Control of Spectral Extreme Events in Ultrafast Fiber Lasers by a Genetic Algorithm
Extreme wave events or rogue waves (RWs) are both statistically rare and of exceptionally large amplitude. They are observed in many complex systems ranging from oceanic and optical environments to financial models and Bose–Einstein condensates. As they appear from nowhere and disappear without a tr...
        Saved in:
      
    
          | Published in | Laser & photonics reviews Vol. 18; no. 4 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Weinheim
          Wiley Subscription Services, Inc
    
        01.04.2024
     Wiley-VCH Verlag  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1863-8880 1863-8899  | 
| DOI | 10.1002/lpor.202200470 | 
Cover
| Abstract | Extreme wave events or rogue waves (RWs) are both statistically rare and of exceptionally large amplitude. They are observed in many complex systems ranging from oceanic and optical environments to financial models and Bose–Einstein condensates. As they appear from nowhere and disappear without a trace, their emergence is unpredictable and non‐repetitive, which makes them particularly challenging to control. Here, the use of genetic algorithms (GAs), which are exclusively designed for searching and optimizing stationary or repetitive processes in nonlinear optical systems, is extended to the active control of extreme events in a fiber laser cavity. Feeding real‐time spectral measurements into a GA controlling the electronics to optimize the cavity parameters, the wave events are able to be triggered in the cavity that have the typical statistics of RWs in the frequency domain. The intensity of the induced RWs can also be tailored. This accurate control enables the generation of optical RWs with a spectral peak intensity 32.8 times higher than the significant intensity threshold. A rationale is proposed and confirmed by numerical simulations of the laser model for the related frequency up‐ and downshifting of the optical spectrum that are experimentally observed.
Rogue waves (also known as freak waves and monster waves) are unpredictable strong destructive waves existing widely in nature and science, and are rather difficult to be tamed. Here, using a fiber laser as a test bed, this work demonstrates that genetic algorithms can be employed to tame these monster waves, and their novel generation mechanisms are revealed. | 
    
|---|---|
| AbstractList | Extreme wave events or rogue waves (RWs) are both statistically rare and of exceptionally large amplitude. They are observed in many complex systems ranging from oceanic and optical environments to financial models and Bose–Einstein condensates. As they appear from nowhere and disappear without a trace, their emergence is unpredictable and non‐repetitive, which makes them particularly challenging to control. Here, the use of genetic algorithms (GAs), which are exclusively designed for searching and optimizing stationary or repetitive processes in nonlinear optical systems, is extended to the active control of extreme events in a fiber laser cavity. Feeding real‐time spectral measurements into a GA controlling the electronics to optimize the cavity parameters, the wave events are able to be triggered in the cavity that have the typical statistics of RWs in the frequency domain. The intensity of the induced RWs can also be tailored. This accurate control enables the generation of optical RWs with a spectral peak intensity 32.8 times higher than the significant intensity threshold. A rationale is proposed and confirmed by numerical simulations of the laser model for the related frequency up‐ and downshifting of the optical spectrum that are experimentally observed. Extreme wave events or rogue waves (RWs) are both statistically rare and of exceptionally large amplitude. They are observed in many complex systems ranging from oceanic and optical environments to financial models and Bose–Einstein condensates. As they appear from nowhere and disappear without a trace, their emergence is unpredictable and non‐repetitive, which makes them particularly challenging to control. Here, the use of genetic algorithms (GAs), which are exclusively designed for searching and optimizing stationary or repetitive processes in nonlinear optical systems, is extended to the active control of extreme events in a fiber laser cavity. Feeding real‐time spectral measurements into a GA controlling the electronics to optimize the cavity parameters, the wave events are able to be triggered in the cavity that have the typical statistics of RWs in the frequency domain. The intensity of the induced RWs can also be tailored. This accurate control enables the generation of optical RWs with a spectral peak intensity 32.8 times higher than the significant intensity threshold. A rationale is proposed and confirmed by numerical simulations of the laser model for the related frequency up‐ and downshifting of the optical spectrum that are experimentally observed. Rogue waves (also known as freak waves and monster waves) are unpredictable strong destructive waves existing widely in nature and science, and are rather difficult to be tamed. Here, using a fiber laser as a test bed, this work demonstrates that genetic algorithms can be employed to tame these monster waves, and their novel generation mechanisms are revealed. Extreme wave events or rogue waves (RWs) are both statistically rare and of exceptionally large amplitude. They are observed in many complex systems ranging from oceanic and optical environments to financial models and Bose-Einstein condensates. As they appear from nowhere and disappear without a trace, their emergence is unpredictable and non-repetitive, which make them particularly challenging to control. Here, we extend the use of genetic algorithms (GAs), which have been exclusively designed for searching and optimising stationary or repetitive processes in nonlinear optical systems, to the active control of extreme events in a fibre laser cavity. Feeding real-time spectral measurements into a GA controlling the electronics to optimise the cavity parameters, we are able to trigger wave events in the cavity that have the typical statistics of RWs in the frequency domain. This accurate control enables the generation of the optical RWs with a spectral peak intensity 32.8 times higher than the significant intensity threshold. A rationale is proposed and confirmed by numerical simulations of the laser model for the related frequency up- and down-shifting of the optical spectrum that are experimentally observed.  | 
    
| Author | Wu, Xiuqi Zhang, Ying Boscolo, Sonia Finot, Christophe Peng, Junsong Zeng, Heping  | 
    
| Author_xml | – sequence: 1 givenname: Xiuqi surname: Wu fullname: Wu, Xiuqi organization: East China Normal University – sequence: 2 givenname: Ying surname: Zhang fullname: Zhang, Ying organization: East China Normal University – sequence: 3 givenname: Junsong orcidid: 0000-0002-1432-5880 surname: Peng fullname: Peng, Junsong email: jspeng@lps.ecnu.edu.cn organization: Shanxi University – sequence: 4 givenname: Sonia surname: Boscolo fullname: Boscolo, Sonia organization: Aston University – sequence: 5 givenname: Christophe surname: Finot fullname: Finot, Christophe organization: UMR 6303 CNRS – Université de Bourgogne Franche‐Comté – sequence: 6 givenname: Heping orcidid: 0000-0002-2357-4440 surname: Zeng fullname: Zeng, Heping email: hpzeng@phy.ecnu.edu.cn organization: Chongqing Institute of East China Normal University  | 
    
| BackLink | https://hal.science/hal-04201146$$DView record in HAL | 
    
| BookMark | eNqFkEtLAzEURoNUUKtb1wFXLlpvHvNallJbYUBRuw53phmNpJOapGr_vVOqFQQxm4Sbcy4f3wnpta7VhJwzGDIAfmVXzg85cA4gMzggxyxPxSDPi6K3f-dwRE5CeAFIupMek4exa6N3lrqGPqx0HT1aOvmIXi81nbzpNgZqWjq33UeDIdJrU2lPSwzaB1ptKNKpbnU0NR3ZJ-dNfF6eksMGbdBnX3efzK8nj-PZoLyd3oxH5aAWCYMBFoKlDc9AVIJniRaikAlgvshwgWmKEgETzXglE1ZzVueFhiypK9FAk4t8Ifrkcrf3Ga1aebNEv1EOjZqNSrWdgeTAmEzfWMde7NiVd69rHaJ6cWvfdvGUACFlmogs6yi5o2rvQvC6UbWJGM22IzRWMVDbqtW2arWvutOGv7TvNH8KxU54N1Zv_qFVeXd7_-N-AiwCkdg | 
    
| CitedBy_id | crossref_primary_10_1021_acsphotonics_4c02227 crossref_primary_10_1016_j_infrared_2024_105572 crossref_primary_10_1038_s43586_025_00381_3 crossref_primary_10_1515_nanoph_2024_0590 crossref_primary_10_3390_photonics11050462  | 
    
