Finite-Time Distributed Average Tracking for Second-Order Nonlinear Systems
This paper studies the distributed average tracking (DAT) problem for multiple reference signals described by the second-order nonlinear dynamical systems. Leveraging the state-dependent gain design and the adaptive control approaches, a couple of DAT algorithms are developed in this paper, which ar...
Saved in:
| Published in | IEEE transaction on neural networks and learning systems Vol. 30; no. 6; pp. 1780 - 1789 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.06.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2162-237X 2162-2388 2162-2388 |
| DOI | 10.1109/TNNLS.2018.2873676 |
Cover
| Abstract | This paper studies the distributed average tracking (DAT) problem for multiple reference signals described by the second-order nonlinear dynamical systems. Leveraging the state-dependent gain design and the adaptive control approaches, a couple of DAT algorithms are developed in this paper, which are named finite-time and adaptive-gain DAT algorithms. Based on the finite-time one, the states of the physical agents in this paper can track the average of the time-varying reference signals within a finite settling time. Furthermore, the finite settling time is also estimated by considering a well-designed Lyapunov function in this paper. Compared with asymptotical DAT algorithms, the proposed finite-time algorithm not only solve finite-time DAT problems but also ensure states of physical agents to achieve an accurate average of the multiple signals. Then, an adaptive-gain DAT algorithm is designed. Based on the adaptive-gain one, the DAT problem is solved without global information. Thus, it is fully distributed. Finally, numerical simulations show the effectiveness of the theoretical results. |
|---|---|
| AbstractList | This paper studies the distributed average tracking (DAT) problem for multiple reference signals described by the second-order nonlinear dynamical systems. Leveraging the state-dependent gain design and the adaptive control approaches, a couple of DAT algorithms are developed in this paper, which are named finite-time and adaptive-gain DAT algorithms. Based on the finite-time one, the states of the physical agents in this paper can track the average of the time-varying reference signals within a finite settling time. Furthermore, the finite settling time is also estimated by considering a well-designed Lyapunov function in this paper. Compared with asymptotical DAT algorithms, the proposed finite-time algorithm not only solve finite-time DAT problems but also ensure states of physical agents to achieve an accurate average of the multiple signals. Then, an adaptive-gain DAT algorithm is designed. Based on the adaptive-gain one, the DAT problem is solved without global information. Thus, it is fully distributed. Finally, numerical simulations show the effectiveness of the theoretical results.This paper studies the distributed average tracking (DAT) problem for multiple reference signals described by the second-order nonlinear dynamical systems. Leveraging the state-dependent gain design and the adaptive control approaches, a couple of DAT algorithms are developed in this paper, which are named finite-time and adaptive-gain DAT algorithms. Based on the finite-time one, the states of the physical agents in this paper can track the average of the time-varying reference signals within a finite settling time. Furthermore, the finite settling time is also estimated by considering a well-designed Lyapunov function in this paper. Compared with asymptotical DAT algorithms, the proposed finite-time algorithm not only solve finite-time DAT problems but also ensure states of physical agents to achieve an accurate average of the multiple signals. Then, an adaptive-gain DAT algorithm is designed. Based on the adaptive-gain one, the DAT problem is solved without global information. Thus, it is fully distributed. Finally, numerical simulations show the effectiveness of the theoretical results. This paper studies the distributed average tracking (DAT) problem for multiple reference signals described by the second-order nonlinear dynamical systems. Leveraging the state-dependent gain design and the adaptive control approaches, a couple of DAT algorithms are developed in this paper, which are named finite-time and adaptive-gain DAT algorithms. Based on the finite-time one, the states of the physical agents in this paper can track the average of the time-varying reference signals within a finite settling time. Furthermore, the finite settling time is also estimated by considering a well-designed Lyapunov function in this paper. Compared with asymptotical DAT algorithms, the proposed finite-time algorithm not only solve finite-time DAT problems but also ensure states of physical agents to achieve an accurate average of the multiple signals. Then, an adaptive-gain DAT algorithm is designed. Based on the adaptive-gain one, the DAT problem is solved without global information. Thus, it is fully distributed. Finally, numerical simulations show the effectiveness of the theoretical results. |
| Author | Huang, Tingwen Zhao, Yu Wen, Guanghui Liu, Yongfang |
| Author_xml | – sequence: 1 givenname: Yu orcidid: 0000-0002-6489-2226 surname: Zhao fullname: Zhao, Yu email: yuzhao5977@gmail.com organization: Research and Development Institute, Northwestern Polytechnical University, Shenzhen, China – sequence: 2 givenname: Yongfang orcidid: 0000-0002-0436-8078 surname: Liu fullname: Liu, Yongfang email: liuyongfangpku@gmail.com organization: School of Automation, Northwestern Polytechnical University, Xi'an, China – sequence: 3 givenname: Guanghui orcidid: 0000-0003-0070-8597 surname: Wen fullname: Wen, Guanghui email: wenguanghui@gmail.com organization: School of Mathematics, Southeast University, Nanjing, China – sequence: 4 givenname: Tingwen orcidid: 0000-0001-9610-846X surname: Huang fullname: Huang, Tingwen email: tingwen.huang@qatar.tamu.edu organization: Texas A&M University at Qatar, Doha, Qatar |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30371392$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kcFO3DAQhi0EKpTyAlSqIvXSS7b2OOvYR0QLVKyWAzn0ZjnJGJkmNrUdJN6-WXbZA4fOZUaj758Zzf-RHPrgkZBzRheMUfW9Wa9X9wugTC5A1lzU4oCcABNQApfycF_Xv4_JWUqPdA5Bl6JSH8gxp7xmXMEJub1y3mUsGzdi8cOlHF07ZeyLi2eM5gGLJpruj_MPhQ2xuMcu-L68iz3GYh384Dyauf2SMo7pEzmyZkh4tsunpLn62VzelKu761-XF6uy40uWS5BWSaRSdMy2vBK16dvOtm0PUAGIGiyrTau4hIorCwIpt1gpIwSXikp-Sr5txz7F8HfClPXoUofDYDyGKWlgIBQFxdSMfn2HPoYp-vk4DcBpzSTIDfVlR03tiL1-im408UW_fWkGYAt0MaQU0e4RRvXGDf3qht64oXduzCL5TtS5bLILPkfjhv9LP2-lDhH3u-SSzQ9g_B-8VJVW |
| CODEN | ITNNAL |
| CitedBy_id | crossref_primary_10_1109_TAC_2020_3046029 crossref_primary_10_1109_TNSE_2022_3197131 crossref_primary_10_1109_TCSII_2020_2965655 crossref_primary_10_1109_TNNLS_2018_2885374 crossref_primary_10_1002_asjc_2365 crossref_primary_10_1109_TAC_2022_3179219 crossref_primary_10_1109_TSMC_2021_3064152 crossref_primary_10_1007_s11424_023_2461_9 crossref_primary_10_1177_01423312221083785 crossref_primary_10_1016_j_ifacol_2022_05_004 crossref_primary_10_1109_TNNLS_2020_2978854 crossref_primary_10_1109_TSMC_2023_3323508 crossref_primary_10_1016_j_ifacol_2020_12_963 crossref_primary_10_1016_j_isatra_2021_06_003 crossref_primary_10_1109_TCSII_2020_3048144 crossref_primary_10_1109_TNSE_2021_3115114 crossref_primary_10_1016_j_automatica_2022_110320 crossref_primary_10_3390_app14167304 crossref_primary_10_1016_j_jfranklin_2019_06_034 crossref_primary_10_1109_TCSI_2021_3104933 crossref_primary_10_1109_TCSI_2020_2991101 crossref_primary_10_1109_TCYB_2022_3223894 crossref_primary_10_1109_TNNLS_2021_3054128 crossref_primary_10_1109_TSMC_2023_3261347 crossref_primary_10_1109_TSMC_2020_3034765 crossref_primary_10_1109_TNNLS_2019_2957069 crossref_primary_10_1080_00207721_2020_1849860 crossref_primary_10_1109_TNNLS_2021_3058184 crossref_primary_10_1109_ACCESS_2020_3036927 crossref_primary_10_1007_s00034_021_01818_2 crossref_primary_10_1016_j_chaos_2024_115728 crossref_primary_10_1016_j_jfranklin_2023_01_021 |
| Cites_doi | 10.1016/j.automatica.2012.05.008 10.1109/TAC.2012.2199176 10.1109/CDC.2010.5717485 10.1109/TIP.2017.2777183 10.1109/TNNLS.2016.2610140 10.1016/j.automatica.2013.04.040 10.1109/TAC.2008.2006925 10.1109/TIP.2015.2481325 10.1109/TNNLS.2015.2443064 10.1007/978-94-015-7793-9 10.1109/TSMCB.2009.2031624 10.1109/TAC.2012.2208295 10.1016/j.automatica.2012.06.031 10.1109/MCS.2007.338264 10.1109/TSMC.2016.2573584 10.1016/j.automatica.2016.09.005 10.1109/TASE.2016.2635979 10.1016/j.automatica.2015.11.005 10.1109/ACC.2007.4282370 10.1016/j.sysconle.2010.06.016 10.1109/TNNLS.2016.2599199 10.1007/978-1-4613-0163-9 10.1016/j.automatica.2010.10.050 10.1016/j.automatica.2017.12.030 10.1109/TAC.2017.2669321 10.1109/TNNLS.2015.2424225 10.1109/JPROC.2006.887293 10.1109/TNNLS.2014.2315535 10.1016/j.automatica.2007.07.004 10.1109/TAC.2005.846556 10.1109/CVPR.2014.156 10.1109/CDC.2006.377078 10.1109/TCYB.2018.2859345 10.1109/TAC.2011.2146830 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1109/TNNLS.2018.2873676 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Materials Research Database PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2162-2388 |
| EndPage | 1789 |
| ExternalDocumentID | 30371392 10_1109_TNNLS_2018_2873676 8513891 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: Australian Research Council grantid: DE180101268 funderid: 10.13039/501100000923 – fundername: China Postdoctoral Science Foundation grantid: 2017M623244; 2018T111097; 2018M633575 funderid: 10.13039/501100002858 – fundername: Fundamental Research Funds for the Central Universities of China grantid: 3102018jcc038; 2242018k1G004 – fundername: Natural Science Foundation of Shanxi Province grantid: 2017JQ6016; 2018JQ6073 funderid: 10.13039/501100004480 – fundername: Source Innovation Program of Qindao grantid: 18-2-2-39-jch – fundername: Fundamental Research for Science and Technology Planning Project of Shenzhen grantid: JCYJ20170306153912850 – fundername: National Natural Science Foundation of China grantid: 61603301; 61603300; 61722303; 61673104 funderid: 10.13039/501100001809 – fundername: Qatar National Research Fund grantid: NPRP 9 166-1-031 funderid: 10.13039/100008982 – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20170079 funderid: 10.13039/501100004608 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION NPM RIG 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c351t-28f98e086c1fb3467adbcfbbd22422672f17ab9382439f26e03fe49a66389083 |
| IEDL.DBID | RIE |
| ISSN | 2162-237X 2162-2388 |
| IngestDate | Wed Oct 01 07:29:20 EDT 2025 Sun Jun 29 16:44:19 EDT 2025 Mon Jul 21 05:58:17 EDT 2025 Wed Oct 01 00:44:47 EDT 2025 Thu Apr 24 23:11:47 EDT 2025 Wed Aug 27 02:46:56 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c351t-28f98e086c1fb3467adbcfbbd22422672f17ab9382439f26e03fe49a66389083 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-0436-8078 0000-0002-6489-2226 0000-0003-0070-8597 0000-0001-9610-846X |
| PMID | 30371392 |
| PQID | 2230718289 |
| PQPubID | 85436 |
| PageCount | 10 |
| ParticipantIDs | proquest_journals_2230718289 pubmed_primary_30371392 proquest_miscellaneous_2126902919 crossref_primary_10_1109_TNNLS_2018_2873676 ieee_primary_8513891 crossref_citationtrail_10_1109_TNNLS_2018_2873676 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-06-01 |
| PublicationDateYYYYMMDD | 2019-06-01 |
| PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE transaction on neural networks and learning systems |
| PublicationTitleAbbrev | TNNLS |
| PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref12 bai (ref24) 2011 david (ref38) 1987 ref15 ref31 ref30 ref11 ref10 ref1 ref39 ref16 lan (ref18) 2017 ref19 ren (ref2) 2007; 27 spanos (ref27) 2005 zhao (ref34) 2018 lan (ref17) 2016 ref45 ref26 ref25 zhao (ref14) 2018 cao (ref5) 2012; 57 ref20 ref42 ref22 ref44 ref21 ref43 ref28 ghapani (ref33) 2018 ref29 godsil (ref37) 2001 ref8 ref7 ref9 ref4 yu (ref41) 2010; 40 ref3 spanos (ref23) 2005 ref6 zhao (ref36) 2018 ref40 chen (ref32) 2013 |
| References_xml | – ident: ref43 doi: 10.1016/j.automatica.2012.05.008 – year: 2018 ident: ref14 article-title: Designing distributed specified-time consensus protocols for linear multi-agent systems over directed graphs publication-title: IEEE Trans Autom Control – year: 2018 ident: ref33 article-title: Distributed average tracking of physical second-order agents with heterogeneous unknown nonlinear dynamics without constraint on input signals publication-title: IEEE Trans Autom Control – ident: ref31 doi: 10.1109/TAC.2012.2199176 – ident: ref29 doi: 10.1109/CDC.2010.5717485 – year: 2018 ident: ref36 article-title: Distributed average tracking for Lipschitz-type of nonlinear dynamical systems publication-title: IEEE Trans Cybern – year: 2018 ident: ref34 article-title: Edge-based finite-time protocol analysis with final consensus value and settling time estimations publication-title: IEEE Trans Cybern – ident: ref19 doi: 10.1109/TIP.2017.2777183 – ident: ref8 doi: 10.1109/TNNLS.2016.2610140 – year: 2005 ident: ref23 article-title: Distributed sensor fusion using dynamic consensus publication-title: Proc 16th IFAC World Congr – ident: ref42 doi: 10.1016/j.automatica.2013.04.040 – ident: ref25 doi: 10.1109/TAC.2008.2006925 – year: 2005 ident: ref27 article-title: Dynamic consensus on mobile networks publication-title: Proc 16th IFAC World Congr – ident: ref16 doi: 10.1109/TIP.2015.2481325 – ident: ref4 doi: 10.1109/TNNLS.2015.2443064 – ident: ref45 doi: 10.1007/978-94-015-7793-9 – volume: 40 start-page: 881 year: 2010 ident: ref41 article-title: Second-order consensus for multiagent systems with directed topologies and nonlinear dynamics publication-title: IEEE Trans Syst Man Cybern B Cybern doi: 10.1109/TSMCB.2009.2031624 – ident: ref6 doi: 10.1109/TAC.2012.2208295 – ident: ref30 doi: 10.1016/j.automatica.2012.06.031 – year: 1987 ident: ref38 publication-title: Introduction to Modern Statistical Mechanics – volume: 27 start-page: 71 year: 2007 ident: ref2 article-title: Information consensus in multivehicle cooperative control publication-title: IEEE Control Syst Mag doi: 10.1109/MCS.2007.338264 – start-page: 1500 year: 2011 ident: ref24 article-title: Distributed Kalman filtering using the internal model average consensus estimator publication-title: Proc Amer Control Conf – ident: ref10 doi: 10.1109/TSMC.2016.2573584 – ident: ref35 doi: 10.1016/j.automatica.2016.09.005 – ident: ref11 doi: 10.1109/TASE.2016.2635979 – ident: ref12 doi: 10.1016/j.automatica.2015.11.005 – ident: ref26 doi: 10.1109/ACC.2007.4282370 – start-page: 3403 year: 2016 ident: ref17 article-title: Robust joint discriminative feature learning for visual tracking publication-title: Proc Intern Joint Conf Artificial Intel (IJCAI) – ident: ref39 doi: 10.1016/j.sysconle.2010.06.016 – ident: ref20 doi: 10.1109/TNNLS.2016.2599199 – year: 2001 ident: ref37 publication-title: Algebraic Graph Theory doi: 10.1007/978-1-4613-0163-9 – ident: ref40 doi: 10.1016/j.automatica.2010.10.050 – ident: ref13 doi: 10.1016/j.automatica.2017.12.030 – ident: ref7 doi: 10.1109/TAC.2017.2669321 – ident: ref21 doi: 10.1109/TNNLS.2015.2424225 – start-page: 4118 year: 2017 ident: ref18 article-title: Robust MIL-based feature template learning for object tracking publication-title: Proc 31st AAAI Conf Artif Intell – ident: ref1 doi: 10.1109/JPROC.2006.887293 – ident: ref22 doi: 10.1109/TNNLS.2014.2315535 – ident: ref3 doi: 10.1016/j.automatica.2007.07.004 – start-page: 17 year: 2013 ident: ref32 article-title: Tracking the average of time-varying nonsmooth signals for double-integrator agents with a fixed topology publication-title: Proc Amer Control Conf – ident: ref44 doi: 10.1109/TAC.2005.846556 – ident: ref15 doi: 10.1109/CVPR.2014.156 – ident: ref28 doi: 10.1109/CDC.2006.377078 – ident: ref9 doi: 10.1109/TCYB.2018.2859345 – volume: 57 start-page: 33 year: 2012 ident: ref5 article-title: Distributed coordinated tracking with reduced interaction via a variable structure approach publication-title: IEEE Trans Autom Control doi: 10.1109/TAC.2011.2146830 |
| SSID | ssj0000605649 |
| Score | 2.4723158 |
| Snippet | This paper studies the distributed average tracking (DAT) problem for multiple reference signals described by the second-order nonlinear dynamical systems.... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1780 |
| SubjectTerms | Adaptive algorithms Adaptive control adaptive-gain algorithm Algorithms Central Processing Unit Computer simulation Convergence distributed average tracking (DAT) Finite-time algorithm Heuristic algorithms Learning systems Liapunov functions Multi-agent systems multiple signals Nonlinear dynamical systems nonlinear dynamics Nonlinear systems Reference signals Settling Tracking |
| Title | Finite-Time Distributed Average Tracking for Second-Order Nonlinear Systems |
| URI | https://ieeexplore.ieee.org/document/8513891 https://www.ncbi.nlm.nih.gov/pubmed/30371392 https://www.proquest.com/docview/2230718289 https://www.proquest.com/docview/2126902919 |
| Volume | 30 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2162-2388 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605649 issn: 2162-237X databaseCode: RIE dateStart: 20120101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3LTxsxEIdHgVMv5ZFSwkuu1Bt1WHsd7_qIaCPUNuGQIOW2sr22hKiSCpILfz0z-5JALeIWbbyJ14_1N_bMbwC-BkUi5InlOk8UVyIm3PqouCa4NdGilUGxw5Opvr5VPxejRQ--dbEwIYTK-SwM6WN1ll-u_Ia2yi6QDuhYbQu2slzXsVrdfkqCXK4r2pVCSy7TbNHGyCTmYj6d_p6RI1c-RBOBVMperENVYpX_M2a11ox3YNLWsnYxuR9u1m7on14JOL73MXbhYwOd7LIeJXvQC8t92GkTOrBmfvfh1_iOEJRTXAj7TpK6lA0rlOwSBzy-eBiubJ721hmiLpuRLV3yGxLvZNNacsPi5VoD_RPMxz_mV9e8ybbAfToSay7zaPKAFo4X0aX4_rSl89G5Ehd5ZLRMRpFZZ9JcIsNEqUOSxqCM1cQ8CHIHsL1cLcMhMERGr6zJHbKncsI5pASFIJVFKzK8OgDRNn3hGyVySojxp6gsksQUVXcV1F1F010DOO_u-VvrcLxZuk_N3pVsWnwAJ20PF81UfSwkucILMjwH8KX7GicZnZzYZVhtsIyQ2iTSCCzzuR4Z3W-nJHqIlHn07_88hg9YM1N7l53A9vphE06RY9burBrAz28u6yU |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3LTxsxEIdHPA5wKVCgTcvDlbhRh7XX2V0fERAFSJYDqZTbyvbaUtUqqdrk0r--M_uSigBxizbexOvH-ht75jcAZ16RCHlkeJJFiisRIm5cUDwhuNXBoJVBscOTPBl9U3ezwWwNvnaxMN77yvnM9-ljdZZfLtyKtsoukA7oWG0dNgdKqUEdrdXtqERI5knFu1Ikkss4nbVRMpG-mOb5-JFcubI-GgmkU_bfSlSlVnmZMqvVZrgDk7aetZPJj_5qafvu7xMJx7c-yC68a7CTXdbjZA_W_Pw97LQpHVgzw_fhfvidIJRTZAi7JlFdyoflS3aJQx5fPQzXNke76wxhlz2SNV3yB5LvZHktumHwcq2CfgDT4c30asSbfAvcxQOx5DILOvNo4zgRbIxvUFNaF6wtcZlHSktlEKmxOs4kUkyQiY_i4JU2CVEPotwhbMwXc_8RGEKjU0ZnFulTWWEtcoJClEqDESle7YFom75wjRY5pcT4WVQ2SaSLqrsK6q6i6a4enHf3_KqVOF4tvU_N3pVsWrwHR20PF81k_VNIcoYXZHr24Ev3NU4zOjsxc79YYRkhEx1JLbDMh3pkdL8dk-whcuan5__zFLZG08m4GN_m959hG2upa1-zI9hY_l75Y6SapT2pBvM_5oLucg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finite-Time+Distributed+Average+Tracking+for+Second-Order+Nonlinear+Systems&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Zhao%2C+Yu&rft.au=Liu%2C+Yongfang&rft.au=Wen%2C+Guanghui&rft.au=Huang%2C+Tingwen&rft.date=2019-06-01&rft.issn=2162-2388&rft.eissn=2162-2388&rft.volume=30&rft.issue=6&rft.spage=1780&rft_id=info:doi/10.1109%2FTNNLS.2018.2873676&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |