03_2018_081 crossref_primary_10_1007_JHEP09_2018_007 crossref_primary_10_1103_PhysRevD_94_115008 crossref_primary_10_1103_PhysRevD_97_095036 crossref_primary_10_1103_PhysRevD_87_052006 crossref_primary_10_1103_PhysRevD_90_035004 crossref_primary_10_21468_SciPostPhys_10_3_072 crossref_primary_10_1007_JHEP11_2016_107 crossref_primary_10_1016_j_cpc_2015_08_015 crossref_primary_10_1016_j_physrep_2020_04_001 crossref_primary_10_1007_JHEP08_2016_119 crossref_primary_10_1016_j_dark_2018_11_009 crossref_primary_10_1140_epjc_s10052_014_3076_z crossref_primary_10_1103_PhysRevD_108_115010 crossref_primary_10_1007_JHEP07_2019_136 crossref_primary_10_1007_JHEP08_2014_173 crossref_primary_10_1088_1361_6471_44_6_063001 crossref_primary_10_1007_JHEP08_2014_174 crossref_primary_10_1016_j_physletb_2013_08_030 crossref_primary_10_1007_JHEP03_2024_104 crossref_primary_10_1103_PhysRevD_92_053008 crossref_primary_10_1103_PhysRevD_87_097701 crossref_primary_10_1103_PhysRevLett_115_181602 crossref_primary_10_1007_JHEP08_2018_194 crossref_primary_10_1007_JHEP05_2016_138 crossref_primary_10_1007_JHEP03_2018_074 crossref_primary_10_1103_PhysRevD_90_075016 crossref_primary_10_1103_PhysRevD_93_015022 crossref_primary_10_1088_1742_6596_1525_1_012023 crossref_primary_10_1103_PhysRevD_85_115011 crossref_primary_10_1088_1742_6596_1525_1_012021 crossref_primary_10_1007_JHEP12_2015_172 crossref_primary_10_1016_j_physletb_2022_137330 crossref_primary_10_1007_JHEP08_2014_161 crossref_primary_10_1140_epjc_s10052_014_3063_4 crossref_primary_10_1088_1361_6471_ac9990 crossref_primary_10_1134_S1547477122030025 crossref_primary_10_1140_epjp_s13360_021_02294_y crossref_primary_10_1103_PhysRevLett_129_121803 crossref_primary_10_1140_epjc_s10052_012_2238_0 crossref_primary_10_1103_PhysRevD_85_115001 crossref_primary_10_1103_PhysRevD_97_095012 crossref_primary_10_1088_1361_6471_44_2_023001 crossref_primary_10_1007_JHEP08_2014_153 crossref_primary_10_1007_JHEP12_2015_166 crossref_primary_10_1103_PhysRevD_107_116026 crossref_primary_10_1007_JHEP08_2014_155 crossref_primary_10_1103_PhysRevD_88_014033 crossref_primary_10_1007_JHEP02_2016_176 crossref_primary_10_1134_S1063778823040233 crossref_primary_10_1134_S1547477122030037 crossref_primary_10_1007_JHEP10_2015_036 crossref_primary_10_1103_PhysRevD_100_035016 crossref_primary_10_1103_PhysRevD_91_054012 crossref_primary_10_1088_1742_6596_1390_1_012080 crossref_primary_10_1007_JHEP02_2014_101 crossref_primary_10_1007_JHEP10_2015_031 crossref_primary_10_1016_j_physletb_2014_01_010 crossref_primary_10_1140_epjp_i2013_13117_x crossref_primary_10_1016_j_physletb_2013_08_001 crossref_primary_10_1103_PhysRevD_93_063523 crossref_primary_10_1007_JHEP08_2014_134 crossref_primary_10_1007_JHEP11_2012_088 crossref_primary_10_1016_j_physletb_2013_08_007 crossref_primary_10_1140_epjc_s10052_014_2801_y crossref_primary_10_1103_PhysRevD_91_054002 crossref_primary_10_1007_JHEP02_2014_130 crossref_primary_10_1007_JHEP04_2013_077 crossref_primary_10_3938_jkps_70_465 crossref_primary_10_1103_PhysRevD_97_075002 crossref_primary_10_1016_j_physletb_2014_01_006 crossref_primary_10_1007_JHEP02_2014_126 crossref_primary_10_1007_JHEP06_2024_124 crossref_primary_10_1007_JHEP05_2014_104 crossref_primary_10_1103_PhysRevD_86_073013 crossref_primary_10_1007_JHEP05_2014_106 crossref_primary_10_1007_JHEP02_2014_123 crossref_primary_10_1007_JHEP05_2014_108 crossref_primary_10_1007_JHEP10_2017_044 crossref_primary_10_1103_PhysRevD_91_074028 crossref_primary_10_1103_PhysRevD_93_072004 crossref_primary_10_1103_PhysRevD_110_095021 crossref_primary_10_1088_1748_0221_8_04_P04013 crossref_primary_10_1088_1361_6471_aab415 crossref_primary_10_1140_epjc_s10052_024_13685_7 crossref_primary_10_1140_epjc_s10052_012_1922_4 crossref_primary_10_3389_fspas_2018_00030 crossref_primary_10_1007_JHEP10_2017_076 crossref_primary_10_1103_PhysRevD_84_071504 crossref_primary_10_1007_JHEP07_2013_073 crossref_primary_10_1103_PhysRevD_110_095011 crossref_primary_10_1140_epjc_s10052_017_5321_8 crossref_primary_10_1103_PhysRevD_104_095031 crossref_primary_10_1103_PhysRevD_87_015022 crossref_primary_10_1103_PhysRevD_90_055007 crossref_primary_10_1088_1742_6596_2438_1_012089 crossref_primary_10_1103_PhysRevD_92_073013 crossref_primary_10_1103_PhysRevD_87_015023 crossref_primary_10_1007_JHEP11_2012_097 crossref_primary_10_1103_PhysRevD_101_034023 crossref_primary_10_1007_JHEP05_2014_123 crossref_primary_10_1007_JHEP01_2019_113 crossref_primary_10_1103_PhysRevD_87_072002 crossref_primary_10_1103_PhysRevD_93_015003 crossref_primary_10_1103_PhysRevD_90_055002 crossref_primary_10_1103_PhysRevD_93_015004 crossref_primary_10_1103_PhysRevD_90_055004 crossref_primary_10_1103_PhysRevD_87_072007 |
| Cites_doi | 10.1088/1126-6708/2009/10/003 10.1007/JHEP05(2011)044 10.1088/1126-6708/2004/11/040 10.1088/1126-6708/2009/05/053 10.1016/j.nima.2004.07.096 10.1016/0370-2693(95)00971-M 10.1088/1126-6708/2004/02/056 10.1088/1126-6708/2009/02/007 10.1016/j.nuclphysbps.2008.09.115 10.1103/PhysRevLett.83.4690 10.1088/1126-6708/2001/01/010 10.1007/JHEP06(2010)043 10.1016/S0370-2693(98)01015-6 10.1088/1126-6708/2002/08/015 10.1088/1126-6708/2006/05/026 10.1103/PhysRevLett.102.222001 10.1088/1126-6708/2008/09/122 10.1016/0370-1573(91)90091-Y 10.1088/1126-6708/2009/02/017 10.1016/0010-4655(94)90084-1 10.1016/0550-3213(88)90442-7 10.1088/1126-6708/2008/12/039 10.1016/j.cpc.2009.02.018 10.1103/PhysRevLett.106.092001 10.1140/epjc/s10052-007-0495-0 10.1007/JHEP01(2010)123 10.1007/JHEP03(2011)125 10.1088/1126-6708/2002/06/029 10.1016/S0550-3213(99)00809-3 10.1140/epjc/s10052-011-1541-5 10.1088/1126-6708/2003/07/001 10.1088/1126-6708/2007/01/013 10.1016/j.nuclphysb.2005.02.030 10.1088/1126-6708/2008/03/042 10.1088/1126-6708/2009/04/077 10.1088/1126-6708/2004/05/040 10.1103/PhysRevLett.83.3370 10.1088/1126-6708/2009/09/106 10.1088/1126-6708/2007/09/028 10.1088/1126-6708/2005/07/054 10.1088/1126-6708/2003/08/007 10.1016/j.cpc.2006.11.010 10.1140/epjc/s10052-008-0663-x 10.1088/1126-6708/2003/02/027 10.1088/1126-6708/2001/11/063 10.1016/j.nuclphysb.2010.10.015 10.1088/1126-6708/2009/08/085 10.1140/epjc/s10052-010-1529-6 10.1088/1126-6708/2002/05/046 10.1088/1126-6708/2006/08/062 10.1140/epjc/s10052-007-0490-5 10.1016/0550-3213(92)90169-C 10.1016/j.cpc.2008.01.036 10.1088/1126-6708/2009/04/072 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2011. This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited. The Author(s) 2011. Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited. This work is published under https://creativecommons.org/licenses/by-nc/2.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2011. This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited. – notice: The Author(s) 2011. Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited. This work is published under https://creativecommons.org/licenses/by-nc/2.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS ADTOC UNPAY |
| DOI | 10.1007/JHEP06(2011)128 |
| DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen Free (Free internet resource, activated by CARLI) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1029-8479 |
| ExternalDocumentID | 10.1007/jhep06(2011)128 10_1007_JHEP06_2011_128 |
| GroupedDBID | -5F -5G -A0 -BR 0R~ 0VY 199 1N0 2VQ 30V 4.4 408 40D 5GY 5ZI 8TC 8UJ 95. AAIAL AAKKN AARHV AAYZH ABEEZ ABTEG ACACY ACBXY ACGFS ACHIP ACREN ACULB ADINQ ADKPE ADRFC AEGXH AENEX AFGXO AFKRA AFLOW AFWTZ AGJBK AHBYD AHSBF AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOAED ARAPS ASPBG ATQHT AVWKF AZFZN BENPR BGLVJ BGNMA C24 C6C CAG CCPQU COF CS3 CSCUP DU5 EBS EJD ER. FEDTE GQ6 GROUPED_DOAJ H13 HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP M45 M4Y M~E N5L N9A NB0 NT- NT. NU0 O9- O93 P62 P9T PIMPY Q02 R9I RO9 RPA RSV S27 S3B SOJ SPH T13 U2A VC2 VSI WK8 XPP Z45 ZMT 02O 1JI 1WK 5VS 8FE 8FG AAFWJ AAGCD AAGCF AAJIO AALHV AATNI AAYXX ABFSG ACAFW ACARI ACSTC ADBBV AEFHF AEINN AEJGL AERVB AETNG AEZWR AFHIU AFPKN AGQPQ AHSEE AHWEU AHYZX AIXLP AIYBF AKPSB AMVHM ARNYC BAPOH BBWZM BCNDV CITATION CJUJL CRLBU EDWGO EMSAF EPQRW EQZZN IJHAN IOP IZVLO JCGBZ KOT OK1 PHGZM PHGZT PJBAE PQGLB PROAC PUEGO R4D RIN RKQ RNS ROL S1Z S3P SY9 T37 TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY |
| ID | FETCH-LOGICAL-c351t-3305a25fc7a9ac6ce9f116718f85efb5ed56821f49ab8e4416b79f089ed0a4e23 |
| IEDL.DBID | UNPAY |
| ISSN | 1029-8479 1126-6708 1127-2236 |
| IngestDate | Sun Oct 26 04:17:18 EDT 2025 Sat Oct 18 22:43:35 EDT 2025 Wed Oct 01 03:43:10 EDT 2025 Thu Apr 24 23:16:00 EDT 2025 Fri Feb 21 02:38:28 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | QCD Phenomenology |
| Language | English |
| License | cc-by-nc |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c351t-3305a25fc7a9ac6ce9f116718f85efb5ed56821f49ab8e4416b79f089ed0a4e23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/JHEP06(2011)128.pdf |
| PQID | 2398244412 |
| PQPubID | 2034718 |
| ParticipantIDs | unpaywall_primary_10_1007_jhep06_2011_128 proquest_journals_2398244412 crossref_citationtrail_10_1007_JHEP06_2011_128 crossref_primary_10_1007_JHEP06_2011_128 springer_journals_10_1007_JHEP06_2011_128 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2011-06-01 |
| PublicationDateYYYYMMDD | 2011-06-01 |
| PublicationDate_xml | – month: 06 year: 2011 text: 2011-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | The journal of high energy physics |
| PublicationTitleAbbrev | J. High Energ. Phys |
| PublicationYear | 2011 |
| Publisher | Springer-Verlag Springer Nature B.V |
| Publisher_xml | – name: Springer-Verlag – name: Springer Nature B.V |
| References | SjöstrandTMrennaSSkandsPZA brief introduction to PYTHIA 8.1Comput. Phys. Commun.20081788522008CoPhC.178..852S1196.8103810.1016/j.cpc.2008.01.036[arXiv:0710.3820] [SPIRES] GleisbergTSHERPA 1.alpha, a proof-of-concept versionJHEP2004020562004JHEP...02..056G10.1088/1126-6708/2004/02/056[hep-ph/0311263] [SPIRES] C.G. Papadopoulos and M. Worek, HELAC: a Monte Carlo generator for multi-jet processes, hep-ph/0606320 [SPIRES]. Del DucaVDixonLJMaltoniFNew color decompositions for gauge amplitudes at tree and loop levelNucl. Phys.2000B 571512000NuPhB.571...51D10.1016/S0550-3213(99)00809-3[hep-ph/9910563] [SPIRES] ChristensenNDA comprehensive approach to new physics simulationsEur. Phys. J.2011C 7115412011EPJC...71.1541C[arXiv:0906.2474] [SPIRES] DennerAEckHHahnOKublbeckJFeynman rules for fermion number violating interactionsNucl. Phys.1992B 3874671992NuPhB.387..467D10.1016/0550-3213(92)90169-C[SPIRES] CompHEP collaborationBoosECompHEP 4.4: automatic computations from lagrangians to eventsNucl. Instrum. Meth.2004A 5342502004NIMPA.534..250B[hep-ph/0403113] [SPIRES] AlwallJA standard format for Les Houches event filesComput. Phys. Commun.20071763002007CoPhC.176..300A10.1016/j.cpc.2006.11.010[hep-ph/0609017] [SPIRES] MrennaSRichardsonPMatching matrix elements and parton showers with HERWIG and PYTHIAJHEP2004050402004JHEP...05..040M10.1088/1126-6708/2004/05/040[hep-ph/0312274] [SPIRES] FrederixRGehrmannTGreinerNAutomation of the dipole subtraction method in MadGraph/MadEventJHEP2008091222008JHEP...09..122F10.1088/1126-6708/2008/09/122[arXiv:0808.2128] [SPIRES] SjöstrandTMrennaSSkandsPZPYTHIA 6.4 physics and manualJHEP2006050262006JHEP...05..026S10.1088/1126-6708/2006/05/026[hep-ph/0603175] [SPIRES] W. Kilian, W HIZARD 1.0: a generic Monte-Carlo integration and event generation package for multi-particle processes. Manual, LC-TOOL-2001-039. ManganoMLMorettiMPiccininiFTreccaniMMatching matrix elements and shower evolution for top-quark production in hadronic collisionsJHEP2007010132007JHEP...01..013M10.1088/1126-6708/2007/01/013[hep-ph/0611129] [SPIRES] J. Alwall et al., Aloha — Automatic helas routines for helicity amplitude calculations in any quantum field theory. ChoGCWeak boson fusion production of supersymmetric particles at the LHCPhys. Rev.2006D 730540022006PhRvD..73e4002C[hep-ph/0601063] [SPIRES] RandallLSundrumRA large mass hierarchy from a small extra