| Cites_doi | 10.1038/nphoton.2016.38 10.1364/JOSAB.33.000825 10.1103/PhysRevLett.101.233902 10.1103/PhysRevLett.111.243903 10.1038/srep37616 10.1109/JSTQE.2020.2985297 10.1364/OE.16.003644 10.1364/OL.44.002161 10.1364/OE.449744 10.1364/OL.42.002952 10.1364/OL.37.003426 10.1038/s41467-022-33525-0 10.1038/s41377-020-0251-x 10.1364/OE.25.033216 10.1364/AOP.438025 10.1016/j.optlastec.2020.106512 10.1103/PhysRevLett.121.023905 10.1016/j.physrep.2013.03.001 10.1364/OPTICA.3.000870 10.1038/s41467-018-07355-y 10.1088/1361-6633/abbcd7 10.1103/PhysRevLett.108.233901 10.1016/j.physleta.2008.12.036 10.1016/j.euromechflu.2003.09.002 10.1038/nphoton.2012.359 10.1126/science.aaa8415 10.1038/s41377-019-0231-1 10.1103/PhysRevApplied.18.064096 10.1002/lpor.202100191 10.1364/JOSAB.16.000046 10.7551/mitpress/3927.001.0001 10.1364/OE.24.021256 10.1002/9783527686476.ch11 10.1103/PhysRevA.80.033610 10.1364/OL.39.000319 10.1109/LPT.2008.927887 10.1103/PhysRevA.103.063504 10.1364/OE.26.020888 10.1103/PhysRevLett.123.093901 10.1103/PhysRevE.84.016604 10.1038/s41467-021-26872-x 10.1364/OPTICA.5.000774 10.1364/OL.41.003912 10.1103/PhysRevLett.107.255005 10.1038/s41377-020-0270-7 10.1364/OPTICA.6.000362 10.1038/s41598-023-28689-8 10.1364/OL.40.001366 10.1109/2944.902165 10.1103/PhysRevA.90.013805 10.1103/PhysRevA.80.031804 10.1186/s43074-022-00055-3 10.1049/el:19921402 10.1038/s42254-019-0100-0 10.1038/s41467-021-25861-4 10.1364/OL.446075 10.1103/PhysRevLett.106.204502 10.1002/lpor.201900219 10.1038/nature06402 10.1364/OPTICA.2.000275 10.1038/nphoton.2011.345 10.1103/PhysRevApplied.12.034052 10.1038/s42005-018-0022-7 10.1038/s41598-019-39759-1 10.1103/PhysRevE.84.066402  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2023 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH Distributed under a Creative Commons Attribution 4.0 International License  | 
    
| Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH – notice: Distributed under a Creative Commons Attribution 4.0 International License  | 
    
| DBID | AAYXX CITATION 7SP 7U5 8FD L7M 1XC  | 
    
| DOI | 10.1002/lpor.202200470 | 
    
| DatabaseName | CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Hyper Article en Ligne (HAL)  | 
    
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts  | 
    
| DatabaseTitleList | Solid State and Superconductivity Abstracts CrossRef  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Applied Sciences Physics  | 
    
| EISSN | 1863-8899 | 
    
| EndPage | n/a | 
    
| ExternalDocumentID | oai:HAL:hal-04201146v1 10_1002_lpor_202200470 LPOR202200470  | 
    
| Genre | article | 
    
| GrantInformation_xml | – fundername: French National Research Agency funderid: ANR‐20‐CE30‐0004 – fundername: National Natural Science Foundation of China funderid: 11621404; 11561121003; 11727812; 61775059; and 11704123 – fundername: Science and Technology Innovation Program of Basic Science Foundation of Shanghai funderid: 18JC1412000 – fundername: Key Project of Shanghai Education Commission funderid: 2017‐01‐07‐00‐05‐E00021 – fundername: UK Engineering and Physical Sciences Research Council funderid: EP/S003436/1; EP/X019241/1 – fundername: National Key Laboratory of Science and Technology on Space Microwave funderid: 2022‐WDKY‐SYS‐DN‐04 – fundername: Shanghai Natural Science Foundation funderid: 23ZR1419000  | 
    
| GroupedDBID | 05W 0R~ 1OC 31~ 33P 3SF 3WU 4.4 52U 66C 8-1 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AGHNM AGQPQ AGYGG AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DR2 DRFUL DRSTM DU5 EBS EJD F5P FEDTE G-S GODZA HGLYW HVGLF HZ~ IX1 LATKE LAW LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O9- OIG P2P P2W ROL SUPJJ W99 WBKPD WIH WIK WOHZO WXSBR XV2 ZZTAW ~S- AAMMB AAYXX AEFGJ AGXDD AIDQK AIDYY CITATION 7SP 7U5 8FD L7M 1XC  | 
    
| ID | FETCH-LOGICAL-c3510-a9316f2703b3275e339450a8d7ada66a4a0a5e12b451c21c89e075cb3f0f838d3 | 
    
| IEDL.DBID | DR2 | 
    
| ISSN | 1863-8880 | 
    
| IngestDate | Tue Oct 14 20:21:59 EDT 2025 Sun Jul 13 05:17:23 EDT 2025 Wed Oct 01 05:09:40 EDT 2025 Thu Apr 24 23:03:58 EDT 2025 Wed Jun 11 08:25:23 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Language | English | 
    
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c3510-a9316f2703b3275e339450a8d7ada66a4a0a5e12b451c21c89e075cb3f0f838d3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-2357-4440 0000-0002-1432-5880 0000-0002-0755-5995  | 
    
| PQID | 3034465377 | 
    
| PQPubID | 1016358 | 
    
| PageCount | 11 | 
    
| ParticipantIDs | hal_primary_oai_HAL_hal_04201146v1 proquest_journals_3034465377 crossref_citationtrail_10_1002_lpor_202200470 crossref_primary_10_1002_lpor_202200470 wiley_primary_10_1002_lpor_202200470_LPOR202200470  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | April 2024 | 
    
| PublicationDateYYYYMMDD | 2024-04-01 | 
    
| PublicationDate_xml | – month: 04 year: 2024 text: April 2024  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Weinheim | 
    
| PublicationPlace_xml | – name: Weinheim | 
    
| PublicationTitle | Laser & photonics reviews | 
    
| PublicationYear | 2024 | 
    
| Publisher | Wiley Subscription Services, Inc Wiley-VCH Verlag  | 
    
| Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley-VCH Verlag  | 
    
| References | 2017; 42 2018; 121 2013; 3 2000; 6 2009; 80 2013; 528 2019; 12 2020; 15 2020; 14 2015; 349 2008; 101 2013; 7 2019; 123 2016; 33 2018; 9 2018; 5 2015; 40 2018; 1 1999; 16 2007; 450 2020; 9 2013; 111 2016; 41 2022; 30 2008; 20 2015; 2 2019; 9 2023; 13 2014; 90 2019; 6 2017; 25 2019; 1 2020; 83 2021; 103 2011; 84 2008; 16 2016; 10 1998 2008 2022; 47 2012; 37 2009; 373 2012; 108 2018; 26 2016; 6 2011; 107 2021; 12 2016; 3 2011; 106 2022; 3 2019; 44 2022; 7 1992; 28 2022; 13 2020; 26 2022; 14 2016 2021; 133 2014; 39 2012; 6 2018; 10 2022; 16 2016; 24 2003; 22 2022; 18 e_1_2_8_28_1 Kharif C. (e_1_2_8_54_1) 2008 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 Chang W. (e_1_2_8_20_1) 2016 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_70_1 Genty G. (e_1_2_8_24_1) 2020; 15 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 Frisquet B. (e_1_2_8_10_1) 2013; 3 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_2_1 e_1_2_8_4_1 Godin T. (e_1_2_8_43_1) 2022; 7 e_1_2_8_6_1 e_1_2_8_8_1 Ryczkowski P. (e_1_2_8_49_1) 2018; 10 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_52_1 e_1_2_8_50_1  | 
    
| References_xml | – volume: 121 year: 2018 publication-title: Phys. Rev. Lett. – volume: 84 year: 2011 publication-title: Phys. Rev. E – volume: 3 start-page: 16 year: 2022 publication-title: PhotoniX – volume: 13 start-page: 1865 year: 2023 publication-title: Sci. Rep. – volume: 22 start-page: 603 year: 2003 publication-title: Eur. J. Mech. B – volume: 2 start-page: 275 year: 2015 publication-title: Optica – volume: 44 start-page: 2161 year: 2019 publication-title: Opt. Lett. – volume: 5 start-page: 774 year: 2018 publication-title: Optica – volume: 1 start-page: 675 year: 2019 publication-title: Nat. Rev. Phys. – volume: 16 start-page: 46 year: 1999 publication-title: J. Opt. Soc. Am. B – volume: 26 year: 2020 publication-title: IEEE J. Sel. Top. in Quant. Electron. – volume: 14 start-page: 87 year: 2022 publication-title: Adv. in Opt. and Photon. – volume: 10 start-page: 321 year: 2018 publication-title: Nat. Photon. – year: 1998 – volume: 1 start-page: 20 year: 2018 publication-title: Commun. Phys. – volume: 101 year: 2008 publication-title: Phys. Rev. Lett. – volume: 47 start-page: 134 year: 2022 publication-title: Opt. Lett. – volume: 80 year: 2009 publication-title: Phys. Rev. A – volume: 108 year: 2012 publication-title: Phys. Rev. Lett. – volume: 83 year: 2020 publication-title: Rep Prog Phys – volume: 106 year: 2011 publication-title: Phys. Rev. Lett. – volume: 39 start-page: 319 year: 2014 publication-title: Opt. Lett. – year: 2008 – volume: 450 start-page: 1054 year: 2007 publication-title: Nature – volume: 33 start-page: 825 year: 2016 publication-title: J. Opt. Soc. Am. B – volume: 90 year: 2014 publication-title: Phys. Rev. A – volume: 349 start-page: 255 year: 2015 publication-title: Science – volume: 12 year: 2019 publication-title: Phys. Rev. Appl. – volume: 24 year: 2016 publication-title: Opt. Exp. – volume: 10 start-page: 321 year: 2016 publication-title: Nat. Photon. – volume: 9 start-page: 26 year: 2020 publication-title: Light: Sci. & Appl. – volume: 12 start-page: 6712 year: 2021 publication-title: Nat. Commun. – volume: 30 start-page: 7894 year: 2022 publication-title: Opt. Exp. – volume: 13 start-page: 5784 year: 2022 publication-title: Nat. Commun. – volume: 9 start-page: 2916 year: 2019 publication-title: Sci. Rep. – volume: 111 year: 2013 publication-title: Phys. Rev. Lett. – start-page: 263 year: 2016 end-page: 276 – volume: 25 year: 2017 publication-title: Opt. Exp. – volume: 123 year: 2019 publication-title: Phys. Rev. Lett. – volume: 16 start-page: 3644 year: 2008 publication-title: Opt. Exp. – volume: 6 start-page: 362 year: 2019 publication-title: Optica – volume: 6 start-page: 84 year: 2012 publication-title: Nat. Photon. – volume: 18 year: 2022 publication-title: Phys. Rev. Appl. – volume: 3 start-page: 870 year: 2016 publication-title: Optica – volume: 37 start-page: 3426 year: 2012 publication-title: Opt. Lett. – volume: 103 year: 2021 publication-title: Phys. Rev. A – volume: 42 start-page: 2952 year: 2017 publication-title: Opt. Lett. – volume: 133 year: 2021 publication-title: Opt. & Laser Technol. – volume: 26 year: 2018 publication-title: Opt. Exp. – volume: 6 start-page: 1173 year: 2000 publication-title: IEEE J. Sel. Top. in Quant. Electron. – volume: 84 year: 2011 publication-title: Phys Rev E – volume: 41 start-page: 3912 year: 2016 publication-title: Opt. Lett. – volume: 9 start-page: 4923 year: 2018 publication-title: Nat. Commun. – volume: 14 year: 2020 publication-title: Laser & Photon. Rev. – volume: 12 start-page: 5567 year: 2021 publication-title: Nat. Commun. – volume: 15 start-page: 65 year: 2020 publication-title: Nat. Photon. – volume: 16 year: 2022 publication-title: Laser & Photon. Rev. – volume: 9 start-page: 1 year: 2020 publication-title: Light: Sci. & Appl. – volume: 20 start-page: 1461 year: 2008 publication-title: IEEE Photon. Technol. Lett. – volume: 6 year: 2016 publication-title: Sci. Rep. – volume: 28 start-page: 2185 year: 1992 publication-title: Electron. Lett. – volume: 107 year: 2011 publication-title: Phys. Rev. Lett. – volume: 40 start-page: 1366 year: 2015 publication-title: Opt. Lett. – volume: 373 start-page: 675 year: 2009 publication-title: Phys. Lett. A – volume: 528 start-page: 47 year: 2013 publication-title: Phys. Rep. – volume: 7 year: 2022 publication-title: Adv. in Phys.: X – volume: 3 year: 2013 publication-title: Phys. Rev. X – volume: 7 start-page: 102 year: 2013 publication-title: Nat. Photon. – ident: e_1_2_8_51_1 doi: 10.1038/nphoton.2016.38 – volume: 7 year: 2022 ident: e_1_2_8_43_1 publication-title: Adv. in Phys.: X – ident: e_1_2_8_28_1 doi: 10.1364/JOSAB.33.000825 – volume: 10 start-page: 321 year: 2018 ident: e_1_2_8_49_1 publication-title: Nat. Photon. – ident: e_1_2_8_9_1 doi: 10.1103/PhysRevLett.101.233902 – ident: e_1_2_8_57_1 doi: 10.1103/PhysRevLett.111.243903 – ident: e_1_2_8_29_1 doi: 10.1038/srep37616 – volume-title: Rogue Waves in the Ocean year: 2008 ident: e_1_2_8_54_1 – ident: e_1_2_8_67_1 doi: 10.1109/JSTQE.2020.2985297 – ident: e_1_2_8_6_1 doi: 10.1364/OE.16.003644 – ident: e_1_2_8_64_1 doi: 10.1364/OL.44.002161 – ident: e_1_2_8_45_1 doi: 10.1364/OE.449744 – ident: e_1_2_8_31_1 doi: 10.1364/OL.42.002952 – ident: e_1_2_8_41_1 doi: 10.1364/OL.37.003426 – ident: e_1_2_8_68_1 doi: 10.1038/s41467-022-33525-0 – ident: e_1_2_8_34_1 doi: 10.1038/s41377-020-0251-x – ident: e_1_2_8_30_1 doi: 10.1364/OE.25.033216 – ident: e_1_2_8_69_1 doi: 10.1364/AOP.438025 – ident: e_1_2_8_48_1 doi: 10.1016/j.optlastec.2020.106512 – ident: e_1_2_8_52_1 doi: 10.1103/PhysRevLett.121.023905 – ident: e_1_2_8_8_1 doi: 10.1016/j.physrep.2013.03.001 – ident: e_1_2_8_15_1 doi: 10.1364/OPTICA.3.000870 – ident: e_1_2_8_39_1 doi: 10.1038/s41467-018-07355-y – ident: e_1_2_8_44_1 doi: 10.1088/1361-6633/abbcd7 – ident: e_1_2_8_12_1 doi: 10.1103/PhysRevLett.108.233901 – volume: 15 start-page: 65 year: 2020 ident: e_1_2_8_24_1 publication-title: Nat. Photon. – ident: e_1_2_8_55_1 doi: 10.1016/j.physleta.2008.12.036 – ident: e_1_2_8_1_1 doi: 10.1016/j.euromechflu.2003.09.002 – ident: e_1_2_8_42_1 doi: 10.1038/nphoton.2012.359 – ident: e_1_2_8_23_1 doi: 10.1126/science.aaa8415 – ident: e_1_2_8_35_1 doi: 10.1038/s41377-019-0231-1 – ident: e_1_2_8_47_1 doi: 10.1103/PhysRevApplied.18.064096 – ident: e_1_2_8_36_1 doi: 10.1002/lpor.202100191 – ident: e_1_2_8_63_1 doi: 10.1364/JOSAB.16.000046 – ident: e_1_2_8_53_1 doi: 10.7551/mitpress/3927.001.0001 – ident: e_1_2_8_14_1 doi: 10.1364/OE.24.021256 – start-page: 263 volume-title: Nonlinear Optical Cavity Dynamics: From Microresonators to Fiber Lasers year: 2016 ident: e_1_2_8_20_1 doi: 10.1002/9783527686476.ch11 – ident: e_1_2_8_4_1 doi: 10.1103/PhysRevA.80.033610 – ident: e_1_2_8_16_1 doi: 10.1364/OL.39.000319 – ident: e_1_2_8_61_1 doi: 10.1109/LPT.2008.927887 – ident: e_1_2_8_65_1 doi: 10.1103/PhysRevA.103.063504 – ident: e_1_2_8_46_1 doi: 10.1364/OE.26.020888 – ident: e_1_2_8_58_1 doi: 10.1103/PhysRevLett.123.093901 – ident: e_1_2_8_13_1 doi: 10.1103/PhysRevE.84.016604 – ident: e_1_2_8_59_1 doi: 10.1038/s41467-021-26872-x – ident: e_1_2_8_56_1 doi: 10.1364/OPTICA.5.000774 – ident: e_1_2_8_21_1 doi: 10.1364/OL.41.003912 – ident: e_1_2_8_3_1 doi: 10.1103/PhysRevLett.107.255005 – ident: e_1_2_8_25_1 doi: 10.1038/s41377-020-0270-7 – ident: e_1_2_8_33_1 doi: 10.1364/OPTICA.6.000362 – ident: e_1_2_8_38_1 doi: 10.1038/s41598-023-28689-8 – volume: 3 year: 2013 ident: e_1_2_8_10_1 publication-title: Phys. Rev. X – ident: e_1_2_8_19_1 doi: 10.1364/OL.40.001366 – ident: e_1_2_8_62_1 doi: 10.1109/2944.902165 – ident: e_1_2_8_18_1 doi: 10.1103/PhysRevA.90.013805 – ident: e_1_2_8_66_1 doi: 10.1103/PhysRevA.80.031804 – ident: e_1_2_8_26_1 doi: 10.1186/s43074-022-00055-3 – ident: e_1_2_8_40_1 doi: 10.1049/el:19921402 – ident: e_1_2_8_7_1 doi: 10.1038/s42254-019-0100-0 – ident: e_1_2_8_17_1 doi: 10.1038/s41467-021-25861-4 – ident: e_1_2_8_37_1 doi: 10.1364/OL.446075 – ident: e_1_2_8_70_1 doi: 10.1103/PhysRevLett.106.204502 – ident: e_1_2_8_50_1 doi: 10.1002/lpor.201900219 – ident: e_1_2_8_5_1 doi: 10.1038/nature06402 – ident: e_1_2_8_27_1 doi: 10.1364/OPTICA.2.000275 – ident: e_1_2_8_11_1 doi: 10.1038/nphoton.2011.345 – ident: e_1_2_8_22_1 doi: 10.1103/PhysRevApplied.12.034052 – ident: e_1_2_8_60_1 doi: 10.1038/s42005-018-0022-7 – ident: e_1_2_8_32_1 doi: 10.1038/s41598-019-39759-1 – ident: e_1_2_8_2_1 doi: 10.1103/PhysRevE.84.066402  | 
    
| SSID | ssj0055556 | 
    
| Score | 2.47413 | 
    
| Snippet | Extreme wave events or rogue waves (RWs) are both statistically rare and of exceptionally large amplitude. They are observed in many complex systems ranging... | 
    
| SourceID | hal proquest crossref wiley  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| SubjectTerms | Active control Bose-Einstein condensates Complex systems Environment models Fiber lasers Genetic algorithms machine learning mode locking Nonlinear optics Nonlinear systems Ocean models Optics Optimization Physics rogue waves  | 
    
| Title | Control of Spectral Extreme Events in Ultrafast Fiber Lasers by a Genetic Algorithm | 
    
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Flpor.202200470 https://www.proquest.com/docview/3034465377 https://hal.science/hal-04201146  | 
    
| Volume | 18 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1863-8899 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0055556 issn: 1863-8880 databaseCode: ADMLS dateStart: 20120701 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1863-8880 databaseCode: DR2 dateStart: 20070101 customDbUrl: isFulltext: true eissn: 1863-8899 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0055556 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwELZYTlx47ENbXrJWK-3JENuJkxwr1KpCXVgBlbhFYzdeEKVFTUDAr2cmSUNZCa20m1Metpx4PDPfOOPPjH2XsaPfMyAkRLkII6sEJEEivPKpssbGrsqq_HliBqPw-DK6XFrFX_NDtBNupBmVvSYFB1scvpKGThCfYnynSMwxBe1SmyqmOmv5oyI8quVFidECQ71gwdoYqMO31d94pQ9XlBO5BDiXYWvld_obDBZvXKeb3Bzcl_bAPf9B5vg_n7TJ1htQyrv1KNpiK_n0I9toACpv1L_4xM6P6sR2PvOcNq6nWRLeeyxpjpH3KHOy4NdTPprgAw9FyfuUj8KHQEs6uX3iwInmGlvh3cnv2fy6vLr9zEb93sXRQDS7MginUYEFpFoar9BSWK3iKNc6DaMAknEMYzAGQghQ7FLZMJJOSZekOcISZ7UPfKKTsf7CVqezaf6V8RThAYCRFnwcemmsdWhv0F-aIIU0SDpMLKSSuYaynHbOmGQ12bLKqMeytsc67Edb_q4m63i35DcUcluIOLYH3WFG99CKUZBoHmSH7S7GQNZodpFp4kg0kY7jDlOVMP_SVDb8dXrWXm3_S6UdtobnTcLQLlst5_f5HmKh0u5X4_0FJHr9tA | 
    
| linkProvider | Wiley-Blackwell | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V9gAXSnmoC4VaCImT29hOnOS4qna10LSg0pW4WbY3bqsuu6ibIuDXM5MXLRJCornFseXE4xl_Mxl_BngjUk-_ZywXNil5nDjJbRZlPMiQS6dd6uusyqNjPZnG7z8nXTYh7YVp-CH6gBtpRm2vScEpIL3_mzV0jgAVHTxJck7Ra9-INTorhItOegapBK96g1GmFUdnL-p4GyO5f7v9rXXp3jllRd6AnDeBa73yjDfBde_cJJxc7l1Xbs___IPO8U4f9QgetriUDZuJtAVr5eIxbLYYlbUWYPUEPh00ue1sGRidXU-BEjb6XlGYkY0oeXLFLhZsOscHwa4qNqaUFFZY2tXJ3A9mGTFdYy9sOD9bXl1U51-ewnQ8Oj2Y8PZgBu4V6jC3uRI6SDQWTsk0KZXK4ySy2Sy1M6u1jW2EkhfSxYnwUvgsLxGZeKdCFDKVzdQzWF8sF-U2sBwRgrVaOBvSOAjtnEeTg0umjnKbR9kAeCcW41vWcjo8Y24avmVpaMRMP2IDeNvX_9rwdfy15muUcl-JaLYnw8JQGRoy8hP1NzGAnW4SmFa5V0YRTaJOVJoOQNbS_EdXpvj44aS_e_4_jXbh_uT0qDDFu-PDF_AAy9v8oR1Yr66uy5cIjSr3qp78vwAfSAHk | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dTxQxFG0UE-ML-BkXUBtj4lNh2k47nccN7GbFFQm6iW9N250Ccdkl7ECAX--98yWYGBOZt-m06Uxve3tu5_SUkA88C_h7xjHuVMFS5QVzJjEsipgLr30WKlbll309mqR7P1TLJsS9MLU-RLfghiOj8tc4wIuzadz-rRo6A4AKAZ5AO2cQtT9KVW6Q1bd72ClIKbiqDUZGSwbBXtLqNiZi-275O_PSw2NkRd6CnLeBazXzDNeIb9-5Jpz83Loo_Va4-UPO8V4f9ZSsNriU9uuO9Iw8KObPyVqDUWnjAZYvyLedmttOF5Hi2fW4UEIHVyUuM9IBkieX9GROJzN4EN2ypEOkpNCxw12d1F9TR1HpGmqh_dnR4vykPD59SSbDwfedEWsOZmBBwhhmLpdcRwHOwkuRqULKPFWJM9PMTZ3WLnUJWJ4LnyoeBA8mLwCZBC9jEo00U_mKrMwX8-I1oTkgBOc09y5maeTa-wAuB6ZMneQuT0yPsNYsNjSq5Xh4xszWesvCYovZrsV65GOX_6zW6_hrzvdg5S4TymyP-mOLaeDIME7Ul7xHNttOYJvBvbQSZRK1klnWI6Ky5j-qsuODr4fd3fr_FHpHHh_sDu340_7nDfIEkhv60CZZKc8vijeAjEr_tur7vwDCxAFo | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Control+of+Spectral+Extreme+Events+in+Ultrafast+Fiber+Lasers+by+a+Genetic+Algorithm&rft.jtitle=Laser+%26+photonics+reviews&rft.au=Wu%2C+Xiuqi&rft.au=Zhang%2C+Ying&rft.au=Peng%2C+Junsong&rft.au=Boscolo%2C+Sonia&rft.date=2024-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1863-8880&rft.eissn=1863-8899&rft.volume=18&rft.issue=4&rft_id=info:doi/10.1002%2Flpor.202200470&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-8880&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-8880&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-8880&client=summon |