MadGraph 5: going beyond

M ad G raph 5 is the new version of the M ad G raph matrix element generator, written in the Python programming language. It implements a number of new, efficient algorithms that provide improved performance and functionality in all aspects of the program. It features a new user interface, several n...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2011; no. 6
Main Authors Alwall, Johan, Herquet, Michel, Maltoni, Fabio, Mattelaer, Olivier, Stelzer, Tim
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer-Verlag 01.06.2011
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1029-8479
1126-6708
1127-2236
1029-8479
DOI10.1007/JHEP06(2011)128

Cover

Abstract M ad G raph 5 is the new version of the M ad G raph matrix element generator, written in the Python programming language. It implements a number of new, efficient algorithms that provide improved performance and functionality in all aspects of the program. It features a new user interface, several new output formats including C++ process libraries for P ythia 8, and full compatibility with F eyn R ules for new physics models implementation, allowing for event generation for any model that can be written in the form of a Lagrangian. M ad G raph 5 builds on the same philosophy as the previous versions, and its design allows it to be used as a collaborative platform where theoretical, phenomenological and simulation projects can be developed and then distributed to the high-energy community. We describe the ideas and the most important developments of the code and illustrate its capabilities through a few simple phenomenological examples.
AbstractList M ad G raph 5 is the new version of the M ad G raph matrix element generator, written in the Python programming language. It implements a number of new, efficient algorithms that provide improved performance and functionality in all aspects of the program. It features a new user interface, several new output formats including C++ process libraries for P ythia 8, and full compatibility with F eyn R ules for new physics models implementation, allowing for event generation for any model that can be written in the form of a Lagrangian. M ad G raph 5 builds on the same philosophy as the previous versions, and its design allows it to be used as a collaborative platform where theoretical, phenomenological and simulation projects can be developed and then distributed to the high-energy community. We describe the ideas and the most important developments of the code and illustrate its capabilities through a few simple phenomenological examples.
MadGraph 5 is the new version of the MadGraph matrix element generator, written in the Python programming language. It implements a number of new, efficient algorithms that provide improved performance and functionality in all aspects of the program. It features a new user interface, several new output formats including C++ process libraries for Pythia 8, and full compatibility with FeynRules for new physics models implementation, allowing for event generation for any model that can be written in the form of a Lagrangian. MadGraph 5 builds on the same philosophy as the previous versions, and its design allows it to be used as a collaborative platform where theoretical, phenomenological and simulation projects can be developed and then distributed to the high-energy community. We describe the ideas and the most important developments of the code and illustrate its capabilities through a few simple phenomenological examples.
ArticleNumber 128
Author Mattelaer, Olivier
Alwall, Johan
Herquet, Michel
Maltoni, Fabio
Stelzer, Tim
Author_xml – sequence: 1
  givenname: Johan
  surname: Alwall
  fullname: Alwall, Johan
  organization: Theoretical Physics Department, Fermi National Accelerator Laboratory
– sequence: 2
  givenname: Michel
  surname: Herquet
  fullname: Herquet, Michel
  organization: Nikhef Theory Group
– sequence: 3
  givenname: Fabio
  surname: Maltoni
  fullname: Maltoni, Fabio
  organization: Centre for Cosmology, Particle Physics and Phenomenology (CP3), Université Catholique de Louvain
– sequence: 4
  givenname: Olivier
  surname: Mattelaer
  fullname: Mattelaer, Olivier
  organization: Centre for Cosmology, Particle Physics and Phenomenology (CP3), Université Catholique de Louvain
– sequence: 5
  givenname: Tim
  surname: Stelzer
  fullname: Stelzer, Tim
  organization: Department of Physics, University of Illinois at Urbana-Champaign
BookMark eNp1kDFPwzAQhS1UJNrCDGMlFhhC75w4sdlQVVpQEQwwW05it6mCE-xUqP-eVKkAFTHdDe97994NSM9WVhNyjnCDAMn4cT59gfiKAuI1Un5E-ghUBDxKRO_XfkIG3q8BkKGAPrl4UvnMqXo1YrejZVXY5SjV28rmp-TYqNLrs_0ckrf76etkHiyeZw-Tu0WQhQybIAyBKcpMliihsjjTwiDGCXLDmTYp0zmLOUUTCZVyHUUYp4kwwIXOQUWahkMCne_G1mr7qcpS1q54V24rEeSumVyvdA2x3DWTbbMWueyQ2lUfG-0bua42zrYpJQ0Fp1F7ZmfMOlXmKu-dNjIrGtUUlW2cKspv9-5vv93HB9xhnr_EvoJvlXap3U-e_5AvOA18HA
CitedBy_id crossref_primary_10_1103_PhysRevD_87_055006
crossref_primary_10_1103_PhysRevD_102_123020
crossref_primary_10_1103_PhysRevD_109_114036
crossref_primary_10_1103_PhysRevD_109_093003
crossref_primary_10_1140_epjc_s10052_014_3060_7
crossref_primary_10_1007_JHEP07_2017_012
crossref_primary_10_1103_PhysRevD_106_032015
crossref_primary_10_1007_s12043_017_1451_7
crossref_primary_10_1140_epjc_s10052_018_5963_1
crossref_primary_10_1016_j_nuclphysbps_2013_10_075
crossref_primary_10_1007_JHEP04_2013_151
crossref_primary_10_1103_PhysRevD_93_115004
crossref_primary_10_1007_JHEP12_2013_039
crossref_primary_10_1088_1742_6596_368_1_012058
crossref_primary_10_1103_PhysRevD_86_093010
crossref_primary_10_1007_JHEP02_2017_028
crossref_primary_10_1007_JHEP11_2012_154
crossref_primary_10_1016_j_ppnp_2017_04_001
crossref_primary_10_1103_PhysRevD_105_115001
crossref_primary_10_1103_PhysRevD_91_052018
crossref_primary_10_1007_JHEP08_2013_091
crossref_primary_10_1103_PhysRevD_111_015002
crossref_primary_10_1103_PhysRevD_93_013001
crossref_primary_10_1103_PhysRevLett_114_141802
crossref_primary_10_1103_PhysRevD_100_015009
crossref_primary_10_1103_PhysRevD_92_014033
crossref_primary_10_1103_PhysRevD_93_115032
crossref_primary_10_1103_PhysRevD_93_115035
crossref_primary_10_1140_epjc_s10052_016_4349_5
crossref_primary_10_1140_epjc_s10052_013_2455_1
crossref_primary_10_1140_epjc_s10052_022_10805_z
crossref_primary_10_1016_j_nuclphysb_2012_01_018
crossref_primary_10_1016_j_nuclphysbps_2015_04_015
crossref_primary_10_1088_1361_6471_aa5f7a
crossref_primary_10_1016_j_cpc_2015_09_011
crossref_primary_10_1103_PhysRevD_100_015016
crossref_primary_10_1103_PhysRevD_91_052008
crossref_primary_10_1103_PhysRevD_105_115012
crossref_primary_10_1103_PhysRevD_105_115011
crossref_primary_10_1007_JHEP05_2014_033
crossref_primary_10_1103_PhysRevD_85_094027
crossref_primary_10_1007_JHEP08_2013_085
crossref_primary_10_1103_PhysRevD_111_015035
crossref_primary_10_1103_PhysRevD_93_115029
crossref_primary_10_1007_JHEP08_2013_084
crossref_primary_10_1007_JHEP08_2013_087
crossref_primary_10_1103_PhysRevD_93_013019
crossref_primary_10_1140_epjc_s10052_014_3203_x
crossref_primary_10_1140_epjc_s10052_015_3459_9
crossref_primary_10_1140_epjc_s10052_020_8316_9
crossref_primary_10_1142_S0217751X14300610
crossref_primary_10_1007_JHEP10_2012_091
crossref_primary_10_1103_PhysRevD_100_015021
crossref_primary_10_1103_PhysRevD_105_115021
crossref_primary_10_1007_JHEP08_2019_163
crossref_primary_10_1007_JHEP03_2013_079
crossref_primary_10_1103_PhysRevD_111_015023
crossref_primary_10_1088_1748_0221_12_04_P04014
crossref_primary_10_1007_JHEP08_2013_072
crossref_primary_10_1007_JHEP03_2020_025
crossref_primary_10_1103_PhysRevD_93_013021
crossref_primary_10_1007_JHEP08_2013_058
crossref_primary_10_1088_1748_0221_18_10_P10033
crossref_primary_10_1007_JHEP05_2014_062
crossref_primary_10_1142_S0217751X17501068
crossref_primary_10_1088_0253_6102_61_3_14
crossref_primary_10_1140_epjc_s10052_022_11100_7
crossref_primary_10_1007_JHEP02_2017_079
crossref_primary_10_1016_j_aop_2013_04_016
crossref_primary_10_1007_JHEP04_2013_117
crossref_primary_10_1103_PhysRevD_100_015033
crossref_primary_10_1103_PhysRevD_86_036011
crossref_primary_10_1103_PhysRevD_103_L051703
crossref_primary_10_1007_JHEP04_2020_165
crossref_primary_10_1016_j_dark_2019_100371
crossref_primary_10_1007_JHEP04_2013_110
crossref_primary_10_1140_epjst_e2020_900267_5
crossref_primary_10_1103_PhysRevD_85_115023
crossref_primary_10_1007_JHEP06_2014_120
crossref_primary_10_1103_PhysRevD_86_117504
crossref_primary_10_1142_S0217751X22502244
crossref_primary_10_1103_PhysRevD_109_036026
crossref_primary_10_1103_PhysRevD_103_015022
crossref_primary_10_1007_JHEP12_2019_120
crossref_primary_10_1007_JHEP12_2013_077
crossref_primary_10_1007_JHEP12_2013_075
crossref_primary_10_1007_JHEP05_2014_066
crossref_primary_10_1007_JHEP04_2013_108
crossref_primary_10_1088_1475_7516_2015_07_023
crossref_primary_10_1134_S1547477121040051
crossref_primary_10_1103_PhysRevD_92_014015
crossref_primary_10_1140_epjc_s10052_016_4099_4
crossref_primary_10_1007_JHEP05_2014_083
crossref_primary_10_1103_PhysRevD_89_093022
crossref_primary_10_1007_JHEP02_2017_057
crossref_primary_10_1007_JHEP05_2014_086
crossref_primary_10_1103_PhysRevD_108_115028
crossref_primary_10_1140_epjc_s10052_018_5549_y
crossref_primary_10_1007_JHEP07_2019_041
crossref_primary_10_21468_SciPostPhys_16_5_130
crossref_primary_10_1007_JHEP05_2024_292
crossref_primary_10_1007_JHEP12_2024_098
crossref_primary_10_1103_PhysRevD_89_093019
crossref_primary_10_1103_PhysRevD_92_014021
crossref_primary_10_1007_JHEP06_2016_177
crossref_primary_10_1103_PhysRevD_98_035003
crossref_primary_10_1007_JHEP11_2012_147
crossref_primary_10_1088_1475_7516_2013_04_050
crossref_primary_10_1140_epjc_s10052_013_2677_2
crossref_primary_10_1103_PhysRevD_95_075021
crossref_primary_10_1140_epjp_s13360_023_04088_w
crossref_primary_10_1007_JHEP05_2014_092
crossref_primary_10_1016_j_nuclphysbps_2014_09_043
crossref_primary_10_1103_PhysRevD_98_035011
crossref_primary_10_1007_JHEP11_2012_134
crossref_primary_10_1103_PhysRevD_89_093006
crossref_primary_10_1007_JHEP08_2020_067
crossref_primary_10_1016_j_nuclphysb_2012_10_012
crossref_primary_10_1051_epjconf_20136014002
crossref_primary_10_1103_PhysRevD_92_091501
crossref_primary_10_1007_JHEP04_2022_129
crossref_primary_10_1142_S0217732318500396
crossref_primary_10_1007_JHEP04_2015_172
crossref_primary_10_1103_PhysRevD_88_112009
crossref_primary_10_1103_PhysRevD_91_015008
crossref_primary_10_1007_JHEP01_2014_168
crossref_primary_10_1103_PhysRevD_91_015009
crossref_primary_10_1007_JHEP09_2015_156
crossref_primary_10_1007_JHEP01_2014_163
crossref_primary_10_1103_PhysRevD_101_095024
crossref_primary_10_1103_PhysRevLett_108_261803
crossref_primary_10_1007_JHEP05_2014_098
crossref_primary_10_1007_JHEP03_2013_026
crossref_primary_10_1103_PhysRevD_87_075006
crossref_primary_10_1140_epjc_s10052_015_3709_x
crossref_primary_10_1016_j_physletb_2014_11_059
crossref_primary_10_1103_PhysRevD_87_035006
crossref_primary_10_3389_fphy_2019_00090
crossref_primary_10_1016_j_physletb_2012_03_050
crossref_primary_10_1103_PhysRevD_87_035005
crossref_primary_10_1103_PhysRevD_87_035008
crossref_primary_10_1103_PhysRevD_87_035007
crossref_primary_10_1103_PhysRevD_91_015017
crossref_primary_10_1007_JHEP01_2016_102
crossref_primary_10_21468_SciPostPhys_10_6_151
crossref_primary_10_1103_PhysRevLett_133_221601
crossref_primary_10_1007_JHEP01_2014_158
crossref_primary_10_1016_j_physletb_2012_10_021
crossref_primary_10_1007_JHEP01_2014_151
crossref_primary_10_1103_PhysRevD_101_095033
crossref_primary_10_1038_ncomms5308
crossref_primary_10_1007_JHEP03_2013_015
crossref_primary_10_1088_1742_6596_623_1_012010
crossref_primary_10_1103_PhysRevD_84_095026
crossref_primary_10_1103_PhysRevD_95_095022
crossref_primary_10_3389_fphy_2019_00080
crossref_primary_10_1016_j_cpc_2014_03_023
crossref_primary_10_1103_PhysRevLett_111_062003
crossref_primary_10_1007_JHEP10_2012_018
crossref_primary_10_1007_JHEP01_2016_111
crossref_primary_10_1007_JHEP10_2012_016
crossref_primary_10_1007_JHEP12_2021_209
crossref_primary_10_1103_PhysRevD_101_095002
crossref_primary_10_1007_JHEP01_2014_140
crossref_primary_10_1007_s10773_024_05732_6
crossref_primary_10_1007_JHEP04_2015_148
crossref_primary_10_1103_PhysRevD_103_015019
crossref_primary_10_1007_JHEP03_2013_004
crossref_primary_10_1007_JHEP02_2023_237
crossref_primary_10_1007_JHEP06_2014_125
crossref_primary_10_1007_JHEP06_2014_126
crossref_primary_10_1155_2015_840780
crossref_primary_10_1016_j_physletb_2014_11_035
crossref_primary_10_1103_PhysRevD_93_033003
crossref_primary_10_1007_JHEP10_2012_008
crossref_primary_10_1103_PhysRevD_88_054021
crossref_primary_10_1007_JHEP10_2012_004
crossref_primary_10_1016_j_physrep_2024_12_002
crossref_primary_10_1007_JHEP01_2016_120
crossref_primary_10_1007_JHEP11_2021_112
crossref_primary_10_1007_JHEP11_2021_113
crossref_primary_10_1103_PhysRevD_91_015002
crossref_primary_10_1134_S1063779624700102
crossref_primary_10_1103_PhysRevLett_111_211804
crossref_primary_10_1007_JHEP06_2012_109
crossref_primary_10_35414_akufemubid_1182938
crossref_primary_10_1007_JHEP10_2014_087
crossref_primary_10_1016_j_physletb_2014_06_076
crossref_primary_10_1016_j_physletb_2014_06_075
crossref_primary_10_1007_JHEP03_2015_083
crossref_primary_10_1007_JHEP10_2012_081
crossref_primary_10_1007_JHEP08_2019_110
crossref_primary_10_1051_epjconf_201612900002
crossref_primary_10_1007_JHEP11_2014_136
crossref_primary_10_1007_JHEP11_2021_168
crossref_primary_10_1142_S0217751X17470224
crossref_primary_10_1007_JHEP04_2015_124
crossref_primary_10_1007_JHEP06_2012_112
crossref_primary_10_1088_0954_3899_43_1_013002
crossref_primary_10_31466_kfbd_1240083
crossref_primary_10_1007_JHEP01_2014_115
crossref_primary_10_1140_epjc_s10052_014_3243_2
crossref_primary_10_1007_JHEP06_2012_117
crossref_primary_10_1007_JHEP10_2012_065
crossref_primary_10_1007_JHEP03_2020_090
crossref_primary_10_1140_epjp_s13360_022_02452_w
crossref_primary_10_1103_PhysRevLett_116_151801
crossref_primary_10_1016_j_physletb_2012_10_070
crossref_primary_10_1016_j_physletb_2014_06_058
crossref_primary_10_1140_epjc_s10052_012_1863_y
crossref_primary_10_1007_JHEP06_2014_175
crossref_primary_10_1016_j_cpc_2012_09_009
crossref_primary_10_1103_PhysRevLett_111_091802
crossref_primary_10_1103_PhysRevD_87_055022
crossref_primary_10_1007_JHEP01_2014_104
crossref_primary_10_1103_PhysRevD_107_095003
crossref_primary_10_1007_JHEP03_2013_052
crossref_primary_10_1016_j_cpc_2014_10_018
crossref_primary_10_1007_JHEP02_2019_059
crossref_primary_10_1016_j_physletb_2012_10_082
crossref_primary_10_1103_PhysRevD_89_016020
crossref_primary_10_1007_JHEP06_2014_169
crossref_primary_10_1103_PhysRevD_98_055010
crossref_primary_10_1103_PhysRevD_95_095015
crossref_primary_10_1007_JHEP04_2015_103
crossref_primary_10_1007_JHEP11_2014_117
crossref_primary_10_1007_JHEP04_2022_150
crossref_primary_10_1140_epjc_s10052_021_09930_y
crossref_primary_10_1103_PhysRevD_89_073020
crossref_primary_10_1088_1475_7516_2014_10_063
crossref_primary_10_1016_j_physletb_2014_06_041
crossref_primary_10_1007_JHEP05_2024_215
crossref_primary_10_1007_JHEP06_2021_084
crossref_primary_10_1103_PhysRevD_84_095001
crossref_primary_10_1007_JHEP09_2015_196
crossref_primary_10_1103_PhysRevD_90_094010
crossref_primary_10_1007_JHEP03_2013_037
crossref_primary_10_1007_JHEP11_2014_124
crossref_primary_10_1103_PhysRevD_90_094016
crossref_primary_10_1103_PhysRevD_90_094015
crossref_primary_10_1007_JHEP08_2019_129
crossref_primary_10_1103_PhysRevD_87_055007
crossref_primary_10_1103_PhysRevD_95_095005
crossref_primary_10_1007_JHEP04_2015_114
crossref_primary_10_1007_JHEP11_2014_127
crossref_primary_10_1103_PhysRevD_91_035011
crossref_primary_10_1103_PhysRevD_86_052013
crossref_primary_10_1007_JHEP04_2024_137
crossref_primary_10_1103_PhysRevD_101_075017
crossref_primary_10_1007_JHEP03_2015_157
crossref_primary_10_1007_JHEP10_2014_160
crossref_primary_10_1007_JHEP10_2014_164
crossref_primary_10_1088_1748_0221_15_01_P01021
crossref_primary_10_1140_epjc_s10052_023_11377_2
crossref_primary_10_1103_PhysRevD_87_014021
crossref_primary_10_1103_PhysRevD_87_095016
crossref_primary_10_1103_PhysRevD_89_037702