dimensionPhys. Rev. Lett.199983337017447141999PhRvL..83.3370R0946.8106310.1103/PhysRevLett.83.3370[hep-ph/9905221] [SPIRES] ManganoMLParkeSJMulti-parton amplitudes in gauge theoriesPhys. Rept.19912003011991PhR...200..301M10.1016/0370-1573(91)90091-Y[hep-th/0509223] [SPIRES] BergerCFNext-to-Leading Order QCD predictions for Z, γ∗ + 3-jet distributions at the TevatronPhys. Rev.2010D 820740022010PhRvD..82g4002B[arXiv:1004.1659] [SPIRES] Aguilar-SaavedraJAEffective four-fermion operators in top physics: a roadmapNucl. Phys.2011B 8436382011NuPhB.843..638A10.1016/j.nuclphysb.2010.10.015[arXiv:1008.3562] [SPIRES] A. Pukhov et al., CompHEP: a package for evaluation of Feynman diagrams and integration over multi-particle phase space. User’s manual for version 33, hep-ph/9908288 [SPIRES]. HoecheSKraussFSchumannSSiegertFQCD matrix elements and truncated showersJHEP2009050532009JHEP...05..053H10.1088/1126-6708/2009/05/053[arXiv:0903.1219] [SPIRES] MaltoniFPaulKStelzerTWillenbrockSColor-flow decomposition of QCD amplitudesPhys. Rev.2003D 670140262003PhRvD..67a4026M[hep-ph/0209271] [SPIRES] CataniSKraussFKuhnRWebberBRQCD matrix elements + parton showersJHEP2001110632001JHEP...11..063C10.1088/1126-6708/2001/11/063[hep-ph/0109231] [SPIRES] ZhangCWillenbrockSEffective-field-theory approach to top-quark production and decayPhys. Rev.2011D 830340062011PhRvD..83c4006Z[arXiv:1008.3869] [SPIRES] CzakonMPapadopoulosCGWorekMPolarizing the dipolesJHEP2009080852009JHEP...08..085C10.1088/1126-6708/2009/08/085[arXiv:0905.0883] [SPIRES] BergerCFPrecise predictions for W + 3 jet production at hadron collidersPhys. Rev. Lett.20091022220012009PhRvL.102v2001B10.1103/PhysRevLett.102.222001[arXiv:0902.2760] [SPIRES] MaltoniFStelzerTMadEvent: automatic event generation with MadGraphJHEP2003020272003JHEP...02..027M10.1088/1126-6708/2003/02/027[hep-ph/0208156] [SPIRES] KraussFSchalickeASchumannSSoffGSimulating W/Z + jets production at the TevatronPhys. Rev.2004D 701140092004PhRvD..70k4009K[hep-ph/0409106] [SPIRES] HagiwaraKKanzakiJLiQMawatariKHELAS and MadGraph/MadEvent with spin-2 particlesEur. Phys. J.2008C 564352008EPJC...56..435H10.1140/epjc/s10052-008-0663-x[arXiv:0805.2554] [SPIRES] N. D. Christensen and C. Speckner, Automated validation of FeynRules models. AlwallJComparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisionsEur. Phys. J.2008C 534732008EPJC...53..473A10.1140/epjc/s10052-007-0490-5[arXiv:0706.2569] [SPIRES] AlioliSNasonPOleariCReEA general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOXJHEP2010060432010JHEP...06..043A10.1007/JHEP06(2010)043[arXiv:1002.2581] [SPIRES] DegrandeCGerardJ-MGrojeanCMaltoniFServantGNon-resonant new physics in top pair production at hadron collidersJHEP2011031252011JHEP...03..125D10.1007/JHEP03(2011)125[arXiv:1010.6304] [SPIRES] C. Duhr and B. Fuks, A superspace module for the FeynRules package, arXiv:1102.4191 [SPIRES]. M.H. Seymour and C. Tevlin, TeVJet: a general framework for the calculation of jet observables in NLO QCD, arXiv:0803.2231 [SPIRES]. M. Moretti, T. Ohl and J. Reuter, O’Mega: an optimizing matrix element generator, hep-ph/0102195 [SPIRES]. G. Zanderighi, Recent theoretical progress in perturbative QCD, arXiv:0810.3524 [SPIRES]. C. Degrande, J.-M. Gerard, C. Grojean, F. Maltoni and G. Servant, An effective approach to same sign top pair production at the LHC and the forward-backward asymmetry at the Tevatron, arXiv:1104.1798 [SPIRES]. HirschiVAutomation of one-loop QCD correctionsJHEP2011050442011JHEP...05..044H10.1007/JHEP05(2011)044[arXiv:1103.0621] [SPIRES] FrederixRFrixioneSMaltoniFStelzerTAutomation of next-to-leading order computations in QCD: the FKS subtractionJHEP2009100032009JHEP...10..003F10.1088/1126-6708/2009/10/003[arXiv:0908.4272] [SPIRES] J. Alwall et al., A Les Houches interface for BSM generators, arXiv:0712.3311 [SPIRES]. S. Ovyn, X. Rouby and V. Lemaitre, Delphes, a framework for fast simulation of a generic collider experiment, arXiv:0903.2225 [SPIRES]. BergerCFPrecise predictions for W + 4 jet production at the Large Hadron ColliderPhys. Rev. Lett.20111060920012011PhRvL.106i2001B10.1103/PhysRevLett.106.092001[arXiv:1009.2338] [SPIRES] DraggiotisPGarzelliMVPapadopoulosCGPittauRFeynman rules for the rational part of the QCD 1-loop amplitudesJHEP20090407225059572009JHEP...04..072D10.1088/1126-6708/2009/04/072[arXiv:0903.0356] [SPIRES] W. Kilian, T. Ohl and J. Reuter, WHIZARD: simulating multi-particle processes at LHC and ILC, arXiv:0708.4233 [SPIRES]. DuhrCHoecheSMaltoniFColor-dressed recursive relations for multi-parton amplitudesJHEP2006080622006JHEP...08..062D10.1088/1126-6708/2006/08/062[hep-ph/0607057] [SPIRES] CorcellaGHERWIG 6.5: an event generator for Hadron Emission Reactions With Interfering Gluons (including supersymmetric processes)JHEP2001010102001JHEP...01..010C10.1088/1126-6708/2001/01/010[hep-ph/0011363] [SPIRES] BrittoRCachazoFFengBNew recursion relations for tree amplitudes of gluonsNucl. Phys.2005B 71549921356462005NuPhB.715..499B10.1016/j.nuclphysb.2005.02.030[hep-th/0412308] [SPIRES] CaravagliosFMorettiMAn algorithm to compute Born scattering amplitudes without Feynman graphsPhys. Lett.1995B 3583321995PhLB..358..332C[hep-ph/9507237] [SPIRES] FrixioneSWebberBRMatching NLO QCD computations and parton shower simulationsJHEP2002060292002JHEP...06..029F10.1088/1126-6708/2002/06/029[hep-ph/0204244] [SPIRES] EnglertCPlehnTSchichtelPSchumannSJets plus missing energy with an autofocusPhys. Rev.2011D 830950092011PhRvD..83i5009E[arXiv:1102.4615] [SPIRES] J. Conway, Pretty Good Simulator, http://www.physics.ucdavis.edu/˜conway/research/software/pgs/pgs.html NasonPA new method for combining NLO QCD with shower Monte Carlo algorithmsJHEP2004110402004JHEP...11..040N10.1088/1126-6708/2004/11/040[hep-ph/0409146] [SPIRES] S. Frixione, Colourful FKS subtraction, arXiv:1106.0155 [SPIRES]. LönnbladLCorrecting the colour-dipole cascade model with fixed order matrix elementsJHEP20020504610.1088/1126-6708/2002/05/046[hep-ph/0112284] [SPIRES] KraussFMatrix elements and parton showers in hadronic interactionsJHEP2002080152002JHEP...08..015K10.1088/1126-6708/2002/08/015[hep-ph/0205283] [SPIRES] ManganoMLMorettiMPiccininiFPittauRPolosaADALPGEN, a generator for hard multiparton processes in hadronic collisionsJHEP2003070012003JHEP...07..001M10.1088/1126-6708/2003/07/001[hep-ph/0206293] [SPIRES] S. Hoeche et al., Matching parton showers and matrix elements, hep-ph/0602031 [SPIRES]. BerendsFAGieleWTRecursive calculations for processes with n gluonsNucl. Phys.1988B 3067591988NuPhB.306..759B10.1016/0550-3213(88)90442-7[SPIRES] C. Degrande et al., UFO — The Universal FeynRules Output. AlwallJMadGraph/MadEvent v4: the new web generationJHEP2007090282007JHEP...09..028A10.1088/1126-6708/2007/09/028[arXiv:0706.2334] [SPIRES] AlwallJde VisscherSMaltoniFQCD radiation in the production of heavy colored particles at the LHCJHEP2009020172009JHEP...02..017A10.1088/1126-6708/2009/02/017[arXiv:0810.5350] [SPIRES] HasegawaKMochSUwerPAutomating dipole subtractionNucl. Phys. Proc. Suppl.20081832682008NuPhS.183..268H10.1016/j.nuclphysbps.2008.09.115[arXiv:0807.3701] [SPIRES] HanTLewisIMcElmurryTQCD corrections to scalar diquark production at hadron collidersJHEP2010011232010JHEP...01..123H10.1007/JHEP01(2010)123[arXiv:0909.2666] [SPIRES] GleisbergTHoecheSComix, a new matrix element generatorJHEP2008120392008JHEP...12..039G10.1088/1126-6708/2008/12/039[arXiv:0808.3674] [SPIRES] OssolaGPapadopoulosCGPittauRCutTools: a program implementing the OPP reduction method to compute one-loop amplitudesJHEP2008030422008JHEP...03..0 T Gleisberg (2359_CR21) 2008; C 53 C Englert (2359_CR48) 2011; D 83 A Denner (2359_CR58) 1992; B 387 ML Mangano (2359_CR59) 1991; 200 2359_CR45 L Randall (2359_CR78) 1999; 83 RK Ellis (2359_CR28) 2009; 04 2359_CR1 2359_CR3 T Gleisberg (2359_CR7) 2004; 02 ML Mangano (2359_CR14) 2003; 07 S Mrenna (2359_CR40) 2004; 05 F Maltoni (2359_CR61) 2003; D 67 C Duhr (2359_CR10) 2006; 08 S Frixione (2359_CR50) 2002; 06 F Maltoni (2359_CR5) 2003; 02 J Alwall (2359_CR46) 2008; C 53 R Frederix (2359_CR24) 2008; 09 K Hasegawa (2359_CR23) 2008; 183 T Sjöstrand (2359_CR35) 2006; 05 2359_CR12 2359_CR56 2359_CR13 2359_CR54 J Alwall (2359_CR66) 2007; 176 2359_CR11 L Lönnblad (2359_CR42) 2002; 05 2359_CR15 P Nason (2359_CR52) 2004; 11 L Randall (2359_CR79) 1999; 83 CF Berger (2359_CR31) 2010; D 82 2359_CR19 T Han (2359_CR65) 2010; 01 V Hirschi (2359_CR34) 2011; 05 S Hoeche (2359_CR44) 2009; 05 2359_CR20 2359_CR64 G Ossola (2359_CR33) 2008; 03 S Catani (2359_CR38) 2001; 11 F Krauss (2359_CR39) 2002; 08 2359_CR67 2359_CR22 2359_CR27 ML Mangano (2359_CR41) 2007; 01 C Degrande (2359_CR74) 2011; 03 P Draggiotis (2359_CR70) 2009; 04 T Gleisberg (2359_CR16) 2008; 12 F Krauss (2359_CR47) 2004; D 70 JA Aguilar-Saavedra (2359_CR73) 2011; B 843 ND Christensen (2359_CR17) 2009; 180 A Hameren van (2359_CR30) 2009; 09 FA Berends (2359_CR62) 1988; B 306 K Hagiwara (2359_CR68) 2008; C 56 CF Berger (2359_CR32) 2011; 106 F Caravaglios (2359_CR8) 1995; B 358 P Draggiotis (2359_CR9) 1998; B 439 R Britto (2359_CR63) 2005; B 715 2359_CR71 T Gleisberg (2359_CR37) 2009; 02 J Alwall (2359_CR6) 2007; 09 2359_CR75 C Zhang (2359_CR72) 2011; D 83 M Czakon (2359_CR25) 2009; 08 S Frixione (2359_CR51) 2003; 08 G Corcella (2359_CR36) 2001; 01 2359_CR76 E Boos (2359_CR2) 2004; A 534 2359_CR77 ND Christensen (2359_CR18) 2011; C 71 S Alioli (2359_CR53) 2010; 06 R Frederix (2359_CR26) 2009; 10 T Stelzer (2359_CR4) 1994; 81 CF Berger (2359_CR29) 2009; 102 J Alwall (2359_CR49) 2009; 02 K Hagiwara (2359_CR69) 2011; C 71 GC Cho (2359_CR57) 2006; D 73 N Lavesson (2359_CR43) 2005; 07 T Sjöstrand (2359_CR55) 2008; 178 V Duca Del (2359_CR60) 2000; B 571 |
| References_xml | – reference: SjöstrandTMrennaSSkandsPZPYTHIA 6.4 physics and manualJHEP2006050262006JHEP...05..026S10.1088/1126-6708/2006/05/026[hep-ph/0603175] [SPIRES] – reference: C.G. Papadopoulos and M. Worek, HELAC: a Monte Carlo generator for multi-jet processes, hep-ph/0606320 [SPIRES]. – reference: EllisRKMelnikovKZanderighiGGeneralized unitarity at work: first NLO QCD results for hadronic W + 3 jet productionJHEP2009040772009JHEP...04..077E10.1088/1126-6708/2009/04/077[arXiv:0901.4101] [SPIRES] – reference: Aguilar-SaavedraJAEffective four-fermion operators in top physics: a roadmapNucl. Phys.2011B 8436382011NuPhB.843..638A10.1016/j.nuclphysb.2010.10.015[arXiv:1008.3562] [SPIRES] – reference: CaravagliosFMorettiMAn algorithm to compute Born scattering amplitudes without Feynman graphsPhys. Lett.1995B 3583321995PhLB..358..332C[hep-ph/9507237] [SPIRES] – reference: H. Murayama, I. Watanabe and K. Hagiwara, HELAS: HELicity amplitude subroutines for Feynman diagram evaluations, KEK-91-11. – reference: HoecheSKraussFSchumannSSiegertFQCD matrix elements and truncated showersJHEP2009050532009JHEP...05..053H10.1088/1126-6708/2009/05/053[arXiv:0903.1219] [SPIRES] – reference: GleisbergTEvent generation with SHERPA 1.1JHEP2009020072009JHEP...02..007G10.1088/1126-6708/2009/02/007 – reference: M. Moretti, T. Ohl and J. Reuter, O’Mega: an optimizing matrix element generator, hep-ph/0102195 [SPIRES]. – reference: EnglertCPlehnTSchichtelPSchumannSJets plus missing energy with an autofocusPhys. Rev.2011D 830950092011PhRvD..83i5009E[arXiv:1102.4615] [SPIRES] – reference: HirschiVAutomation of one-loop QCD correctionsJHEP2011050442011JHEP...05..044H10.1007/JHEP05(2011)044[arXiv:1103.0621] [SPIRES] – reference: HagiwaraKMawatariKTakaesuYHELAS and MadGraph with spin-3/2 particlesEur. Phys. J.2011C 7115292011EPJC...71.1529H[arXiv:1010.4255] [SPIRES] – reference: W. Kilian, T. Ohl and J. Reuter, WHIZARD: simulating multi-particle processes at LHC and ILC, arXiv:0708.4233 [SPIRES]. – reference: NasonPA new method for combining NLO QCD with shower Monte Carlo algorithmsJHEP2004110402004JHEP...11..040N10.1088/1126-6708/2004/11/040[hep-ph/0409146] [SPIRES] – reference: A. Pukhov et al., CompHEP: a package for evaluation of Feynman diagrams and integration over multi-particle phase space. User’s manual for version 33, hep-ph/9908288 [SPIRES]. – reference: C. Degrande et al., UFO — The Universal FeynRules Output. – reference: DraggiotisPGarzelliMVPapadopoulosCGPittauRFeynman rules for the rational part of the QCD 1-loop amplitudesJHEP20090407225059572009JHEP...04..072D10.1088/1126-6708/2009/04/072[arXiv:0903.0356] [SPIRES] – reference: KraussFMatrix elements and parton showers in hadronic interactionsJHEP2002080152002JHEP...08..015K10.1088/1126-6708/2002/08/015[hep-ph/0205283] [SPIRES] – reference: ZhangCWillenbrockSEffective-field-theory approach to top-quark production and decayPhys. Rev.2011D 830340062011PhRvD..83c4006Z[arXiv:1008.3869] [SPIRES] – reference: RandallLSundrumRAn alternative to compactificationPhys. Rev. Lett.199983469017259581999PhRvL..83.4690R0946.8107410.1103/PhysRevLett.83.4690[hep-th/9906064] [SPIRES] – reference: BergerCFPrecise predictions for W + 3 jet production at hadron collidersPhys. Rev. Lett.20091022220012009PhRvL.102v2001B10.1103/PhysRevLett.102.222001[arXiv:0902.2760] [SPIRES] – reference: J. Conway, Pretty Good Simulator, http://www.physics.ucdavis.edu/˜conway/research/software/pgs/pgs.html – reference: SjöstrandTMrennaSSkandsPZA brief introduction to PYTHIA 8.1Comput. Phys. Commun.20081788522008CoPhC.178..852S1196.8103810.1016/j.cpc.2008.01.036[arXiv:0710.3820] [SPIRES] – reference: RandallLSundrumRA large mass hierarchy from a small extra dimensionPhys. Rev. Lett.199983337017447141999PhRvL..83.3370R0946.8106310.1103/PhysRevLett.83.3370[hep-ph/9905221] [SPIRES] – reference: DuhrCHoecheSMaltoniFColor-dressed recursive relations for multi-parton amplitudesJHEP2006080622006JHEP...08..062D10.1088/1126-6708/2006/08/062[hep-ph/0607057] [SPIRES] – reference: KraussFSchalickeASchumannSSoffGSimulating W/Z + jets production at the TevatronPhys. Rev.2004D 701140092004PhRvD..70k4009K[hep-ph/0409106] [SPIRES] – reference: ManganoMLMorettiMPiccininiFTreccaniMMatching matrix elements and shower evolution for top-quark production in hadronic collisionsJHEP2007010132007JHEP...01..013M10.1088/1126-6708/2007/01/013[hep-ph/0611129] [SPIRES] – reference: BergerCFPrecise predictions for W + 4 jet production at the Large Hadron ColliderPhys. Rev. Lett.20111060920012011PhRvL.106i2001B10.1103/PhysRevLett.106.092001[arXiv:1009.2338] [SPIRES] – reference: S. Hoeche et al., Matching parton showers and matrix elements, hep-ph/0602031 [SPIRES]. – reference: FrixioneSWebberBRMatching NLO QCD computations and parton shower simulationsJHEP2002060292002JHEP...06..029F10.1088/1126-6708/2002/06/029[hep-ph/0204244] [SPIRES] – reference: DraggiotisPKleissRHPPapadopoulosCGOn the computation of multigluon amplitudesPhys. Lett.1998B 4391571998PhLB..439..157D[hep-ph/9807207] [SPIRES] – reference: S. Ovyn, X. Rouby and V. Lemaitre, Delphes, a framework for fast simulation of a generic collider experiment, arXiv:0903.2225 [SPIRES]. – reference: BergerCFNext-to-Leading Order QCD predictions for Z, γ∗ + 3-jet distributions at the TevatronPhys. Rev.2010D 820740022010PhRvD..82g4002B[arXiv:1004.1659] [SPIRES] – reference: HagiwaraKKanzakiJLiQMawatariKHELAS and MadGraph/MadEvent with spin-2 particlesEur. Phys. J.2008C 564352008EPJC...56..435H10.1140/epjc/s10052-008-0663-x[arXiv:0805.2554] [SPIRES] – reference: ManganoMLParkeSJMulti-parton amplitudes in gauge theoriesPhys. Rept.19912003011991PhR...200..301M10.1016/0370-1573(91)90091-Y[hep-th/0509223] [SPIRES] – reference: MrennaSRichardsonPMatching matrix elements and parton showers with HERWIG and PYTHIAJHEP2004050402004JHEP...05..040M10.1088/1126-6708/2004/05/040[hep-ph/0312274] [SPIRES] – reference: N. D. Christensen and C. Speckner, Automated validation of FeynRules models. – reference: GleisbergTHoecheSComix, a new matrix element generatorJHEP2008120392008JHEP...12..039G10.1088/1126-6708/2008/12/039[arXiv:0808.3674] [SPIRES] – reference: M.H. Seymour and C. Tevlin, TeVJet: a general framework for the calculation of jet observables in NLO QCD, arXiv:0803.2231 [SPIRES]. – reference: GleisbergTSHERPA 1.alpha, a proof-of-concept versionJHEP2004020562004JHEP...02..056G10.1088/1126-6708/2004/02/056[hep-ph/0311263] [SPIRES] – reference: ChristensenNDDuhrCFeynRules — Feynman rules made easyComput. Phys. Commun.200918016142009CoPhC.180.1614C10.1016/j.cpc.2009.02.018[arXiv:0806.4194] [SPIRES] – reference: FrederixRFrixioneSMaltoniFStelzerTAutomation of next-to-leading order computations in QCD: the FKS subtractionJHEP2009100032009JHEP...10..003F10.1088/1126-6708/2009/10/003[arXiv:0908.4272] [SPIRES] – reference: AlioliSNasonPOleariCReEA general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOXJHEP2010060432010JHEP...06..043A10.1007/JHEP06(2010)043[arXiv:1002.2581] [SPIRES] – reference: AlwallJA standard format for Les Houches event filesComput. Phys. Commun.20071763002007CoPhC.176..300A10.1016/j.cpc.2006.11.010[hep-ph/0609017] [SPIRES] – reference: S. Frixione, Colourful FKS subtraction, arXiv:1106.0155 [SPIRES]. – reference: StelzerTLongWFAutomatic generation of tree level helicity amplitudesComput. Phys. Commun.1994813571994CoPhC..81..357S10.1016/0010-4655(94)90084-1[hep-ph/9401258] [SPIRES] – reference: BrittoRCachazoFFengBNew recursion relations for tree amplitudes of gluonsNucl. Phys.2005B 71549921356462005NuPhB.715..499B10.1016/j.nuclphysb.2005.02.030[hep-th/0412308] [SPIRES] – reference: MaltoniFPaulKStelzerTWillenbrockSColor-flow decomposition of QCD amplitudesPhys. Rev.2003D 670140262003PhRvD..67a4026M[hep-ph/0209271] [SPIRES] – reference: A. Pukhov, Calchep 2.3: MSSM, structure functions, event generation, 1 and generation of matrix elements for other packages, hep-ph/0412191 [SPIRES]. – reference: CorcellaGHERWIG 6.5: an event generator for Hadron Emission Reactions With Interfering Gluons (including supersymmetric processes)JHEP2001010102001JHEP...01..010C10.1088/1126-6708/2001/01/010[hep-ph/0011363] [SPIRES] – reference: C. Degrande, J.-M. Gerard, C. Grojean, F. Maltoni and G. Servant, An effective approach to same sign top pair production at the LHC and the forward-backward asymmetry at the Tevatron, arXiv:1104.1798 [SPIRES]. – reference: LavessonNLönnbladLW + jets matrix elements and the dipole cascadeJHEP2005070542005JHEP...07..054L10.1088/1126-6708/2005/07/054[hep-ph/0503293] [SPIRES] – reference: van HamerenAPapadopoulosCGPittauRAutomated one-loop calculations: a proof of conceptJHEP2009091062009JHEP...09..106V10.1088/1126-6708/2009/09/106[arXiv:0903.4665] [SPIRES] – reference: J. Alwall et al., A Les Houches interface for BSM generators, arXiv:0712.3311 [SPIRES]. – reference: CzakonMPapadopoulosCGWorekMPolarizing the dipolesJHEP2009080852009JHEP...08..085C10.1088/1126-6708/2009/08/085[arXiv:0905.0883] [SPIRES] – reference: MaltoniFStelzerTMadEvent: automatic event generation with MadGraphJHEP2003020272003JHEP...02..027M10.1088/1126-6708/2003/02/027[hep-ph/0208156] [SPIRES] – reference: ChristensenNDA comprehensive approach to new physics simulationsEur. Phys. J.2011C 7115412011EPJC...71.1541C[arXiv:0906.2474] [SPIRES] – reference: C. Duhr and B. Fuks, A superspace module for the FeynRules package, arXiv:1102.4191 [SPIRES]. – reference: DennerAEckHHahnOKublbeckJFeynman rules for fermion number violating interactionsNucl. Phys.1992B 3874671992NuPhB.387..467D10.1016/0550-3213(92)90169-C[SPIRES] – reference: FrederixRGehrmannTGreinerNAutomation of the dipole subtraction method in MadGraph/MadEventJHEP2008091222008JHEP...09..122F10.1088/1126-6708/2008/09/122[arXiv:0808.2128] [SPIRES] – reference: LönnbladLCorrecting the colour-dipole cascade model with fixed order matrix elementsJHEP20020504610.1088/1126-6708/2002/05/046[hep-ph/0112284] [SPIRES] – reference: Del DucaVDixonLJMaltoniFNew color decompositions for gauge amplitudes at tree and loop levelNucl. Phys.2000B 571512000NuPhB.571...51D10.1016/S0550-3213(99)00809-3[hep-ph/9910563] [SPIRES] – reference: AlwallJde VisscherSMaltoniFQCD radiation in the production of heavy colored particles at the LHCJHEP2009020172009JHEP...02..017A10.1088/1126-6708/2009/02/017[arXiv:0810.5350] [SPIRES] – reference: DegrandeCGerardJ-MGrojeanCMaltoniFServantGNon-resonant new physics in top pair production at hadron collidersJHEP2011031252011JHEP...03..125D10.1007/JHEP03(2011)125[arXiv:1010.6304] [SPIRES] – reference: J. Alwall et al., Aloha — Automatic helas routines for helicity amplitude calculations in any quantum field theory. – reference: AlwallJMadGraph/MadEvent v4: the new web generationJHEP2007090282007JHEP...09..028A10.1088/1126-6708/2007/09/028[arXiv:0706.2334] [SPIRES] – reference: HasegawaKMochSUwerPAutomating dipole subtractionNucl. Phys. Proc. Suppl.20081832682008NuPhS.183..268H10.1016/j.nuclphysbps.2008.09.115[arXiv:0807.3701] [SPIRES] – reference: OssolaGPapadopoulosCGPittauRCutTools: a program implementing the OPP reduction method to compute one-loop amplitudesJHEP2008030422008JHEP...03..042O10.1088/1126-6708/2008/03/042[arXiv:0711.3596] [SPIRES] – reference: HanTLewisIMcElmurryTQCD corrections to scalar diquark production at hadron collidersJHEP2010011232010JHEP...01..123H10.1007/JHEP01(2010)123[arXiv:0909.2666] [SPIRES] – reference: GleisbergTKraussFAutomating dipole subtraction for QCD NLO calculationsEur. Phys. J.2008C 535012008EPJC...53..501G10.1140/epjc/s10052-007-0495-0[arXiv:0709.2881] [SPIRES] – reference: G. Zanderighi, Recent theoretical progress in perturbative QCD, arXiv:0810.3524 [SPIRES]. – reference: CataniSKraussFKuhnRWebberBRQCD matrix elements + parton showersJHEP2001110632001JHEP...11..063C10.1088/1126-6708/2001/11/063[hep-ph/0109231] [SPIRES] – reference: CompHEP collaborationBoosECompHEP 4.4: automatic computations from lagrangians to eventsNucl. Instrum. Meth.2004A 5342502004NIMPA.534..250B[hep-ph/0403113] [SPIRES] – reference: W. Kilian, W HIZARD 1.0: a generic Monte-Carlo integration and event generation package for multi-particle processes. Manual, LC-TOOL-2001-039. – reference: AlwallJComparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisionsEur. Phys. J.2008C 534732008EPJC...53..473A10.1140/epjc/s10052-007-0490-5[arXiv:0706.2569] [SPIRES] – reference: ChoGCWeak boson fusion production of supersymmetric particles at the LHCPhys. Rev.2006D 730540022006PhRvD..73e4002C[hep-ph/0601063] [SPIRES] – reference: ManganoMLMorettiMPiccininiFPittauRPolosaADALPGEN, a generator for hard multiparton processes in hadronic collisionsJHEP2003070012003JHEP...07..001M10.1088/1126-6708/2003/07/001[hep-ph/0206293] [SPIRES] – reference: FrixioneSNasonPWebberBRMatching NLO QCD and parton showers in heavy flavour productionJHEP2003080072003JHEP...08..007F10.1088/1126-6708/2003/08/007[hep-ph/0305252] [SPIRES] – reference: BerendsFAGieleWTRecursive calculations for processes with n gluonsNucl. Phys.1988B 3067591988NuPhB.306..759B10.1016/0550-3213(88)90442-7[SPIRES] – ident: 2359_CR20 – volume: 10 start-page: 003 year: 2009 ident: 2359_CR26 publication-title: JHEP doi: 10.1088/1126-6708/2009/10/003 – volume: 05 start-page: 044 year: 2011 ident: 2359_CR34 publication-title: JHEP doi: 10.1007/JHEP05(2011)044 – volume: 11 start-page: 040 year: 2004 ident: 2359_CR52 publication-title: JHEP doi: 10.1088/1126-6708/2004/11/040 – volume: 05 start-page: 053 year: 2009 ident: 2359_CR44 publication-title: JHEP doi: 10.1088/1126-6708/2009/05/053 – volume: A 534 start-page: 250 year: 2004 ident: 2359_CR2 publication-title: Nucl. Instrum. Meth. doi: 10.1016/j.nima.2004.07.096 – volume: B 358 start-page: 332 year: 1995 ident: 2359_CR8 publication-title: Phys. Lett. doi: 10.1016/0370-2693(95)00971-M – ident: 2359_CR11 – volume: 02 start-page: 056 year: 2004 ident: 2359_CR7 publication-title: JHEP doi: 10.1088/1126-6708/2004/02/056 – volume: D 82 start-page: 074002 year: 2010 ident: 2359_CR31 publication-title: Phys. Rev. – volume: 02 start-page: 007 year: 2009 ident: 2359_CR37 publication-title: JHEP doi: 10.1088/1126-6708/2009/02/007 – volume: 183 start-page: 268 year: 2008 ident: 2359_CR23 publication-title: Nucl. Phys. Proc. Suppl. doi: 10.1016/j.nuclphysbps.2008.09.115 – volume: 83 start-page: 4690 year: 1999 ident: 2359_CR78 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.83.4690 – volume: 01 start-page: 010 year: 2001 ident: 2359_CR36 publication-title: JHEP doi: 10.1088/1126-6708/2001/01/010 – volume: 06 start-page: 043 year: 2010 ident: 2359_CR53 publication-title: JHEP doi: 10.1007/JHEP06(2010)043 – volume: D 83 start-page: 034006 year: 2011 ident: 2359_CR72 publication-title: Phys. Rev. – ident: 2359_CR76 – volume: B 439 start-page: 157 year: 1998 ident: 2359_CR9 publication-title: Phys. Lett. doi: 10.1016/S0370-2693(98)01015-6 – volume: 08 start-page: 015 year: 2002 ident: 2359_CR39 publication-title: JHEP doi: 10.1088/1126-6708/2002/08/015 – volume: 05 start-page: 026 year: 2006 ident: 2359_CR35 publication-title: JHEP doi: 10.1088/1126-6708/2006/05/026 – volume: 102 start-page: 222001 year: 2009 ident: 2359_CR29 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.222001 – ident: 2359_CR71 – ident: 2359_CR3 – volume: 09 start-page: 122 year: 2008 ident: 2359_CR24 publication-title: JHEP doi: 10.1088/1126-6708/2008/09/122 – volume: 200 start-page: 301 year: 1991 ident: 2359_CR59 publication-title: Phys. Rept. doi: 10.1016/0370-1573(91)90091-Y – ident: 2359_CR13 – volume: 02 start-page: 017 year: 2009 ident: 2359_CR49 publication-title: JHEP doi: 10.1088/1126-6708/2009/02/017 – volume: 81 start-page: 357 year: 1994 ident: 2359_CR4 publication-title: Comput. Phys. Commun. doi: 10.1016/0010-4655(94)90084-1 – volume: B 306 start-page: 759 year: 1988 ident: 2359_CR62 publication-title: Nucl. Phys. doi: 10.1016/0550-3213(88)90442-7 – volume: D 73 start-page: 054002 year: 2006 ident: 2359_CR57 publication-title: Phys. Rev. – volume: 12 start-page: 039 year: 2008 ident: 2359_CR16 publication-title: JHEP doi: 10.1088/1126-6708/2008/12/039 – volume: 180 start-page: 1614 year: 2009 ident: 2359_CR17 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2009.02.018 – volume: 106 start-page: 092001 year: 2011 ident: 2359_CR32 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.092001 – volume: C 53 start-page: 501 year: 2008 ident: 2359_CR21 publication-title: Eur. Phys. J. doi: 10.1140/epjc/s10052-007-0495-0 – volume: 01 start-page: 123 year: 2010 ident: 2359_CR65 publication-title: JHEP doi: 10.1007/JHEP01(2010)123 – ident: 2359_CR54 – ident: 2359_CR27 – volume: D 67 start-page: 014026 year: 2003 ident: 2359_CR61 publication-title: Phys. Rev. – ident: 2359_CR75 – volume: 03 start-page: 125 year: 2011 ident: 2359_CR74 publication-title: JHEP doi: 10.1007/JHEP03(2011)125 – volume: 06 start-page: 029 year: 2002 ident: 2359_CR50 publication-title: JHEP doi: 10.1088/1126-6708/2002/06/029 – volume: B 571 start-page: 51 year: 2000 ident: 2359_CR60 publication-title: Nucl. Phys. doi: 10.1016/S0550-3213(99)00809-3 – volume: C 71 start-page: 1541 year: 2011 ident: 2359_CR18 publication-title: Eur. Phys. J. doi: 10.1140/epjc/s10052-011-1541-5 – volume: 07 start-page: 001 year: 2003 ident: 2359_CR14 publication-title: JHEP doi: 10.1088/1126-6708/2003/07/001 – ident: 2359_CR22 – ident: 2359_CR45 – volume: 01 start-page: 013 year: 2007 ident: 2359_CR41 publication-title: JHEP doi: 10.1088/1126-6708/2007/01/013 – ident: 2359_CR64 – ident: 2359_CR12 – volume: B 715 start-page: 499 year: 2005 ident: 2359_CR63 publication-title: Nucl. Phys. doi: 10.1016/j.nuclphysb.2005.02.030 – volume: 03 start-page: 042 year: 2008 ident: 2359_CR33 publication-title: JHEP doi: 10.1088/1126-6708/2008/03/042 – volume: 04 start-page: 077 year: 2009 ident: 2359_CR28 publication-title: JHEP doi: 10.1088/1126-6708/2009/04/077 – volume: 05 start-page: 040 year: 2004 ident: 2359_CR40 publication-title: JHEP doi: 10.1088/1126-6708/2004/05/040 – volume: 83 start-page: 3370 year: 1999 ident: 2359_CR79 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.83.3370 – volume: 09 start-page: 106 year: 2009 ident: 2359_CR30 publication-title: JHEP doi: 10.1088/1126-6708/2009/09/106 – volume: D 70 start-page: 114009 year: 2004 ident: 2359_CR47 publication-title: Phys. Rev. – volume: 09 start-page: 028 year: 2007 ident: 2359_CR6 publication-title: JHEP doi: 10.1088/1126-6708/2007/09/028 – volume: 07 start-page: 054 year: 2005 ident: 2359_CR43 publication-title: JHEP doi: 10.1088/1126-6708/2005/07/054 – volume: 08 start-page: 007 year: 2003 ident: 2359_CR51 publication-title: JHEP doi: 10.1088/1126-6708/2003/08/007 – volume: 176 start-page: 300 year: 2007 ident: 2359_CR66 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2006.11.010 – volume: C 56 start-page: 435 year: 2008 ident: 2359_CR68 publication-title: Eur. Phys. J. doi: 10.1140/epjc/s10052-008-0663-x – volume: 02 start-page: 027 year: 2003 ident: 2359_CR5 publication-title: JHEP doi: 10.1088/1126-6708/2003/02/027 – volume: 11 start-page: 063 year: 2001 ident: 2359_CR38 publication-title: JHEP doi: 10.1088/1126-6708/2001/11/063 – volume: B 843 start-page: 638 year: 2011 ident: 2359_CR73 publication-title: Nucl. Phys. doi: 10.1016/j.nuclphysb.2010.10.015 – ident: 2359_CR67 – volume: D 83 start-page: 095009 year: 2011 ident: 2359_CR48 publication-title: Phys. Rev. – ident: 2359_CR1 – ident: 2359_CR19 – ident: 2359_CR15 – volume: 08 start-page: 085 year: 2009 ident: 2359_CR25 publication-title: JHEP doi: 10.1088/1126-6708/2009/08/085 – volume: C 71 start-page: 1529 year: 2011 ident: 2359_CR69 publication-title: Eur. Phys. J. doi: 10.1140/epjc/s10052-010-1529-6 – volume: 05 start-page: 046 year: 2002 ident: 2359_CR42 publication-title: JHEP doi: 10.1088/1126-6708/2002/05/046 – ident: 2359_CR56 – volume: 08 start-page: 062 year: 2006 ident: 2359_CR10 publication-title: JHEP doi: 10.1088/1126-6708/2006/08/062 – volume: C 53 start-page: 473 year: 2008 ident: 2359_CR46 publication-title: Eur. Phys. J. doi: 10.1140/epjc/s10052-007-0490-5 – volume: B 387 start-page: 467 year: 1992 ident: 2359_CR58 publication-title: Nucl. Phys. doi: 10.1016/0550-3213(92)90169-C – volume: 178 start-page: 852 year: 2008 ident: 2359_CR55 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2008.01.036 – ident: 2359_CR77 – volume: 04 start-page: 072 year: 2009 ident: 2359_CR70 publication-title: JHEP doi: 10.1088/1126-6708/2009/04/072 |
| SSID | ssj0015190 |
| Score | 2.6055434 |
| Snippet | M
ad
G
raph
5 is the new version of the M
ad
G
raph
matrix element generator, written in the Python programming language. It implements a number of new,... MadGraph 5 is the new version of the MadGraph matrix element generator, written in the Python programming language. It implements a number of new, efficient... |
| SourceID | unpaywall proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Algorithms Classical and Quantum Gravitation Computer simulation Elementary Particles High energy physics Physics Physics and Astronomy Programming languages Quantum Field Theories Quantum Field Theory Quantum Physics Relativity Theory String Theory |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFD7MDVEfxCubTumDD9tDtW3SNBVEVDbHYGOIg72VJE0VGV11G-K_N-ltA5nPzYV-uZyPc3K-A3Dlo1AZ0tA1pfC4iRHmJmc2Nn2BIkU4JCVUZyMPhqQ3xv2JO6nAsMiF0c8qizsxvajDmdA-8hutU6dMEbad--TT1FWjdHS1KKHB8tIK4V0qMbYFNUcrY1Wh9tgZjl7KuILiK1Yh8GN5N_1eZ2SRljaCbVsXZF-3TSvCWcZI92BnGSfs55tNp2tmqHsA-zl_NB6yBT-EioyPYDt9xynmx1AfsPBZa1Ab7q3xNlPDGTzNUTmBcbfz-tQz8-IHpkCuvTCROojMcSPhMZ8JIqQf6ZCJTSPqyoi7MnQJdewI-4xTqXAh3PMji_oytBiWDjqFajyLZR0M7EidqoEt5iDMuKQ2YUgQxfwEksShDbgufjsQuTK4LlAxDQpN4wynQOMU2LpDq-yQZKIYm5s2CxyD_HTMg9VaNqBdYLv6vHGodgn-n2k_3mWy1vbs_2nPYTfzDWtvShOqi6-lvFDkYsEv8x3zCwCAyHA priority: 102 providerName: ProQuest – databaseName: SpringerOpen Free (Free internet resource, activated by CARLI) dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8JAEJ0oxqgH42dA0fTgAQ7VtvvB1pshICHBeJCEW7O7nWoMKUQgxn_vbj8AJR48d2eavm47L_t23gLchCQ2hTRmLuqWcimhylXSp26oSWIIBwoubDfy4In3hrQ_YqPCJMn2wvzS7-_6vc6zxxu2TDXNr3QbdkyF4pkqy9tLucDQEK_07dkM-llyVjxyKX0ewN4incqvTzker1WX7hEcFrTQecjf4zFsYXoCu9n2TD07hepAxo_WWtph987rxKRzVNZ6cgbDbuel3XOLMw1cTZg_d4n5vmTAEt2SodRcY5hYJcQXiWCYKIYx4yLwExpKJdBwFa5aYeKJEGNPUgzIOVTSSYpVcGiAtgODejIgVCoUPpdEc0PoNEEeiBrclo8d6cLw2547MY5Kq-Icp8jiFPk2oLEMmOZeF38PrZc4RsWkn0XWStCwBeoHNWiW2K4u_5mquQR_47bvbzhdG3vxj7yXsJ-v_9oVkzpU5h8LvDIEYq6us8nzDXVnuXM priority: 102 providerName: Springer Nature |
| Title | MadGraph 5: going beyond |
| URI | https://link.springer.com/article/10.1007/JHEP06(2011)128 https://www.proquest.com/docview/2398244412 https://link.springer.com/content/pdf/10.1007/JHEP06(2011)128.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 2011 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1029-8479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015190 issn: 1126-6708 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015190 issn: 1126-6708 databaseCode: C24 dateStart: 20100101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015190 issn: 1126-6708 databaseCode: U2A dateStart: 20100101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerOpen Free (Free internet resource, activated by CARLI) customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015190 issn: 1126-6708 databaseCode: C6C dateStart: 20100101 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxsxEB4am9L20DRtStImZg89xAc5Xr1W6s0xdkwgxoQY2tMiabUJrdmYek1pfn2k3ZXzKDmUXsQuejF6zYdm9A3AF0kyp0gzhqxJNKKEaqRVTJE0JHeAwwou_Gvk8ymfzOnZNxa8CVfB2z2YJOs3DZ6lqSiPl1kerPrHZ5PRrM-PvPLqugO25_K2oM2Zg-MtaM-ns8H3ysqJJXKnr6wCrGCOeFJFqHPfCXJqkQeqH9fij2u7fNDiYy11Dz031tI38GpdLNWf32qxeKCQxtuggyi1H8rP3rrUPXP7hOXxv2R9B28buBoN6vW1Ay9s8R5eVm6jZvUB9s5VduopryP2Nbq6cV1EunoSswvz8ehyOEFNrAVkCItLRNy-V5jlJlFSGW6szL2FJha5YDbXzGaMCxznVCotrMNQXCcy7wtps76iFpOP0CpuCrsHEcXWvwyhfYUJVdqKmCtiuAOahliOxT70wtimpiEi9_EwFmmgUK5FTr3IaewrHG0qLGsOjueLHoTJSpvNuEo9xaFDMTTG-9AN432f_WxT3c0M_9VtvVw2ZT_9Q9nP8Lq-l_Y3OQfQKn-t7aEDNqXuwJYYn3agfTKazi7c3xBTn_KhS-d40GmW9h2Vle9D |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTwIxEJ4QiUEPxmdAUfegCRxW99GWrgkxPlDkFWIk4ba23a7GEECBEP6cv80WdoHE4M3z9rGdne18nel8A3DmuYEypAE2pShwE7mIm5zZyPSEGyrAISmhOhu53iDlFqq0cTsB33EujL5WGe-J04066AntI7_UPHXKFCHbue5_mrpqlI6uxiU0WFRaIShOKcaixI6qnIzVEW5QfLpX3_vccR5KL3dlM6oyYAoX20NTHegxc3AoCsxjggjphTo2YdOQYhlyLANMqGOHyGOcSvUChBe80KKeDCyGpCY-UCYgqZbpqcNf8rbUaD7P4xgKH1kxoZBVuKyUS02L5LTRzdu6APyyLVwA3HlMdhNSo26fTcas01kyew_bsBXhVeNmpmA7kJDdXVif3hsVgz1I11nwqDmvDXxlvPXUcAaf5sTsQ-tfxHAAa91eV6bBQI7UqSHIYo6LGJfUJswVRCFN4Uri0AxcxMv2RcRErgtidPyYQ3kmJ1_Lybd1h9y8Q39GwrG6aTaWox_9jQN_oTsZyMeyXTxeOVR-Lvxf0368y_5S28O_pz2FVPmlXvNrT43qEWzM_NLak5OFteHXSB4rYDPkJ5H2GPD63wr7A0UABcE |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZSwMxEB5E8XoQT7zdBwX7sHaPJJsVRERb23rQBwXf1iSbVaS01bYU_5q_zswebUH0zedNMuzs7Mxkjm8ADkM_NoY0prZWgbSJT6QthUvsUPmJcTg0Zxy7ke_uWe2RNJ7o0xR8Fb0wWFZZ6MRUUccdhTHyMuLUGVNEXK-c5GURzavqeffdxglSmGktxmlkInKjP4fm-tY7q1-Zb33kedXKw2XNzicM2Mqnbt82l3kqPJqoQIRCMaXDBPMSLk841YmkOqaMe25CQiG5NsSZDMLE4aGOHUE0gh4Y9T8TIIo7dqlXr0cZDOMZOQWUkBOUG7VK02HHaG5LLo5-n7SCY9d2lI1dhPlBuys-h6LVmjB41WVYyj1V6yITrRWY0u1VmE0rRlVvDTbvRHyNaNcWPbVeOuY4S6bdMOvw-C9M2IDpdqetN8EinsamEOIIzydCau4y4StmfEzla-bxLTgpXjtSOQY5jsJoRQV6csanCPkUubjheLShm8Fv_L50t-BjlP-HvWgsNVtQKng7fvzrUaUR83-QfXvV3Ym123-TPYA5I6bRbf3-ZgcWsoA0hnB2Ybr_MdB7xqPpy_1UdCx4_m9Z_QYIewNb |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxsxEB5am9Lk0GeCk7plDz3YB9levVbKLQSnJhDjQw3taZG02pTGrE29prS_PtLuapOm-FB6E-jF6DUfmplvAD5KkjlFmjFkTaIRJVQjrWKKpCG5AxxWcOGjka_nfLakV19Y8CbcBm_3YJKsYxo8S1NRjjdZHqz646vZdDHhA6-8hu6BHbm6p9DlzMHxDnSX88X518rKiSVyr6-sEqxgjnhSZahz5QQ5tcgD1Y8b8fs3u3kw4p9a6h56ttbSQ3i-Kzbq10-1Wj1QSJcvQQdRaj-U29Gu1CPz-xHL43_J-gpeNHA1Oq_P12t4Yos38KxyGzXbt9C7VtknT3kdsbPoZu2miHQVEnMEy8vp54sZanItIENYXCLi7r3CLDeJkspwY2XuLTSxyAWzuWY2Y1zgOKdSaWEdhuI6kflESJtNFLWYHEOnWBe2BxHF1keG0InChCptRcwVMdwBTUMsx-IERmFtU9MQkft8GKs0UCjXIqde5DT2HQZth03NwbG_aT9sVtpcxm3qKQ4diqExPoFhWO_76r1DDdsd_mva-ri0bU__oe07OKj_pf1PTh865Y-dfe-ATak_NEf3Dgns6jM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MadGraph+5%3A+going+beyond&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Alwall%2C+Johan&rft.au=Herquet%2C+Michel&rft.au=Maltoni%2C+Fabio&rft.au=Mattelaer%2C+Olivier&rft.date=2011-06-01&rft.pub=Springer-Verlag&rft.eissn=1029-8479&rft.volume=2011&rft.issue=6&rft_id=info:doi/10.1007%2FJHEP06%282011%29128&rft.externalDocID=10_1007_JHEP06_2011_128 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |