Control of Spectral Extreme Events in Ultrafast Fiber Lasers by a Genetic Algorithm

Extreme wave events or rogue waves (RWs) are both statistically rare and of exceptionally large amplitude. They are observed in many complex systems ranging from oceanic and optical environments to financial models and Bose–Einstein condensates. As they appear from nowhere and disappear without a tr...

Full description

Saved in:
Bibliographic Details
Published inLaser & photonics reviews Vol. 18; no. 4
Main Authors Wu, Xiuqi, Zhang, Ying, Peng, Junsong, Boscolo, Sonia, Finot, Christophe, Zeng, Heping
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.04.2024
Wiley-VCH Verlag
Subjects
Online AccessGet full text
ISSN1863-8880
1863-8899
DOI10.1002/lpor.202200470

Cover

Abstract Extreme wave events or rogue waves (RWs) are both statistically rare and of exceptionally large amplitude. They are observed in many complex systems ranging from oceanic and optical environments to financial models and Bose–Einstein condensates. As they appear from nowhere and disappear without a trace, their emergence is unpredictable and non‐repetitive, which makes them particularly challenging to control. Here, the use of genetic algorithms (GAs), which are exclusively designed for searching and optimizing stationary or repetitive processes in nonlinear optical systems, is extended to the active control of extreme events in a fiber laser cavity. Feeding real‐time spectral measurements into a GA controlling the electronics to optimize the cavity parameters, the wave events are able to be triggered in the cavity that have the typical statistics of RWs in the frequency domain. The intensity of the induced RWs can also be tailored. This accurate control enables the generation of optical RWs with a spectral peak intensity 32.8 times higher than the significant intensity threshold. A rationale is proposed and confirmed by numerical simulations of the laser model for the related frequency up‐ and downshifting of the optical spectrum that are experimentally observed. Rogue waves (also known as freak waves and monster waves) are unpredictable strong destructive waves existing widely in nature and science, and are rather difficult to be tamed. Here, using a fiber laser as a test bed, this work demonstrates that genetic algorithms can be employed to tame these monster waves, and their novel generation mechanisms are revealed.
AbstractList Extreme wave events or rogue waves (RWs) are both statistically rare and of exceptionally large amplitude. They are observed in many complex systems ranging from oceanic and optical environments to financial models and Bose–Einstein condensates. As they appear from nowhere and disappear without a trace, their emergence is unpredictable and non‐repetitive, which makes them particularly challenging to control. Here, the use of genetic algorithms (GAs), which are exclusively designed for searching and optimizing stationary or repetitive processes in nonlinear optical systems, is extended to the active control of extreme events in a fiber laser cavity. Feeding real‐time spectral measurements into a GA controlling the electronics to optimize the cavity parameters, the wave events are able to be triggered in the cavity that have the typical statistics of RWs in the frequency domain. The intensity of the induced RWs can also be tailored. This accurate control enables the generation of optical RWs with a spectral peak intensity 32.8 times higher than the significant intensity threshold. A rationale is proposed and confirmed by numerical simulations of the laser model for the related frequency up‐ and downshifting of the optical spectrum that are experimentally observed.
Extreme wave events or rogue waves (RWs) are both statistically rare and of exceptionally large amplitude. They are observed in many complex systems ranging from oceanic and optical environments to financial models and Bose–Einstein condensates. As they appear from nowhere and disappear without a trace, their emergence is unpredictable and non‐repetitive, which makes them particularly challenging to control. Here, the use of genetic algorithms (GAs), which are exclusively designed for searching and optimizing stationary or repetitive processes in nonlinear optical systems, is extended to the active control of extreme events in a fiber laser cavity. Feeding real‐time spectral measurements into a GA controlling the electronics to optimize the cavity parameters, the wave events are able to be triggered in the cavity that have the typical statistics of RWs in the frequency domain. The intensity of the induced RWs can also be tailored. This accurate control enables the generation of optical RWs with a spectral peak intensity 32.8 times higher than the significant intensity threshold. A rationale is proposed and confirmed by numerical simulations of the laser model for the related frequency up‐ and downshifting of the optical spectrum that are experimentally observed. Rogue waves (also known as freak waves and monster waves) are unpredictable strong destructive waves existing widely in nature and science, and are rather difficult to be tamed. Here, using a fiber laser as a test bed, this work demonstrates that genetic algorithms can be employed to tame these monster waves, and their novel generation mechanisms are revealed.
Extreme wave events or rogue waves (RWs) are both statistically rare and of exceptionally large amplitude. They are observed in many complex systems ranging from oceanic and optical environments to financial models and Bose-Einstein condensates. As they appear from nowhere and disappear without a trace, their emergence is unpredictable and non-repetitive, which make them particularly challenging to control. Here, we extend the use of genetic algorithms (GAs), which have been exclusively designed for searching and optimising stationary or repetitive processes in nonlinear optical systems, to the active control of extreme events in a fibre laser cavity. Feeding real-time spectral measurements into a GA controlling the electronics to optimise the cavity parameters, we are able to trigger wave events in the cavity that have the typical statistics of RWs in the frequency domain. This accurate control enables the generation of the optical RWs with a spectral peak intensity 32.8 times higher than the significant intensity threshold. A rationale is proposed and confirmed by numerical simulations of the laser model for the related frequency up- and down-shifting of the optical spectrum that are experimentally observed.
Author Wu, Xiuqi
Zhang, Ying
Boscolo, Sonia
Finot, Christophe
Peng, Junsong
Zeng, Heping
Author_xml – sequence: 1
  givenname: Xiuqi
  surname: Wu
  fullname: Wu, Xiuqi
  organization: East China Normal University
– sequence: 2
  givenname: Ying
  surname: Zhang
  fullname: Zhang, Ying
  organization: East China Normal University
– sequence: 3
  givenname: Junsong
  orcidid: 0000-0002-1432-5880
  surname: Peng
  fullname: Peng, Junsong
  email: jspeng@lps.ecnu.edu.cn
  organization: Shanxi University
– sequence: 4
  givenname: Sonia
  surname: Boscolo
  fullname: Boscolo, Sonia
  organization: Aston University
– sequence: 5
  givenname: Christophe
  surname: Finot
  fullname: Finot, Christophe
  organization: UMR 6303 CNRS – Université de Bourgogne Franche‐Comté
– sequence: 6
  givenname: Heping
  orcidid: 0000-0002-2357-4440
  surname: Zeng
  fullname: Zeng, Heping
  email: hpzeng@phy.ecnu.edu.cn
  organization: Chongqing Institute of East China Normal University
BackLink https://hal.science/hal-04201146$$DView record in HAL
BookMark eNqFkEtLAzEURoNUUKtb1wFXLlpvHvNallJbYUBRuw53phmNpJOapGr_vVOqFQQxm4Sbcy4f3wnpta7VhJwzGDIAfmVXzg85cA4gMzggxyxPxSDPi6K3f-dwRE5CeAFIupMek4exa6N3lrqGPqx0HT1aOvmIXi81nbzpNgZqWjq33UeDIdJrU2lPSwzaB1ptKNKpbnU0NR3ZJ-dNfF6eksMGbdBnX3efzK8nj-PZoLyd3oxH5aAWCYMBFoKlDc9AVIJniRaikAlgvshwgWmKEgETzXglE1ZzVueFhiypK9FAk4t8Ifrkcrf3Ga1aebNEv1EOjZqNSrWdgeTAmEzfWMde7NiVd69rHaJ6cWvfdvGUACFlmogs6yi5o2rvQvC6UbWJGM22IzRWMVDbqtW2arWvutOGv7TvNH8KxU54N1Zv_qFVeXd7_-N-AiwCkdg
CitedBy_id crossref_primary_10_1021_acsphotonics_4c02227
crossref_primary_10_1016_j_infrared_2024_105572
crossref_primary_10_1038_s43586_025_00381_3
crossref_primary_10_1515_nanoph_2024_0590
crossref_primary_10_3390_photonics11050462
Cites_doi 10.1038/nphoton.2016.38
10.1364/JOSAB.33.000825
10.1103/PhysRevLett.101.233902
10.1103/PhysRevLett.111.243903
10.1038/srep37616
10.1109/JSTQE.2020.2985297
10.1364/OE.16.003644
10.1364/OL.44.002161
10.1364/OE.449744
10.1364/OL.42.002952
10.1364/OL.37.003426
10.1038/s41467-022-33525-0
10.1038/s41377-020-0251-x
10.1364/OE.25.033216
10.1364/AOP.438025
10.1016/j.optlastec.2020.106512
10.1103/PhysRevLett.121.023905
10.1016/j.physrep.2013.03.001
10.1364/OPTICA.3.000870
10.1038/s41467-018-07355-y
10.1088/1361-6633/abbcd7
10.1103/PhysRevLett.108.233901
10.1016/j.physleta.2008.12.036
10.1016/j.euromechflu.2003.09.002
10.1038/nphoton.2012.359
10.1126/science.aaa8415
10.1038/s41377-019-0231-1
10.1103/PhysRevApplied.18.064096
10.1002/lpor.202100191
10.1364/JOSAB.16.000046
10.7551/mitpress/3927.001.0001
10.1364/OE.24.021256
10.1002/9783527686476.ch11
10.1103/PhysRevA.80.033610
10.1364/OL.39.000319
10.1109/LPT.2008.927887
10.1103/PhysRevA.103.063504
10.1364/OE.26.020888
10.1103/PhysRevLett.123.093901
10.1103/PhysRevE.84.016604
10.1038/s41467-021-26872-x
10.1364/OPTICA.5.000774
10.1364/OL.41.003912
10.1103/PhysRevLett.107.255005
10.1038/s41377-020-0270-7
10.1364/OPTICA.6.000362
10.1038/s41598-023-28689-8
10.1364/OL.40.001366
10.1109/2944.902165
10.1103/PhysRevA.90.013805
10.1103/PhysRevA.80.031804
10.1186/s43074-022-00055-3
10.1049/el:19921402
10.1038/s42254-019-0100-0
10.1038/s41467-021-25861-4
10.1364/OL.446075
10.1103/PhysRevLett.106.204502
10.1002/lpor.201900219
10.1038/nature06402
10.1364/OPTICA.2.000275
10.1038/nphoton.2011.345
10.1103/PhysRevApplied.12.034052
10.1038/s42005-018-0022-7
10.1038/s41598-019-39759-1
10.1103/PhysRevE.84.066402
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7SP
7U5
8FD
L7M
1XC
DOI 10.1002/lpor.202200470
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts


CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1863-8899
EndPage n/a
ExternalDocumentID oai:HAL:hal-04201146v1
10_1002_lpor_202200470
LPOR202200470
Genre article
GrantInformation_xml – fundername: French National Research Agency
  funderid: ANR‐20‐CE30‐0004
– fundername: National Natural Science Foundation of China
  funderid: 11621404; 11561121003; 11727812; 61775059; and 11704123
– fundername: Science and Technology Innovation Program of Basic Science Foundation of Shanghai
  funderid: 18JC1412000
– fundername: Key Project of Shanghai Education Commission
  funderid: 2017‐01‐07‐00‐05‐E00021
– fundername: UK Engineering and Physical Sciences Research Council
  funderid: EP/S003436/1; EP/X019241/1
– fundername: National Key Laboratory of Science and Technology on Space Microwave
  funderid: 2022‐WDKY‐SYS‐DN‐04
– fundername: Shanghai Natural Science Foundation
  funderid: 23ZR1419000
GroupedDBID 05W
0R~
1OC
31~
33P
3SF
3WU
4.4
52U
66C
8-1
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AGHNM
AGQPQ
AGYGG
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F5P
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
IX1
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OIG
P2P
P2W
ROL
SUPJJ
W99
WBKPD
WIH
WIK
WOHZO
WXSBR
XV2
ZZTAW
~S-
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
7SP
7U5
8FD
L7M
1XC
ID FETCH-LOGICAL-c3510-a9316f2703b3275e339450a8d7ada66a4a0a5e12b451c21c89e075cb3f0f838d3
IEDL.DBID DR2
ISSN 1863-8880
IngestDate Tue Oct 14 20:21:59 EDT 2025
Sun Jul 13 05:17:23 EDT 2025
Wed Oct 01 05:09:40 EDT 2025
Thu Apr 24 23:03:58 EDT 2025
Wed Jun 11 08:25:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3510-a9316f2703b3275e339450a8d7ada66a4a0a5e12b451c21c89e075cb3f0f838d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2357-4440
0000-0002-1432-5880
0000-0002-0755-5995
PQID 3034465377
PQPubID 1016358
PageCount 11
ParticipantIDs hal_primary_oai_HAL_hal_04201146v1
proquest_journals_3034465377
crossref_citationtrail_10_1002_lpor_202200470
crossref_primary_10_1002_lpor_202200470
wiley_primary_10_1002_lpor_202200470_LPOR202200470
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2024
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: April 2024
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Laser & photonics reviews
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Wiley-VCH Verlag
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley-VCH Verlag
References 2017; 42
2018; 121
2013; 3
2000; 6
2009; 80
2013; 528
2019; 12
2020; 15
2020; 14
2015; 349
2008; 101
2013; 7
2019; 123
2016; 33
2018; 9
2018; 5
2015; 40
2018; 1
1999; 16
2007; 450
2020; 9
2013; 111
2016; 41
2022; 30
2008; 20
2015; 2
2019; 9
2023; 13
2014; 90
2019; 6
2017; 25
2019; 1
2020; 83
2021; 103
2011; 84
2008; 16
2016; 10
1998
2008
2022; 47
2012; 37
2009; 373
2012; 108
2018; 26
2016; 6
2011; 107
2021; 12
2016; 3
2011; 106
2022; 3
2019; 44
2022; 7
1992; 28
2022; 13
2020; 26
2022; 14
2016
2021; 133
2014; 39
2012; 6
2018; 10
2022; 16
2016; 24
2003; 22
2022; 18
e_1_2_8_28_1
Kharif C. (e_1_2_8_54_1) 2008
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
Chang W. (e_1_2_8_20_1) 2016
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_70_1
Genty G. (e_1_2_8_24_1) 2020; 15
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
Frisquet B. (e_1_2_8_10_1) 2013; 3
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
e_1_2_8_4_1
Godin T. (e_1_2_8_43_1) 2022; 7
e_1_2_8_6_1
e_1_2_8_8_1
Ryczkowski P. (e_1_2_8_49_1) 2018; 10
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 121
  year: 2018
  publication-title: Phys. Rev. Lett.
– volume: 84
  year: 2011
  publication-title: Phys. Rev. E
– volume: 3
  start-page: 16
  year: 2022
  publication-title: PhotoniX
– volume: 13
  start-page: 1865
  year: 2023
  publication-title: Sci. Rep.
– volume: 22
  start-page: 603
  year: 2003
  publication-title: Eur. J. Mech. B
– volume: 2
  start-page: 275
  year: 2015
  publication-title: Optica
– volume: 44
  start-page: 2161
  year: 2019
  publication-title: Opt. Lett.
– volume: 5
  start-page: 774
  year: 2018
  publication-title: Optica
– volume: 1
  start-page: 675
  year: 2019
  publication-title: Nat. Rev. Phys.
– volume: 16
  start-page: 46
  year: 1999
  publication-title: J. Opt. Soc. Am. B
– volume: 26
  year: 2020
  publication-title: IEEE J. Sel. Top. in Quant. Electron.
– volume: 14
  start-page: 87
  year: 2022
  publication-title: Adv. in Opt. and Photon.
– volume: 10
  start-page: 321
  year: 2018
  publication-title: Nat. Photon.
– year: 1998
– volume: 1
  start-page: 20
  year: 2018
  publication-title: Commun. Phys.
– volume: 101
  year: 2008
  publication-title: Phys. Rev. Lett.
– volume: 47
  start-page: 134
  year: 2022
  publication-title: Opt. Lett.
– volume: 80
  year: 2009
  publication-title: Phys. Rev. A
– volume: 108
  year: 2012
  publication-title: Phys. Rev. Lett.
– volume: 83
  year: 2020
  publication-title: Rep Prog Phys
– volume: 106
  year: 2011
  publication-title: Phys. Rev. Lett.
– volume: 39
  start-page: 319
  year: 2014
  publication-title: Opt. Lett.
– year: 2008
– volume: 450
  start-page: 1054
  year: 2007
  publication-title: Nature
– volume: 33
  start-page: 825
  year: 2016
  publication-title: J. Opt. Soc. Am. B
– volume: 90
  year: 2014
  publication-title: Phys. Rev. A
– volume: 349
  start-page: 255
  year: 2015
  publication-title: Science
– volume: 12
  year: 2019
  publication-title: Phys. Rev. Appl.
– volume: 24
  year: 2016
  publication-title: Opt. Exp.
– volume: 10
  start-page: 321
  year: 2016
  publication-title: Nat. Photon.
– volume: 9
  start-page: 26
  year: 2020
  publication-title: Light: Sci. & Appl.
– volume: 12
  start-page: 6712
  year: 2021
  publication-title: Nat. Commun.
– volume: 30
  start-page: 7894
  year: 2022
  publication-title: Opt. Exp.
– volume: 13
  start-page: 5784
  year: 2022
  publication-title: Nat. Commun.
– volume: 9
  start-page: 2916
  year: 2019
  publication-title: Sci. Rep.
– volume: 111
  year: 2013
  publication-title: Phys. Rev. Lett.
– start-page: 263
  year: 2016
  end-page: 276
– volume: 25
  year: 2017
  publication-title: Opt. Exp.
– volume: 123
  year: 2019
  publication-title: Phys. Rev. Lett.
– volume: 16
  start-page: 3644
  year: 2008
  publication-title: Opt. Exp.
– volume: 6
  start-page: 362
  year: 2019
  publication-title: Optica
– volume: 6
  start-page: 84
  year: 2012
  publication-title: Nat. Photon.
– volume: 18
  year: 2022
  publication-title: Phys. Rev. Appl.
– volume: 3
  start-page: 870
  year: 2016
  publication-title: Optica
– volume: 37
  start-page: 3426
  year: 2012
  publication-title: Opt. Lett.
– volume: 103
  year: 2021
  publication-title: Phys. Rev. A
– volume: 42
  start-page: 2952
  year: 2017
  publication-title: Opt. Lett.
– volume: 133
  year: 2021
  publication-title: Opt. & Laser Technol.
– volume: 26
  year: 2018
  publication-title: Opt. Exp.
– volume: 6
  start-page: 1173
  year: 2000
  publication-title: IEEE J. Sel. Top. in Quant. Electron.
– volume: 84
  year: 2011
  publication-title: Phys Rev E
– volume: 41
  start-page: 3912
  year: 2016
  publication-title: Opt. Lett.
– volume: 9
  start-page: 4923
  year: 2018
  publication-title: Nat. Commun.
– volume: 14
  year: 2020
  publication-title: Laser & Photon. Rev.
– volume: 12
  start-page: 5567
  year: 2021
  publication-title: Nat. Commun.
– volume: 15
  start-page: 65
  year: 2020
  publication-title: Nat. Photon.
– volume: 16
  year: 2022
  publication-title: Laser & Photon. Rev.
– volume: 9
  start-page: 1
  year: 2020
  publication-title: Light: Sci. & Appl.
– volume: 20
  start-page: 1461
  year: 2008
  publication-title: IEEE Photon. Technol. Lett.
– volume: 6
  year: 2016
  publication-title: Sci. Rep.
– volume: 28
  start-page: 2185
  year: 1992
  publication-title: Electron. Lett.
– volume: 107
  year: 2011
  publication-title: Phys. Rev. Lett.
– volume: 40
  start-page: 1366
  year: 2015
  publication-title: Opt. Lett.
– volume: 373
  start-page: 675
  year: 2009
  publication-title: Phys. Lett. A
– volume: 528
  start-page: 47
  year: 2013
  publication-title: Phys. Rep.
– volume: 7
  year: 2022
  publication-title: Adv. in Phys.: X
– volume: 3
  year: 2013
  publication-title: Phys. Rev. X
– volume: 7
  start-page: 102
  year: 2013
  publication-title: Nat. Photon.
– ident: e_1_2_8_51_1
  doi: 10.1038/nphoton.2016.38
– volume: 7
  year: 2022
  ident: e_1_2_8_43_1
  publication-title: Adv. in Phys.: X
– ident: e_1_2_8_28_1
  doi: 10.1364/JOSAB.33.000825
– volume: 10
  start-page: 321
  year: 2018
  ident: e_1_2_8_49_1
  publication-title: Nat. Photon.
– ident: e_1_2_8_9_1
  doi: 10.1103/PhysRevLett.101.233902
– ident: e_1_2_8_57_1
  doi: 10.1103/PhysRevLett.111.243903
– ident: e_1_2_8_29_1
  doi: 10.1038/srep37616
– volume-title: Rogue Waves in the Ocean
  year: 2008
  ident: e_1_2_8_54_1
– ident: e_1_2_8_67_1
  doi: 10.1109/JSTQE.2020.2985297
– ident: e_1_2_8_6_1
  doi: 10.1364/OE.16.003644
– ident: e_1_2_8_64_1
  doi: 10.1364/OL.44.002161
– ident: e_1_2_8_45_1
  doi: 10.1364/OE.449744
– ident: e_1_2_8_31_1
  doi: 10.1364/OL.42.002952
– ident: e_1_2_8_41_1
  doi: 10.1364/OL.37.003426
– ident: e_1_2_8_68_1
  doi: 10.1038/s41467-022-33525-0
– ident: e_1_2_8_34_1
  doi: 10.1038/s41377-020-0251-x
– ident: e_1_2_8_30_1
  doi: 10.1364/OE.25.033216
– ident: e_1_2_8_69_1
  doi: 10.1364/AOP.438025
– ident: e_1_2_8_48_1
  doi: 10.1016/j.optlastec.2020.106512
– ident: e_1_2_8_52_1
  doi: 10.1103/PhysRevLett.121.023905
– ident: e_1_2_8_8_1
  doi: 10.1016/j.physrep.2013.03.001
– ident: e_1_2_8_15_1
  doi: 10.1364/OPTICA.3.000870
– ident: e_1_2_8_39_1
  doi: 10.1038/s41467-018-07355-y
– ident: e_1_2_8_44_1
  doi: 10.1088/1361-6633/abbcd7
– ident: e_1_2_8_12_1
  doi: 10.1103/PhysRevLett.108.233901
– volume: 15
  start-page: 65
  year: 2020
  ident: e_1_2_8_24_1
  publication-title: Nat. Photon.
– ident: e_1_2_8_55_1
  doi: 10.1016/j.physleta.2008.12.036
– ident: e_1_2_8_1_1
  doi: 10.1016/j.euromechflu.2003.09.002
– ident: e_1_2_8_42_1
  doi: 10.1038/nphoton.2012.359
– ident: e_1_2_8_23_1
  doi: 10.1126/science.aaa8415
– ident: e_1_2_8_35_1
  doi: 10.1038/s41377-019-0231-1
– ident: e_1_2_8_47_1
  doi: 10.1103/PhysRevApplied.18.064096
– ident: e_1_2_8_36_1
  doi: 10.1002/lpor.202100191
– ident: e_1_2_8_63_1
  doi: 10.1364/JOSAB.16.000046
– ident: e_1_2_8_53_1
  doi: 10.7551/mitpress/3927.001.0001
– ident: e_1_2_8_14_1
  doi: 10.1364/OE.24.021256
– start-page: 263
  volume-title: Nonlinear Optical Cavity Dynamics: From Microresonators to Fiber Lasers
  year: 2016
  ident: e_1_2_8_20_1
  doi: 10.1002/9783527686476.ch11
– ident: e_1_2_8_4_1
  doi: 10.1103/PhysRevA.80.033610
– ident: e_1_2_8_16_1
  doi: 10.1364/OL.39.000319
– ident: e_1_2_8_61_1
  doi: 10.1109/LPT.2008.927887
– ident: e_1_2_8_65_1
  doi: 10.1103/PhysRevA.103.063504
– ident: e_1_2_8_46_1
  doi: 10.1364/OE.26.020888
– ident: e_1_2_8_58_1
  doi: 10.1103/PhysRevLett.123.093901
– ident: e_1_2_8_13_1
  doi: 10.1103/PhysRevE.84.016604
– ident: e_1_2_8_59_1
  doi: 10.1038/s41467-021-26872-x
– ident: e_1_2_8_56_1
  doi: 10.1364/OPTICA.5.000774
– ident: e_1_2_8_21_1
  doi: 10.1364/OL.41.003912
– ident: e_1_2_8_3_1
  doi: 10.1103/PhysRevLett.107.255005
– ident: e_1_2_8_25_1
  doi: 10.1038/s41377-020-0270-7
– ident: e_1_2_8_33_1
  doi: 10.1364/OPTICA.6.000362
– ident: e_1_2_8_38_1
  doi: 10.1038/s41598-023-28689-8
– volume: 3
  year: 2013
  ident: e_1_2_8_10_1
  publication-title: Phys. Rev. X
– ident: e_1_2_8_19_1
  doi: 10.1364/OL.40.001366
– ident: e_1_2_8_62_1
  doi: 10.1109/2944.902165
– ident: e_1_2_8_18_1
  doi: 10.1103/PhysRevA.90.013805
– ident: e_1_2_8_66_1
  doi: 10.1103/PhysRevA.80.031804
– ident: e_1_2_8_26_1
  doi: 10.1186/s43074-022-00055-3
– ident: e_1_2_8_40_1
  doi: 10.1049/el:19921402
– ident: e_1_2_8_7_1
  doi: 10.1038/s42254-019-0100-0
– ident: e_1_2_8_17_1
  doi: 10.1038/s41467-021-25861-4
– ident: e_1_2_8_37_1
  doi: 10.1364/OL.446075
– ident: e_1_2_8_70_1
  doi: 10.1103/PhysRevLett.106.204502
– ident: e_1_2_8_50_1
  doi: 10.1002/lpor.201900219
– ident: e_1_2_8_5_1
  doi: 10.1038/nature06402
– ident: e_1_2_8_27_1
  doi: 10.1364/OPTICA.2.000275
– ident: e_1_2_8_11_1
  doi: 10.1038/nphoton.2011.345
– ident: e_1_2_8_22_1
  doi: 10.1103/PhysRevApplied.12.034052
– ident: e_1_2_8_60_1
  doi: 10.1038/s42005-018-0022-7
– ident: e_1_2_8_32_1
  doi: 10.1038/s41598-019-39759-1
– ident: e_1_2_8_2_1
  doi: 10.1103/PhysRevE.84.066402
SSID ssj0055556
Score 2.47413
Snippet Extreme wave events or rogue waves (RWs) are both statistically rare and of exceptionally large amplitude. They are observed in many complex systems ranging...
SourceID hal
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Active control
Bose-Einstein condensates
Complex systems
Environment models
Fiber lasers
Genetic algorithms
machine learning
mode locking
Nonlinear optics
Nonlinear systems
Ocean models
Optics
Optimization
Physics
rogue waves
Title Control of Spectral Extreme Events in Ultrafast Fiber Lasers by a Genetic Algorithm
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Flpor.202200470
https://www.proquest.com/docview/3034465377
https://hal.science/hal-04201146
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1863-8899
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0055556
  issn: 1863-8880
  databaseCode: ADMLS
  dateStart: 20120701
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1863-8880
  databaseCode: DR2
  dateStart: 20070101
  customDbUrl:
  isFulltext: true
  eissn: 1863-8899
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055556
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwELZYTlx47ENbXrJWK-3JENuJkxwr1KpCXVgBlbhFYzdeEKVFTUDAr2cmSUNZCa20m1Metpx4PDPfOOPPjH2XsaPfMyAkRLkII6sEJEEivPKpssbGrsqq_HliBqPw-DK6XFrFX_NDtBNupBmVvSYFB1scvpKGThCfYnynSMwxBe1SmyqmOmv5oyI8quVFidECQ71gwdoYqMO31d94pQ9XlBO5BDiXYWvld_obDBZvXKeb3Bzcl_bAPf9B5vg_n7TJ1htQyrv1KNpiK_n0I9toACpv1L_4xM6P6sR2PvOcNq6nWRLeeyxpjpH3KHOy4NdTPprgAw9FyfuUj8KHQEs6uX3iwInmGlvh3cnv2fy6vLr9zEb93sXRQDS7MginUYEFpFoar9BSWK3iKNc6DaMAknEMYzAGQghQ7FLZMJJOSZekOcISZ7UPfKKTsf7CVqezaf6V8RThAYCRFnwcemmsdWhv0F-aIIU0SDpMLKSSuYaynHbOmGQ12bLKqMeytsc67Edb_q4m63i35DcUcluIOLYH3WFG99CKUZBoHmSH7S7GQNZodpFp4kg0kY7jDlOVMP_SVDb8dXrWXm3_S6UdtobnTcLQLlst5_f5HmKh0u5X4_0FJHr9tA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V9gAXSnmoC4VaCImT29hOnOS4qna10LSg0pW4WbY3bqsuu6ibIuDXM5MXLRJCornFseXE4xl_Mxl_BngjUk-_ZywXNil5nDjJbRZlPMiQS6dd6uusyqNjPZnG7z8nXTYh7YVp-CH6gBtpRm2vScEpIL3_mzV0jgAVHTxJck7Ra9-INTorhItOegapBK96g1GmFUdnL-p4GyO5f7v9rXXp3jllRd6AnDeBa73yjDfBde_cJJxc7l1Xbs___IPO8U4f9QgetriUDZuJtAVr5eIxbLYYlbUWYPUEPh00ue1sGRidXU-BEjb6XlGYkY0oeXLFLhZsOscHwa4qNqaUFFZY2tXJ3A9mGTFdYy9sOD9bXl1U51-ewnQ8Oj2Y8PZgBu4V6jC3uRI6SDQWTsk0KZXK4ySy2Sy1M6u1jW2EkhfSxYnwUvgsLxGZeKdCFDKVzdQzWF8sF-U2sBwRgrVaOBvSOAjtnEeTg0umjnKbR9kAeCcW41vWcjo8Y24avmVpaMRMP2IDeNvX_9rwdfy15muUcl-JaLYnw8JQGRoy8hP1NzGAnW4SmFa5V0YRTaJOVJoOQNbS_EdXpvj44aS_e_4_jXbh_uT0qDDFu-PDF_AAy9v8oR1Yr66uy5cIjSr3qp78vwAfSAHk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dTxQxFG0UE-ML-BkXUBtj4lNh2k47nccN7GbFFQm6iW9N250Ccdkl7ECAX--98yWYGBOZt-m06Uxve3tu5_SUkA88C_h7xjHuVMFS5QVzJjEsipgLr30WKlbll309mqR7P1TLJsS9MLU-RLfghiOj8tc4wIuzadz-rRo6A4AKAZ5AO2cQtT9KVW6Q1bd72ClIKbiqDUZGSwbBXtLqNiZi-275O_PSw2NkRd6CnLeBazXzDNeIb9-5Jpz83Loo_Va4-UPO8V4f9ZSsNriU9uuO9Iw8KObPyVqDUWnjAZYvyLedmttOF5Hi2fW4UEIHVyUuM9IBkieX9GROJzN4EN2ypEOkpNCxw12d1F9TR1HpGmqh_dnR4vykPD59SSbDwfedEWsOZmBBwhhmLpdcRwHOwkuRqULKPFWJM9PMTZ3WLnUJWJ4LnyoeBA8mLwCZBC9jEo00U_mKrMwX8-I1oTkgBOc09y5maeTa-wAuB6ZMneQuT0yPsNYsNjSq5Xh4xszWesvCYovZrsV65GOX_6zW6_hrzvdg5S4TymyP-mOLaeDIME7Ul7xHNttOYJvBvbQSZRK1klnWI6Ky5j-qsuODr4fd3fr_FHpHHh_sDu340_7nDfIEkhv60CZZKc8vijeAjEr_tur7vwDCxAFo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Control+of+Spectral+Extreme+Events+in+Ultrafast+Fiber+Lasers+by+a+Genetic+Algorithm&rft.jtitle=Laser+%26+photonics+reviews&rft.au=Wu%2C+Xiuqi&rft.au=Zhang%2C+Ying&rft.au=Peng%2C+Junsong&rft.au=Boscolo%2C+Sonia&rft.date=2024-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1863-8880&rft.eissn=1863-8899&rft.volume=18&rft.issue=4&rft_id=info:doi/10.1002%2Flpor.202200470&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-8880&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-8880&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-8880&client=summon