Finite-Time Distributed Average Tracking for Second-Order Nonlinear Systems

This paper studies the distributed average tracking (DAT) problem for multiple reference signals described by the second-order nonlinear dynamical systems. Leveraging the state-dependent gain design and the adaptive control approaches, a couple of DAT algorithms are developed in this paper, which ar...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 30; no. 6; pp. 1780 - 1789
Main Authors Zhao, Yu, Liu, Yongfang, Wen, Guanghui, Huang, Tingwen
Format Journal Article
LanguageEnglish
Published United States IEEE 01.06.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2162-237X
2162-2388
2162-2388
DOI10.1109/TNNLS.2018.2873676

Cover

Abstract This paper studies the distributed average tracking (DAT) problem for multiple reference signals described by the second-order nonlinear dynamical systems. Leveraging the state-dependent gain design and the adaptive control approaches, a couple of DAT algorithms are developed in this paper, which are named finite-time and adaptive-gain DAT algorithms. Based on the finite-time one, the states of the physical agents in this paper can track the average of the time-varying reference signals within a finite settling time. Furthermore, the finite settling time is also estimated by considering a well-designed Lyapunov function in this paper. Compared with asymptotical DAT algorithms, the proposed finite-time algorithm not only solve finite-time DAT problems but also ensure states of physical agents to achieve an accurate average of the multiple signals. Then, an adaptive-gain DAT algorithm is designed. Based on the adaptive-gain one, the DAT problem is solved without global information. Thus, it is fully distributed. Finally, numerical simulations show the effectiveness of the theoretical results.
AbstractList This paper studies the distributed average tracking (DAT) problem for multiple reference signals described by the second-order nonlinear dynamical systems. Leveraging the state-dependent gain design and the adaptive control approaches, a couple of DAT algorithms are developed in this paper, which are named finite-time and adaptive-gain DAT algorithms. Based on the finite-time one, the states of the physical agents in this paper can track the average of the time-varying reference signals within a finite settling time. Furthermore, the finite settling time is also estimated by considering a well-designed Lyapunov function in this paper. Compared with asymptotical DAT algorithms, the proposed finite-time algorithm not only solve finite-time DAT problems but also ensure states of physical agents to achieve an accurate average of the multiple signals. Then, an adaptive-gain DAT algorithm is designed. Based on the adaptive-gain one, the DAT problem is solved without global information. Thus, it is fully distributed. Finally, numerical simulations show the effectiveness of the theoretical results.This paper studies the distributed average tracking (DAT) problem for multiple reference signals described by the second-order nonlinear dynamical systems. Leveraging the state-dependent gain design and the adaptive control approaches, a couple of DAT algorithms are developed in this paper, which are named finite-time and adaptive-gain DAT algorithms. Based on the finite-time one, the states of the physical agents in this paper can track the average of the time-varying reference signals within a finite settling time. Furthermore, the finite settling time is also estimated by considering a well-designed Lyapunov function in this paper. Compared with asymptotical DAT algorithms, the proposed finite-time algorithm not only solve finite-time DAT problems but also ensure states of physical agents to achieve an accurate average of the multiple signals. Then, an adaptive-gain DAT algorithm is designed. Based on the adaptive-gain one, the DAT problem is solved without global information. Thus, it is fully distributed. Finally, numerical simulations show the effectiveness of the theoretical results.
This paper studies the distributed average tracking (DAT) problem for multiple reference signals described by the second-order nonlinear dynamical systems. Leveraging the state-dependent gain design and the adaptive control approaches, a couple of DAT algorithms are developed in this paper, which are named finite-time and adaptive-gain DAT algorithms. Based on the finite-time one, the states of the physical agents in this paper can track the average of the time-varying reference signals within a finite settling time. Furthermore, the finite settling time is also estimated by considering a well-designed Lyapunov function in this paper. Compared with asymptotical DAT algorithms, the proposed finite-time algorithm not only solve finite-time DAT problems but also ensure states of physical agents to achieve an accurate average of the multiple signals. Then, an adaptive-gain DAT algorithm is designed. Based on the adaptive-gain one, the DAT problem is solved without global information. Thus, it is fully distributed. Finally, numerical simulations show the effectiveness of the theoretical results.