crossref_primary_10_1103_PhysRevD_91_035008
crossref_primary_10_1007_JHEP08_2015_016
crossref_primary_10_1103_PhysRevD_94_015012
crossref_primary_10_1007_JHEP05_2012_081
crossref_primary_10_1103_PhysRevD_91_035023
crossref_primary_10_1103_PhysRevD_91_035020
crossref_primary_10_1016_j_dark_2013_03_003
crossref_primary_10_1007_JHEP05_2018_049
crossref_primary_10_1016_j_dark_2013_03_002
crossref_primary_10_1103_PhysRevD_110_115009
crossref_primary_10_1007_JHEP03_2015_166
crossref_primary_10_1103_PhysRevD_87_095013
crossref_primary_10_1007_JHEP10_2014_173
crossref_primary_10_1103_PhysRevD_87_095008
crossref_primary_10_1007_JHEP11_2023_125
crossref_primary_10_1088_1748_0221_14_11_P11015
crossref_primary_10_1103_PhysRevD_87_095006
crossref_primary_10_1103_PhysRevD_99_116007
crossref_primary_10_1103_PhysRevD_91_093003
crossref_primary_10_1214_24_AOAS1916
crossref_primary_10_1007_JHEP08_2015_003
crossref_primary_10_1103_PhysRevD_91_035016
crossref_primary_10_1103_PhysRevD_91_093006
crossref_primary_10_1007_JHEP10_2014_188
crossref_primary_10_1007_JHEP06_2014_090
crossref_primary_10_1103_PhysRevD_108_L111703
crossref_primary_10_1007_JHEP02_2013_036
crossref_primary_10_1103_PhysRevD_91_114018
crossref_primary_10_1007_s12043_017_1459_z
crossref_primary_10_1088_1402_4896_aadfcf
crossref_primary_10_1103_PhysRevD_87_014002
crossref_primary_10_1088_1674_1137_40_3_033002
crossref_primary_10_1103_PhysRevD_87_014004
crossref_primary_10_1103_PhysRevD_93_053013
crossref_primary_10_1007_JHEP07_2022_037
crossref_primary_10_1103_PhysRevD_106_096006
crossref_primary_10_1007_JHEP07_2012_110
crossref_primary_10_1103_PhysRevD_105_016019
crossref_primary_10_1007_JHEP01_2019_032
crossref_primary_10_1209_0295_5075_132_61001
crossref_primary_10_1103_PhysRevD_87_014015
crossref_primary_10_1103_PhysRevD_88_116009
crossref_primary_10_1140_epjc_s10052_022_10809_9
crossref_primary_10_1103_PhysRevD_88_116001
crossref_primary_10_1007_JHEP06_2021_027
crossref_primary_10_1007_JHEP10_2012_112
crossref_primary_10_1103_PhysRevD_84_113011
crossref_primary_10_1007_JHEP12_2011_061
crossref_primary_10_1103_PhysRevD_88_094007
crossref_primary_10_1103_PhysRevD_90_074014
crossref_primary_10_1007_JHEP05_2018_081
crossref_primary_10_1016_j_physletb_2012_03_011
crossref_primary_10_1007_JHEP03_2013_105
crossref_primary_10_1007_JHEP06_2012_072
crossref_primary_10_1103_PhysRevD_99_094025
crossref_primary_10_1140_epjc_s10052_023_11399_w
crossref_primary_10_1007_JHEP11_2023_179
crossref_primary_10_1142_S0217751X1541002X
crossref_primary_10_1140_epjc_s10052_022_10964_z
crossref_primary_10_3390_sym13122341
crossref_primary_10_1103_PhysRevD_109_015027
crossref_primary_10_1103_PhysRevD_102_074014
crossref_primary_10_1007_JHEP10_2012_104
crossref_primary_10_1103_PhysRevLett_124_221801
crossref_primary_10_1103_PhysRevD_86_015023
crossref_primary_10_1103_PhysRevD_86_015028
crossref_primary_10_1103_PhysRevD_86_015025
crossref_primary_10_1103_PhysRevD_109_015017
crossref_primary_10_1103_PhysRevD_98_075012
crossref_primary_10_1007_JHEP05_2018_058
crossref_primary_10_1103_PhysRevD_98_075010
crossref_primary_10_1103_PhysRevLett_110_232002
crossref_primary_10_1103_PhysRevD_92_113012
crossref_primary_10_1103_PhysRevD_86_015010
crossref_primary_10_1103_PhysRevD_86_015011
crossref_primary_10_1016_j_astropartphys_2023_102821
crossref_primary_10_1007_JHEP01_2019_080
crossref_primary_10_1007_JHEP08_2024_176
crossref_primary_10_1103_PhysRevD_88_033003
crossref_primary_10_1103_PhysRevD_98_075008
crossref_primary_10_1016_j_physletb_2013_12_013
crossref_primary_10_1140_epjc_s10052_022_10448_0
crossref_primary_10_1007_JHEP10_2014_155
crossref_primary_10_1007_JHEP10_2014_156
crossref_primary_10_1016_j_physletb_2013_12_011
crossref_primary_10_1103_PhysRevD_91_055030
crossref_primary_10_1103_PhysRevD_87_075003
crossref_primary_10_1007_JHEP01_2014_177
crossref_primary_10_1007_JHEP10_2014_154
crossref_primary_10_1007_JHEP12_2011_030
crossref_primary_10_1140_epjc_s10052_020_8368_x
crossref_primary_10_1103_PhysRevD_87_034041
crossref_primary_10_1103_PhysRevD_91_055025
crossref_primary_10_1140_epjc_s10052_017_5155_4
crossref_primary_10_1007_JHEP07_2014_142
crossref_primary_10_1140_epjc_s10052_019_7277_3
crossref_primary_10_1103_PhysRevD_106_015028
crossref_primary_10_1103_PhysRevD_86_015008
crossref_primary_10_1016_j_physletb_2012_05_052
crossref_primary_10_1103_PhysRevD_88_033015
crossref_primary_10_1103_PhysRevD_86_015005
crossref_primary_10_1103_PhysRevD_101_055008
crossref_primary_10_1103_PhysRevD_90_017701
crossref_primary_10_1093_ptep_ptv134
crossref_primary_10_1103_PhysRevD_106_035002
crossref_primary_10_1142_S0217751X17500178
crossref_primary_10_1103_PhysRevD_90_115012
crossref_primary_10_1007_JHEP04_2020_082
crossref_primary_10_1103_PhysRevD_90_115008
crossref_primary_10_1103_PhysRevD_91_055019
crossref_primary_10_1103_PhysRevD_90_115006
crossref_primary_10_1103_PhysRevD_90_115007
crossref_primary_10_1007_JHEP07_2012_164
crossref_primary_10_1103_PhysRevD_90_115005
crossref_primary_10_31857_S1234567823190011
crossref_primary_10_1103_PhysRevD_94_035023
crossref_primary_10_1103_PhysRevD_89_012003
crossref_primary_10_1140_epjc_s10052_017_4752_6
crossref_primary_10_1103_PhysRevD_101_055015
crossref_primary_10_1103_PhysRevLett_113_061801
crossref_primary_10_1007_JHEP08_2013_008
crossref_primary_10_1103_PhysRevD_86_072010
crossref_primary_10_1103_PhysRevD_90_115025
crossref_primary_10_1103_PhysRevD_90_115023
crossref_primary_10_1007_JHEP02_2015_038
crossref_primary_10_1007_JHEP09_2022_246
crossref_primary_10_1103_PhysRevLett_116_162001
crossref_primary_10_1103_PhysRevD_97_015024
crossref_primary_10_1103_PhysRevD_91_055009
crossref_primary_10_1007_JHEP11_2017_010
crossref_primary_10_1103_PhysRevD_90_115015
crossref_primary_10_1103_PhysRevLett_110_212001
crossref_primary_10_1007_JHEP07_2012_175
crossref_primary_10_1007_JHEP12_2011_009
crossref_primary_10_1007_JHEP05_2016_018
crossref_primary_10_1103_PhysRevD_103_055008
crossref_primary_10_1140_epjp_s13360_021_01902_1
crossref_primary_10_3390_universe8060301
crossref_primary_10_1103_PhysRevD_91_055007
crossref_primary_10_1103_PhysRevD_91_073015
crossref_primary_10_1103_PhysRevD_91_073016
crossref_primary_10_1007_JHEP10_2014_100
crossref_primary_10_1103_PhysRevLett_131_171801
crossref_primary_10_1088_1475_7516_2022_10_055
crossref_primary_10_1140_epjc_s10052_016_3969_0
crossref_primary_10_1007_JHEP02_2017_096
crossref_primary_10_1103_PhysRevD_101_055028
crossref_primary_10_1103_PhysRevD_89_115013
crossref_primary_10_1103_PhysRevD_89_115014
crossref_primary_10_1007_JHEP02_2015_007
crossref_primary_10_1103_PhysRevD_89_115016
crossref_primary_10_1103_PhysRevD_90_115026
crossref_primary_10_1007_JHEP06_2012_096
crossref_primary_10_1103_PhysRevD_84_105012
crossref_primary_10_1007_JHEP10_2014_113
crossref_primary_10_1103_PhysRevD_89_115006
crossref_primary_10_1007_JHEP03_2015_102
crossref_primary_10_1140_epjc_s10052_024_12527_w
crossref_primary_10_1007_JHEP02_2015_019
crossref_primary_10_1007_JHEP02_2015_016
crossref_primary_10_1103_PhysRevD_89_115001
crossref_primary_10_1007_JHEP05_2016_030
crossref_primary_10_1007_JHEP07_2012_196
crossref_primary_10_1051_epjconf_20159007003
crossref_primary_10_1051_epjconf_20159007002
crossref_primary_10_1007_JHEP05_2016_036
crossref_primary_10_1088_1748_0221_11_09_P09012
crossref_primary_10_1016_j_physletb_2015_05_073
crossref_primary_10_1007_JHEP02_2017_091
crossref_primary_10_1140_epjc_s10052_013_2380_3
crossref_primary_10_1016_j_ppnp_2016_05_001
crossref_primary_10_1007_JHEP08_2017_074
crossref_primary_10_1007_JHEP02_2015_061
crossref_primary_10_1142_S0217732314500667
crossref_primary_10_1007_JHEP12_2015_072
crossref_primary_10_1007_JHEP07_2012_119
crossref_primary_10_1103_PhysRevD_101_055043
crossref_primary_10_1007_JHEP03_2024_037
crossref_primary_10_1103_PhysRevD_92_074015
crossref_primary_10_1103_PhysRevD_90_054008
crossref_primary_10_1051_epjconf_201612604020
crossref_primary_10_1016_j_nuclphysb_2013_07_019
crossref_primary_10_1007_JHEP06_2018_128
crossref_primary_10_1007_JHEP02_2021_184
crossref_primary_10_1103_PhysRevD_88_013016
crossref_primary_10_1103_PhysRevD_88_013015
crossref_primary_10_1140_epjc_s10052_018_5785_1
crossref_primary_10_1088_1748_0221_12_02_P02014
crossref_primary_10_1142_S0217751X17500142
crossref_primary_10_1016_j_physletb_2015_03_017
crossref_primary_10_1103_PhysRevD_89_115024
crossref_primary_10_1088_1361_6382_ad6740
crossref_primary_10_1016_j_cpc_2012_05_004
crossref_primary_10_1016_j_physletb_2012_07_021
crossref_primary_10_1103_PhysRevD_86_096011
crossref_primary_10_1007_JHEP07_2012_136
crossref_primary_10_1007_JHEP02_2015_049
crossref_primary_10_1103_PhysRevD_103_075031
crossref_primary_10_1007_JHEP05_2016_089
crossref_primary_10_1007_JHEP07_2012_143
crossref_primary_10_1103_PhysRevD_102_115010
crossref_primary_10_1140_epjc_s10052_014_3193_8
crossref_primary_10_1103_PhysRevD_90_054023
crossref_primary_10_1140_epjc_s10052_013_2710_5
crossref_primary_10_1209_0295_5075_99_61001
crossref_primary_10_1140_epjc_s10052_021_09828_9
crossref_primary_10_1103_PhysRevD_90_115002
crossref_primary_10_1007_JHEP12_2013_013
crossref_primary_10_1016_j_dark_2015_08_001
crossref_primary_10_1007_JHEP12_2015_087
crossref_primary_10_1007_JHEP05_2014_005
crossref_primary_10_1051_epjconf_201714104003
crossref_primary_10_1016_j_nuclphysb_2012_12_003
crossref_primary_10_1103_PhysRevD_89_056011
crossref_primary_10_1140_epjc_s10052_024_13211_9
crossref_primary_10_1103_PhysRevD_94_035012
crossref_primary_10_1007_JHEP07_2018_185
crossref_primary_10_1103_PhysRevD_92_015005
crossref_primary_10_1140_epjc_s10052_012_2222_8
crossref_primary_10_1007_JHEP12_2012_102
crossref_primary_10_1007_JHEP01_2016_051
crossref_primary_10_1007_JHEP12_2012_105
crossref_primary_10_1209_0295_5075_107_41002
crossref_primary_10_1088_1742_6596_1271_1_012005
crossref_primary_10_1007_JHEP09_2021_039
crossref_primary_10_1007_JHEP06_2023_001
crossref_primary_10_1209_0295_5075_111_21003
crossref_primary_10_1103_PhysRevD_89_077703
crossref_primary_10_1103_PhysRevD_92_015013
crossref_primary_10_1103_PhysRevD_92_015012
crossref_primary_10_1103_PhysRevD_94_033008
crossref_primary_10_1007_JHEP10_2018_073
crossref_primary_10_1140_epjc_s10052_023_11534_7
crossref_primary_10_1007_JHEP05_2013_100
crossref_primary_10_1016_j_ppnp_2013_04_001
crossref_primary_10_1103_PhysRevD_89_015004
crossref_primary_10_1007_JHEP09_2013_020
crossref_primary_10_1103_PhysRevD_84_074025
crossref_primary_10_1103_PhysRevD_86_115019
crossref_primary_10_1007_JHEP02_2017_135
crossref_primary_10_1103_PhysRevD_109_115029
crossref_primary_10_1007_JHEP03_2019_031
crossref_primary_10_1088_1475_7516_2014_05_009
crossref_primary_10_1103_PhysRevD_109_115028
crossref_primary_10_1142_S021773232450144X
crossref_primary_10_1103_PhysRevD_89_015015
crossref_primary_10_1103_PhysRevD_89_015011
crossref_primary_10_1103_PhysRevD_89_015019
crossref_primary_10_1103_PhysRevD_89_015018
crossref_primary_10_1103_PhysRevD_95_052002
crossref_primary_10_1007_JHEP09_2019_120
crossref_primary_10_1140_epjc_s10052_014_2909_0
crossref_primary_10_1103_PhysRevD_89_077701
crossref_primary_10_1103_PhysRevD_92_015016
crossref_primary_10_1088_1674_1137_ad20d5
crossref_primary_10_1103_PhysRevD_110_052001
crossref_primary_10_1016_j_physletb_2013_03_037
crossref_primary_10_1007_JHEP01_2016_087
crossref_primary_10_1103_PhysRevD_86_115022
crossref_primary_10_1016_j_ppnp_2015_07_002
crossref_primary_10_1103_PhysRevD_89_015021
crossref_primary_10_1103_PhysRevD_89_015020
crossref_primary_10_1140_epjc_s10052_014_3181_z
crossref_primary_10_1103_PhysRevD_92_072006
crossref_primary_10_1103_PhysRevD_86_051501
crossref_primary_10_1103_PhysRevD_87_011301
crossref_primary_10_1007_JHEP05_2013_138
crossref_primary_10_1103_PhysRevD_93_034003
crossref_primary_10_1140_epjc_s10052_020_7722_3
crossref_primary_10_1016_j_physletb_2015_06_077
crossref_primary_10_1016_j_physletb_2015_06_070
crossref_primary_10_1007_JHEP10_2018_026
crossref_primary_10_1016_j_physletb_2013_01_016
crossref_primary_10_1007_JHEP08_2018_037
crossref_primary_10_1088_1742_6596_523_1_012028
crossref_primary_10_1007_JHEP06_2015_041
crossref_primary_10_1103_PhysRevD_94_065034
crossref_primary_10_1103_PhysRevD_85_016006
crossref_primary_10_1007_JHEP05_2013_145
crossref_primary_10_1007_JHEP06_2015_025
crossref_primary_10_1007_JHEP02_2015_118
crossref_primary_10_1142_S0217751X16501517
crossref_primary_10_1007_JHEP04_2014_059
crossref_primary_10_1007_JHEP04_2014_063
crossref_primary_10_1007_JHEP09_2013_065
crossref_primary_10_1051_epjconf_20159009001
crossref_primary_10_1140_epjc_s10052_023_11303_6
crossref_primary_10_1007_JHEP09_2023_076
crossref_primary_10_1007_JHEP07_2012_091
crossref_primary_10_1088_1742_6596_802_1_012001
crossref_primary_10_1088_1742_6596_523_1_012040
crossref_primary_10_1088_1742_6596_523_1_012044
crossref_primary_10_1103_PhysRevD_88_073011
crossref_primary_10_1007_JHEP08_2018_056
crossref_primary_10_1140_epjc_s10052_012_1903_7
crossref_primary_10_1007_JHEP09_2022_248
crossref_primary_10_1007_s10773_020_04473_6
crossref_primary_10_1103_PhysRevD_88_073007
crossref_primary_10_1007_JHEP09_2013_094
crossref_primary_10_1103_PhysRevD_91_016008
crossref_primary_10_1103_PhysRevD_93_034014
crossref_primary_10_1007_JHEP11_2013_043
crossref_primary_10_1103_PhysRevLett_110_122003
crossref_primary_10_1007_JHEP05_2013_167
crossref_primary_10_1088_1742_6596_523_1_012032
crossref_primary_10_1007_JHEP11_2020_080
crossref_primary_10_1140_epjc_s10052_023_11787_2
crossref_primary_10_1007_JHEP04_2021_077
crossref_primary_10_1088_0034_4885_79_12_124201
crossref_primary_10_1140_epjp_s13360_023_04779_4
crossref_primary_10_1007_JHEP11_2013_047
crossref_primary_10_1103_PhysRevD_106_055002
crossref_primary_10_1007_JHEP06_2017_082
crossref_primary_10_1140_epjc_s10052_015_3776_z
crossref_primary_10_1103_PhysRevD_99_055025
crossref_primary_10_1007_JHEP03_2012_103
crossref_primary_10_1088_0253_6102_63_3_331
crossref_primary_10_1103_PhysRevD_108_012001
crossref_primary_10_1103_PhysRevD_92_115013
crossref_primary_10_1007_JHEP11_2013_018
crossref_primary_10_1007_JHEP04_2014_004
crossref_primary_10_1007_JHEP11_2013_014
crossref_primary_10_1007_JHEP01_2014_040
crossref_primary_10_1007_JHEP06_2015_078
crossref_primary_10_1051_epjconf_20136005003
crossref_primary_10_1007_JHEP06_2015_080
crossref_primary_10_1051_epjconf_20134906004
crossref_primary_10_1103_PhysRevD_106_075028
crossref_primary_10_1007_JHEP10_2013_196
crossref_primary_10_1103_PhysRevD_92_115008
crossref_primary_10_1140_epjc_s10052_021_09152_2
crossref_primary_10_1103_PhysRevD_87_034039
crossref_primary_10_1103_PhysRevD_99_095035
crossref_primary_10_1007_JHEP10_2013_191
crossref_primary_10_1103_PhysRevD_93_054044
crossref_primary_10_1103_PhysRevD_92_115024
crossref_primary_10_1007_JHEP10_2011_101
crossref_primary_10_1007_JHEP11_2015_099
crossref_primary_10_1007_JHEP04_2014_011
crossref_primary_10_1007_JHEP02_2013_086
crossref_primary_10_1007_JHEP01_2014_030
crossref_primary_10_1088_1674_1137_42_7_073103
crossref_primary_10_1007_JHEP04_2014_013
crossref_primary_10_1007_JHEP02_2013_091
crossref_primary_10_1007_JHEP09_2015_055
crossref_primary_10_1016_j_physletb_2013_05_057
crossref_primary_10_1088_1742_6596_934_1_012030
crossref_primary_10_1103_PhysRevD_92_115018
crossref_primary_10_1103_PhysRevD_95_015028
crossref_primary_10_1007_JHEP10_2019_275
crossref_primary_10_1007_JHEP12_2023_171
crossref_primary_10_1103_PhysRevD_86_055020
crossref_primary_10_1007_JHEP01_2014_025
crossref_primary_10_1016_j_physletb_2015_08_020
crossref_primary_10_1088_1742_6596_889_1_012020
crossref_primary_10_1103_PhysRevLett_112_161802
crossref_primary_10_1140_epjc_s10052_014_2980_6
crossref_primary_10_1103_PhysRevLett_110_081801
crossref_primary_10_1103_PhysRevD_110_056024
crossref_primary_10_1007_JHEP02_2019_132
crossref_primary_10_1088_1742_6596_452_1_012032
crossref_primary_10_1103_PhysRevLett_112_082002
crossref_primary_10_1007_JHEP01_2014_014
crossref_primary_10_1103_PhysRevD_106_075031
crossref_primary_10_1140_epjc_s10052_021_08991_3
crossref_primary_10_1007_JHEP10_2013_167
crossref_primary_10_1103_PhysRevLett_128_069901
crossref_primary_10_1007_JHEP10_2013_164
crossref_primary_10_1209_0295_5075_ac8ecf
crossref_primary_10_1038_s41598_022_10966_7
crossref_primary_10_1007_JHEP12_2023_110
crossref_primary_10_1140_epjc_s10052_012_1862_z
crossref_primary_10_1007_JHEP04_2016_056
crossref_primary_10_1103_PhysRevD_108_036014
crossref_primary_10_1007_JHEP11_2015_068
crossref_primary_10_1007_JHEP11_2015_067
crossref_primary_10_1016_j_physletb_2013_03_027
crossref_primary_10_1140_epjc_s10052_013_2310_4
crossref_primary_10_1016_j_cpc_2015_05_015
crossref_primary_10_1103_PhysRevD_91_092005
crossref_primary_10_1007_JHEP07_2022_137
crossref_primary_10_1007_JHEP11_2015_051
crossref_primary_10_1103_PhysRevD_109_055047
crossref_primary_10_1007_JHEP04_2023_083
crossref_primary_10_1140_epjc_s10052_023_11889_x
crossref_primary_10_1140_epjc_s10052_013_2608_2
crossref_primary_10_1051_epjconf_20136017013
crossref_primary_10_1088_1748_0221_15_01_P01009
crossref_primary_10_1016_j_nuclphysb_2015_07_005
crossref_primary_10_1007_JHEP07_2024_192
crossref_primary_10_1140_epjc_s10052_017_5416_2
crossref_primary_10_1007_JHEP01_2016_030
crossref_primary_10_1103_PhysRevD_102_015016
crossref_primary_10_1007_JHEP06_2013_006
crossref_primary_10_1103_PhysRevD_99_075020
crossref_primary_10_1103_PhysRevD_89_096007
crossref_primary_10_1103_PhysRevD_89_096009
crossref_primary_10_1051_epjconf_20136017002
crossref_primary_10_3390_sym15081475
crossref_primary_10_1140_epjc_s10052_015_3706_0
crossref_primary_10_1007_JHEP11_2015_036
crossref_primary_10_1007_JHEP06_2013_022
crossref_primary_10_1142_S0218271821300044
crossref_primary_10_1103_PhysRevD_94_085031
crossref_primary_10_1007_JHEP09_2021_069
crossref_primary_10_1016_j_cpc_2013_02_019
crossref_primary_10_1103_PhysRevD_99_075014
crossref_primary_10_1103_PhysRevD_89_055007
crossref_primary_10_1007_JHEP02_2013_138
crossref_primary_10_1007_JHEP07_2014_046
crossref_primary_10_1103_PhysRevD_86_075013
crossref_primary_10_1007_JHEP05_2020_093
crossref_primary_10_1103_PhysRevD_102_095027
crossref_primary_10_1103_RevModPhys_86_479
crossref_primary_10_1007_JHEP10_2014_044
crossref_primary_10_21468_SciPostPhys_13_2_026
crossref_primary_10_1140_epjc_s10052_023_11859_3
crossref_primary_10_1103_PhysRevD_99_115028
crossref_primary_10_1103_PhysRevLett_111_121802
crossref_primary_10_1103_PhysRevD_86_075008
crossref_primary_10_1103_PhysRevD_95_035026
crossref_primary_10_24136_oc_3137
crossref_primary_10_1007_JHEP08_2015_133
crossref_primary_10_1007_JHEP10_2022_152
crossref_primary_10_1016_j_physletb_2012_12_011
crossref_primary_10_1103_PhysRevC_92_044902
crossref_primary_10_1007_JHEP10_2014_057
crossref_primary_10_1007_JHEP07_2014_036
crossref_primary_10_1140_epjc_s10052_018_5949_z
crossref_primary_10_1007_JHEP11_2024_074
crossref_primary_10_1103_PhysRevD_88_093008
crossref_primary_10_1016_j_dark_2016_09_002
crossref_primary_10_1103_PhysRevD_88_093006
crossref_primary_10_1103_PhysRevD_89_103528
crossref_primary_10_1103_PhysRevD_99_115033
crossref_primary_10_1103_PhysRevD_102_015004
crossref_primary_10_1103_PhysRevD_98_015008
crossref_primary_10_1103_PhysRevD_95_035012
crossref_primary_10_1103_PhysRevD_92_055023
crossref_primary_10_1103_PhysRevD_92_055025
crossref_primary_10_1103_PhysRevD_95_035014
crossref_primary_10_1007_JHEP09_2017_026
crossref_primary_10_1016_j_physletb_2012_12_044
crossref_primary_10_1016_j_physletb_2012_12_045
crossref_primary_10_1016_j_nuclphysb_2014_08_009
crossref_primary_10_1103_PhysRevD_89_055024
crossref_primary_10_1007_JHEP03_2015_059
crossref_primary_10_1007_JHEP06_2019_031
crossref_primary_10_1103_PhysRevD_89_055022
crossref_primary_10_1140_epjc_s10052_018_6234_x
crossref_primary_10_1088_1475_7516_2014_10_039
crossref_primary_10_1103_PhysRevD_89_055020
crossref_primary_10_1007_JHEP04_2016_116
crossref_primary_10_1088_1475_7516_2016_06_050
crossref_primary_10_1007_JHEP01_2012_011
crossref_primary_10_1007_JHEP10_2013_216
crossref_primary_10_1007_JHEP05_2019_179
crossref_primary_10_1007_JHEP11_2023_235
crossref_primary_10_1103_PhysRevD_106_095040
crossref_primary_10_1007_JHEP05_2017_128
crossref_primary_10_1007_JHEP06_2021_176
crossref_primary_10_1088_0954_3899_42_12_125003
crossref_primary_10_1103_PhysRevD_111_055011
crossref_primary_10_1007_JHEP01_2012_018
crossref_primary_10_1103_PhysRevD_86_075026
crossref_primary_10_1103_PhysRevD_111_055017
crossref_primary_10_1140_epjp_s13360_021_01775_4
crossref_primary_10_1007_JHEP10_2014_078
crossref_primary_10_1103_PhysRevD_106_095038
crossref_primary_10_1140_epjc_s10052_015_3451_4
crossref_primary_10_1103_PhysRevD_89_055011
crossref_primary_10_1103_PhysRevLett_113_151801
crossref_primary_10_1007_JHEP01_2014_096
crossref_primary_10_21468_SciPostPhys_9_5_077
crossref_primary_10_1140_epjc_s10052_016_4376_2
crossref_primary_10_1103_PhysRevLett_112_221803
crossref_primary_10_1007_JHEP07_2014_065
crossref_primary_10_1103_PhysRevD_86_075016
crossref_primary_10_21468_SciPostPhys_7_3_036
crossref_primary_10_1103_PhysRevD_85_011104
crossref_primary_10_1103_PhysRevD_85_056011
crossref_primary_10_1103_PhysRevD_103_094014
crossref_primary_10_1103_PhysRevD_99_095002
crossref_primary_10_1007_JHEP07_2014_005
crossref_primary_10_1007_JHEP03_2023_198
crossref_primary_10_1088_0954_3899_42_6_065004
crossref_primary_10_1088_0954_3899_42_6_065006
crossref_primary_10_1103_PhysRevD_101_076023
crossref_primary_10_1103_PhysRevLett_116_131801
crossref_primary_10_1140_epjc_s10052_023_12277_1
crossref_primary_10_1103_PhysRevLett_114_229901
crossref_primary_10_1007_JHEP10_2014_012
crossref_primary_10_1103_PhysRevD_90_013015
crossref_primary_10_1007_s10773_020_04664_1
crossref_primary_10_1007_JHEP03_2017_077
crossref_primary_10_1007_JHEP09_2015_008
crossref_primary_10_1016_j_physletb_2013_07_042
crossref_primary_10_1103_PhysRevD_87_074005
crossref_primary_10_1103_PhysRevD_87_074004
crossref_primary_10_21468_SciPostPhysProc_12_044
crossref_primary_10_1103_PhysRevD_90_013020
crossref_primary_10_1088_1742_6596_452_1_012021
crossref_primary_10_1007_JHEP06_2012_169
crossref_primary_10_1140_epjc_s10052_024_13082_0
crossref_primary_10_1007_JHEP01_2014_069
crossref_primary_10_1103_PhysRevLett_122_131803
crossref_primary_10_1007_JHEP03_2021_123
crossref_primary_10_1103_PhysRevD_103_115017
crossref_primary_10_1016_j_ppnp_2013_02_001
crossref_primary_10_1140_epjc_s10052_024_12860_0
crossref_primary_10_1103_PhysRevD_99_115001
crossref_primary_10_1103_PhysRevD_87_074015
crossref_primary_10_1103_PhysRevD_99_095017
crossref_primary_10_1051_epjconf_20134917011
crossref_primary_10_1051_epjconf_20136008001
crossref_primary_10_1103_PhysRevD_102_075005
crossref_primary_10_1140_epjc_s10052_022_10778_z
crossref_primary_10_1140_epjc_s10052_014_3163_1
crossref_primary_10_1007_JHEP03_2015_025
crossref_primary_10_1007_JHEP05_2020_087
crossref_primary_10_1007_JHEP01_2014_060
crossref_primary_10_1016_j_dark_2014_04_001
crossref_primary_10_1103_PhysRevD_103_115020
crossref_primary_10_1103_PhysRevD_92_075033
crossref_primary_10_1007_JHEP07_2014_020
crossref_primary_10_1088_0954_3899_43_3_035001
crossref_primary_10_1016_j_cpc_2013_08_023
crossref_primary_10_1007_JHEP02_2015_142
crossref_primary_10_1007_JHEP07_2012_038
crossref_primary_10_1016_j_physrep_2016_06_001
crossref_primary_10_1007_JHEP07_2012_036
crossref_primary_10_1007_JHEP07_2018_107
crossref_primary_10_1103_PhysRevD_86_112003
crossref_primary_10_1007_JHEP04_2012_079
crossref_primary_10_1103_PhysRevD_108_L091704
crossref_primary_10_1103_PhysRevD_102_075011
crossref_primary_10_1103_PhysRevD_109_095023
crossref_primary_10_1088_1475_7516_2014_12_025
crossref_primary_10_1103_PhysRevD_86_095017
crossref_primary_10_1103_PhysRevD_86_095019
crossref_primary_10_1007_JHEP12_2014_108
crossref_primary_10_1103_PhysRevD_111_035024
crossref_primary_10_1007_JHEP08_2022_068
crossref_primary_10_1103_PhysRevD_102_035006
crossref_primary_10_1103_PhysRevD_86_103536
crossref_primary_10_1007_JHEP08_2017_145
crossref_primary_10_1140_epjc_s10052_013_2404_z
crossref_primary_10_1016_j_physletb_2014_02_016
crossref_primary_10_1103_PhysRevD_89_035004
crossref_primary_10_1103_PhysRevD_92_075024
crossref_primary_10_1103_PhysRevD_98_035026
crossref_primary_10_1140_epjp_s13360_025_06015_7
crossref_primary_10_1103_PhysRevD_89_035008
crossref_primary_10_1103_PhysRevD_89_035007
crossref_primary_10_1103_PhysRevD_102_075026
crossref_primary_10_1142_S0217751X19501574
crossref_primary_10_1007_JHEP08_2013_129
crossref_primary_10_1103_PhysRevD_102_075029
crossref_primary_10_1103_PhysRevD_96_115020
crossref_primary_10_1007_JHEP02_2015_157
crossref_primary_10_1007_JHEP04_2012_067
crossref_primary_10_1103_PhysRevD_102_075021
crossref_primary_10_1007_JHEP04_2012_076
crossref_primary_10_1140_epjc_s10052_013_2283_3
crossref_primary_10_1140_epjc_s10052_017_5478_1
crossref_primary_10_1140_epjc_s10052_014_2745_2
crossref_primary_10_1088_1361_6471_ab7769
crossref_primary_10_1007_JHEP08_2013_130
crossref_primary_10_1103_PhysRevLett_119_021102
crossref_primary_10_1103_PhysRevD_90_053003
crossref_primary_10_1103_PhysRevD_95_055002
crossref_primary_10_1140_epjc_s10052_024_13376_3
crossref_primary_10_1016_j_ppnp_2018_01_009
crossref_primary_10_1140_epjc_s10052_024_12428_y
crossref_primary_10_1007_JHEP02_2015_128
crossref_primary_10_1103_PhysRevD_89_092010
crossref_primary_10_1007_JHEP02_2020_070
crossref_primary_10_1016_j_cpc_2017_12_021
crossref_primary_10_1103_PhysRevD_92_075008
crossref_primary_10_1016_j_physletb_2013_07_011
crossref_primary_10_1016_j_physletb_2013_07_014
crossref_primary_10_1103_PhysRevD_89_092005
crossref_primary_10_1140_epjc_s10052_014_3119_5
crossref_primary_10_1007_JHEP12_2014_126
crossref_primary_10_1016_j_physletb_2014_02_033
crossref_primary_10_1103_PhysRevD_92_075002
crossref_primary_10_1103_PhysRevD_92_075006
crossref_primary_10_1103_PhysRevD_96_115009
crossref_primary_10_1007_JHEP11_2024_017
crossref_primary_10_1103_PhysRevD_96_115008
crossref_primary_10_21468_SciPostPhys_15_2_053
crossref_primary_10_1007_JHEP05_2015_119
crossref_primary_10_1103_PhysRevD_106_115034
crossref_primary_10_1103_PhysRevD_109_095014
crossref_primary_10_1103_PhysRevD_92_083004
crossref_primary_10_1103_PhysRevD_88_017302
crossref_primary_10_1007_JHEP04_2012_095
crossref_primary_10_1016_j_physletb_2014_02_023
crossref_primary_10_1016_j_nuclphysb_2015_03_006
crossref_primary_10_3390_particles8010031
crossref_primary_10_1007_JHEP05_2015_142
crossref_primary_10_1103_PhysRevD_90_065020
crossref_primary_10_1007_JHEP04_2012_037
crossref_primary_10_1007_JHEP10_2016_015
crossref_primary_10_1007_JHEP04_2012_043
crossref_primary_10_1016_j_cpc_2012_11_004
crossref_primary_10_1007_JHEP12_2014_148
crossref_primary_10_1007_JHEP12_2014_140
crossref_primary_10_1103_PhysRevD_105_015020
crossref_primary_10_1007_JHEP07_2014_079
crossref_primary_10_1007_JHEP11_2011_031
crossref_primary_10_1007_JHEP10_2016_006
crossref_primary_10_1007_JHEP01_2012_092
crossref_primary_10_1007_JHEP03_2016_207
crossref_primary_10_1007_JHEP04_2012_032
crossref_primary_10_1007_JHEP07_2020_191
crossref_primary_10_1103_PhysRevD_92_095009
crossref_primary_10_1103_PhysRevD_85_125019
crossref_primary_10_1140_epjp_s13360_024_05067_5
crossref_primary_10_21468_SciPostPhysCodeb_13
crossref_primary_10_1016_j_physletb_2012_12_008
crossref_primary_10_1007_JHEP07_2012_016
crossref_primary_10_1088_1674_1137_43_12_123101
crossref_primary_10_1007_JHEP03_2019_076
crossref_primary_10_1007_s41781_022_00087_1
crossref_primary_10_1007_JHEP12_2014_168
crossref_primary_10_1103_PhysRevD_93_031701
crossref_primary_10_1140_epjc_s10052_015_3514_6
crossref_primary_10_1007_JHEP08_2015_156
crossref_primary_10_1142_S0217751X21500123
crossref_primary_10_1007_JHEP02_2015_177
crossref_primary_10_1007_JHEP02_2013_104
crossref_primary_10_1140_epjc_s10052_014_2714_9
crossref_primary_10_1140_epjc_s10052_015_3491_9
crossref_primary_10_1007_JHEP04_2012_049
crossref_primary_10_1103_PhysRevD_87_094023
crossref_primary_10_1142_S0217732320500650
crossref_primary_10_1007_JHEP02_2013_100
crossref_primary_10_1007_JHEP11_2019_147
crossref_primary_10_1103_PhysRevD_87_094013
crossref_primary_10_1103_PhysRevD_92_095021
crossref_primary_10_1103_PhysRevD_98_015029
crossref_primary_10_1103_PhysRevD_92_095022
crossref_primary_10_1103_PhysRevD_95_055028
crossref_primary_10_1103_PhysRevD_95_055026
crossref_primary_10_1103_PhysRevD_88_052012
crossref_primary_10_1103_PhysRevD_88_057701
crossref_primary_10_1103_PhysRevD_89_095021
crossref_primary_10_1103_PhysRevD_93_035018
crossref_primary_10_1103_PhysRevD_86_034020
crossref_primary_10_1103_PhysRevD_102_055003
crossref_primary_10_1016_j_physletb_2014_12_021
crossref_primary_10_1103_PhysRevD_90_055019
crossref_primary_10_1007_JHEP07_2024_209
crossref_primary_10_1007_JHEP01_2015_125
crossref_primary_10_1103_PhysRevD_90_055010
crossref_primary_10_1007_JHEP09_2021_154
crossref_primary_10_1103_PhysRevD_90_055015
crossref_primary_10_1103_PhysRevD_92_073008
crossref_primary_10_1103_PhysRevD_89_014028
crossref_primary_10_1140_epjc_s10052_015_3511_9
crossref_primary_10_1007_JHEP10_2011_063
crossref_primary_10_1140_epjc_s10052_012_2049_3
crossref_primary_10_1103_PhysRevD_93_035024
crossref_primary_10_1007_JHEP12_2014_080
crossref_primary_10_1007_JHEP11_2011_117
crossref_primary_10_1103_PhysRevD_89_095011
crossref_primary_10_1103_PhysRevD_89_095012
crossref_primary_10_1103_PhysRevD_108_015002
crossref_primary_10_21468_SciPostPhys_6_2_020
crossref_primary_10_1140_epjc_s10052_017_4964_9
crossref_primary_10_1007_JHEP08_2012_059
crossref_primary_10_1088_0954_3899_42_10_103101
crossref_primary_10_1103_PhysRevD_90_055021
crossref_primary_10_1103_PhysRevD_90_055024
crossref_primary_10_1103_PhysRevD_89_095009
crossref_primary_10_1103_PhysRevD_86_034008
crossref_primary_10_1007_JHEP11_2018_009
crossref_primary_10_1103_PhysRevD_90_055027
crossref_primary_10_1103_PhysRevD_89_095002
crossref_primary_10_1142_S0217751X24500799
crossref_primary_10_1142_S0217751X22501147
crossref_primary_10_1007_JHEP04_2014_188
crossref_primary_10_1007_JHEP04_2021_144
crossref_primary_10_1103_PhysRevLett_116_091801
crossref_primary_10_1016_j_physletb_2014_12_003
crossref_primary_10_1103_PhysRevLett_109_111806
crossref_primary_10_1007_JHEP04_2014_191
crossref_primary_10_1103_PhysRevD_96_015035
crossref_primary_10_1007_JHEP05_2024_094
crossref_primary_10_1103_PhysRevLett_111_081802
crossref_primary_10_46810_tdfd_1019096
crossref_primary_10_1007_JHEP05_2022_040
crossref_primary_10_1007_s00180_017_0731_5
crossref_primary_10_1103_PhysRevD_85_015013
crossref_primary_10_1103_PhysRevD_92_016005
crossref_primary_10_1007_JHEP05_2015_078
crossref_primary_10_1103_PhysRevLett_114_061801
crossref_primary_10_1007_JHEP07_2018_032
crossref_primary_10_1142_S0217732318300070
crossref_primary_10_1007_JHEP05_2013_005
crossref_primary_10_1140_epjc_s10052_024_13176_9
crossref_primary_10_1103_PhysRevD_108_015022
crossref_primary_10_1007_JHEP12_2012_015
crossref_primary_10_1007_JHEP12_2012_017
crossref_primary_10_1051_epjconf_201612005003
crossref_primary_10_1051_epjconf_201612005005
crossref_primary_10_1093_ptep_ptw164
crossref_primary_10_1016_j_cpc_2013_05_008
crossref_primary_10_1103_PhysRevD_94_034001
crossref_primary_10_1007_JHEP10_2017_142
crossref_primary_10_1007_JHEP12_2014_097
crossref_primary_10_1103_PhysRevD_96_015021
crossref_primary_10_1103_PhysRevD_96_072004
crossref_primary_10_1007_JHEP07_2024_253
crossref_primary_10_1007_JHEP11_2013_171
crossref_primary_10_1103_PhysRevD_88_011901
crossref_primary_10_1007_JHEP05_2013_012
crossref_primary_10_1016_j_physletb_2014_03_026
crossref_primary_10_1007_JHEP12_2012_029
crossref_primary_10_1007_JHEP08_2012_014
crossref_primary_10_1016_j_dark_2013_06_001
crossref_primary_10_1007_JHEP05_2013_019
crossref_primary_10_1007_JHEP05_2024_072
crossref_primary_10_1007_JHEP10_2024_128
crossref_primary_10_1103_PhysRevD_88_015031
crossref_primary_10_1103_PhysRevD_93_092009
crossref_primary_10_1103_PhysRevD_102_113008
crossref_primary_10_1103_PhysRevD_87_053015
crossref_primary_10_1103_PhysRevD_110_075001
crossref_primary_10_1007_JHEP12_2012_035
crossref_primary_10_1007_JHEP05_2013_022
crossref_primary_10_1103_PhysRevD_102_113002
crossref_primary_10_1007_JHEP08_2014_093
crossref_primary_10_1007_JHEP08_2014_095
crossref_primary_10_1142_S0217751X20410110
crossref_primary_10_1088_1742_6596_2105_1_012014
crossref_primary_10_1103_PhysRevD_88_015022
crossref_primary_10_1007_JHEP06_2015_152
crossref_primary_10_1103_PhysRevD_88_015023
crossref_primary_10_1140_epjc_s10052_014_3103_0
crossref_primary_10_1103_PhysRevD_88_015021
crossref_primary_10_1103_PhysRevD_94_054018
crossref_primary_10_1088_1674_1137_ac538c
crossref_primary_10_1103_PhysRevLett_110_172002
crossref_primary_10_1088_1742_6596_2105_1_012011
crossref_primary_10_1007_s41781_024_00122_3
crossref_primary_10_1007_JHEP11_2018_055
crossref_primary_10_1016_j_physletb_2016_06_014
crossref_primary_10_1140_epjc_s10052_012_1990_5
crossref_primary_10_1007_JHEP08_2014_079
crossref_primary_10_1140_epjc_s10052_013_2568_6
crossref_primary_10_1007_JHEP05_2024_051
crossref_primary_10_1140_epjp_s13360_024_05353_2
crossref_primary_10_1088_1674_1137_ada0b4
crossref_primary_10_1007_JHEP04_2019_049
crossref_primary_10_1051_epjconf_201921406028
crossref_primary_10_1103_PhysRevD_93_035003
crossref_primary_10_1007_JHEP03_2012_092
crossref_primary_10_1007_JHEP10_2019_168
crossref_primary_10_1007_JHEP11_2013_167
crossref_primary_10_1103_PhysRevD_110_075029
crossref_primary_10_1007_JHEP12_2012_055
crossref_primary_10_1016_j_physletb_2014_03_010
crossref_primary_10_1007_JHEP12_2012_058
crossref_primary_10_1007_JHEP04_2021_199
crossref_primary_10_1007_JHEP08_2012_003
crossref_primary_10_1007_JHEP08_2014_073
crossref_primary_10_1103_PhysRevD_110_075020
crossref_primary_10_1007_JHEP06_2015_122
crossref_primary_10_1007_JHEP08_2014_078
crossref_primary_10_1007_JHEP08_2014_069
crossref_primary_10_1007_JHEP02_2018_083
crossref_primary_10_1007_JHEP02_2016_018
crossref_primary_10_1007_JHEP12_2012_061
crossref_primary_10_1103_PhysRevD_89_014016
crossref_primary_10_1103_PhysRevLett_112_101802
crossref_primary_10_1103_PhysRevD_93_055020
crossref_primary_10_1103_PhysRevD_89_075017
crossref_primary_10_1103_PhysRevD_98_053006
crossref_primary_10_1103_PhysRevD_108_035003
crossref_primary_10_1103_PhysRevLett_114_041802
crossref_primary_10_1155_2015_136093
crossref_primary_10_1140_epjc_s10052_017_5067_3
crossref_primary_10_1103_PhysRevD_98_115013
crossref_primary_10_1007_JHEP04_2014_126
crossref_primary_10_1103_PhysRevD_105_055014
crossref_primary_10_1103_PhysRevD_107_073004
crossref_primary_10_1007_JHEP06_2013_108
crossref_primary_10_1007_JHEP10_2020_040
crossref_primary_10_1007_JHEP05_2013_065
crossref_primary_10_1103_PhysRevD_107_073007
crossref_primary_10_1007_JHEP10_2013_077
crossref_primary_10_1088_0954_3899_42_7_075003
crossref_primary_10_1103_PhysRevD_89_075007
crossref_primary_10_1103_PhysRevD_95_073006
crossref_primary_10_1007_JHEP02_2023_011
crossref_primary_10_1007_JHEP10_2013_072
crossref_primary_10_1103_PhysRevD_92_012004
crossref_primary_10_1142_S2010194514602816
crossref_primary_10_1007_JHEP12_2012_077
crossref_primary_10_1103_PhysRevD_85_035002
crossref_primary_10_1016_j_physletb_2014_10_027
crossref_primary_10_1007_JHEP04_2014_140
crossref_primary_10_1007_JHEP10_2013_068
crossref_primary_10_1016_j_cpc_2014_02_018
crossref_primary_10_1007_JHEP05_2024_043
crossref_primary_10_1016_j_physletb_2012_11_063
crossref_primary_10_1007_JHEP10_2019_154
crossref_primary_10_1103_PhysRevD_96_035033
crossref_primary_10_1007_JHEP10_2013_062
crossref_primary_10_1140_epjc_s10052_014_3232_5
crossref_primary_10_1103_PhysRevD_93_055044
crossref_primary_10_1155_2017_1572053
crossref_primary_10_1103_PhysRevD_93_118702
crossref_primary_10_1103_PhysRevD_93_118701
crossref_primary_10_1103_PhysRevD_98_115038
crossref_primary_10_1007_JHEP04_2014_100
crossref_primary_10_1007_JHEP12_2023_018
crossref_primary_10_1103_PhysRevD_100_115018
crossref_primary_10_1103_PhysRevD_108_035027
crossref_primary_10_1016_j_physletb_2014_07_053
crossref_primary_10_1103_PhysRevD_93_055038
crossref_primary_10_1007_JHEP11_2015_191
crossref_primary_10_1088_1742_6596_455_1_012029
crossref_primary_10_1103_PhysRevD_89_075004
crossref_primary_10_1007_JHEP04_2014_117
crossref_primary_10_1140_epjc_s10052_014_3036_7
crossref_primary_10_1007_JHEP10_2019_139
crossref_primary_10_4236_ojm_2014_44006
crossref_primary_10_1007_JHEP02_2025_081
crossref_primary_10_1007_JHEP06_2015_168
crossref_primary_10_1007_JHEP04_2014_110
crossref_primary_10_3390_universe8050286
crossref_primary_10_1088_2632_2153_ac3dde
crossref_primary_10_1103_PhysRevD_105_055024
crossref_primary_10_1007_JHEP05_2013_090
crossref_primary_10_1103_PhysRevD_96_035016
crossref_primary_10_1088_1742_6596_455_1_012026
crossref_primary_10_1016_j_physletb_2014_07_041
crossref_primary_10_1103_PhysRevD_93_055026
crossref_primary_10_1140_epjc_s10052_012_1887_3
crossref_primary_10_1103_PhysRevD_108_035043
crossref_primary_10_1007_JHEP03_2014_032
crossref_primary_10_1103_PhysRevD_94_074020
crossref_primary_10_1007_JHEP07_2016_016
crossref_primary_10_1103_PhysRevD_107_016002
crossref_primary_10_1103_PhysRevLett_114_111801
crossref_primary_10_1155_2016_3279568
crossref_primary_10_1140_epjc_s10052_014_2981_5
crossref_primary_10_1140_epjp_s13360_020_00344_5
crossref_primary_10_1016_j_physrep_2024_11_005
crossref_primary_10_1103_PhysRevD_87_033007
crossref_primary_10_1103_PhysRevD_87_115026
crossref_primary_10_1007_JHEP07_2016_027
crossref_primary_10_1140_epjc_s10052_012_2232_6
crossref_primary_10_1007_JHEP01_2020_102
crossref_primary_10_1007_JHEP11_2013_108
crossref_primary_10_1103_PhysRevD_90_063512
crossref_primary_10_1007_JHEP01_2022_139
crossref_primary_10_1007_JHEP04_2016_169
crossref_primary_10_1103_PhysRevD_88_076009
crossref_primary_10_1103_PhysRevD_110_055006
crossref_primary_10_1007_s40042_024_01037_3
crossref_primary_10_1103_PhysRevD_87_115017
crossref_primary_10_1007_JHEP03_2014_054
crossref_primary_10_1103_PhysRevD_87_115016
crossref_primary_10_1007_JHEP09_2014_175
crossref_primary_10_1103_PhysRevD_88_076003
crossref_primary_10_1007_JHEP08_2012_078
crossref_primary_10_1016_j_physletb_2014_12_044
crossref_primary_10_1007_JHEP08_2012_073
crossref_primary_10_1103_PhysRevLett_113_152001
crossref_primary_10_1007_JHEP02_2025_049
crossref_primary_10_1103_PhysRevD_90_072011
crossref_primary_10_1007_JHEP01_2015_144
crossref_primary_10_1103_PhysRevD_87_033001
crossref_primary_10_1007_JHEP03_2014_060
crossref_primary_10_1007_JHEP10_2013_093
crossref_primary_10_1007_JHEP05_2019_132
crossref_primary_10_1007_JHEP09_2021_175
crossref_primary_10_1103_PhysRevD_89_095031
crossref_primary_10_1103_PhysRevD_90_014046
crossref_primary_10_1140_epjp_s13360_020_00499_1
crossref_primary_10_1007_JHEP11_2015_150
crossref_primary_10_1103_PhysRevD_87_115004
crossref_primary_10_1007_JHEP08_2012_083
crossref_primary_10_1007_JHEP09_2014_161
crossref_primary_10_1103_PhysRevD_89_095033
crossref_primary_10_1103_PhysRevD_98_115006
crossref_primary_10_1007_JHEP11_2015_158
crossref_primary_10_1142_S021773232450113X
crossref_primary_10_1103_PhysRevD_92_044036
crossref_primary_10_1103_PhysRevD_90_072001
crossref_primary_10_1007_JHEP10_2011_015
crossref_primary_10_1103_PhysRevD_89_095027
crossref_primary_10_1103_PhysRevD_94_112005
crossref_primary_10_1140_epjc_s10052_013_2707_0
crossref_primary_10_1103_PhysRevD_110_055026
crossref_primary_10_1103_PhysRevD_86_034029
crossref_primary_10_1103_PhysRevD_88_114026
crossref_primary_10_1007_JHEP02_2014_060
crossref_primary_10_1007_JHEP06_2013_072
crossref_primary_10_1007_JHEP06_2013_073
crossref_primary_10_1140_epjc_s10052_016_4573_z
crossref_primary_10_1103_PhysRevD_110_035022
crossref_primary_10_1007_JHEP10_2013_114
crossref_primary_10_1016_j_physletb_2015_02_011
crossref_primary_10_1007_JHEP02_2014_053
crossref_primary_10_1007_JHEP05_2019_072
crossref_primary_10_1088_1742_6596_1690_1_012157
crossref_primary_10_1140_epjc_s10052_024_12401_9
crossref_primary_10_1007_JHEP02_2014_055
crossref_primary_10_1103_PhysRevD_88_035008
crossref_primary_10_1007_JHEP07_2013_116
crossref_primary_10_1007_JHEP02_2014_057
crossref_primary_10_1007_JHEP06_2019_120
crossref_primary_10_1140_epjc_s10052_016_3914_2
crossref_primary_10_1140_epjc_s10052_016_4048_2
crossref_primary_10_1016_j_cpc_2012_01_022
crossref_primary_10_1007_JHEP06_2013_081
crossref_primary_10_1103_PhysRevD_84_115007
crossref_primary_10_1103_PhysRevD_108_055024
crossref_primary_10_1140_epjp_i2018_12290_8
crossref_primary_10_1140_epjc_s10052_013_2386_x
crossref_primary_10_1016_j_cpc_2014_04_012
crossref_primary_10_1007_JHEP02_2014_048
crossref_primary_10_1007_JHEP10_2013_105
crossref_primary_10_1103_PhysRevD_92_023531
crossref_primary_10_1007_JHEP02_2014_049
crossref_primary_10_1103_PhysRevD_108_055027
crossref_primary_10_1103_PhysRevD_88_035011
crossref_primary_10_1016_j_physletb_2015_02_020
crossref_primary_10_1103_PhysRevD_92_032008
crossref_primary_10_1103_PhysRevD_88_035016
crossref_primary_10_1088_1742_6596_1690_1_012168
crossref_primary_10_1103_PhysRevD_86_074029
crossref_primary_10_1016_j_nuclphysbps_2012_03_018
crossref_primary_10_1103_PhysRevD_93_075037
crossref_primary_10_1007_JHEP07_2013_129
crossref_primary_10_1103_PhysRevD_85_055020
crossref_primary_10_1103_PhysRevD_88_114005
crossref_primary_10_1007_JHEP07_2013_144
crossref_primary_10_1103_PhysRevD_88_114002
crossref_primary_10_1088_0954_3899_41_7_075011
crossref_primary_10_1016_j_nuclphysb_2013_06_001
crossref_primary_10_1140_epjc_s10052_012_2063_5
crossref_primary_10_1103_PhysRevD_95_012003
crossref_primary_10_1007_JHEP02_2014_077
crossref_primary_10_1103_PhysRevD_99_035001
crossref_primary_10_1007_JHEP03_2014_141
crossref_primary_10_1103_PhysRevD_95_012009
crossref_primary_10_1088_0954_3899_41_7_075009
crossref_primary_10_1007_JHEP08_2023_173
crossref_primary_10_1007_JHEP02_2022_165
crossref_primary_10_1007_JHEP04_2017_022
crossref_primary_10_1103_PhysRevD_93_075019
crossref_primary_10_1134_S106377881601021X
crossref_primary_10_1007_JHEP07_2013_148
crossref_primary_10_1007_JHEP12_2024_225
crossref_primary_10_1007_JHEP01_2013_181
crossref_primary_10_1103_PhysRevD_95_012011
crossref_primary_10_1007_JHEP01_2013_182
crossref_primary_10_1016_j_physletb_2012_06_078
crossref_primary_10_1007_JHEP01_2013_164
crossref_primary_10_1007_JHEP07_2021_044
crossref_primary_10_1007_JHEP07_2015_174
crossref_primary_10_1103_PhysRevD_101_065019
crossref_primary_10_1051_epjconf_20136020031
crossref_primary_10_1140_epjc_s10052_016_4431_z
crossref_primary_10_1007_JHEP03_2016_157
crossref_primary_10_1007_JHEP04_2017_018
crossref_primary_10_1016_j_physletb_2014_09_044
crossref_primary_10_1103_PhysRevLett_115_211801
crossref_primary_10_1007_JHEP01_2013_154
crossref_primary_10_1103_PhysRevD_86_054004
crossref_primary_10_1088_1361_6471_ab4574
crossref_primary_10_1140_epjc_s10052_019_6837_x
crossref_primary_10_1016_j_cpc_2013_10_020
crossref_primary_10_1140_epjc_s10052_015_3376_y
crossref_primary_10_1007_JHEP10_2015_178
crossref_primary_10_1016_j_physletb_2019_134832
crossref_primary_10_1103_PhysRevLett_123_141801
crossref_primary_10_1088_1475_7516_2014_09_022
crossref_primary_10_1103_PhysRevD_89_054011
crossref_primary_10_1140_epjp_i2019_12614_2
crossref_primary_10_1007_JHEP01_2013_148
crossref_primary_10_1007_JHEP01_2020_057
crossref_primary_10_1007_JHEP11_2022_112
crossref_primary_10_1103_PhysRevD_88_055021
crossref_primary_10_1007_JHEP01_2013_149
crossref_primary_10_1016_j_physletb_2014_10_032
crossref_primary_10_1007_JHEP10_2020_018
crossref_primary_10_1103_PhysRevD_101_015018
crossref_primary_10_1016_j_cpc_2020_107465
crossref_primary_10_1103_PhysRevD_86_054022
crossref_primary_10_1007_JHEP10_2022_095
crossref_primary_10_1103_PhysRevD_85_081301
crossref_primary_10_1103_PhysRevD_89_054002
crossref_primary_10_1142_S0217751X22501974
crossref_primary_10_3390_sym13060991
crossref_primary_10_1007_JHEP08_2023_135
crossref_primary_10_1088_0031_8949_90_9_098001
crossref_primary_10_1007_JHEP12_2016_046
crossref_primary_10_1103_PhysRevD_91_095003
crossref_primary_10_1103_PhysRevD_91_095002
crossref_primary_10_1103_PhysRevD_91_095007
crossref_primary_10_1103_PhysRevD_110_092016
crossref_primary_10_1007_JHEP10_2013_122
crossref_primary_10_1103_PhysRevD_91_095009
crossref_primary_10_1007_JHEP03_2025_046
crossref_primary_10_1103_PhysRevD_96_075032
crossref_primary_10_1103_PhysRevD_96_075035
crossref_primary_10_1103_PhysRevD_103_095027
crossref_primary_10_1007_s11433_022_1927_9
crossref_primary_10_3390_universe10060243
crossref_primary_10_1038_s41467_021_22616_z
crossref_primary_10_1103_PhysRevD_85_075011
crossref_primary_10_1007_JHEP08_2014_067
crossref_primary_10_1103_PhysRevD_110_015017
crossref_primary_10_1007_JHEP02_2016_060
crossref_primary_10_1103_PhysRevD_108_075027
crossref_primary_10_1103_PhysRevD_85_075004
crossref_primary_10_1142_S0217732316501741
crossref_primary_10_1103_PhysRevD_99_015011
crossref_primary_10_1103_PhysRevD_99_055034
crossref_primary_10_1155_2013_690254
crossref_primary_10_1103_PhysRevD_99_055036
crossref_primary_10_1103_PhysRevD_105_095031
crossref_primary_10_1140_epjc_s10052_023_11784_5
crossref_primary_10_1103_PhysRevD_105_095036
crossref_primary_10_1103_PhysRevD_85_075020
crossref_primary_10_1007_JHEP08_2014_047
crossref_primary_10_1007_JHEP08_2014_046
crossref_primary_10_1103_PhysRevD_85_075018
crossref_primary_10_1007_JHEP03_2016_125
crossref_primary_10_1088_1742_6596_447_1_012033
crossref_primary_10_1103_PhysRevLett_111_061801
crossref_primary_10_1140_epjc_s10052_021_09443_8
crossref_primary_10_1007_JHEP08_2014_042
crossref_primary_10_1007_JHEP06_2022_009
crossref_primary_10_1007_JHEP08_2014_035
crossref_primary_10_1007_s11467_013_0298_8
crossref_primary_10_1134_S1063778813040066
crossref_primary_10_1103_PhysRevD_88_015012
crossref_primary_10_1103_PhysRevD_93_095011
crossref_primary_10_1103_PhysRevD_105_095017
crossref_primary_10_1103_PhysRevD_86_113005
crossref_primary_10_1103_PhysRevD_97_113004
crossref_primary_10_1140_epjc_s10052_013_2610_8
crossref_primary_10_1007_JHEP07_2021_098
crossref_primary_10_1007_JHEP08_2014_030
crossref_primary_10_1007_JHEP09_2012_092
crossref_primary_10_1140_epjc_s10052_015_3417_6
crossref_primary_10_1103_PhysRevD_86_094040
crossref_primary_10_1103_PhysRevD_90_076004
crossref_primary_10_1016_j_dark_2015_09_001
crossref_primary_10_1103_PhysRevD_87_093005
crossref_primary_10_1103_PhysRevD_93_095005
crossref_primary_10_1103_PhysRevD_99_015006
crossref_primary_10_1007_JHEP03_2016_145
crossref_primary_10_1103_PhysRevD_90_034007
crossref_primary_10_1103_PhysRevD_88_015006
crossref_primary_10_1007_JHEP12_2016_088
crossref_primary_10_1103_PhysRevLett_119_141804
crossref_primary_10_1007_JHEP07_2013_160
crossref_primary_10_1007_JHEP01_2019_227
crossref_primary_10_1103_PhysRevD_104_015034
crossref_primary_10_1007_JHEP08_2014_022
crossref_primary_10_1016_j_physletb_2015_04_062
crossref_primary_10_1007_JHEP03_2018_167
crossref_primary_10_1103_PhysRevD_88_063510
crossref_primary_10_1007_JHEP12_2014_022
crossref_primary_10_1103_PhysRevLett_113_211802
crossref_primary_10_1007_JHEP02_2014_010
crossref_primary_10_1051_epjconf_20136012013
crossref_primary_10_1088_1742_6596_645_1_012017
crossref_primary_10_1007_JHEP02_2014_013
crossref_primary_10_1140_epjc_s10052_020_8424_6
crossref_primary_10_1140_epjc_s10052_015_3622_3
crossref_primary_10_1007_JHEP08_2016_037
crossref_primary_10_1103_PhysRevLett_114_151802
crossref_primary_10_1140_epjc_s10052_015_3439_0
crossref_primary_10_1007_JHEP02_2014_006
crossref_primary_10_1142_S0217751X15460082
crossref_primary_10_1088_1361_6471_aa9873
crossref_primary_10_1007_JHEP12_2014_037
crossref_primary_10_1140_epjc_s10052_021_08975_3
crossref_primary_10_1140_epjp_s13360_024_05910_9
crossref_primary_10_1007_JHEP12_2014_039
crossref_primary_10_1140_epjc_s10052_022_10855_3
crossref_primary_10_1140_epjc_s10052_021_08853_y
crossref_primary_10_1007_JHEP06_2017_106
crossref_primary_10_1103_PhysRevD_94_013005
crossref_primary_10_1103_PhysRevD_93_014018
crossref_primary_10_1103_PhysRevD_84_115018
crossref_primary_10_1103_PhysRevD_107_115026
crossref_primary_10_1016_j_nuclphysb_2013_08_010
crossref_primary_10_1007_JHEP09_2018_148
crossref_primary_10_1103_PhysRevC_88_025203
crossref_primary_10_1103_PhysRevD_84_115009
crossref_primary_10_1103_PhysRevD_88_035021
crossref_primary_10_1007_JHEP07_2013_179
crossref_primary_10_1103_PhysRevD_88_035026
crossref_primary_10_1007_JHEP07_2013_178
crossref_primary_10_1140_epjc_s10052_018_5752_x
crossref_primary_10_1103_PhysRevD_88_035024
crossref_primary_10_1103_PhysRevD_93_014020
crossref_primary_10_1103_PhysRevD_91_075007
crossref_primary_10_1007_JHEP03_2022_203
crossref_primary_10_1142_S0217751X17450038
crossref_primary_10_1016_j_nuclphysbps_2015_03_024
crossref_primary_10_1103_PhysRevD_86_074010
crossref_primary_10_1155_2012_853706
crossref_primary_10_1088_1361_6471_ab00cb
crossref_primary_10_1007_JHEP03_2023_004
crossref_primary_10_1103_PhysRevD_91_053009
crossref_primary_10_1140_epjc_s10052_014_3129_3
crossref_primary_10_1140_epjc_s10052_024_12756_z
crossref_primary_10_1103_PhysRevD_85_091501
crossref_primary_10_1103_PhysRevD_86_074003
crossref_primary_10_1007_JHEP03_2018_172
crossref_primary_10_1016_j_cpc_2015_01_024
crossref_primary_10_1103_PhysRevD_86_074004
crossref_primary_10_1103_PhysRevD_89_034002
crossref_primary_10_1007_JHEP02_2014_024
crossref_primary_10_1007_JHEP02_2014_025
crossref_primary_10_1103_PhysRevD_88_075012
crossref_primary_10_1007_JHEP01_2024_051
crossref_primary_10_1103_PhysRevD_88_075015
crossref_primary_10_1103_PhysRevLett_113_201803
crossref_primary_10_1103_PhysRevD_108_095025
crossref_primary_10_1088_1475_7516_2014_06_030
crossref_primary_10_1016_j_cpc_2014_08_024
crossref_primary_10_1007_JHEP02_2025_149
crossref_primary_10_3390_info16040258
crossref_primary_10_1007_JHEP11_2012_043
crossref_primary_10_1103_PhysRevD_100_014024
crossref_primary_10_1103_PhysRevD_85_014025
crossref_primary_10_1103_PhysRevD_97_035026
crossref_primary_10_1007_JHEP01_2017_094
crossref_primary_10_1103_PhysRevD_85_014022
crossref_primary_10_1007_JHEP04_2013_035
crossref_primary_10_1007_JHEP08_2020_170
crossref_primary_10_1007_JHEP04_2013_031
crossref_primary_10_1103_PhysRevD_88_075004
crossref_primary_10_1007_JHEP05_2014_150
crossref_primary_10_1007_JHEP09_2014_060
crossref_primary_10_1140_epjc_s10052_013_2325_x
crossref_primary_10_1103_PhysRevD_85_095001
crossref_primary_10_1103_PhysRevLett_110_141802
crossref_primary_10_1140_epjc_s10052_023_11656_y
crossref_primary_10_1103_PhysRevD_85_014031
crossref_primary_10_1016_j_physletb_2013_02_021
crossref_primary_10_1103_PhysRevD_90_032008
crossref_primary_10_1103_PhysRevD_85_014030
crossref_primary_10_1142_S0217751X15460045
crossref_primary_10_1007_JHEP04_2013_028
crossref_primary_10_1103_PhysRevD_90_032004
crossref_primary_10_1103_PhysRevD_87_032001
crossref_primary_10_1103_PhysRevD_97_035012
crossref_primary_10_1007_JHEP11_2012_039
crossref_primary_10_1103_PhysRevD_89_051302
crossref_primary_10_1103_PhysRevD_104_015009
crossref_primary_10_1140_epjc_s10052_023_12093_7
crossref_primary_10_1007_JHEP04_2013_063
crossref_primary_10_1088_1674_1137_39_11_113101
crossref_primary_10_1142_S0217732318501742
crossref_primary_10_1016_j_cpc_2015_02_020
crossref_primary_10_1103_PhysRevLett_124_041802
crossref_primary_10_1103_PhysRevD_101_115012
crossref_primary_10_1007_JHEP08_2012_151
crossref_primary_10_1007_JHEP09_2022_059
crossref_primary_10_1007_JHEP06_2016_019
crossref_primary_10_1142_S0217751X15460070
crossref_primary_10_1007_JHEP11_2012_067
crossref_primary_10_1103_PhysRevD_104_015017
crossref_primary_10_1103_PhysRevD_104_015016
crossref_primary_10_1140_epjc_s10052_017_5160_7
crossref_primary_10_1007_JHEP12_2020_115
crossref_primary_10_1007_JHEP03_2018_022
crossref_primary_10_1016_j_physletb_2015_07_053
crossref_primary_10_1007_JHEP04_2019_129
crossref_primary_10_1007_JHEP08_2012_160
crossref_primary_10_1007_JHEP09_2014_087
crossref_primary_10_1140_epjc_s10052_021_09577_9
crossref_primary_10_1007_JHEP11_2018_144
crossref_primary_10_1007_s40042_021_00095_1
crossref_primary_10_1103_PhysRevD_101_115027
crossref_primary_10_1103_PhysRevD_89_094017
crossref_primary_10_1007_JHEP08_2020_141
crossref_primary_10_1016_j_physletb_2013_02_003
crossref_primary_10_1016_j_physletb_2015_07_065
crossref_primary_10_1140_epjc_s10052_014_2973_5
crossref_primary_10_1140_epjc_s10052_015_3338_4
crossref_primary_10_1007_JHEP04_2013_043
crossref_primary_10_1088_1475_7516_2023_02_002
crossref_primary_10_1007_JHEP06_2016_080
crossref_primary_10_1155_2018_9785318
crossref_primary_10_1007_JHEP05_2023_142
crossref_primary_10_1103_PhysRevD_86_033010
crossref_primary_10_1103_PhysRevD_86_113010
crossref_primary_10_1007_JHEP11_2012_003
crossref_primary_10_1016_j_physletb_2013_02_052
crossref_primary_10_1016_j_physrep_2016_07_004
crossref_primary_10_1103_PhysRevD_86_094006
crossref_primary_10_1103_PhysRevD_89_094005
crossref_primary_10_1103_PhysRevLett_110_022003
crossref_primary_10_1007_JHEP04_2015_088
crossref_primary_10_1007_JHEP02_2016_145
crossref_primary_10_1051_epjconf_202431501025
crossref_primary_10_1007_JHEP09_2012_035
crossref_primary_10_1088_0954_3899_42_8_085001
crossref_primary_10_1007_JHEP11_2018_161
crossref_primary_10_1103_PhysRevD_104_035033
crossref_primary_10_1140_epjc_s10052_015_3774_1
crossref_primary_10_1140_epjc_s10052_024_12591_2
crossref_primary_10_1007_JHEP12_2022_132
crossref_primary_10_1007_JHEP10_2019_073
crossref_primary_10_1103_PhysRevD_97_072008
crossref_primary_10_1051_epjconf_201921407027
crossref_primary_10_1007_JHEP09_2012_027
crossref_primary_10_1016_j_physletb_2012_09_028
crossref_primary_10_1007_JHEP07_2019_170
crossref_primary_10_1007_s12043_015_1170_x
crossref_primary_10_1007_JHEP08_2019_098
crossref_primary_10_1007_JHEP12_2022_166
crossref_primary_10_1007_JHEP02_2016_127
crossref_primary_10_1140_epjc_s10052_021_09204_7
crossref_primary_10_1103_PhysRevLett_112_081801
crossref_primary_10_1103_PhysRevD_93_012001
crossref_primary_10_1140_epjc_s10052_019_7436_6
crossref_primary_10_21468_SciPostPhysCore_5_4_050
crossref_primary_10_1088_1361_6471_ad0c62
crossref_primary_10_1103_PhysRevD_93_012003
crossref_primary_10_1103_PhysRevLett_133_231901
crossref_primary_10_1088_1475_7516_2014_06_060
crossref_primary_10_1146_annurev_nucl_102711_094913
crossref_primary_10_1103_PhysRevD_85_095023
crossref_primary_10_1007_JHEP04_2013_004
crossref_primary_10_1140_epjc_s10052_023_11291_7
crossref_primary_10_1007_JHEP04_2015_079
crossref_primary_10_1007_JHEP06_2016_048
crossref_primary_10_1016_j_physletb_2012_09_033
crossref_primary_10_1140_epjc_s10052_012_2202_z
crossref_primary_10_1142_S0217751X15460021
crossref_primary_10_3390_sym15010027
crossref_primary_10_1016_j_physletb_2013_04_027
crossref_primary_10_1016_j_physletb_2013_04_028
crossref_primary_10_1088_1748_0221_17_12_P12002
crossref_primary_10_1016_j_physletb_2013_04_025
crossref_primary_10_1007_JHEP01_2022_044
crossref_primary_10_1007_JHEP11_2018_198
crossref_primary_10_1007_JHEP03_2022_195
crossref_primary_10_1103_PhysRevD_85_034021
crossref_primary_10_1007_JHEP11_2018_195
crossref_primary_10_1140_epjc_s10052_016_4361_9
crossref_primary_10_1103_PhysRevD_104_035008
crossref_primary_10_1007_JHEP03_2013_148
crossref_primary_10_1103_PhysRevD_88_095018
crossref_primary_10_1134_S1547477123050424
crossref_primary_10_1103_PhysRevD_104_035004
crossref_primary_10_1007_JHEP11_2014_059
crossref_primary_10_1007_JHEP02_2023_135
crossref_primary_10_21468_SciPostPhys_9_2_026
crossref_primary_10_1103_PhysRevD_97_055035
crossref_primary_10_1016_j_physletb_2013_04_017
crossref_primary_10_1007_JHEP08_2024_212
crossref_primary_10_1140_epjc_s10052_012_1899_z
crossref_primary_10_1103_PhysRevC_94_024913
crossref_primary_10_1140_epjc_s10052_015_3587_2
crossref_primary_10_1140_epjc_s10052_022_11087_1
crossref_primary_10_1007_JHEP03_2013_139
crossref_primary_10_1016_j_physletb_2012_09_012
crossref_primary_10_1103_PhysRevD_96_036003
crossref_primary_10_1007_JHEP10_2019_004
crossref_primary_10_1088_1742_6596_1586_1_012023
crossref_primary_10_1103_PhysRevD_92_013004
crossref_primary_10_1103_PhysRevD_97_055007
crossref_primary_10_1088_1674_1137_ad13f8
crossref_primary_10_1016_j_cpc_2013_01_014
crossref_primary_10_1007_JHEP04_2015_029
crossref_primary_10_1007_JHEP09_2014_006
crossref_primary_10_1103_PhysRevD_107_015018
crossref_primary_10_1103_PhysRevD_91_014022
crossref_primary_10_1103_PhysRevD_100_075001
crossref_primary_10_1103_PhysRevD_89_074038
crossref_primary_10_1103_PhysRevD_100_075007
crossref_primary_10_1016_j_dark_2025_101852
crossref_primary_10_1007_JHEP03_2013_111
crossref_primary_10_1007_JHEP01_2017_044
crossref_primary_10_1007_JHEP01_2017_048
crossref_primary_10_1007_JHEP01_2015_053
crossref_primary_10_1103_PhysRevD_97_055023
crossref_primary_10_1007_JHEP03_2013_117
crossref_primary_10_1103_PhysRevD_89_074028
crossref_primary_10_1140_epjc_s10052_014_2916_1
crossref_primary_10_1140_epjc_s10052_024_13009_9
crossref_primary_10_1103_PhysRevD_89_074001
crossref_primary_10_1088_1748_0221_16_08_P08039
crossref_primary_10_3390_universe9050242
crossref_primary_10_1016_j_physletb_2013_04_060
crossref_primary_10_1088_1361_6471_ad2276
crossref_primary_10_1103_PhysRevD_107_015025
crossref_primary_10_1103_PhysRevD_107_015026
crossref_primary_10_1007_JHEP06_2014_083
crossref_primary_10_1140_epjc_s10052_013_2489_4
crossref_primary_10_1007_JHEP06_2014_081
crossref_primary_10_1140_epjc_s10052_015_3454_1
crossref_primary_10_1103_PhysRevD_103_036020
crossref_primary_10_1103_PhysRevD_97_115040
crossref_primary_10_1140_epjc_s10052_021_09613_8
crossref_primary_10_1007_JHEP11_2014_021
crossref_primary_10_1103_PhysRevD_90_095006
crossref_primary_10_1103_PhysRevD_89_074007
crossref_primary_10_1007_JHEP11_2014_024
crossref_primary_10_1103_PhysRevD_92_033016
crossref_primary_10_1103_PhysRevD_86_013006
crossref_primary_10_1103_PhysRevD_92_033014
crossref_primary_10_1007_JHEP06_2014_078
crossref_primary_10_1103_PhysRevD_90_015026
crossref_primary_10_1103_PhysRevD_90_015025
crossref_primary_10_1103_PhysRevLett_112_171802
crossref_primary_10_1103_PhysRevLett_112_171801
crossref_primary_10_1016_j_physletb_2013_10_034
crossref_primary_10_1103_PhysRevD_110_115039
crossref_primary_10_1007_JHEP05_2024_324
crossref_primary_10_1142_S0217751X19502191
crossref_primary_10_1103_PhysRevD_105_114002
crossref_primary_10_1007_JHEP10_2012_181
crossref_primary_10_1103_PhysRevD_110_115031
crossref_primary_10_1016_j_physletb_2015_07_011
crossref_primary_10_1088_1361_6633_ab28d6
crossref_primary_10_1140_epjc_s10052_015_3708_y
crossref_primary_10_21468_SciPostPhys_8_2_025
crossref_primary_10_1007_JHEP01_2022_034
crossref_primary_10_1007_JHEP10_2012_162
crossref_primary_10_1007_JHEP03_2013_161
crossref_primary_10_1142_S0217751X14300531
crossref_primary_10_1007_JHEP04_2017_065
crossref_primary_10_1007_JHEP05_2019_028
crossref_primary_10_1103_PhysRevD_93_032004
crossref_primary_10_1103_PhysRevLett_112_231802
crossref_primary_10_1016_j_nuclphysb_2015_02_001
crossref_primary_10_1007_JHEP01_2013_088
crossref_primary_10_1103_PhysRevD_90_015009
crossref_primary_10_1103_PhysRevD_91_115014
crossref_primary_10_1103_PhysRevD_100_055001
crossref_primary_10_1088_1361_6471_abc3d5
crossref_primary_10_1103_PhysRevD_91_115011
crossref_primary_10_1103_PhysRevLett_112_182001
crossref_primary_10_1098_rsbm_2019_0031
crossref_primary_10_1103_PhysRevD_91_115009
crossref_primary_10_1051_epjconf_202125103045
crossref_primary_10_1103_PhysRevD_88_034033
crossref_primary_10_1016_j_cpc_2018_04_016
crossref_primary_10_1103_PhysRevD_91_115006
crossref_primary_10_1007_JHEP08_2023_015
crossref_primary_10_1016_j_physletb_2014_01_060
crossref_primary_10_1103_PhysRevD_104_055019
crossref_primary_10_1103_PhysRevD_90_015011
crossref_primary_10_1007_JHEP10_2015_086
crossref_primary_10_1103_PhysRevD_90_015012
crossref_primary_10_1103_PhysRevD_107_035010
crossref_primary_10_1103_PhysRevLett_131_231801
crossref_primary_10_1007_JHEP01_2013_078
crossref_primary_10_1007_JHEP06_2020_155
crossref_primary_10_1103_PhysRevD_91_115002
crossref_primary_10_1007_JHEP09_2015_204
crossref_primary_10_1007_JHEP04_2017_164
crossref_primary_10_1140_epjc_s10052_025_13943_2
crossref_primary_10_1088_1674_1137_43_10_103102
crossref_primary_10_1007_JHEP07_2013_003
crossref_primary_10_1088_0031_8949_2013_T158_014002
crossref_primary_10_1016_j_physletb_2014_01_051
crossref_primary_10_1088_0031_8949_2013_T158_014007
crossref_primary_10_1103_PhysRevD_90_015002
crossref_primary_10_1016_j_physletb_2019_02_029
crossref_primary_10_1103_PhysRevLett_108_201802
crossref_primary_10_1007_JHEP01_2013_063
crossref_primary_10_1140_epjc_s10052_021_09712_6
crossref_primary_10_1134_S1063778819010046
crossref_primary_10_1016_j_physletb_2013_06_058
crossref_primary_10_1016_j_physletb_2013_06_052
crossref_primary_10_1007_JHEP09_2024_101
crossref_primary_10_1051_epjconf_20159004004
crossref_primary_10_1103_PhysRevD_94_095013
crossref_primary_10_1051_epjconf_202125103022
crossref_primary_10_1140_epjc_s10052_015_3364_2
crossref_primary_10_1103_PhysRevD_92_033008
crossref_primary_10_1103_PhysRevD_91_034014
crossref_primary_10_1103_PhysRevD_97_075006
crossref_primary_10_1103_PhysRevD_88_034019
crossref_primary_10_1103_PhysRevD_90_095018
crossref_primary_10_1103_PhysRevD_91_094007
crossref_primary_10_1103_PhysRevD_100_055018
crossref_primary_10_1007_JHEP03_2014_022
crossref_primary_10_1016_j_physletb_2014_01_069
crossref_primary_10_1007_JHEP03_2014_024
crossref_primary_10_1016_j_cpc_2016_01_005
crossref_primary_10_1103_PhysRevD_87_096002
crossref_primary_10_1007_JHEP03_2014_027
crossref_primary_10_1140_epjc_s10052_015_3266_3
crossref_primary_10_1103_PhysRevD_90_095022
crossref_primary_10_1140_epjc_s10052_013_2494_7
crossref_primary_10_1103_PhysRevD_104_055008
crossref_primary_10_1103_PhysRevD_104_055009
crossref_primary_10_1007_JHEP11_2016_147
crossref_primary_10_1088_1475_7516_2014_02_050
crossref_primary_10_1140_epjc_s10052_019_7574_x
crossref_primary_10_1007_JHEP09_2016_036
crossref_primary_10_1016_j_cpc_2012_10_032
crossref_primary_10_1007_JHEP02_2012_129
crossref_primary_10_1007_JHEP10_2013_033
crossref_primary_10_1007_JHEP05_2016_108
crossref_primary_10_1007_JHEP02_2012_140
crossref_primary_10_1103_PhysRevD_89_053012
crossref_primary_10_1103_PhysRevD_89_053010
crossref_primary_10_1103_PhysRevLett_114_051301
crossref_primary_10_1088_1475_7516_2022_05_033
crossref_primary_10_1007_JHEP09_2016_051
crossref_primary_10_1140_epjc_s10052_015_3649_5
crossref_primary_10_1007_JHEP02_2012_135
crossref_primary_10_1016_j_physletb_2012_11_029
crossref_primary_10_1016_j_physletb_2012_11_026
crossref_primary_10_1103_PhysRevD_88_034006
crossref_primary_10_21468_SciPostPhysCodeb_3
crossref_primary_10_1103_PhysRevD_89_114006
crossref_primary_10_1007_JHEP01_2013_026
crossref_primary_10_1007_JHEP07_2015_074
crossref_primary_10_1103_PhysRevD_88_095003
crossref_primary_10_1007_JHEP10_2021_182
crossref_primary_10_1103_PhysRevD_88_095001
crossref_primary_10_1140_epjc_s10052_021_09507_9
crossref_primary_10_1103_PhysRevD_88_115013
crossref_primary_10_1007_JHEP04_2017_110
crossref_primary_10_1103_PhysRevD_90_075004
crossref_primary_10_1103_PhysRevLett_113_161802
crossref_primary_10_1103_PhysRevD_93_052007
crossref_primary_10_1007_JHEP07_2015_066
crossref_primary_10_1007_JHEP04_2017_118
crossref_primary_10_1103_PhysRevD_90_035027
crossref_primary_10_1103_PhysRevD_90_075009
crossref_primary_10_1103_PhysRevD_90_075007
crossref_primary_10_1103_PhysRevD_90_075005
crossref_primary_10_1016_j_physletb_2013_06_023
crossref_primary_10_1103_PhysRevD_90_035020
crossref_primary_10_1088_1674_1137_40_12_123104
crossref_primary_10_1103_PhysRevD_107_035033
crossref_primary_10_1007_JHEP12_2015_129
crossref_primary_10_1088_1475_7516_2013_07_006
crossref_primary_10_1007_JHEP01_2013_013
crossref_primary_10_1140_epjc_s10052_019_6858_5
crossref_primary_10_1016_j_nuclphysbps_2012_11_022
crossref_primary_10_1007_JHEP09_2016_033
crossref_primary_10_1016_j_cpc_2015_08_031
crossref_primary_10_1103_PhysRevD_88_095011
crossref_primary_10_1103_PhysRevD_91_115021
crossref_primary_10_1088_1742_6596_631_1_012045
crossref_primary_10_1134_S0021364023602518
crossref_primary_10_1088_1742_6596_2438_1_012001
crossref_primary_10_1140_epjc_s10052_015_3351_7
crossref_primary_10_1103_PhysRevD_91_115018
crossref_primary_10_1007_JHEP05_2016_114
crossref_primary_10_1016_j_nuclphysb_2014_07_007
crossref_primary_10_1103_PhysRevD_87_035014
crossref_primary_10_1103_PhysRevD_87_035016
crossref_primary_10_1007_JHEP05_2012_139
crossref_primary_10_1007_JHEP10_2015_076
crossref_primary_10_1103_PhysRevD_94_115014
crossref_primary_10_1088_1475_7516_2016_01_051
crossref_primary_10_1088_1742_6596_1390_1_012044
crossref_primary_10_1103_PhysRevD_97_095041
crossref_primary_10_1007_JHEP12_2015_151
crossref_primary_10_1088_1748_0221_14_06_P06032
crossref_primary_10_1140_epjc_s10052_016_4018_8
crossref_primary_10_1103_PhysRevD_107_055018
crossref_primary_10_1140_epjc_s10052_013_2339_4
crossref_primary_10_1007_JHEP06_2018_042
crossref_primary_10_1140_epjc_s10052_015_3591_6
crossref_primary_10_1088_1742_6596_798_1_012094
crossref_primary_10_1007_JHEP03_2018_081
crossref_primary_10_1007_JHEP09_2018_007
crossref_primary_10_1103_PhysRevD_94_115008
crossref_primary_10_1103_PhysRevD_97_095036
crossref_primary_10_1103_PhysRevD_87_052006
crossref_primary_10_1103_PhysRevD_90_035004
crossref_primary_10_21468_SciPostPhys_10_3_072
crossref_primary_10_1007_JHEP11_2016_107
crossref_primary_10_1016_j_cpc_2015_08_015
crossref_primary_10_1016_j_physrep_2020_04_001
crossref_primary_10_1007_JHEP08_2016_119
crossref_primary_10_1016_j_dark_2018_11_009
crossref_primary_10_1140_epjc_s10052_014_3076_z
crossref_primary_10_1103_PhysRevD_108_115010
crossref_primary_10_1007_JHEP07_2019_136
crossref_primary_10_1007_JHEP08_2014_173
crossref_primary_10_1088_1361_6471_44_6_063001
crossref_primary_10_1007_JHEP08_2014_174
crossref_primary_10_1016_j_physletb_2013_08_030
crossref_primary_10_1007_JHEP03_2024_104
crossref_primary_10_1103_PhysRevD_92_053008
crossref_primary_10_1103_PhysRevD_87_097701
crossref_primary_10_1103_PhysRevLett_115_181602
crossref_primary_10_1007_JHEP08_2018_194
crossref_primary_10_1007_JHEP05_2016_138
crossref_primary_10_1007_JHEP03_2018_074
crossref_primary_10_1103_PhysRevD_90_075016
crossref_primary_10_1103_PhysRevD_93_015022
crossref_primary_10_1088_1742_6596_1525_1_012023
crossref_primary_10_1103_PhysRevD_85_115011
crossref_primary_10_1088_1742_6596_1525_1_012021
crossref_primary_10_1007_JHEP12_2015_172
crossref_primary_10_1016_j_physletb_2022_137330
crossref_primary_10_1007_JHEP08_2014_161
crossref_primary_10_1140_epjc_s10052_014_3063_4
crossref_primary_10_1088_1361_6471_ac9990
crossref_primary_10_1134_S1547477122030025
crossref_primary_10_1140_epjp_s13360_021_02294_y
crossref_primary_10_1103_PhysRevLett_129_121803
crossref_primary_10_1140_epjc_s10052_012_2238_0
crossref_primary_10_1103_PhysRevD_85_115001
crossref_primary_10_1103_PhysRevD_97_095012
crossref_primary_10_1088_1361_6471_44_2_023001
crossref_primary_10_1007_JHEP08_2014_153
crossref_primary_10_1007_JHEP12_2015_166
crossref_primary_10_1103_PhysRevD_107_116026
crossref_primary_10_1007_JHEP08_2014_155
crossref_primary_10_1103_PhysRevD_88_014033
crossref_primary_10_1007_JHEP02_2016_176
crossref_primary_10_1134_S1063778823040233
crossref_primary_10_1134_S1547477122030037
crossref_primary_10_1007_JHEP10_2015_036
crossref_primary_10_1103_PhysRevD_100_035016
crossref_primary_10_1103_PhysRevD_91_054012
crossref_primary_10_1088_1742_6596_1390_1_012080
crossref_primary_10_1007_JHEP02_2014_101
crossref_primary_10_1007_JHEP10_2015_031
crossref_primary_10_1016_j_physletb_2014_01_010
crossref_primary_10_1140_epjp_i2013_13117_x
crossref_primary_10_1016_j_physletb_2013_08_001
crossref_primary_10_1103_PhysRevD_93_063523
crossref_primary_10_1007_JHEP08_2014_134
crossref_primary_10_1007_JHEP11_2012_088
crossref_primary_10_1016_j_physletb_2013_08_007
crossref_primary_10_1140_epjc_s10052_014_2801_y
crossref_primary_10_1103_PhysRevD_91_054002
crossref_primary_10_1007_JHEP02_2014_130
crossref_primary_10_1007_JHEP04_2013_077
crossref_primary_10_3938_jkps_70_465
crossref_primary_10_1103_PhysRevD_97_075002
crossref_primary_10_1016_j_physletb_2014_01_006
crossref_primary_10_1007_JHEP02_2014_126
crossref_primary_10_1007_JHEP06_2024_124
crossref_primary_10_1007_JHEP05_2014_104
crossref_primary_10_1103_PhysRevD_86_073013
crossref_primary_10_1007_JHEP05_2014_106
crossref_primary_10_1007_JHEP02_2014_123
crossref_primary_10_1007_JHEP05_2014_108
crossref_primary_10_1007_JHEP10_2017_044
crossref_primary_10_1103_PhysRevD_91_074028
crossref_primary_10_1103_PhysRevD_93_072004
crossref_primary_10_1103_PhysRevD_110_095021
crossref_primary_10_1088_1748_0221_8_04_P04013
crossref_primary_10_1088_1361_6471_aab415
crossref_primary_10_1140_epjc_s10052_024_13685_7
crossref_primary_10_1140_epjc_s10052_012_1922_4
crossref_primary_10_3389_fspas_2018_00030
crossref_primary_10_1007_JHEP10_2017_076
crossref_primary_10_1103_PhysRevD_84_071504
crossref_primary_10_1007_JHEP07_2013_073
crossref_primary_10_1103_PhysRevD_110_095011
crossref_primary_10_1140_epjc_s10052_017_5321_8
crossref_primary_10_1103_PhysRevD_104_095031
crossref_primary_10_1103_PhysRevD_87_015022
crossref_primary_10_1103_PhysRevD_90_055007
crossref_primary_10_1088_1742_6596_2438_1_012089
crossref_primary_10_1103_PhysRevD_92_073013
crossref_primary_10_1103_PhysRevD_87_015023
crossref_primary_10_1007_JHEP11_2012_097
crossref_primary_10_1103_PhysRevD_101_034023
crossref_primary_10_1007_JHEP05_2014_123
crossref_primary_10_1007_JHEP01_2019_113
crossref_primary_10_1103_PhysRevD_87_072002
crossref_primary_10_1103_PhysRevD_93_015003
crossref_primary_10_1103_PhysRevD_90_055002
crossref_primary_10_1103_PhysRevD_93_015004
crossref_primary_10_1103_PhysRevD_90_055004
crossref_primary_10_1103_PhysRevD_87_072007
Cites_doi 10.1088/1126-6708/2009/10/003
10.1007/JHEP05(2011)044
10.1088/1126-6708/2004/11/040
10.1088/1126-6708/2009/05/053
10.1016/j.nima.2004.07.096
10.1016/0370-2693(95)00971-M
10.1088/1126-6708/2004/02/056
10.1088/1126-6708/2009/02/007
10.1016/j.nuclphysbps.2008.09.115
10.1103/PhysRevLett.83.4690
10.1088/1126-6708/2001/01/010
10.1007/JHEP06(2010)043
10.1016/S0370-2693(98)01015-6
10.1088/1126-6708/2002/08/015
10.1088/1126-6708/2006/05/026
10.1103/PhysRevLett.102.222001
10.1088/1126-6708/2008/09/122
10.1016/0370-1573(91)90091-Y
10.1088/1126-6708/2009/02/017
10.1016/0010-4655(94)90084-1
10.1016/0550-3213(88)90442-7
10.1088/1126-6708/2008/12/039
10.1016/j.cpc.2009.02.018
10.1103/PhysRevLett.106.092001
10.1140/epjc/s10052-007-0495-0
10.1007/JHEP01(2010)123
10.1007/JHEP03(2011)125
10.1088/1126-6708/2002/06/029
10.1016/S0550-3213(99)00809-3
10.1140/epjc/s10052-011-1541-5
10.1088/1126-6708/2003/07/001
10.1088/1126-6708/2007/01/013
10.1016/j.nuclphysb.2005.02.030
10.1088/1126-6708/2008/03/042
10.1088/1126-6708/2009/04/077
10.1088/1126-6708/2004/05/040
10.1103/PhysRevLett.83.3370
10.1088/1126-6708/2009/09/106
10.1088/1126-6708/2007/09/028
10.1088/1126-6708/2005/07/054
10.1088/1126-6708/2003/08/007
10.1016/j.cpc.2006.11.010
10.1140/epjc/s10052-008-0663-x
10.1088/1126-6708/2003/02/027
10.1088/1126-6708/2001/11/063
10.1016/j.nuclphysb.2010.10.015
10.1088/1126-6708/2009/08/085
10.1140/epjc/s10052-010-1529-6
10.1088/1126-6708/2002/05/046
10.1088/1126-6708/2006/08/062
10.1140/epjc/s10052-007-0490-5
10.1016/0550-3213(92)90169-C
10.1016/j.cpc.2008.01.036
10.1088/1126-6708/2009/04/072
ContentType Journal Article
Copyright The Author(s) 2011. This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
The Author(s) 2011. Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited. This work is published under https://creativecommons.org/licenses/by-nc/2.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2011. This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
– notice: The Author(s) 2011. Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited. This work is published under https://creativecommons.org/licenses/by-nc/2.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOI 10.1007/JHEP06(2011)128
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen Free (Free internet resource, activated by CARLI)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
ExternalDocumentID 10.1007/jhep06(2011)128
10_1007_JHEP06_2011_128
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
2VQ
30V
4.4
408
40D
5GY
5ZI
8TC
8UJ
95.
AAIAL
AAKKN
AARHV
AAYZH
ABEEZ
ABTEG
ACACY
ACBXY
ACGFS
ACHIP
ACREN
ACULB
ADINQ
ADKPE
ADRFC
AEGXH
AENEX
AFGXO
AFKRA
AFLOW
AFWTZ
AGJBK
AHBYD
AHSBF
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BENPR
BGLVJ
BGNMA
C24
C6C
CAG
CCPQU
COF
CS3
CSCUP
DU5
EBS
EJD
ER.
FEDTE
GQ6
GROUPED_DOAJ
H13
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M45
M4Y
M~E
N5L
N9A
NB0
NT-
NT.
NU0
O9-
O93
P62
P9T
PIMPY
Q02
R9I
RO9
RPA
RSV
S27
S3B
SOJ
SPH
T13
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
02O
1JI
1WK
5VS
8FE
8FG
AAFWJ
AAGCD
AAGCF
AAJIO
AALHV
AATNI
AAYXX
ABFSG
ACAFW
ACARI
ACSTC
ADBBV
AEFHF
AEINN
AEJGL
AERVB
AETNG
AEZWR
AFHIU
AFPKN
AGQPQ
AHSEE
AHWEU
AHYZX
AIXLP
AIYBF
AKPSB
AMVHM
ARNYC
BAPOH
BBWZM
BCNDV
CITATION
CJUJL
CRLBU
EDWGO
EMSAF
EPQRW
EQZZN
IJHAN
IOP
IZVLO
JCGBZ
KOT
OK1
PHGZM
PHGZT
PJBAE
PQGLB
PROAC
PUEGO
R4D
RIN
RKQ
RNS
ROL
S1Z
S3P
SY9
T37
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
ID FETCH-LOGICAL-c351t-3305a25fc7a9ac6ce9f116718f85efb5ed56821f49ab8e4416b79f089ed0a4e23
IEDL.DBID UNPAY
ISSN 1029-8479
1126-6708
1127-2236
IngestDate Sun Oct 26 04:17:18 EDT 2025
Sat Oct 18 22:43:35 EDT 2025
Wed Oct 01 03:43:10 EDT 2025
Thu Apr 24 23:16:00 EDT 2025
Fri Feb 21 02:38:28 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords QCD Phenomenology
Language English
License cc-by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-3305a25fc7a9ac6ce9f116718f85efb5ed56821f49ab8e4416b79f089ed0a4e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/JHEP06(2011)128.pdf
PQID 2398244412
PQPubID 2034718
ParticipantIDs unpaywall_primary_10_1007_jhep06_2011_128
proquest_journals_2398244412
crossref_citationtrail_10_1007_JHEP06_2011_128
crossref_primary_10_1007_JHEP06_2011_128
springer_journals_10_1007_JHEP06_2011_128
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-06-01
PublicationDateYYYYMMDD 2011-06-01
PublicationDate_xml – month: 06
  year: 2011
  text: 2011-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2011
Publisher Springer-Verlag
Springer Nature B.V
Publisher_xml – name: Springer-Verlag
– name: Springer Nature B.V
References SjöstrandTMrennaSSkandsPZA brief introduction to PYTHIA 8.1Comput. Phys. Commun.20081788522008CoPhC.178..852S1196.8103810.1016/j.cpc.2008.01.036[arXiv:0710.3820] [SPIRES]
GleisbergTSHERPA 1.alpha, a proof-of-concept versionJHEP2004020562004JHEP...02..056G10.1088/1126-6708/2004/02/056[hep-ph/0311263] [SPIRES]
C.G. Papadopoulos and M. Worek, HELAC: a Monte Carlo generator for multi-jet processes, hep-ph/0606320 [SPIRES].
Del DucaVDixonLJMaltoniFNew color decompositions for gauge amplitudes at tree and loop levelNucl. Phys.2000B 571512000NuPhB.571...51D10.1016/S0550-3213(99)00809-3[hep-ph/9910563] [SPIRES]
ChristensenNDA comprehensive approach to new physics simulationsEur. Phys. J.2011C 7115412011EPJC...71.1541C[arXiv:0906.2474] [SPIRES]
DennerAEckHHahnOKublbeckJFeynman rules for fermion number violating interactionsNucl. Phys.1992B 3874671992NuPhB.387..467D10.1016/0550-3213(92)90169-C[SPIRES]
CompHEP collaborationBoosECompHEP 4.4: automatic computations from lagrangians to eventsNucl. Instrum. Meth.2004A 5342502004NIMPA.534..250B[hep-ph/0403113] [SPIRES]
AlwallJA standard format for Les Houches event filesComput. Phys. Commun.20071763002007CoPhC.176..300A10.1016/j.cpc.2006.11.010[hep-ph/0609017] [SPIRES]
MrennaSRichardsonPMatching matrix elements and parton showers with HERWIG and PYTHIAJHEP2004050402004JHEP...05..040M10.1088/1126-6708/2004/05/040[hep-ph/0312274] [SPIRES]
FrederixRGehrmannTGreinerNAutomation of the dipole subtraction method in MadGraph/MadEventJHEP2008091222008JHEP...09..122F10.1088/1126-6708/2008/09/122[arXiv:0808.2128] [SPIRES]
SjöstrandTMrennaSSkandsPZPYTHIA 6.4 physics and manualJHEP2006050262006JHEP...05..026S10.1088/1126-6708/2006/05/026[hep-ph/0603175] [SPIRES]
W. Kilian, W HIZARD 1.0: a generic Monte-Carlo integration and event generation package for multi-particle processes. Manual, LC-TOOL-2001-039.
ManganoMLMorettiMPiccininiFTreccaniMMatching matrix elements and shower evolution for top-quark production in hadronic collisionsJHEP2007010132007JHEP...01..013M10.1088/1126-6708/2007/01/013[hep-ph/0611129] [SPIRES]
J. Alwall et al., Aloha — Automatic helas routines for helicity amplitude calculations in any quantum field theory.
ChoGCWeak boson fusion production of supersymmetric particles at the LHCPhys. Rev.2006D 730540022006PhRvD..73e4002C[hep-ph/0601063] [SPIRES]
RandallLSundrumRA large mass hierarchy from a small extra dimensionPhys. Rev. Lett.199983337017447141999PhRvL..83.3370R0946.8106310.1103/PhysRevLett.83.3370[hep-ph/9905221] [SPIRES]
ManganoMLParkeSJMulti-parton amplitudes in gauge theoriesPhys. Rept.19912003011991PhR...200..301M10.1016/0370-1573(91)90091-Y[hep-th/0509223] [SPIRES]
BergerCFNext-to-Leading Order QCD predictions for Z, γ∗ + 3-jet distributions at the TevatronPhys. Rev.2010D 820740022010PhRvD..82g4002B[arXiv:1004.1659] [SPIRES]
Aguilar-SaavedraJAEffective four-fermion operators in top physics: a roadmapNucl. Phys.2011B 8436382011NuPhB.843..638A10.1016/j.nuclphysb.2010.10.015[arXiv:1008.3562] [SPIRES]
A. Pukhov et al., CompHEP: a package for evaluation of Feynman diagrams and integration over multi-particle phase space. User’s manual for version 33, hep-ph/9908288 [SPIRES].
HoecheSKraussFSchumannSSiegertFQCD matrix elements and truncated showersJHEP2009050532009JHEP...05..053H10.1088/1126-6708/2009/05/053[arXiv:0903.1219] [SPIRES]
MaltoniFPaulKStelzerTWillenbrockSColor-flow decomposition of QCD amplitudesPhys. Rev.2003D 670140262003PhRvD..67a4026M[hep-ph/0209271] [SPIRES]
CataniSKraussFKuhnRWebberBRQCD matrix elements + parton showersJHEP2001110632001JHEP...11..063C10.1088/1126-6708/2001/11/063[hep-ph/0109231] [SPIRES]
ZhangCWillenbrockSEffective-field-theory approach to top-quark production and decayPhys. Rev.2011D 830340062011PhRvD..83c4006Z[arXiv:1008.3869] [SPIRES]
CzakonMPapadopoulosCGWorekMPolarizing the dipolesJHEP2009080852009JHEP...08..085C10.1088/1126-6708/2009/08/085[arXiv:0905.0883] [SPIRES]
BergerCFPrecise predictions for W + 3 jet production at hadron collidersPhys. Rev. Lett.20091022220012009PhRvL.102v2001B10.1103/PhysRevLett.102.222001[arXiv:0902.2760] [SPIRES]
MaltoniFStelzerTMadEvent: automatic event generation with MadGraphJHEP2003020272003JHEP...02..027M10.1088/1126-6708/2003/02/027[hep-ph/0208156] [SPIRES]
KraussFSchalickeASchumannSSoffGSimulating W/Z + jets production at the TevatronPhys. Rev.2004D 701140092004PhRvD..70k4009K[hep-ph/0409106] [SPIRES]
HagiwaraKKanzakiJLiQMawatariKHELAS and MadGraph/MadEvent with spin-2 particlesEur. Phys. J.2008C 564352008EPJC...56..435H10.1140/epjc/s10052-008-0663-x[arXiv:0805.2554] [SPIRES]
N. D. Christensen and C. Speckner, Automated validation of FeynRules models.
AlwallJComparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisionsEur. Phys. J.2008C 534732008EPJC...53..473A10.1140/epjc/s10052-007-0490-5[arXiv:0706.2569] [SPIRES]
AlioliSNasonPOleariCReEA general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOXJHEP2010060432010JHEP...06..043A10.1007/JHEP06(2010)043[arXiv:1002.2581] [SPIRES]
DegrandeCGerardJ-MGrojeanCMaltoniFServantGNon-resonant new physics in top pair production at hadron collidersJHEP2011031252011JHEP...03..125D10.1007/JHEP03(2011)125[arXiv:1010.6304] [SPIRES]
C. Duhr and B. Fuks, A superspace module for the FeynRules package, arXiv:1102.4191 [SPIRES].
M.H. Seymour and C. Tevlin, TeVJet: a general framework for the calculation of jet observables in NLO QCD, arXiv:0803.2231 [SPIRES].
M. Moretti, T. Ohl and J. Reuter, O’Mega: an optimizing matrix element generator, hep-ph/0102195 [SPIRES].
G. Zanderighi, Recent theoretical progress in perturbative QCD, arXiv:0810.3524 [SPIRES].
C. Degrande, J.-M. Gerard, C. Grojean, F. Maltoni and G. Servant, An effective approach to same sign top pair production at the LHC and the forward-backward asymmetry at the Tevatron, arXiv:1104.1798 [SPIRES].
HirschiVAutomation of one-loop QCD correctionsJHEP2011050442011JHEP...05..044H10.1007/JHEP05(2011)044[arXiv:1103.0621] [SPIRES]
FrederixRFrixioneSMaltoniFStelzerTAutomation of next-to-leading order computations in QCD: the FKS subtractionJHEP2009100032009JHEP...10..003F10.1088/1126-6708/2009/10/003[arXiv:0908.4272] [SPIRES]
J. Alwall et al., A Les Houches interface for BSM generators, arXiv:0712.3311 [SPIRES].
S. Ovyn, X. Rouby and V. Lemaitre, Delphes, a framework for fast simulation of a generic collider experiment, arXiv:0903.2225 [SPIRES].
BergerCFPrecise predictions for W + 4 jet production at the Large Hadron ColliderPhys. Rev. Lett.20111060920012011PhRvL.106i2001B10.1103/PhysRevLett.106.092001[arXiv:1009.2338] [SPIRES]
DraggiotisPGarzelliMVPapadopoulosCGPittauRFeynman rules for the rational part of the QCD 1-loop amplitudesJHEP20090407225059572009JHEP...04..072D10.1088/1126-6708/2009/04/072[arXiv:0903.0356] [SPIRES]
W. Kilian, T. Ohl and J. Reuter, WHIZARD: simulating multi-particle processes at LHC and ILC, arXiv:0708.4233 [SPIRES].
DuhrCHoecheSMaltoniFColor-dressed recursive relations for multi-parton amplitudesJHEP2006080622006JHEP...08..062D10.1088/1126-6708/2006/08/062[hep-ph/0607057] [SPIRES]
CorcellaGHERWIG 6.5: an event generator for Hadron Emission Reactions With Interfering Gluons (including supersymmetric processes)JHEP2001010102001JHEP...01..010C10.1088/1126-6708/2001/01/010[hep-ph/0011363] [SPIRES]
BrittoRCachazoFFengBNew recursion relations for tree amplitudes of gluonsNucl. Phys.2005B 71549921356462005NuPhB.715..499B10.1016/j.nuclphysb.2005.02.030[hep-th/0412308] [SPIRES]
CaravagliosFMorettiMAn algorithm to compute Born scattering amplitudes without Feynman graphsPhys. Lett.1995B 3583321995PhLB..358..332C[hep-ph/9507237] [SPIRES]
FrixioneSWebberBRMatching NLO QCD computations and parton shower simulationsJHEP2002060292002JHEP...06..029F10.1088/1126-6708/2002/06/029[hep-ph/0204244] [SPIRES]
EnglertCPlehnTSchichtelPSchumannSJets plus missing energy with an autofocusPhys. Rev.2011D 830950092011PhRvD..83i5009E[arXiv:1102.4615] [SPIRES]
J. Conway, Pretty Good Simulator, http://www.physics.ucdavis.edu/˜conway/research/software/pgs/pgs.html
NasonPA new method for combining NLO QCD with shower Monte Carlo algorithmsJHEP2004110402004JHEP...11..040N10.1088/1126-6708/2004/11/040[hep-ph/0409146] [SPIRES]
S. Frixione, Colourful FKS subtraction, arXiv:1106.0155 [SPIRES].
LönnbladLCorrecting the colour-dipole cascade model with fixed order matrix elementsJHEP20020504610.1088/1126-6708/2002/05/046[hep-ph/0112284] [SPIRES]
KraussFMatrix elements and parton showers in hadronic interactionsJHEP2002080152002JHEP...08..015K10.1088/1126-6708/2002/08/015[hep-ph/0205283] [SPIRES]
ManganoMLMorettiMPiccininiFPittauRPolosaADALPGEN, a generator for hard multiparton processes in hadronic collisionsJHEP2003070012003JHEP...07..001M10.1088/1126-6708/2003/07/001[hep-ph/0206293] [SPIRES]
S. Hoeche et al., Matching parton showers and matrix elements, hep-ph/0602031 [SPIRES].
BerendsFAGieleWTRecursive calculations for processes with n gluonsNucl. Phys.1988B 3067591988NuPhB.306..759B10.1016/0550-3213(88)90442-7[SPIRES]
C. Degrande et al., UFO — The Universal FeynRules Output.
AlwallJMadGraph/MadEvent v4: the new web generationJHEP2007090282007JHEP...09..028A10.1088/1126-6708/2007/09/028[arXiv:0706.2334] [SPIRES]
AlwallJde VisscherSMaltoniFQCD radiation in the production of heavy colored particles at the LHCJHEP2009020172009JHEP...02..017A10.1088/1126-6708/2009/02/017[arXiv:0810.5350] [SPIRES]
HasegawaKMochSUwerPAutomating dipole subtractionNucl. Phys. Proc. Suppl.20081832682008NuPhS.183..268H10.1016/j.nuclphysbps.2008.09.115[arXiv:0807.3701] [SPIRES]
HanTLewisIMcElmurryTQCD corrections to scalar diquark production at hadron collidersJHEP2010011232010JHEP...01..123H10.1007/JHEP01(2010)123[arXiv:0909.2666] [SPIRES]
GleisbergTHoecheSComix, a new matrix element generatorJHEP2008120392008JHEP...12..039G10.1088/1126-6708/2008/12/039[arXiv:0808.3674] [SPIRES]
OssolaGPapadopoulosCGPittauRCutTools: a program implementing the OPP reduction method to compute one-loop amplitudesJHEP2008030422008JHEP...03..0
T Gleisberg (2359_CR21) 2008; C 53
C Englert (2359_CR48) 2011; D 83
A Denner (2359_CR58) 1992; B 387
ML Mangano (2359_CR59) 1991; 200
2359_CR45
L Randall (2359_CR78) 1999; 83
RK Ellis (2359_CR28) 2009; 04
2359_CR1
2359_CR3
T Gleisberg (2359_CR7) 2004; 02
ML Mangano (2359_CR14) 2003; 07
S Mrenna (2359_CR40) 2004; 05
F Maltoni (2359_CR61) 2003; D 67
C Duhr (2359_CR10) 2006; 08
S Frixione (2359_CR50) 2002; 06
F Maltoni (2359_CR5) 2003; 02
J Alwall (2359_CR46) 2008; C 53
R Frederix (2359_CR24) 2008; 09
K Hasegawa (2359_CR23) 2008; 183
T Sjöstrand (2359_CR35) 2006; 05
2359_CR12
2359_CR56
2359_CR13
2359_CR54
J Alwall (2359_CR66) 2007; 176
2359_CR11
L Lönnblad (2359_CR42) 2002; 05
2359_CR15
P Nason (2359_CR52) 2004; 11
L Randall (2359_CR79) 1999; 83
CF Berger (2359_CR31) 2010; D 82
2359_CR19
T Han (2359_CR65) 2010; 01
V Hirschi (2359_CR34) 2011; 05
S Hoeche (2359_CR44) 2009; 05
2359_CR20
2359_CR64
G Ossola (2359_CR33) 2008; 03
S Catani (2359_CR38) 2001; 11
F Krauss (2359_CR39) 2002; 08
2359_CR67
2359_CR22
2359_CR27
ML Mangano (2359_CR41) 2007; 01
C Degrande (2359_CR74) 2011; 03
P Draggiotis (2359_CR70) 2009; 04
T Gleisberg (2359_CR16) 2008; 12
F Krauss (2359_CR47) 2004; D 70
JA Aguilar-Saavedra (2359_CR73) 2011; B 843
ND Christensen (2359_CR17) 2009; 180
A Hameren van (2359_CR30) 2009; 09
FA Berends (2359_CR62) 1988; B 306
K Hagiwara (2359_CR68) 2008; C 56
CF Berger (2359_CR32) 2011; 106
F Caravaglios (2359_CR8) 1995; B 358
P Draggiotis (2359_CR9) 1998; B 439
R Britto (2359_CR63) 2005; B 715
2359_CR71
T Gleisberg (2359_CR37) 2009; 02
J Alwall (2359_CR6) 2007; 09
2359_CR75
C Zhang (2359_CR72) 2011; D 83
M Czakon (2359_CR25) 2009; 08
S Frixione (2359_CR51) 2003; 08
G Corcella (2359_CR36) 2001; 01
2359_CR76
E Boos (2359_CR2) 2004; A 534
2359_CR77
ND Christensen (2359_CR18) 2011; C 71
S Alioli (2359_CR53) 2010; 06
R Frederix (2359_CR26) 2009; 10
T Stelzer (2359_CR4) 1994; 81
CF Berger (2359_CR29) 2009; 102
J Alwall (2359_CR49) 2009; 02
K Hagiwara (2359_CR69) 2011; C 71
GC Cho (2359_CR57) 2006; D 73
N Lavesson (2359_CR43) 2005; 07
T Sjöstrand (2359_CR55) 2008; 178
V Duca Del (2359_CR60) 2000; B 571
References_xml – reference: SjöstrandTMrennaSSkandsPZPYTHIA 6.4 physics and manualJHEP2006050262006JHEP...05..026S10.1088/1126-6708/2006/05/026[hep-ph/0603175] [SPIRES]
– reference: C.G. Papadopoulos and M. Worek, HELAC: a Monte Carlo generator for multi-jet processes, hep-ph/0606320 [SPIRES].
– reference: EllisRKMelnikovKZanderighiGGeneralized unitarity at work: first NLO QCD results for hadronic W + 3 jet productionJHEP2009040772009JHEP...04..077E10.1088/1126-6708/2009/04/077[arXiv:0901.4101] [SPIRES]
– reference: Aguilar-SaavedraJAEffective four-fermion operators in top physics: a roadmapNucl. Phys.2011B 8436382011NuPhB.843..638A10.1016/j.nuclphysb.2010.10.015[arXiv:1008.3562] [SPIRES]
– reference: CaravagliosFMorettiMAn algorithm to compute Born scattering amplitudes without Feynman graphsPhys. Lett.1995B 3583321995PhLB..358..332C[hep-ph/9507237] [SPIRES]
– reference: H. Murayama, I. Watanabe and K. Hagiwara, HELAS: HELicity amplitude subroutines for Feynman diagram evaluations, KEK-91-11.
– reference: HoecheSKraussFSchumannSSiegertFQCD matrix elements and truncated showersJHEP2009050532009JHEP...05..053H10.1088/1126-6708/2009/05/053[arXiv:0903.1219] [SPIRES]
– reference: GleisbergTEvent generation with SHERPA 1.1JHEP2009020072009JHEP...02..007G10.1088/1126-6708/2009/02/007
– reference: M. Moretti, T. Ohl and J. Reuter, O’Mega: an optimizing matrix element generator, hep-ph/0102195 [SPIRES].
– reference: EnglertCPlehnTSchichtelPSchumannSJets plus missing energy with an autofocusPhys. Rev.2011D 830950092011PhRvD..83i5009E[arXiv:1102.4615] [SPIRES]
– reference: HirschiVAutomation of one-loop QCD correctionsJHEP2011050442011JHEP...05..044H10.1007/JHEP05(2011)044[arXiv:1103.0621] [SPIRES]
– reference: HagiwaraKMawatariKTakaesuYHELAS and MadGraph with spin-3/2 particlesEur. Phys. J.2011C 7115292011EPJC...71.1529H[arXiv:1010.4255] [SPIRES]
– reference: W. Kilian, T. Ohl and J. Reuter, WHIZARD: simulating multi-particle processes at LHC and ILC, arXiv:0708.4233 [SPIRES].
– reference: NasonPA new method for combining NLO QCD with shower Monte Carlo algorithmsJHEP2004110402004JHEP...11..040N10.1088/1126-6708/2004/11/040[hep-ph/0409146] [SPIRES]
– reference: A. Pukhov et al., CompHEP: a package for evaluation of Feynman diagrams and integration over multi-particle phase space. User’s manual for version 33, hep-ph/9908288 [SPIRES].
– reference: C. Degrande et al., UFO — The Universal FeynRules Output.
– reference: DraggiotisPGarzelliMVPapadopoulosCGPittauRFeynman rules for the rational part of the QCD 1-loop amplitudesJHEP20090407225059572009JHEP...04..072D10.1088/1126-6708/2009/04/072[arXiv:0903.0356] [SPIRES]
– reference: KraussFMatrix elements and parton showers in hadronic interactionsJHEP2002080152002JHEP...08..015K10.1088/1126-6708/2002/08/015[hep-ph/0205283] [SPIRES]
– reference: ZhangCWillenbrockSEffective-field-theory approach to top-quark production and decayPhys. Rev.2011D 830340062011PhRvD..83c4006Z[arXiv:1008.3869] [SPIRES]
– reference: RandallLSundrumRAn alternative to compactificationPhys. Rev. Lett.199983469017259581999PhRvL..83.4690R0946.8107410.1103/PhysRevLett.83.4690[hep-th/9906064] [SPIRES]
– reference: BergerCFPrecise predictions for W + 3 jet production at hadron collidersPhys. Rev. Lett.20091022220012009PhRvL.102v2001B10.1103/PhysRevLett.102.222001[arXiv:0902.2760] [SPIRES]
– reference: J. Conway, Pretty Good Simulator, http://www.physics.ucdavis.edu/˜conway/research/software/pgs/pgs.html
– reference: SjöstrandTMrennaSSkandsPZA brief introduction to PYTHIA 8.1Comput. Phys. Commun.20081788522008CoPhC.178..852S1196.8103810.1016/j.cpc.2008.01.036[arXiv:0710.3820] [SPIRES]
– reference: RandallLSundrumRA large mass hierarchy from a small extra dimensionPhys. Rev. Lett.199983337017447141999PhRvL..83.3370R0946.8106310.1103/PhysRevLett.83.3370[hep-ph/9905221] [SPIRES]
– reference: DuhrCHoecheSMaltoniFColor-dressed recursive relations for multi-parton amplitudesJHEP2006080622006JHEP...08..062D10.1088/1126-6708/2006/08/062[hep-ph/0607057] [SPIRES]
– reference: KraussFSchalickeASchumannSSoffGSimulating W/Z + jets production at the TevatronPhys. Rev.2004D 701140092004PhRvD..70k4009K[hep-ph/0409106] [SPIRES]
– reference: ManganoMLMorettiMPiccininiFTreccaniMMatching matrix elements and shower evolution for top-quark production in hadronic collisionsJHEP2007010132007JHEP...01..013M10.1088/1126-6708/2007/01/013[hep-ph/0611129] [SPIRES]
– reference: BergerCFPrecise predictions for W + 4 jet production at the Large Hadron ColliderPhys. Rev. Lett.20111060920012011PhRvL.106i2001B10.1103/PhysRevLett.106.092001[arXiv:1009.2338] [SPIRES]
– reference: S. Hoeche et al., Matching parton showers and matrix elements, hep-ph/0602031 [SPIRES].
– reference: FrixioneSWebberBRMatching NLO QCD computations and parton shower simulationsJHEP2002060292002JHEP...06..029F10.1088/1126-6708/2002/06/029[hep-ph/0204244] [SPIRES]
– reference: DraggiotisPKleissRHPPapadopoulosCGOn the computation of multigluon amplitudesPhys. Lett.1998B 4391571998PhLB..439..157D[hep-ph/9807207] [SPIRES]
– reference: S. Ovyn, X. Rouby and V. Lemaitre, Delphes, a framework for fast simulation of a generic collider experiment, arXiv:0903.2225 [SPIRES].
– reference: BergerCFNext-to-Leading Order QCD predictions for Z, γ∗ + 3-jet distributions at the TevatronPhys. Rev.2010D 820740022010PhRvD..82g4002B[arXiv:1004.1659] [SPIRES]
– reference: HagiwaraKKanzakiJLiQMawatariKHELAS and MadGraph/MadEvent with spin-2 particlesEur. Phys. J.2008C 564352008EPJC...56..435H10.1140/epjc/s10052-008-0663-x[arXiv:0805.2554] [SPIRES]
– reference: ManganoMLParkeSJMulti-parton amplitudes in gauge theoriesPhys. Rept.19912003011991PhR...200..301M10.1016/0370-1573(91)90091-Y[hep-th/0509223] [SPIRES]
– reference: MrennaSRichardsonPMatching matrix elements and parton showers with HERWIG and PYTHIAJHEP2004050402004JHEP...05..040M10.1088/1126-6708/2004/05/040[hep-ph/0312274] [SPIRES]
– reference: N. D. Christensen and C. Speckner, Automated validation of FeynRules models.
– reference: GleisbergTHoecheSComix, a new matrix element generatorJHEP2008120392008JHEP...12..039G10.1088/1126-6708/2008/12/039[arXiv:0808.3674] [SPIRES]
– reference: M.H. Seymour and C. Tevlin, TeVJet: a general framework for the calculation of jet observables in NLO QCD, arXiv:0803.2231 [SPIRES].
– reference: GleisbergTSHERPA 1.alpha, a proof-of-concept versionJHEP2004020562004JHEP...02..056G10.1088/1126-6708/2004/02/056[hep-ph/0311263] [SPIRES]
– reference: ChristensenNDDuhrCFeynRules — Feynman rules made easyComput. Phys. Commun.200918016142009CoPhC.180.1614C10.1016/j.cpc.2009.02.018[arXiv:0806.4194] [SPIRES]
– reference: FrederixRFrixioneSMaltoniFStelzerTAutomation of next-to-leading order computations in QCD: the FKS subtractionJHEP2009100032009JHEP...10..003F10.1088/1126-6708/2009/10/003[arXiv:0908.4272] [SPIRES]
– reference: AlioliSNasonPOleariCReEA general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOXJHEP2010060432010JHEP...06..043A10.1007/JHEP06(2010)043[arXiv:1002.2581] [SPIRES]
– reference: AlwallJA standard format for Les Houches event filesComput. Phys. Commun.20071763002007CoPhC.176..300A10.1016/j.cpc.2006.11.010[hep-ph/0609017] [SPIRES]
– reference: S. Frixione, Colourful FKS subtraction, arXiv:1106.0155 [SPIRES].
– reference: StelzerTLongWFAutomatic generation of tree level helicity amplitudesComput. Phys. Commun.1994813571994CoPhC..81..357S10.1016/0010-4655(94)90084-1[hep-ph/9401258] [SPIRES]
– reference: BrittoRCachazoFFengBNew recursion relations for tree amplitudes of gluonsNucl. Phys.2005B 71549921356462005NuPhB.715..499B10.1016/j.nuclphysb.2005.02.030[hep-th/0412308] [SPIRES]
– reference: MaltoniFPaulKStelzerTWillenbrockSColor-flow decomposition of QCD amplitudesPhys. Rev.2003D 670140262003PhRvD..67a4026M[hep-ph/0209271] [SPIRES]
– reference: A. Pukhov, Calchep 2.3: MSSM, structure functions, event generation, 1 and generation of matrix elements for other packages, hep-ph/0412191 [SPIRES].
– reference: CorcellaGHERWIG 6.5: an event generator for Hadron Emission Reactions With Interfering Gluons (including supersymmetric processes)JHEP2001010102001JHEP...01..010C10.1088/1126-6708/2001/01/010[hep-ph/0011363] [SPIRES]
– reference: C. Degrande, J.-M. Gerard, C. Grojean, F. Maltoni and G. Servant, An effective approach to same sign top pair production at the LHC and the forward-backward asymmetry at the Tevatron, arXiv:1104.1798 [SPIRES].
– reference: LavessonNLönnbladLW + jets matrix elements and the dipole cascadeJHEP2005070542005JHEP...07..054L10.1088/1126-6708/2005/07/054[hep-ph/0503293] [SPIRES]
– reference: van HamerenAPapadopoulosCGPittauRAutomated one-loop calculations: a proof of conceptJHEP2009091062009JHEP...09..106V10.1088/1126-6708/2009/09/106[arXiv:0903.4665] [SPIRES]
– reference: J. Alwall et al., A Les Houches interface for BSM generators, arXiv:0712.3311 [SPIRES].
– reference: CzakonMPapadopoulosCGWorekMPolarizing the dipolesJHEP2009080852009JHEP...08..085C10.1088/1126-6708/2009/08/085[arXiv:0905.0883] [SPIRES]
– reference: MaltoniFStelzerTMadEvent: automatic event generation with MadGraphJHEP2003020272003JHEP...02..027M10.1088/1126-6708/2003/02/027[hep-ph/0208156] [SPIRES]
– reference: ChristensenNDA comprehensive approach to new physics simulationsEur. Phys. J.2011C 7115412011EPJC...71.1541C[arXiv:0906.2474] [SPIRES]
– reference: C. Duhr and B. Fuks, A superspace module for the FeynRules package, arXiv:1102.4191 [SPIRES].
– reference: DennerAEckHHahnOKublbeckJFeynman rules for fermion number violating interactionsNucl. Phys.1992B 3874671992NuPhB.387..467D10.1016/0550-3213(92)90169-C[SPIRES]
– reference: FrederixRGehrmannTGreinerNAutomation of the dipole subtraction method in MadGraph/MadEventJHEP2008091222008JHEP...09..122F10.1088/1126-6708/2008/09/122[arXiv:0808.2128] [SPIRES]
– reference: LönnbladLCorrecting the colour-dipole cascade model with fixed order matrix elementsJHEP20020504610.1088/1126-6708/2002/05/046[hep-ph/0112284] [SPIRES]
– reference: Del DucaVDixonLJMaltoniFNew color decompositions for gauge amplitudes at tree and loop levelNucl. Phys.2000B 571512000NuPhB.571...51D10.1016/S0550-3213(99)00809-3[hep-ph/9910563] [SPIRES]
– reference: AlwallJde VisscherSMaltoniFQCD radiation in the production of heavy colored particles at the LHCJHEP2009020172009JHEP...02..017A10.1088/1126-6708/2009/02/017[arXiv:0810.5350] [SPIRES]
– reference: DegrandeCGerardJ-MGrojeanCMaltoniFServantGNon-resonant new physics in top pair production at hadron collidersJHEP2011031252011JHEP...03..125D10.1007/JHEP03(2011)125[arXiv:1010.6304] [SPIRES]
– reference: J. Alwall et al., Aloha — Automatic helas routines for helicity amplitude calculations in any quantum field theory.
– reference: AlwallJMadGraph/MadEvent v4: the new web generationJHEP2007090282007JHEP...09..028A10.1088/1126-6708/2007/09/028[arXiv:0706.2334] [SPIRES]
– reference: HasegawaKMochSUwerPAutomating dipole subtractionNucl. Phys. Proc. Suppl.20081832682008NuPhS.183..268H10.1016/j.nuclphysbps.2008.09.115[arXiv:0807.3701] [SPIRES]
– reference: OssolaGPapadopoulosCGPittauRCutTools: a program implementing the OPP reduction method to compute one-loop amplitudesJHEP2008030422008JHEP...03..042O10.1088/1126-6708/2008/03/042[arXiv:0711.3596] [SPIRES]
– reference: HanTLewisIMcElmurryTQCD corrections to scalar diquark production at hadron collidersJHEP2010011232010JHEP...01..123H10.1007/JHEP01(2010)123[arXiv:0909.2666] [SPIRES]
– reference: GleisbergTKraussFAutomating dipole subtraction for QCD NLO calculationsEur. Phys. J.2008C 535012008EPJC...53..501G10.1140/epjc/s10052-007-0495-0[arXiv:0709.2881] [SPIRES]
– reference: G. Zanderighi, Recent theoretical progress in perturbative QCD, arXiv:0810.3524 [SPIRES].
– reference: CataniSKraussFKuhnRWebberBRQCD matrix elements + parton showersJHEP2001110632001JHEP...11..063C10.1088/1126-6708/2001/11/063[hep-ph/0109231] [SPIRES]
– reference: CompHEP collaborationBoosECompHEP 4.4: automatic computations from lagrangians to eventsNucl. Instrum. Meth.2004A 5342502004NIMPA.534..250B[hep-ph/0403113] [SPIRES]
– reference: W. Kilian, W HIZARD 1.0: a generic Monte-Carlo integration and event generation package for multi-particle processes. Manual, LC-TOOL-2001-039.
– reference: AlwallJComparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisionsEur. Phys. J.2008C 534732008EPJC...53..473A10.1140/epjc/s10052-007-0490-5[arXiv:0706.2569] [SPIRES]
– reference: ChoGCWeak boson fusion production of supersymmetric particles at the LHCPhys. Rev.2006D 730540022006PhRvD..73e4002C[hep-ph/0601063] [SPIRES]
– reference: ManganoMLMorettiMPiccininiFPittauRPolosaADALPGEN, a generator for hard multiparton processes in hadronic collisionsJHEP2003070012003JHEP...07..001M10.1088/1126-6708/2003/07/001[hep-ph/0206293] [SPIRES]
– reference: FrixioneSNasonPWebberBRMatching NLO QCD and parton showers in heavy flavour productionJHEP2003080072003JHEP...08..007F10.1088/1126-6708/2003/08/007[hep-ph/0305252] [SPIRES]
– reference: BerendsFAGieleWTRecursive calculations for processes with n gluonsNucl. Phys.1988B 3067591988NuPhB.306..759B10.1016/0550-3213(88)90442-7[SPIRES]
– ident: 2359_CR20
– volume: 10
  start-page: 003
  year: 2009
  ident: 2359_CR26
  publication-title: JHEP
  doi: 10.1088/1126-6708/2009/10/003
– volume: 05
  start-page: 044
  year: 2011
  ident: 2359_CR34
  publication-title: JHEP
  doi: 10.1007/JHEP05(2011)044
– volume: 11
  start-page: 040
  year: 2004
  ident: 2359_CR52
  publication-title: JHEP
  doi: 10.1088/1126-6708/2004/11/040
– volume: 05
  start-page: 053
  year: 2009
  ident: 2359_CR44
  publication-title: JHEP
  doi: 10.1088/1126-6708/2009/05/053
– volume: A 534
  start-page: 250
  year: 2004
  ident: 2359_CR2
  publication-title: Nucl. Instrum. Meth.
  doi: 10.1016/j.nima.2004.07.096
– volume: B 358
  start-page: 332
  year: 1995
  ident: 2359_CR8
  publication-title: Phys. Lett.
  doi: 10.1016/0370-2693(95)00971-M
– ident: 2359_CR11
– volume: 02
  start-page: 056
  year: 2004
  ident: 2359_CR7
  publication-title: JHEP
  doi: 10.1088/1126-6708/2004/02/056
– volume: D 82
  start-page: 074002
  year: 2010
  ident: 2359_CR31
  publication-title: Phys. Rev.
– volume: 02
  start-page: 007
  year: 2009
  ident: 2359_CR37
  publication-title: JHEP
  doi: 10.1088/1126-6708/2009/02/007
– volume: 183
  start-page: 268
  year: 2008
  ident: 2359_CR23
  publication-title: Nucl. Phys. Proc. Suppl.
  doi: 10.1016/j.nuclphysbps.2008.09.115
– volume: 83
  start-page: 4690
  year: 1999
  ident: 2359_CR78
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.83.4690
– volume: 01
  start-page: 010
  year: 2001
  ident: 2359_CR36
  publication-title: JHEP
  doi: 10.1088/1126-6708/2001/01/010
– volume: 06
  start-page: 043
  year: 2010
  ident: 2359_CR53
  publication-title: JHEP
  doi: 10.1007/JHEP06(2010)043
– volume: D 83
  start-page: 034006
  year: 2011
  ident: 2359_CR72
  publication-title: Phys. Rev.
– ident: 2359_CR76
– volume: B 439
  start-page: 157
  year: 1998
  ident: 2359_CR9
  publication-title: Phys. Lett.
  doi: 10.1016/S0370-2693(98)01015-6
– volume: 08
  start-page: 015
  year: 2002
  ident: 2359_CR39
  publication-title: JHEP
  doi: 10.1088/1126-6708/2002/08/015
– volume: 05
  start-page: 026
  year: 2006
  ident: 2359_CR35
  publication-title: JHEP
  doi: 10.1088/1126-6708/2006/05/026
– volume: 102
  start-page: 222001
  year: 2009
  ident: 2359_CR29
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.222001
– ident: 2359_CR71
– ident: 2359_CR3
– volume: 09
  start-page: 122
  year: 2008
  ident: 2359_CR24
  publication-title: JHEP
  doi: 10.1088/1126-6708/2008/09/122
– volume: 200
  start-page: 301
  year: 1991
  ident: 2359_CR59
  publication-title: Phys. Rept.
  doi: 10.1016/0370-1573(91)90091-Y
– ident: 2359_CR13
– volume: 02
  start-page: 017
  year: 2009
  ident: 2359_CR49
  publication-title: JHEP
  doi: 10.1088/1126-6708/2009/02/017
– volume: 81
  start-page: 357
  year: 1994
  ident: 2359_CR4
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/0010-4655(94)90084-1
– volume: B 306
  start-page: 759
  year: 1988
  ident: 2359_CR62
  publication-title: Nucl. Phys.
  doi: 10.1016/0550-3213(88)90442-7
– volume: D 73
  start-page: 054002
  year: 2006
  ident: 2359_CR57
  publication-title: Phys. Rev.
– volume: 12
  start-page: 039
  year: 2008
  ident: 2359_CR16
  publication-title: JHEP
  doi: 10.1088/1126-6708/2008/12/039
– volume: 180
  start-page: 1614
  year: 2009
  ident: 2359_CR17
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2009.02.018
– volume: 106
  start-page: 092001
  year: 2011
  ident: 2359_CR32
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.092001
– volume: C 53
  start-page: 501
  year: 2008
  ident: 2359_CR21
  publication-title: Eur. Phys. J.
  doi: 10.1140/epjc/s10052-007-0495-0
– volume: 01
  start-page: 123
  year: 2010
  ident: 2359_CR65
  publication-title: JHEP
  doi: 10.1007/JHEP01(2010)123
– ident: 2359_CR54
– ident: 2359_CR27
– volume: D 67
  start-page: 014026
  year: 2003
  ident: 2359_CR61
  publication-title: Phys. Rev.
– ident: 2359_CR75
– volume: 03
  start-page: 125
  year: 2011
  ident: 2359_CR74
  publication-title: JHEP
  doi: 10.1007/JHEP03(2011)125
– volume: 06
  start-page: 029
  year: 2002
  ident: 2359_CR50
  publication-title: JHEP
  doi: 10.1088/1126-6708/2002/06/029
– volume: B 571
  start-page: 51
  year: 2000
  ident: 2359_CR60
  publication-title: Nucl. Phys.
  doi: 10.1016/S0550-3213(99)00809-3
– volume: C 71
  start-page: 1541
  year: 2011
  ident: 2359_CR18
  publication-title: Eur. Phys. J.
  doi: 10.1140/epjc/s10052-011-1541-5
– volume: 07
  start-page: 001
  year: 2003
  ident: 2359_CR14
  publication-title: JHEP
  doi: 10.1088/1126-6708/2003/07/001
– ident: 2359_CR22
– ident: 2359_CR45
– volume: 01
  start-page: 013
  year: 2007
  ident: 2359_CR41
  publication-title: JHEP
  doi: 10.1088/1126-6708/2007/01/013
– ident: 2359_CR64
– ident: 2359_CR12
– volume: B 715
  start-page: 499
  year: 2005
  ident: 2359_CR63
  publication-title: Nucl. Phys.
  doi: 10.1016/j.nuclphysb.2005.02.030
– volume: 03
  start-page: 042
  year: 2008
  ident: 2359_CR33
  publication-title: JHEP
  doi: 10.1088/1126-6708/2008/03/042
– volume: 04
  start-page: 077
  year: 2009
  ident: 2359_CR28
  publication-title: JHEP
  doi: 10.1088/1126-6708/2009/04/077
– volume: 05
  start-page: 040
  year: 2004
  ident: 2359_CR40
  publication-title: JHEP
  doi: 10.1088/1126-6708/2004/05/040
– volume: 83
  start-page: 3370
  year: 1999
  ident: 2359_CR79
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.83.3370
– volume: 09
  start-page: 106
  year: 2009
  ident: 2359_CR30
  publication-title: JHEP
  doi: 10.1088/1126-6708/2009/09/106
– volume: D 70
  start-page: 114009
  year: 2004
  ident: 2359_CR47
  publication-title: Phys. Rev.
– volume: 09
  start-page: 028
  year: 2007
  ident: 2359_CR6
  publication-title: JHEP
  doi: 10.1088/1126-6708/2007/09/028
– volume: 07
  start-page: 054
  year: 2005
  ident: 2359_CR43
  publication-title: JHEP
  doi: 10.1088/1126-6708/2005/07/054
– volume: 08
  start-page: 007
  year: 2003
  ident: 2359_CR51
  publication-title: JHEP
  doi: 10.1088/1126-6708/2003/08/007
– volume: 176
  start-page: 300
  year: 2007
  ident: 2359_CR66
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2006.11.010
– volume: C 56
  start-page: 435
  year: 2008
  ident: 2359_CR68
  publication-title: Eur. Phys. J.
  doi: 10.1140/epjc/s10052-008-0663-x
– volume: 02
  start-page: 027
  year: 2003
  ident: 2359_CR5
  publication-title: JHEP
  doi: 10.1088/1126-6708/2003/02/027
– volume: 11
  start-page: 063
  year: 2001
  ident: 2359_CR38
  publication-title: JHEP
  doi: 10.1088/1126-6708/2001/11/063
– volume: B 843
  start-page: 638
  year: 2011
  ident: 2359_CR73
  publication-title: Nucl. Phys.
  doi: 10.1016/j.nuclphysb.2010.10.015
– ident: 2359_CR67
– volume: D 83
  start-page: 095009
  year: 2011
  ident: 2359_CR48
  publication-title: Phys. Rev.
– ident: 2359_CR1
– ident: 2359_CR19
– ident: 2359_CR15
– volume: 08
  start-page: 085
  year: 2009
  ident: 2359_CR25
  publication-title: JHEP
  doi: 10.1088/1126-6708/2009/08/085
– volume: C 71
  start-page: 1529
  year: 2011
  ident: 2359_CR69
  publication-title: Eur. Phys. J.
  doi: 10.1140/epjc/s10052-010-1529-6
– volume: 05
  start-page: 046
  year: 2002
  ident: 2359_CR42
  publication-title: JHEP
  doi: 10.1088/1126-6708/2002/05/046
– ident: 2359_CR56
– volume: 08
  start-page: 062
  year: 2006
  ident: 2359_CR10
  publication-title: JHEP
  doi: 10.1088/1126-6708/2006/08/062
– volume: C 53
  start-page: 473
  year: 2008
  ident: 2359_CR46
  publication-title: Eur. Phys. J.
  doi: 10.1140/epjc/s10052-007-0490-5
– volume: B 387
  start-page: 467
  year: 1992
  ident: 2359_CR58
  publication-title: Nucl. Phys.
  doi: 10.1016/0550-3213(92)90169-C
– volume: 178
  start-page: 852
  year: 2008
  ident: 2359_CR55
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2008.01.036
– ident: 2359_CR77
– volume: 04
  start-page: 072
  year: 2009
  ident: 2359_CR70
  publication-title: JHEP
  doi: 10.1088/1126-6708/2009/04/072
SSID ssj0015190
Score 2.6055434
Snippet M ad G raph 5 is the new version of the M ad G raph matrix element generator, written in the Python programming language. It implements a number of new,...
MadGraph 5 is the new version of the MadGraph matrix element generator, written in the Python programming language. It implements a number of new, efficient...
SourceID unpaywall
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Classical and Quantum Gravitation
Computer simulation
Elementary Particles
High energy physics
Physics
Physics and Astronomy
Programming languages
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Relativity Theory
String Theory
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFD7MDVEfxCubTumDD9tDtW3SNBVEVDbHYGOIg72VJE0VGV11G-K_N-ltA5nPzYV-uZyPc3K-A3Dlo1AZ0tA1pfC4iRHmJmc2Nn2BIkU4JCVUZyMPhqQ3xv2JO6nAsMiF0c8qizsxvajDmdA-8hutU6dMEbad--TT1FWjdHS1KKHB8tIK4V0qMbYFNUcrY1Wh9tgZjl7KuILiK1Yh8GN5N_1eZ2SRljaCbVsXZF-3TSvCWcZI92BnGSfs55tNp2tmqHsA-zl_NB6yBT-EioyPYDt9xynmx1AfsPBZa1Ab7q3xNlPDGTzNUTmBcbfz-tQz8-IHpkCuvTCROojMcSPhMZ8JIqQf6ZCJTSPqyoi7MnQJdewI-4xTqXAh3PMji_oytBiWDjqFajyLZR0M7EidqoEt5iDMuKQ2YUgQxfwEksShDbgufjsQuTK4LlAxDQpN4wynQOMU2LpDq-yQZKIYm5s2CxyD_HTMg9VaNqBdYLv6vHGodgn-n2k_3mWy1vbs_2nPYTfzDWtvShOqi6-lvFDkYsEv8x3zCwCAyHA
  priority: 102
  providerName: ProQuest
– databaseName: SpringerOpen Free (Free internet resource, activated by CARLI)
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8JAEJ0oxqgH42dA0fTgAQ7VtvvB1pshICHBeJCEW7O7nWoMKUQgxn_vbj8AJR48d2eavm47L_t23gLchCQ2hTRmLuqWcimhylXSp26oSWIIBwoubDfy4In3hrQ_YqPCJMn2wvzS7-_6vc6zxxu2TDXNr3QbdkyF4pkqy9tLucDQEK_07dkM-llyVjxyKX0ewN4incqvTzker1WX7hEcFrTQecjf4zFsYXoCu9n2TD07hepAxo_WWtph987rxKRzVNZ6cgbDbuel3XOLMw1cTZg_d4n5vmTAEt2SodRcY5hYJcQXiWCYKIYx4yLwExpKJdBwFa5aYeKJEGNPUgzIOVTSSYpVcGiAtgODejIgVCoUPpdEc0PoNEEeiBrclo8d6cLw2547MY5Kq-Icp8jiFPk2oLEMmOZeF38PrZc4RsWkn0XWStCwBeoHNWiW2K4u_5mquQR_47bvbzhdG3vxj7yXsJ-v_9oVkzpU5h8LvDIEYq6us8nzDXVnuXM
  priority: 102
  providerName: Springer Nature
Title MadGraph 5: going beyond
URI https://link.springer.com/article/10.1007/JHEP06(2011)128
https://www.proquest.com/docview/2398244412
https://link.springer.com/content/pdf/10.1007/JHEP06(2011)128.pdf
UnpaywallVersion publishedVersion
Volume 2011
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015190
  issn: 1126-6708
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015190
  issn: 1126-6708
  databaseCode: C24
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015190
  issn: 1126-6708
  databaseCode: U2A
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerOpen Free (Free internet resource, activated by CARLI)
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015190
  issn: 1126-6708
  databaseCode: C6C
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxsxEB4am9L20DRtStImZg89xAc5Xr1W6s0xdkwgxoQY2tMiabUJrdmYek1pfn2k3ZXzKDmUXsQuejF6zYdm9A3AF0kyp0gzhqxJNKKEaqRVTJE0JHeAwwou_Gvk8ymfzOnZNxa8CVfB2z2YJOs3DZ6lqSiPl1kerPrHZ5PRrM-PvPLqugO25_K2oM2Zg-MtaM-ns8H3ysqJJXKnr6wCrGCOeFJFqHPfCXJqkQeqH9fij2u7fNDiYy11Dz031tI38GpdLNWf32qxeKCQxtuggyi1H8rP3rrUPXP7hOXxv2R9B28buBoN6vW1Ay9s8R5eVm6jZvUB9s5VduopryP2Nbq6cV1EunoSswvz8ehyOEFNrAVkCItLRNy-V5jlJlFSGW6szL2FJha5YDbXzGaMCxznVCotrMNQXCcy7wtps76iFpOP0CpuCrsHEcXWvwyhfYUJVdqKmCtiuAOahliOxT70wtimpiEi9_EwFmmgUK5FTr3IaewrHG0qLGsOjueLHoTJSpvNuEo9xaFDMTTG-9AN432f_WxT3c0M_9VtvVw2ZT_9Q9nP8Lq-l_Y3OQfQKn-t7aEDNqXuwJYYn3agfTKazi7c3xBTn_KhS-d40GmW9h2Vle9D
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTwIxEJ4QiUEPxmdAUfegCRxW99GWrgkxPlDkFWIk4ba23a7GEECBEP6cv80WdoHE4M3z9rGdne18nel8A3DmuYEypAE2pShwE7mIm5zZyPSEGyrAISmhOhu53iDlFqq0cTsB33EujL5WGe-J04066AntI7_UPHXKFCHbue5_mrpqlI6uxiU0WFRaIShOKcaixI6qnIzVEW5QfLpX3_vccR5KL3dlM6oyYAoX20NTHegxc3AoCsxjggjphTo2YdOQYhlyLANMqGOHyGOcSvUChBe80KKeDCyGpCY-UCYgqZbpqcNf8rbUaD7P4xgKH1kxoZBVuKyUS02L5LTRzdu6APyyLVwA3HlMdhNSo26fTcas01kyew_bsBXhVeNmpmA7kJDdXVif3hsVgz1I11nwqDmvDXxlvPXUcAaf5sTsQ-tfxHAAa91eV6bBQI7UqSHIYo6LGJfUJswVRCFN4Uri0AxcxMv2RcRErgtidPyYQ3kmJ1_Lybd1h9y8Q39GwrG6aTaWox_9jQN_oTsZyMeyXTxeOVR-Lvxf0368y_5S28O_pz2FVPmlXvNrT43qEWzM_NLak5OFteHXSB4rYDPkJ5H2GPD63wr7A0UABcE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZSwMxEB5E8XoQT7zdBwX7sHaPJJsVRERb23rQBwXf1iSbVaS01bYU_5q_zswebUH0zedNMuzs7Mxkjm8ADkM_NoY0prZWgbSJT6QthUvsUPmJcTg0Zxy7ke_uWe2RNJ7o0xR8Fb0wWFZZ6MRUUccdhTHyMuLUGVNEXK-c5GURzavqeffdxglSmGktxmlkInKjP4fm-tY7q1-Zb33kedXKw2XNzicM2Mqnbt82l3kqPJqoQIRCMaXDBPMSLk841YmkOqaMe25CQiG5NsSZDMLE4aGOHUE0gh4Y9T8TIIo7dqlXr0cZDOMZOQWUkBOUG7VK02HHaG5LLo5-n7SCY9d2lI1dhPlBuys-h6LVmjB41WVYyj1V6yITrRWY0u1VmE0rRlVvDTbvRHyNaNcWPbVeOuY4S6bdMOvw-C9M2IDpdqetN8EinsamEOIIzydCau4y4StmfEzla-bxLTgpXjtSOQY5jsJoRQV6csanCPkUubjheLShm8Fv_L50t-BjlP-HvWgsNVtQKng7fvzrUaUR83-QfXvV3Ym123-TPYA5I6bRbf3-ZgcWsoA0hnB2Ybr_MdB7xqPpy_1UdCx4_m9Z_QYIewNb
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxsxEB5am9Lk0GeCk7plDz3YB9levVbKLQSnJhDjQw3taZG02pTGrE29prS_PtLuapOm-FB6E-jF6DUfmplvAD5KkjlFmjFkTaIRJVQjrWKKpCG5AxxWcOGjka_nfLakV19Y8CbcBm_3YJKsYxo8S1NRjjdZHqz646vZdDHhA6-8hu6BHbm6p9DlzMHxDnSX88X518rKiSVyr6-sEqxgjnhSZahz5QQ5tcgD1Y8b8fs3u3kw4p9a6h56ttbSQ3i-Kzbq10-1Wj1QSJcvQQdRaj-U29Gu1CPz-xHL43_J-gpeNHA1Oq_P12t4Yos38KxyGzXbt9C7VtknT3kdsbPoZu2miHQVEnMEy8vp54sZanItIENYXCLi7r3CLDeJkspwY2XuLTSxyAWzuWY2Y1zgOKdSaWEdhuI6kflESJtNFLWYHEOnWBe2BxHF1keG0InChCptRcwVMdwBTUMsx-IERmFtU9MQkft8GKs0UCjXIqde5DT2HQZth03NwbG_aT9sVtpcxm3qKQ4diqExPoFhWO_76r1DDdsd_mva-ri0bU__oe07OKj_pf1PTh865Y-dfe-ATak_NEf3Dgns6jM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MadGraph+5%3A+going+beyond&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Alwall%2C+Johan&rft.au=Herquet%2C+Michel&rft.au=Maltoni%2C+Fabio&rft.au=Mattelaer%2C+Olivier&rft.date=2011-06-01&rft.pub=Springer-Verlag&rft.eissn=1029-8479&rft.volume=2011&rft.issue=6&rft_id=info:doi/10.1007%2FJHEP06%282011%29128&rft.externalDocID=10_1007_JHEP06_2011_128
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon