BAYESIAN ANALYSIS OF THE ADDITIVE MIXED MODEL FOR RANDOMIZED BLOCK DESIGNS

Summary This paper deals with the Bayesian analysis of the additive mixed model experiments. Consider b randomly chosen subjects who respond once to each of t treatments. The subjects are treated as random effects and the treatment effects are fixed. Suppose that some prior information is available,...

Full description

Saved in:
Bibliographic Details
Published inAustralian & New Zealand journal of statistics Vol. 48; no. 2; pp. 225 - 236
Main Authors Wang, Jenting, Hsu, John S.J.
Format Journal Article
LanguageEnglish
Published Melbourne, Australia Blackwell Publishing Asia 01.06.2006
Subjects
Online AccessGet full text
ISSN1369-1473
1467-842X
DOI10.1111/j.1467-842X.2006.00436.x

Cover

Abstract Summary This paper deals with the Bayesian analysis of the additive mixed model experiments. Consider b randomly chosen subjects who respond once to each of t treatments. The subjects are treated as random effects and the treatment effects are fixed. Suppose that some prior information is available, thus motivating a Bayesian analysis. The Bayesian computation, however, can be difficult in this situation, especially when a large number of treatments is involved. Three computational methods are suggested to perform the analysis. The exact posterior density of any parameter of interest can be simulated based on random realizations taken from a restricted multivariate t distribution. The density can also be simulated using Markov chain Monte Carlo methods. The simulated density is accurate when a large number of random realizations is taken. However, it may take substantial amount of computer time when many treatments are involved. An alternative Laplacian approximation is discussed. The Laplacian method produces smooth and very accurate approximates to posterior densities, and takes only seconds of computer time. An example of a pipeline cracks experiment is used to illustrate the Bayesian approaches and the computational methods.
AbstractList Summary This paper deals with the Bayesian analysis of the additive mixed model experiments. Consider b randomly chosen subjects who respond once to each of t treatments. The subjects are treated as random effects and the treatment effects are fixed. Suppose that some prior information is available, thus motivating a Bayesian analysis. The Bayesian computation, however, can be difficult in this situation, especially when a large number of treatments is involved. Three computational methods are suggested to perform the analysis. The exact posterior density of any parameter of interest can be simulated based on random realizations taken from a restricted multivariate t distribution. The density can also be simulated using Markov chain Monte Carlo methods. The simulated density is accurate when a large number of random realizations is taken. However, it may take substantial amount of computer time when many treatments are involved. An alternative Laplacian approximation is discussed. The Laplacian method produces smooth and very accurate approximates to posterior densities, and takes only seconds of computer time. An example of a pipeline cracks experiment is used to illustrate the Bayesian approaches and the computational methods.
This paper deals with the Bayesian analysis of the additive mixed model experiments. Consider b randomly chosen subjects who respond once to each of t treatments. The subjects are treated as random effects and the treatment effects are fixed. Suppose that some prior information is available, thus motivating a Bayesian analysis. The Bayesian computation, however, can be difficult in this situation, especially when a large number of treatments is involved. Three computational methods are suggested to perform the analysis. The exact posterior density of any parameter of interest can be simulated based on random realizations taken from a restricted multivariate t distribution. The density can also be simulated using Markov chain Monte Carlo methods. The simulated density is accurate when a large number of random realizations is taken. However, it may take substantial amount of computer time when many treatments are involved. An alternative Laplacian approximation is discussed. The Laplacian method produces smooth and very accurate approximates to posterior densities, and takes only seconds of computer time. An example of a pipeline cracks experiment is used to illustrate the Bayesian approaches and the computational methods.
Author Wang, Jenting
Hsu, John S.J.
Author_xml – sequence: 1
  givenname: Jenting
  surname: Wang
  fullname: Wang, Jenting
  organization: State University of New York
– sequence: 2
  givenname: John S.J.
  surname: Hsu
  fullname: Hsu, John S.J.
  organization: University of California
BookMark eNqNkNFOwjAUhhujiYC-Q19gs127brvQpGwDNscWGSpw05RSkiGC2ZYIb-8mhguvODfn5Jx8_8n_d8H1br_TAECMTNzUw8bElDmGS62ZaSHETIQoYebhCnTOh-tmJswzMHXILehW1QYhTBFhHRD3-TzMI55CnvJknkc5zAZwOgohD4JoGr2FcBzNwgCOsyBM4CCbwAlPg2wcLZplP8n8Zxg0AsM0vwM3a7mt9P1f74HXQTj1R0aSDSOfJ4YiNmYG1pouMVlZLltpRZCUtlJ4xbS2LawJlZoipFzPttaIesRDCinLc6m28dJaapf0gHvSVeW-qkq9Fl9l8SnLo8BItJmIjWiti9a6aDMRv5mIQ4M-_UNVUcu62O_qUhbbSwQeTwLfxVYfL34seLrIm6nhjRNfVLU-nHlZfgjmEMcW7-lQOPEoDl5iXzDyA_0ohb8
CitedBy_id crossref_primary_10_1080_00949655_2010_491481
Cites_doi 10.2307/2527668
10.1109/TPAMI.1984.4767596
10.1111/1467-9868.00201
10.1680/iicep.1986.744
10.1111/1467-9884.00117
10.1117/12.302529
10.1214/ss/1177011137
10.1080/01621459.1990.10476213
10.2307/2287731
10.1002/0470867159
10.1023/A:1008932416310
10.1214/aoms/1177704731
10.5006/1.3283991
10.1002/9780470316511
10.1093/biomet/76.3.425
10.2307/3315383
10.1080/01621459.1977.10480998
10.1093/biomet/40.3-4.361
10.1007/978-1-4757-4286-2
10.1080/01621459.1989.10478871
10.1214/ss/1177010123
10.1063/1.1699114
10.1007/BF02294466
10.1023/A:1007665907178
10.1016/0304-4076(84)90007-1
10.1093/biomet/57.1.97
ContentType Journal Article
DBID BSCLL
AAYXX
CITATION
DOI 10.1111/j.1467-842X.2006.00436.x
DatabaseName Istex
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 1467-842X
EndPage 236
ExternalDocumentID 10_1111_j_1467_842X_2006_00436_x
ANZS436
ark_67375_WNG_7JHJDQJC_6
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
23N
31~
33P
3SF
4.4
44B
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6OB
702
7PT
8-0
8-1
8-3
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMVHM
AMYDB
ARTTT
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
D-E
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EAD
EAP
EAS
EAZ
EBS
EJD
EMK
EST
ESX
F00
F5P
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RJQFR
ROL
RX1
SUPJJ
TN5
UB1
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXI
WXSBR
WYISQ
XBAML
XG1
ZY4
ZZTAW
~IA
~WT
AAYXX
CITATION
ID FETCH-LOGICAL-c3516-1ee4b13d286dec30aa5cc1d6ee521e34ae400c8952f049390c0c2984e51b2be83
IEDL.DBID DR2
ISSN 1369-1473
IngestDate Thu Apr 24 22:58:01 EDT 2025
Wed Oct 01 04:14:07 EDT 2025
Sun Sep 21 06:21:46 EDT 2025
Sun Sep 21 06:21:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3516-1ee4b13d286dec30aa5cc1d6ee521e34ae400c8952f049390c0c2984e51b2be83
Notes ark:/67375/WNG-7JHJDQJC-6
ArticleID:ANZS436
istex:8FA47812B4F4D0146F8C58536C0FA5E7C9C77C96
hsu@pstat.ucsb.edu
Department of Mathematical Sciences, State University of New York College at Oneonta, Oneonta, NY 13820, USA.
Department of Statistics and Applied Probability, University of California, Santa Barbara, CA 93106, USA. e‐mail
PageCount 12
ParticipantIDs crossref_primary_10_1111_j_1467_842X_2006_00436_x
crossref_citationtrail_10_1111_j_1467_842X_2006_00436_x
wiley_primary_10_1111_j_1467_842X_2006_00436_x_ANZS436
istex_primary_ark_67375_WNG_7JHJDQJC_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-06
June 2006
2006-06-00
PublicationDateYYYYMMDD 2006-06-01
PublicationDate_xml – month: 06
  year: 2006
  text: 2006-06
PublicationDecade 2000
PublicationPlace Melbourne, Australia
PublicationPlace_xml – name: Melbourne, Australia
PublicationTitle Australian & New Zealand journal of statistics
PublicationYear 2006
Publisher Blackwell Publishing Asia
Publisher_xml – name: Blackwell Publishing Asia
References Besag, J. & Higdon, D. (1993). Bayesian inference for agricultural field experiments. Bull. Int. Statist. Inst. 55, 121-136.
Gelman, A., Carlin, J.B., Stern, H.S. & Rubin, D.B. (1995). Bayesian Inference in Statistical Analysis. New York : Chapman and Hall.
Sincich, T. (1995). Business Statistics by Example. Upper Saddle River , NJ : Prentice-Hall.
Gelfand, A.E. & Smith, A.F.M. (1990). Sampling-based approaches to calculating marginal densities. J. Amer. Statist. Assoc. 85, 398-409.
Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. & Teller, E. (1953). Equation of state calculations by fast computing machines. Journal of Chemical Physics 21, 1087-1092.
Box, G.E.P. & Tiao, G.C. (1973). Bayesian Inference in Statistical Analysis. New York : Wiley.
Rubinstein, R.Y. (1981). Simulation and the Monte Carlo Method. New York : Wiley.
Hastings, W.K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97-109.
Beal, M.J. & Ghahramani, Z. (2003). The variational Bayesian EM algorithm for incomplete data: with application to scoring graphical model structures, in Bayesian Statistics, Vol. 7, eds J.M. Mernardo, M.J. Bayarri, J.O. Berger, A.P. Dawid, D. Heckerman, A.F.M. Smith & M. West, pp. 453-464. New York : Oxford University Press.
Wishart, J. & Metakides, T. (1953). Orthogonal polynomial fitting. Biometrika 40, 361-369.
Kannappan, S. (1986). Introduction to Pipe Stress Analysis. New York : John Wiley and Sons.
Zhang, X.Y., Lambert, S.B., Plumtree, A. & Sutherby, R. (1999). Transgranular stress corrosion cracking of X-60 pipeline steel in simulated ground water. Corrosion 55, 297-305.
Berger, J.O. (1985). Statistical Decision Theory and Bayesian Analysis. New York : Springer-Verlag.
Besag, J. & Higdon, D. (1999). Bayesian analysis of agricultural field experiments (with discussion). J. R. Statist. Soc. B 61, 691-746.
Lu, Y. (1998). Frequency-mode selection for ultrasonic detection and characterization of circumferential cracks in pipelines. Proceedings of SPIE 3398, 18-27.
Congdon, P. (2003). Applied Bayesian Modeling. Chichester : Wiley.
Brooks, S.P. (1998). Markov chain Monte Carlo method and its application. The Statistician 47, 69-100.
Johnson, R.A. & Ladalla, J.N. (1979). The large sample behavior of posterior distributions which sample from multiparameter exponential models, and allied results. Sankyha 41, 196-215.
Leonard, T. & Hsu, J.S.J. (1999). Bayesian Methods: An Analysis for Statisticians and Interdisciplinary Researchers. New York : Cambridge University Press.
Jordan, M.I., Ghahramani, A., Jaakkola, T.S. & Saul, L.K. (1999). An introduction to variational methods for graphical models. Machine Learning 37, 183-233.
Tierney, L., Kass, R.E. & Kadane, J. (1989). Approximate marginal densities of non-linear functions. Biometrika 76, 425-433.
Robson, D.S. (1959). A simple method for constructing orthogonal polynomials when the independent variable is unequally spaced. Biometrics 15, 197-191.
Harville, D.A. (1977). Maximum-likelihood approaches to variance component estimation and to related problems. J. Amer. Statist. Assoc. 72, 320-340.
Geman, S. & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 6, 721-741.
Hsu, J.S.J., Leonard, T. & Tsui, K. (1991). Statistical inference for multiple choice tests. Psychometrika 56, 327-348.
Zellner, A. & Rossi, P.E. (1984). Bayesian analysis of dichotomous quantal response models. J. Econometrics 25, 365-393.
Leonard, T., Hsu, J.S.J. & Tsui, K. (1989). Bayesian marginal inference. J. Amer. Statist. Assoc. 84, 1051-1057.
Thompson, W.A., Jr (1962). The problem of negative estimates of variance components. Ann. Math. Stat. 33, 273-289.
Jaakkola, T. & Jordan, M. (2000). Bayesian parameter estimation via variational methods. Statistics and Computing 10, 25-37.
Besag, J., Green, P.J., Higdon, D. & Mengersen, K.L. (1995). Bayesian computation and stochastic systems (with discussion). Statist. Sci. 10, 3-66.
Hsu, J.S.J. (1995). Generalized Laplacian approximations in Bayesian inference. Canadian J. Statist. 23, 399-410.
Cox, B.G. & Kelsall, K.J. (1986). Construction of Cape Peron ocean outlet, Perth, Western Australia. Proceedings of the Institute of Civil Engineers, Part 1 80, 465-491.
Geyer, C.J. (1992). Practical Markov chain Monte Carlo (with discussion). Statist. Sci. 7, 473-511.
Leonard, T. (1982). Comment on "A simple predictive density function." J. Amer. Statist. Assoc. 77, 657-658.
1989; 84
1991; 56
1984; 25
1995; 10
1982; 77
1973
1995
2003
1999; 61
1962; 33
1998; 47
1970; 57
1999
1998; 3398
1990; 85
1992; 7
1986; 80
1989; 76
1993; 55
2000; 10
2003; 7
1995; 23
1984; 6
1999; 37
1953; 40
1977; 72
1986
1985
1999; 55
1981
1979; 41
1959; 15
1953; 21
e_1_2_5_27_1
e_1_2_5_28_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_21_1
e_1_2_5_29_1
Besag J. (e_1_2_5_4_1) 1993; 55
Sincich T. (e_1_2_5_30_1) 1995
e_1_2_5_15_1
Beal M.J. (e_1_2_5_2_1) 2003; 7
e_1_2_5_14_1
e_1_2_5_17_1
e_1_2_5_9_1
Gelman A. (e_1_2_5_12_1) 1995
e_1_2_5_16_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_33_1
e_1_2_5_3_1
Johnson R.A. (e_1_2_5_20_1) 1979; 41
Leonard T. (e_1_2_5_25_1) 1989; 84
e_1_2_5_19_1
e_1_2_5_18_1
Leonard T. (e_1_2_5_24_1) 1999
e_1_2_5_31_1
Box G.E.P. (e_1_2_5_7_1) 1973
Kannappan S. (e_1_2_5_22_1) 1986
References_xml – reference: Zellner, A. & Rossi, P.E. (1984). Bayesian analysis of dichotomous quantal response models. J. Econometrics 25, 365-393.
– reference: Zhang, X.Y., Lambert, S.B., Plumtree, A. & Sutherby, R. (1999). Transgranular stress corrosion cracking of X-60 pipeline steel in simulated ground water. Corrosion 55, 297-305.
– reference: Sincich, T. (1995). Business Statistics by Example. Upper Saddle River , NJ : Prentice-Hall.
– reference: Lu, Y. (1998). Frequency-mode selection for ultrasonic detection and characterization of circumferential cracks in pipelines. Proceedings of SPIE 3398, 18-27.
– reference: Tierney, L., Kass, R.E. & Kadane, J. (1989). Approximate marginal densities of non-linear functions. Biometrika 76, 425-433.
– reference: Kannappan, S. (1986). Introduction to Pipe Stress Analysis. New York : John Wiley and Sons.
– reference: Brooks, S.P. (1998). Markov chain Monte Carlo method and its application. The Statistician 47, 69-100.
– reference: Beal, M.J. & Ghahramani, Z. (2003). The variational Bayesian EM algorithm for incomplete data: with application to scoring graphical model structures, in Bayesian Statistics, Vol. 7, eds J.M. Mernardo, M.J. Bayarri, J.O. Berger, A.P. Dawid, D. Heckerman, A.F.M. Smith & M. West, pp. 453-464. New York : Oxford University Press.
– reference: Geyer, C.J. (1992). Practical Markov chain Monte Carlo (with discussion). Statist. Sci. 7, 473-511.
– reference: Geman, S. & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 6, 721-741.
– reference: Johnson, R.A. & Ladalla, J.N. (1979). The large sample behavior of posterior distributions which sample from multiparameter exponential models, and allied results. Sankyha 41, 196-215.
– reference: Cox, B.G. & Kelsall, K.J. (1986). Construction of Cape Peron ocean outlet, Perth, Western Australia. Proceedings of the Institute of Civil Engineers, Part 1 80, 465-491.
– reference: Gelfand, A.E. & Smith, A.F.M. (1990). Sampling-based approaches to calculating marginal densities. J. Amer. Statist. Assoc. 85, 398-409.
– reference: Leonard, T., Hsu, J.S.J. & Tsui, K. (1989). Bayesian marginal inference. J. Amer. Statist. Assoc. 84, 1051-1057.
– reference: Wishart, J. & Metakides, T. (1953). Orthogonal polynomial fitting. Biometrika 40, 361-369.
– reference: Besag, J. & Higdon, D. (1999). Bayesian analysis of agricultural field experiments (with discussion). J. R. Statist. Soc. B 61, 691-746.
– reference: Congdon, P. (2003). Applied Bayesian Modeling. Chichester : Wiley.
– reference: Thompson, W.A., Jr (1962). The problem of negative estimates of variance components. Ann. Math. Stat. 33, 273-289.
– reference: Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. & Teller, E. (1953). Equation of state calculations by fast computing machines. Journal of Chemical Physics 21, 1087-1092.
– reference: Gelman, A., Carlin, J.B., Stern, H.S. & Rubin, D.B. (1995). Bayesian Inference in Statistical Analysis. New York : Chapman and Hall.
– reference: Robson, D.S. (1959). A simple method for constructing orthogonal polynomials when the independent variable is unequally spaced. Biometrics 15, 197-191.
– reference: Hsu, J.S.J., Leonard, T. & Tsui, K. (1991). Statistical inference for multiple choice tests. Psychometrika 56, 327-348.
– reference: Jordan, M.I., Ghahramani, A., Jaakkola, T.S. & Saul, L.K. (1999). An introduction to variational methods for graphical models. Machine Learning 37, 183-233.
– reference: Besag, J. & Higdon, D. (1993). Bayesian inference for agricultural field experiments. Bull. Int. Statist. Inst. 55, 121-136.
– reference: Hastings, W.K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97-109.
– reference: Berger, J.O. (1985). Statistical Decision Theory and Bayesian Analysis. New York : Springer-Verlag.
– reference: Box, G.E.P. & Tiao, G.C. (1973). Bayesian Inference in Statistical Analysis. New York : Wiley.
– reference: Hsu, J.S.J. (1995). Generalized Laplacian approximations in Bayesian inference. Canadian J. Statist. 23, 399-410.
– reference: Jaakkola, T. & Jordan, M. (2000). Bayesian parameter estimation via variational methods. Statistics and Computing 10, 25-37.
– reference: Harville, D.A. (1977). Maximum-likelihood approaches to variance component estimation and to related problems. J. Amer. Statist. Assoc. 72, 320-340.
– reference: Besag, J., Green, P.J., Higdon, D. & Mengersen, K.L. (1995). Bayesian computation and stochastic systems (with discussion). Statist. Sci. 10, 3-66.
– reference: Leonard, T. & Hsu, J.S.J. (1999). Bayesian Methods: An Analysis for Statisticians and Interdisciplinary Researchers. New York : Cambridge University Press.
– reference: Leonard, T. (1982). Comment on "A simple predictive density function." J. Amer. Statist. Assoc. 77, 657-658.
– reference: Rubinstein, R.Y. (1981). Simulation and the Monte Carlo Method. New York : Wiley.
– year: 1985
– volume: 6
  start-page: 721
  year: 1984
  end-page: 741
  article-title: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 57
  start-page: 97
  year: 1970
  end-page: 109
  article-title: Monte Carlo sampling methods using Markov chains and their applications
  publication-title: Biometrika
– volume: 55
  start-page: 121
  year: 1993
  end-page: 136
  article-title: Bayesian inference for agricultural field experiments
  publication-title: Bull. Int. Statist. Inst
– volume: 56
  start-page: 327
  year: 1991
  end-page: 348
  article-title: Statistical inference for multiple choice tests
  publication-title: Psychometrika
– year: 1981
– volume: 84
  start-page: 1051
  year: 1989
  end-page: 1057
  article-title: Bayesian marginal inference
  publication-title: J. Amer. Statist. Assoc
– year: 2003
– year: 1973
– volume: 33
  start-page: 273
  year: 1962
  end-page: 289
  article-title: The problem of negative estimates of variance components
  publication-title: Ann. Math. Stat
– volume: 80
  start-page: 465
  year: 1986
  end-page: 491
  article-title: Construction of Cape Peron ocean outlet, Perth, Western Australia
  publication-title: Proceedings of the Institute of Civil Engineers, Part 1
– volume: 10
  start-page: 25
  year: 2000
  end-page: 37
  article-title: Bayesian parameter estimation via variational methods
  publication-title: Statistics and Computing
– volume: 23
  start-page: 399
  year: 1995
  end-page: 410
  article-title: Generalized Laplacian approximations in Bayesian inference
  publication-title: Canadian J. Statist
– year: 1986
– volume: 76
  start-page: 425
  year: 1989
  end-page: 433
  article-title: Approximate marginal densities of non‐linear functions
  publication-title: Biometrika
– volume: 61
  start-page: 691
  year: 1999
  end-page: 746
  article-title: Bayesian analysis of agricultural field experiments (with discussion)
  publication-title: J. R. Statist. Soc. B
– volume: 7
  start-page: 473
  year: 1992
  end-page: 511
  article-title: Practical Markov chain Monte Carlo (with discussion)
  publication-title: Statist. Sci
– volume: 21
  start-page: 1087
  year: 1953
  end-page: 1092
  article-title: Equation of state calculations by fast computing machines
  publication-title: Journal of Chemical Physics
– volume: 47
  start-page: 69
  year: 1998
  end-page: 100
  article-title: Markov chain Monte Carlo method and its application
  publication-title: The Statistician
– volume: 85
  start-page: 398
  year: 1990
  end-page: 409
  article-title: Sampling‐based approaches to calculating marginal densities
  publication-title: J. Amer. Statist. Assoc
– volume: 3398
  start-page: 18
  year: 1998
  end-page: 27
  article-title: Frequency‐mode selection for ultrasonic detection and characterization of circumferential cracks in pipelines
  publication-title: Proceedings of SPIE
– volume: 37
  start-page: 183
  year: 1999
  end-page: 233
  article-title: An introduction to variational methods for graphical models
  publication-title: Machine Learning
– year: 1995
– volume: 77
  start-page: 657
  year: 1982
  end-page: 658
  article-title: Comment on “A simple predictive density function.”
  publication-title: J. Amer. Statist. Assoc
– volume: 10
  start-page: 3
  year: 1995
  end-page: 66
  article-title: Bayesian computation and stochastic systems (with discussion)
  publication-title: Statist. Sci
– volume: 25
  start-page: 365
  year: 1984
  end-page: 393
  article-title: Bayesian analysis of dichotomous quantal response models
  publication-title: J. Econometrics
– volume: 55
  start-page: 297
  year: 1999
  end-page: 305
  article-title: Transgranular stress corrosion cracking of X‐60 pipeline steel in simulated ground water
  publication-title: Corrosion
– volume: 41
  start-page: 196
  year: 1979
  end-page: 215
  article-title: The large sample behavior of posterior distributions which sample from multiparameter exponential models, and allied results
  publication-title: Sankyha
– volume: 7
  start-page: 453
  year: 2003
  end-page: 464
  article-title: The variational Bayesian EM algorithm for incomplete data: with application to scoring graphical model structures
  publication-title: Bayesian Statistics
– volume: 72
  start-page: 320
  year: 1977
  end-page: 340
  article-title: Maximum‐likelihood approaches to variance component estimation and to related problems
  publication-title: J. Amer. Statist. Assoc
– volume: 40
  start-page: 361
  year: 1953
  end-page: 369
  article-title: Orthogonal polynomial fitting
  publication-title: Biometrika
– year: 1999
– volume: 15
  start-page: 197
  year: 1959
  end-page: 191
  article-title: A simple method for constructing orthogonal polynomials when the independent variable is unequally spaced
  publication-title: Biometrics
– volume-title: Bayesian Inference in Statistical Analysis
  year: 1973
  ident: e_1_2_5_7_1
– ident: e_1_2_5_28_1
  doi: 10.2307/2527668
– volume: 55
  start-page: 121
  year: 1993
  ident: e_1_2_5_4_1
  article-title: Bayesian inference for agricultural field experiments
  publication-title: Bull. Int. Statist. Inst
– ident: e_1_2_5_13_1
  doi: 10.1109/TPAMI.1984.4767596
– ident: e_1_2_5_5_1
  doi: 10.1111/1467-9868.00201
– ident: e_1_2_5_10_1
  doi: 10.1680/iicep.1986.744
– ident: e_1_2_5_8_1
  doi: 10.1111/1467-9884.00117
– volume-title: Introduction to Pipe Stress Analysis
  year: 1986
  ident: e_1_2_5_22_1
– ident: e_1_2_5_26_1
  doi: 10.1117/12.302529
– ident: e_1_2_5_14_1
  doi: 10.1214/ss/1177011137
– ident: e_1_2_5_11_1
  doi: 10.1080/01621459.1990.10476213
– volume: 41
  start-page: 196
  year: 1979
  ident: e_1_2_5_20_1
  article-title: The large sample behavior of posterior distributions which sample from multiparameter exponential models, and allied results
  publication-title: Sankyha
– ident: e_1_2_5_23_1
  doi: 10.2307/2287731
– ident: e_1_2_5_9_1
  doi: 10.1002/0470867159
– ident: e_1_2_5_19_1
  doi: 10.1023/A:1008932416310
– ident: e_1_2_5_31_1
  doi: 10.1214/aoms/1177704731
– ident: e_1_2_5_35_1
  doi: 10.5006/1.3283991
– ident: e_1_2_5_29_1
  doi: 10.1002/9780470316511
– volume-title: Business Statistics by Example
  year: 1995
  ident: e_1_2_5_30_1
– volume: 7
  start-page: 453
  year: 2003
  ident: e_1_2_5_2_1
  article-title: The variational Bayesian EM algorithm for incomplete data: with application to scoring graphical model structures
  publication-title: Bayesian Statistics
– ident: e_1_2_5_32_1
  doi: 10.1093/biomet/76.3.425
– ident: e_1_2_5_17_1
  doi: 10.2307/3315383
– volume-title: Bayesian Methods: An Analysis for Statisticians and Interdisciplinary Researchers
  year: 1999
  ident: e_1_2_5_24_1
– ident: e_1_2_5_15_1
  doi: 10.1080/01621459.1977.10480998
– ident: e_1_2_5_33_1
  doi: 10.1093/biomet/40.3-4.361
– ident: e_1_2_5_3_1
  doi: 10.1007/978-1-4757-4286-2
– volume: 84
  start-page: 1051
  year: 1989
  ident: e_1_2_5_25_1
  article-title: Bayesian marginal inference
  publication-title: J. Amer. Statist. Assoc
  doi: 10.1080/01621459.1989.10478871
– ident: e_1_2_5_6_1
  doi: 10.1214/ss/1177010123
– ident: e_1_2_5_27_1
  doi: 10.1063/1.1699114
– ident: e_1_2_5_18_1
  doi: 10.1007/BF02294466
– volume-title: Bayesian Inference in Statistical Analysis
  year: 1995
  ident: e_1_2_5_12_1
– ident: e_1_2_5_21_1
  doi: 10.1023/A:1007665907178
– ident: e_1_2_5_34_1
  doi: 10.1016/0304-4076(84)90007-1
– ident: e_1_2_5_16_1
  doi: 10.1093/biomet/57.1.97
SSID ssj0014036
Score 1.6761811
Snippet Summary This paper deals with the Bayesian analysis of the additive mixed model experiments. Consider b randomly chosen subjects who respond once to each of t...
This paper deals with the Bayesian analysis of the additive mixed model experiments. Consider b randomly chosen subjects who respond once to each of t...
SourceID crossref
wiley
istex
SourceType Enrichment Source
Index Database
Publisher
StartPage 225
SubjectTerms Laplacian approximation
Monte Carlo simulation
Title BAYESIAN ANALYSIS OF THE ADDITIVE MIXED MODEL FOR RANDOMIZED BLOCK DESIGNS
URI https://api.istex.fr/ark:/67375/WNG-7JHJDQJC-6/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1467-842X.2006.00436.x
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1467-842X
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0014036
  issn: 1369-1473
  databaseCode: ABDBF
  dateStart: 19980301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 1467-842X
  dateEnd: 20241103
  omitProxy: false
  ssIdentifier: ssj0014036
  issn: 1369-1473
  databaseCode: AMVHM
  dateStart: 19980301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1369-1473
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1467-842X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014036
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NT8IwFG8MXrj4bcSv9GC8jWxr13XHwoZswogMFLwsXSkXDBqExPjX225Agnogxtuy7DVbX997v_f2-isANypkaxp1Ybgm4QbmHjaop4CckMhGgtpinBdz2jFp9nE0cAbL_ie9F6bgh1gX3LRl5P5aGzjP3n8aOcX2YPVPASNS1XjSQiTPrrprJinNSkeKLVieYWEXbTb1_DrQRqTa1ZP-sYlg8xDU2AeT1csXnSeT6mKeVcXnN17H__m6A7C3RKqQFUvrEOzI6REoa3BacDsfg6jGhkESshiymLWGSZjATgP2mgFkvh_2wscAtsNB4MN2xw9aUOWbsMtiv9MOn9XNWqtTv4e-GuAuTk5AvxH06k1jeTaDIZBjEcOSEmcWGtmUjKRAJueOENaISKnwgESYS-UcBPUce6xyEOSZwhS2R7F0rMzOJEWnoDR9ncozAAmnyovQsYu4wOphlXI6AktO0Rh72BQV4K70kIolcbk-P-Ml3Uhg3FRPlj5WUzfqqclKPyrAWku-FeQdW8jc5qpeC_DZRDe_uU76FN-lbtSM_IeonpIKILkCtx45ZfFzoq7O_yp4AcpFAUjXgC5BaT5byCsFiebZNdhlNb_WuM4X_RcwkvRM
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NT4MwFG-MHvTit3F-9mC8sQAtpRxxMAGBRZk6vTSl6y4z05gtWfzrbWFbMvVgjDdCeC_w2tf-3uP19wC4UFu2plEXhmsSbmDuYYN6CsgJiWwkqC0GVTIny0l0j5Oe05u1A9JnYWp-iEXCTXtGtV5rB9cJ6e9eTrHdm_9UwIg0FaBcw0SFLRoh3S24pDQvHakPYXmGhV20XNbzo6alvWpNm326jGGrTai9BV7mr1_Xngybk3HZFB9fmB3_6fu2weYMrEK_nl07YEWOdsGGxqc1vfMeSK78p7CI_Rz6uZ8-FXEBO23YjULoB0HcjR9CmMW9MIBZJwhTqEJOeOfnQSeLn9XNq7TTuoGBUnCdF_vgvh12W5Exa89gCORYxLCkxKWF-jYlfSmQybkjhNUnUipIIBHmUq0PgnqOPVBhCPJMYQrbo1g6VmmXkqIDsDp6HclDAAmnaiGhAxdxgdXDKup0BJacogH2sCkawJ0PBBMz7nLdQuOFLcUwLtPG0p01da2eMhabNoC1kHyr-Tt-IXNZjfVCgL8Pdf2b67DH_Jq5SZQEt0mLkQYg1Qj-WjPz8-dCXR39VfAcrEfdLGVpnN8cg406H6RTQidgdfw-kacKIY3Ls2rmfwINJPb7
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NT4MwFG-MS4wXv43zswfjjQVoKeXIVubAjalMnV6a0pWLZhozE-NfbwvbkqkHY7wRwnuB17729x6vvwfAqd6yDY26tHybCAuLAFs00EBOKuQiSV1ZlMmcXko6NzgZesNpOyBzFqbih5gn3IxnlOu1cXD1Miq-eznF7nD2UwEj0tCAsoa9gJr6PnY955IyvHSkOoQVWA720WJZz4-aFvaqmjH7-yKGLTeh9jp4mr1-VXvy2Hib5A358YXZ8Z--bwOsTcEqDKvZtQmW1HgLrBp8WtE7b4OkGd5HWRymMEzD7n0WZ7DfhoNOBEPG4kF8G8FePIwY7PVZ1IU65ITXYcr6vfhB32x2-60LyLSC8zTbATftaNDqWNP2DJZEnkMsRymcO2jkUjJSEtlCeFI6I6KUhgQKYaH0-iBp4LmFDkNQYEtbugHFynNyN1cU7YLl8fNY7QFIBNULCS18JCTWD-uo05NYCYoKHGBb1oE_Gwgup9zlpoXGE1-IYXxujGU6a5paPW0s_l4HzlzypeLv-IXMWTnWcwHx-mjq33yP36Xn3E86CbtKWpzUASlH8NeaeZg-ZPpq_6-CJ2DlkrV5N04vDsBqlQ4yGaFDsDx5fVNHGiBN8uNy4n8Cuyj2fw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BAYESIAN+ANALYSIS+OF+THE+ADDITIVE+MIXED+MODEL+FOR+RANDOMIZED+BLOCK+DESIGNS&rft.jtitle=Australian+%26+New+Zealand+journal+of+statistics&rft.au=Wang%2C+Jenting&rft.au=Hsu%2C+John+S.J.&rft.date=2006-06-01&rft.pub=Blackwell+Publishing+Asia&rft.issn=1369-1473&rft.eissn=1467-842X&rft.volume=48&rft.issue=2&rft.spage=225&rft.epage=236&rft_id=info:doi/10.1111%2Fj.1467-842X.2006.00436.x&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_7JHJDQJC_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1369-1473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1369-1473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1369-1473&client=summon