Author Huang, Tingwen
Zhao, Yu
Wen, Guanghui
Liu, Yongfang
Author_xml – sequence: 1
  givenname: Yu
  orcidid: 0000-0002-6489-2226
  surname: Zhao
  fullname: Zhao, Yu
  email: yuzhao5977@gmail.com
  organization: Research and Development Institute, Northwestern Polytechnical University, Shenzhen, China
– sequence: 2
  givenname: Yongfang
  orcidid: 0000-0002-0436-8078
  surname: Liu
  fullname: Liu, Yongfang
  email: liuyongfangpku@gmail.com
  organization: School of Automation, Northwestern Polytechnical University, Xi'an, China
– sequence: 3
  givenname: Guanghui
  orcidid: 0000-0003-0070-8597
  surname: Wen
  fullname: Wen, Guanghui
  email: wenguanghui@gmail.com
  organization: School of Mathematics, Southeast University, Nanjing, China
– sequence: 4
  givenname: Tingwen
  orcidid: 0000-0001-9610-846X
  surname: Huang
  fullname: Huang, Tingwen
  email: tingwen.huang@qatar.tamu.edu
  organization: Texas A&M University at Qatar, Doha, Qatar
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30371392$$D View this record in MEDLINE/PubMed
BookMark eNp9kcFO3DAQhi0EKpTyAlSqIvXSS7b2OOvYR0QLVKyWAzn0ZjnJGJkmNrUdJN6-WXbZA4fOZUaj758Zzf-RHPrgkZBzRheMUfW9Wa9X9wugTC5A1lzU4oCcABNQApfycF_Xv4_JWUqPdA5Bl6JSH8gxp7xmXMEJub1y3mUsGzdi8cOlHF07ZeyLi2eM5gGLJpruj_MPhQ2xuMcu-L68iz3GYh384Dyauf2SMo7pEzmyZkh4tsunpLn62VzelKu761-XF6uy40uWS5BWSaRSdMy2vBK16dvOtm0PUAGIGiyrTau4hIorCwIpt1gpIwSXikp-Sr5txz7F8HfClPXoUofDYDyGKWlgIBQFxdSMfn2HPoYp-vk4DcBpzSTIDfVlR03tiL1-im408UW_fWkGYAt0MaQU0e4RRvXGDf3qht64oXduzCL5TtS5bLILPkfjhv9LP2-lDhH3u-SSzQ9g_B-8VJVW
CODEN ITNNAL
CitedBy_id crossref_primary_10_1109_TAC_2020_3046029
crossref_primary_10_1109_TNSE_2022_3197131
crossref_primary_10_1109_TCSII_2020_2965655
crossref_primary_10_1109_TNNLS_2018_2885374
crossref_primary_10_1002_asjc_2365
crossref_primary_10_1109_TAC_2022_3179219
crossref_primary_10_1109_TSMC_2021_3064152
crossref_primary_10_1007_s11424_023_2461_9
crossref_primary_10_1177_01423312221083785
crossref_primary_10_1016_j_ifacol_2022_05_004
crossref_primary_10_1109_TNNLS_2020_2978854
crossref_primary_10_1109_TSMC_2023_3323508
crossref_primary_10_1016_j_ifacol_2020_12_963
crossref_primary_10_1016_j_isatra_2021_06_003
crossref_primary_10_1109_TCSII_2020_3048144
crossref_primary_10_1109_TNSE_2021_3115114
crossref_primary_10_1016_j_automatica_2022_110320
crossref_primary_10_3390_app14167304
crossref_primary_10_1016_j_jfranklin_2019_06_034
crossref_primary_10_1109_TCSI_2021_3104933
crossref_primary_10_1109_TCSI_2020_2991101
crossref_primary_10_1109_TCYB_2022_3223894
crossref_primary_10_1109_TNNLS_2021_3054128
crossref_primary_10_1109_TSMC_2023_3261347
crossref_primary_10_1109_TSMC_2020_3034765
crossref_primary_10_1109_TNNLS_2019_2957069
crossref_primary_10_1080_00207721_2020_1849860
crossref_primary_10_1109_TNNLS_2021_3058184
crossref_primary_10_1109_ACCESS_2020_3036927
crossref_primary_10_1007_s00034_021_01818_2
crossref_primary_10_1016_j_chaos_2024_115728
crossref_primary_10_1016_j_jfranklin_2023_01_021
Cites_doi 10.1016/j.automatica.2012.05.008
10.1109/TAC.2012.2199176
10.1109/CDC.2010.5717485
10.1109/TIP.2017.2777183
10.1109/TNNLS.2016.2610140
10.1016/j.automatica.2013.04.040
10.1109/TAC.2008.2006925
10.1109/TIP.2015.2481325
10.1109/TNNLS.2015.2443064
10.1007/978-94-015-7793-9
10.1109/TSMCB.2009.2031624
10.1109/TAC.2012.2208295
10.1016/j.automatica.2012.06.031
10.1109/MCS.2007.338264
10.1109/TSMC.2016.2573584
10.1016/j.automatica.2016.09.005
10.1109/TASE.2016.2635979
10.1016/j.automatica.2015.11.005
10.1109/ACC.2007.4282370
10.1016/j.sysconle.2010.06.016
10.1109/TNNLS.2016.2599199
10.1007/978-1-4613-0163-9
10.1016/j.automatica.2010.10.050
10.1016/j.automatica.2017.12.030
10.1109/TAC.2017.2669321
10.1109/TNNLS.2015.2424225
10.1109/JPROC.2006.887293
10.1109/TNNLS.2014.2315535
10.1016/j.automatica.2007.07.004
10.1109/TAC.2005.846556
10.1109/CVPR.2014.156
10.1109/CDC.2006.377078
10.1109/TCYB.2018.2859345
10.1109/TAC.2011.2146830
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2018.2873676
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 1789
ExternalDocumentID 30371392
10_1109_TNNLS_2018_2873676
8513891
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Australian Research Council
  grantid: DE180101268
  funderid: 10.13039/501100000923
– fundername: China Postdoctoral Science Foundation
  grantid: 2017M623244; 2018T111097; 2018M633575
  funderid: 10.13039/501100002858
– fundername: Fundamental Research Funds for the Central Universities of China
  grantid: 3102018jcc038; 2242018k1G004
– fundername: Natural Science Foundation of Shanxi Province
  grantid: 2017JQ6016; 2018JQ6073
  funderid: 10.13039/501100004480
– fundername: Source Innovation Program of Qindao
  grantid: 18-2-2-39-jch
– fundername: Fundamental Research for Science and Technology Planning Project of Shenzhen
  grantid: JCYJ20170306153912850
– fundername: National Natural Science Foundation of China
  grantid: 61603301; 61603300; 61722303; 61673104
  funderid: 10.13039/501100001809
– fundername: Qatar National Research Fund
  grantid: NPRP 9 166-1-031
  funderid: 10.13039/100008982
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20170079
  funderid: 10.13039/501100004608
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-28f98e086c1fb3467adbcfbbd22422672f17ab9382439f26e03fe49a66389083
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Wed Oct 01 07:29:20 EDT 2025
Sun Jun 29 16:44:19 EDT 2025
Mon Jul 21 05:58:17 EDT 2025
Wed Oct 01 00:44:47 EDT 2025
Thu Apr 24 23:11:47 EDT 2025
Wed Aug 27 02:46:56 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-28f98e086c1fb3467adbcfbbd22422672f17ab9382439f26e03fe49a66389083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0436-8078
0000-0002-6489-2226
0000-0003-0070-8597
0000-0001-9610-846X
PMID 30371392
PQID 2230718289
PQPubID 85436
PageCount 10
ParticipantIDs proquest_journals_2230718289
pubmed_primary_30371392
proquest_miscellaneous_2126902919
crossref_primary_10_1109_TNNLS_2018_2873676
ieee_primary_8513891
crossref_citationtrail_10_1109_TNNLS_2018_2873676
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref12
bai (ref24) 2011
david (ref38) 1987
ref15
ref31
ref30
ref11
ref10
ref1
ref39
ref16
lan (ref18) 2017
ref19
ren (ref2) 2007; 27
spanos (ref27) 2005
zhao (ref34) 2018
lan (ref17) 2016
ref45
ref26
ref25
zhao (ref14) 2018
cao (ref5) 2012; 57
ref20
ref42
ref22
ref44
ref21
ref43
ref28
ghapani (ref33) 2018
ref29
godsil (ref37) 2001
ref8
ref7
ref9
ref4
yu (ref41) 2010; 40
ref3
spanos (ref23) 2005
ref6
zhao (ref36) 2018
ref40
chen (ref32) 2013
References_xml – ident: ref43
  doi: 10.1016/j.automatica.2012.05.008
– year: 2018
  ident: ref14
  article-title: Designing distributed specified-time consensus protocols for linear multi-agent systems over directed graphs
  publication-title: IEEE Trans Autom Control
– year: 2018
  ident: ref33
  article-title: Distributed average tracking of physical second-order agents with heterogeneous unknown nonlinear dynamics without constraint on input signals
  publication-title: IEEE Trans Autom Control
– ident: ref31
  doi: 10.1109/TAC.2012.2199176
– ident: ref29
  doi: 10.1109/CDC.2010.5717485
– year: 2018
  ident: ref36
  article-title: Distributed average tracking for Lipschitz-type of nonlinear dynamical systems
  publication-title: IEEE Trans Cybern
– year: 2018
  ident: ref34
  article-title: Edge-based finite-time protocol analysis with final consensus value and settling time estimations
  publication-title: IEEE Trans Cybern
– ident: ref19
  doi: 10.1109/TIP.2017.2777183
– ident: ref8
  doi: 10.1109/TNNLS.2016.2610140
– year: 2005
  ident: ref23
  article-title: Distributed sensor fusion using dynamic consensus
  publication-title: Proc 16th IFAC World Congr
– ident: ref42
  doi: 10.1016/j.automatica.2013.04.040
– ident: ref25
  doi: 10.1109/TAC.2008.2006925
– year: 2005
  ident: ref27
  article-title: Dynamic consensus on mobile networks
  publication-title: Proc 16th IFAC World Congr
– ident: ref16
  doi: 10.1109/TIP.2015.2481325
– ident: ref4
  doi: 10.1109/TNNLS.2015.2443064
– ident: ref45
  doi: 10.1007/978-94-015-7793-9
– volume: 40
  start-page: 881
  year: 2010
  ident: ref41
  article-title: Second-order consensus for multiagent systems with directed topologies and nonlinear dynamics
  publication-title: IEEE Trans Syst Man Cybern B Cybern
  doi: 10.1109/TSMCB.2009.2031624
– ident: ref6
  doi: 10.1109/TAC.2012.2208295
– ident: ref30
  doi: 10.1016/j.automatica.2012.06.031
– year: 1987
  ident: ref38
  publication-title: Introduction to Modern Statistical Mechanics
– volume: 27
  start-page: 71
  year: 2007
  ident: ref2
  article-title: Information consensus in multivehicle cooperative control
  publication-title: IEEE Control Syst Mag
  doi: 10.1109/MCS.2007.338264
– start-page: 1500
  year: 2011
  ident: ref24
  article-title: Distributed Kalman filtering using the internal model average consensus estimator
  publication-title: Proc Amer Control Conf
– ident: ref10
  doi: 10.1109/TSMC.2016.2573584
– ident: ref35
  doi: 10.1016/j.automatica.2016.09.005
– ident: ref11
  doi: 10.1109/TASE.2016.2635979
– ident: ref12
  doi: 10.1016/j.automatica.2015.11.005
– ident: ref26
  doi: 10.1109/ACC.2007.4282370
– start-page: 3403
  year: 2016
  ident: ref17
  article-title: Robust joint discriminative feature learning for visual tracking
  publication-title: Proc Intern Joint Conf Artificial Intel (IJCAI)
– ident: ref39
  doi: 10.1016/j.sysconle.2010.06.016
– ident: ref20
  doi: 10.1109/TNNLS.2016.2599199
– year: 2001
  ident: ref37
  publication-title: Algebraic Graph Theory
  doi: 10.1007/978-1-4613-0163-9
– ident: ref40
  doi: 10.1016/j.automatica.2010.10.050
– ident: ref13
  doi: 10.1016/j.automatica.2017.12.030
– ident: ref7
  doi: 10.1109/TAC.2017.2669321
– ident: ref21
  doi: 10.1109/TNNLS.2015.2424225
– start-page: 4118
  year: 2017
  ident: ref18
  article-title: Robust MIL-based feature template learning for object tracking
  publication-title: Proc 31st AAAI Conf Artif Intell
– ident: ref1
  doi: 10.1109/JPROC.2006.887293
– ident: ref22
  doi: 10.1109/TNNLS.2014.2315535
– ident: ref3
  doi: 10.1016/j.automatica.2007.07.004
– start-page: 17
  year: 2013
  ident: ref32
  article-title: Tracking the average of time-varying nonsmooth signals for double-integrator agents with a fixed topology
  publication-title: Proc Amer Control Conf
– ident: ref44
  doi: 10.1109/TAC.2005.846556
– ident: ref15
  doi: 10.1109/CVPR.2014.156
– ident: ref28
  doi: 10.1109/CDC.2006.377078
– ident: ref9
  doi: 10.1109/TCYB.2018.2859345
– volume: 57
  start-page: 33
  year: 2012
  ident: ref5
  article-title: Distributed coordinated tracking with reduced interaction via a variable structure approach
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/TAC.2011.2146830
SSID ssj0000605649
Score 2.4723158
Snippet This paper studies the distributed average tracking (DAT) problem for multiple reference signals described by the second-order nonlinear dynamical systems....
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1780
SubjectTerms Adaptive algorithms
Adaptive control
adaptive-gain algorithm
Algorithms
Central Processing Unit
Computer simulation
Convergence
distributed average tracking (DAT)
Finite-time algorithm
Heuristic algorithms
Learning systems
Liapunov functions
Multi-agent systems
multiple signals
Nonlinear dynamical systems
nonlinear dynamics
Nonlinear systems
Reference signals
Settling
Tracking
Title Finite-Time Distributed Average Tracking for Second-Order Nonlinear Systems
URI https://ieeexplore.ieee.org/document/8513891
https://www.ncbi.nlm.nih.gov/pubmed/30371392
https://www.proquest.com/docview/2230718289
https://www.proquest.com/docview/2126902919
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3LTxsxEIdHgVMv5ZFSwkuu1Bt1WHsd7_qIaCPUNuGQIOW2sr22hKiSCpILfz0z-5JALeIWbbyJ14_1N_bMbwC-BkUi5InlOk8UVyIm3PqouCa4NdGilUGxw5Opvr5VPxejRQ--dbEwIYTK-SwM6WN1ll-u_Ia2yi6QDuhYbQu2slzXsVrdfkqCXK4r2pVCSy7TbNHGyCTmYj6d_p6RI1c-RBOBVMperENVYpX_M2a11ox3YNLWsnYxuR9u1m7on14JOL73MXbhYwOd7LIeJXvQC8t92GkTOrBmfvfh1_iOEJRTXAj7TpK6lA0rlOwSBzy-eBiubJ721hmiLpuRLV3yGxLvZNNacsPi5VoD_RPMxz_mV9e8ybbAfToSay7zaPKAFo4X0aX4_rSl89G5Ehd5ZLRMRpFZZ9JcIsNEqUOSxqCM1cQ8CHIHsL1cLcMhMERGr6zJHbKncsI5pASFIJVFKzK8OgDRNn3hGyVySojxp6gsksQUVXcV1F1F010DOO_u-VvrcLxZuk_N3pVsWnwAJ20PF81UfSwkucILMjwH8KX7GicZnZzYZVhtsIyQ2iTSCCzzuR4Z3W-nJHqIlHn07_88hg9YM1N7l53A9vphE06RY9burBrAz28u6yU
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3LTxsxEIdHPA5wKVCgTcvDlbhRh7XX2V0fERAFSJYDqZTbyvbaUtUqqdrk0r--M_uSigBxizbexOvH-ht75jcAZ16RCHlkeJJFiisRIm5cUDwhuNXBoJVBscOTPBl9U3ezwWwNvnaxMN77yvnM9-ljdZZfLtyKtsoukA7oWG0dNgdKqUEdrdXtqERI5knFu1Ikkss4nbVRMpG-mOb5-JFcubI-GgmkU_bfSlSlVnmZMqvVZrgDk7aetZPJj_5qafvu7xMJx7c-yC68a7CTXdbjZA_W_Pw97LQpHVgzw_fhfvidIJRTZAi7JlFdyoflS3aJQx5fPQzXNke76wxhlz2SNV3yB5LvZHktumHwcq2CfgDT4c30asSbfAvcxQOx5DILOvNo4zgRbIxvUFNaF6wtcZlHSktlEKmxOs4kUkyQiY_i4JU2CVEPotwhbMwXc_8RGEKjU0ZnFulTWWEtcoJClEqDESle7YFom75wjRY5pcT4WVQ2SaSLqrsK6q6i6a4enHf3_KqVOF4tvU_N3pVsWrwHR20PF81k_VNIcoYXZHr24Ev3NU4zOjsxc79YYRkhEx1JLbDMh3pkdL8dk-whcuan5__zFLZG08m4GN_m959hG2upa1-zI9hY_l75Y6SapT2pBvM_5oLucg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finite-Time+Distributed+Average+Tracking+for+Second-Order+Nonlinear+Systems&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Zhao%2C+Yu&rft.au=Liu%2C+Yongfang&rft.au=Wen%2C+Guanghui&rft.au=Huang%2C+Tingwen&rft.date=2019-06-01&rft.issn=2162-2388&rft.eissn=2162-2388&rft.volume=30&rft.issue=6&rft.spage=1780&rft_id=info:doi/10.1109%2FTNNLS.2018.2873676&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon