Particle swarm optimization hybridized with genetic algorithm for uncertain integrated process planning and scheduling with interval processing time

•Propose the uncertain IPPS model with uncertain processing time.•The interval number is used as a representation of the uncertain processing time.•PSO algorithm hybridizing GA has been proposed to optimize the uncertain IPPS problem.•The experimental results illustrate that the proposed algorithm i...

Full description

Saved in:
Bibliographic Details
Published inComputers & industrial engineering Vol. 135; pp. 1036 - 1046
Main Authors Li, Xinyu, Gao, Liang, Wang, Wenwen, Wang, Cuiyu, Wen, Long
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2019
Subjects
Online AccessGet full text
ISSN0360-8352
1879-0550
DOI10.1016/j.cie.2019.04.028

Cover

Abstract •Propose the uncertain IPPS model with uncertain processing time.•The interval number is used as a representation of the uncertain processing time.•PSO algorithm hybridizing GA has been proposed to optimize the uncertain IPPS problem.•The experimental results illustrate that the proposed algorithm is effective for uncertain IPPS problem and outperforms GA. Integrated process planning and scheduling (IPPS) is a hot research topic on providing a blueprint of efficient manufacturing system. Most existing IPPS models and methods focus on the static machining shop status. However, in the real-world production, the machining shop status changes dynamically because of external and internal fluctuations. The uncertain IPPS can better model the practical machining shop environment but is rarely researched because of its complexity (including the difficulties of modelling and algorithm design). To deal with the uncertain IPPS problem, this paper presents a new uncertain IPPS model with uncertain processing time represented by the interval number. A new probability and preference-ratio based interval ranking method is proposed for precise interval computation. Particle swarm optimization (PSO) algorithm hybridizing with genetic algorithm (GA) is designed to achieve the good solution. To improve the search capability of the hybrid algorithm, the special genetic operators are adopted corresponding to the characteristics of uncertain IPPS problem. Some strategies are designed to prevent the particles from trapping into a local optimum. Six experiments which are adopted from some famous IPPS benchmark problems have been used to evaluate the performance of the proposed algorithm. The experimental results illustrate that the proposed algorithm has achieved good improvement and is effective for uncertain IPPS problem.
AbstractList •Propose the uncertain IPPS model with uncertain processing time.•The interval number is used as a representation of the uncertain processing time.•PSO algorithm hybridizing GA has been proposed to optimize the uncertain IPPS problem.•The experimental results illustrate that the proposed algorithm is effective for uncertain IPPS problem and outperforms GA. Integrated process planning and scheduling (IPPS) is a hot research topic on providing a blueprint of efficient manufacturing system. Most existing IPPS models and methods focus on the static machining shop status. However, in the real-world production, the machining shop status changes dynamically because of external and internal fluctuations. The uncertain IPPS can better model the practical machining shop environment but is rarely researched because of its complexity (including the difficulties of modelling and algorithm design). To deal with the uncertain IPPS problem, this paper presents a new uncertain IPPS model with uncertain processing time represented by the interval number. A new probability and preference-ratio based interval ranking method is proposed for precise interval computation. Particle swarm optimization (PSO) algorithm hybridizing with genetic algorithm (GA) is designed to achieve the good solution. To improve the search capability of the hybrid algorithm, the special genetic operators are adopted corresponding to the characteristics of uncertain IPPS problem. Some strategies are designed to prevent the particles from trapping into a local optimum. Six experiments which are adopted from some famous IPPS benchmark problems have been used to evaluate the performance of the proposed algorithm. The experimental results illustrate that the proposed algorithm has achieved good improvement and is effective for uncertain IPPS problem.
Author Gao, Liang
Wen, Long
Li, Xinyu
Wang, Wenwen
Wang, Cuiyu
Author_xml – sequence: 1
  givenname: Xinyu
  orcidid: 0000-0002-3730-0360
  surname: Li
  fullname: Li, Xinyu
– sequence: 2
  givenname: Liang
  surname: Gao
  fullname: Gao, Liang
  email: gaoliang@mail.hust.edu.cn
– sequence: 3
  givenname: Wenwen
  surname: Wang
  fullname: Wang, Wenwen
– sequence: 4
  givenname: Cuiyu
  surname: Wang
  fullname: Wang, Cuiyu
– sequence: 5
  givenname: Long
  surname: Wen
  fullname: Wen, Long
BookMark eNp9kEtOAzEMhiMEEqVwAHa5wAxO5i1WCPGSkGAB6yhNPK2raaZKAgjOwYHJUNiwYBU5_n5b_o7YvhsdMnYqIBcg6rN1bghzCaLLocxBtntsJtqmy6CqYJ_NoKgha4tKHrKjENYAUFadmLHPR-0jmQF5eNN-w8dtpA196Eij46v3hSdLH2j5G8UVX6LDBHM9LEefPja8Hz1_cQZ91OQ4uYhLr2Pit340GALfDto5ckuuneXBrNC-DFP5PW_i_asefumpkdbjMTvo9RDw5Oeds-frq6fL2-z-4ebu8uI-M0UFMetLbepa1qJGXZqFLNq2g-nGRoJp67IRjemrRWHLqlo02EjbtL22RSelaA3KYs7Ebq7xYwgee7X1tNH-XQlQk1a1VkmrmrQqKFXSmjLNn4yh-K0rek3Dv8nzXRLTSa-EXoWEJHmWPJqo7Ej_pL8AiBuY-g
CitedBy_id crossref_primary_10_1109_LRA_2023_3265594
crossref_primary_10_1007_s40747_021_00461_3
crossref_primary_10_1109_TASE_2022_3151648
crossref_primary_10_1007_s10489_023_05186_z
crossref_primary_10_1109_TSMC_2022_3187082
crossref_primary_10_3233_JIFS_233408
crossref_primary_10_1093_jigpal_jzac016
crossref_primary_10_1155_2020_6012737
crossref_primary_10_1016_j_asoc_2024_112661
crossref_primary_10_1007_s00170_021_06755_7
crossref_primary_10_1007_s10489_021_02869_3
crossref_primary_10_1007_s11431_022_2096_6
crossref_primary_10_3233_ICA_230705
crossref_primary_10_1108_GS_03_2023_0030
crossref_primary_10_1007_s10845_024_02545_6
crossref_primary_10_1007_s11047_023_09953_2
crossref_primary_10_1049_cim2_12117
crossref_primary_10_1109_ACCESS_2021_3114712
crossref_primary_10_1016_j_cie_2021_107194
crossref_primary_10_1016_j_swevo_2020_100820
crossref_primary_10_1080_01605682_2022_2122738
crossref_primary_10_1080_00207543_2019_1693659
crossref_primary_10_1016_j_knosys_2021_107555
crossref_primary_10_3934_jimo_2022037
crossref_primary_10_1177_0020294020959117
crossref_primary_10_1016_j_ast_2021_107004
crossref_primary_10_3390_en13236181
crossref_primary_10_1007_s12351_022_00700_6
crossref_primary_10_1371_journal_pone_0306024
crossref_primary_10_1016_j_cor_2022_105731
crossref_primary_10_1016_j_rcim_2024_102919
crossref_primary_10_1016_j_rcim_2022_102334
crossref_primary_10_1016_j_jii_2022_100364
crossref_primary_10_1109_TCYB_2020_3026651
crossref_primary_10_1016_j_asoc_2022_109783
crossref_primary_10_3390_app11146314
Cites_doi 10.1016/j.eswa.2016.07.046
10.1109/TASE.2012.2217330
10.1016/j.cie.2016.01.017
10.1007/s10845-013-0814-2
10.1016/0898-1221(88)90124-1
10.1016/j.eswa.2011.11.074
10.1007/s00170-012-4572-7
10.1016/j.asoc.2007.06.004
10.1016/j.apm.2008.06.002
10.1007/s00170-013-5469-9
10.1016/S0165-0114(98)00427-8
10.1016/j.cie.2011.07.010
10.1016/j.cor.2008.07.006
10.1007/s10586-016-0717-z
10.1007/s12293-019-00283-4
10.1016/j.cor.2009.06.008
10.1080/00207549008942818
10.1016/0736-5845(84)90020-6
10.1016/j.engappai.2016.10.013
10.1016/j.cie.2016.12.020
10.1016/j.eswa.2011.07.019
10.1080/00207543.2016.1182227
10.1109/TSM.2017.2758380
10.1109/TII.2018.2843441
10.1016/j.knosys.2016.06.014
10.1016/j.cie.2018.02.003
10.1016/j.ijpe.2016.01.016
10.1016/j.ejor.2015.01.032
10.1016/S0305-0548(02)00063-1
10.1016/j.ijpe.2010.04.001
10.1109/ACCESS.2018.2832181
10.1016/j.ejor.2007.03.031
10.1016/j.eswa.2016.08.019
10.1016/j.ins.2018.03.047
10.1016/j.eswa.2013.03.043
10.1007/s10845-014-1023-3
10.1109/TSMC.2018.2881686
10.1016/j.cie.2017.05.026
10.1016/j.cie.2007.06.018
10.1016/j.cie.2016.10.015
10.1016/j.cie.2018.12.061
10.1109/TEVC.2016.2611642
10.1007/s10845-015-1060-6
10.1504/IJMR.2010.031630
10.1007/s11432-018-9728-x
10.1016/S1568-4946(02)00069-8
10.1007/s00170-017-0020-z
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.cie.2019.04.028
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-0550
EndPage 1046
ExternalDocumentID 10_1016_j_cie_2019_04_028
S0360835219302311
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAFWJ
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABAOU
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
ADRHT
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LX9
LY1
LY7
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSW
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c350t-f4ac662616ea4cb2388908352720c864717cf5b3d455b7e72d78fad392218ce23
IEDL.DBID .~1
ISSN 0360-8352
IngestDate Wed Oct 01 03:38:41 EDT 2025
Thu Apr 24 22:59:47 EDT 2025
Fri Feb 23 02:29:10 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Uncertain integrated process planning and scheduling
Interval processing time
Particle swarm optimization
Interval number
Hybrid algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c350t-f4ac662616ea4cb2388908352720c864717cf5b3d455b7e72d78fad392218ce23
ORCID 0000-0002-3730-0360
PageCount 11
ParticipantIDs crossref_primary_10_1016_j_cie_2019_04_028
crossref_citationtrail_10_1016_j_cie_2019_04_028
elsevier_sciencedirect_doi_10_1016_j_cie_2019_04_028
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationTitle Computers & industrial engineering
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Gao, Suganthan, Pan, Tasgetiren, Sadollah (b0020) 2016; 109
Li, Shao, Gao, Qian (b0110) 2010; 126
Kim, Park, Ko (b0055) 2003; 30
Modarres, Sadi-Nezhad (b0150) 2011; 118
Li, Gao, Zhang, Shao (b0100) 2010; 5
Wu, Wu (b0230) 2017; 28
Li, Gao, Shao (b0090) 2012; 39
Li, Gao, Li (b0075) 2012; 39
Xia, Li, Gao (b0235) 2016; 102
Sobeyko, Monch (b0215) 2017; 55
Yi, Xing, Wang, Dong, Vasilakos, Alavi, Wang (b0245) 2018
Mou, Gao, Guo, Xu, Li (b0165) 2018
Ghrayeb (b0025) 2003; 2
Jamrus, Chien, Gen, Sethanan (b0035) 2018; 31
Shahrabi, Adibi, Mahootchi (b0205) 2017; 110
Xiang, Xing, Wang, Zou (b0240) 2019
Moon, Lee, Jeong, Yun (b0155) 2008; 54
Nabil, Elsayed (b0175) 1990; 28
Lee, Li (b0060) 1988; 15
Li, Gao, Wen (b0095) 2013; 67
Zhang, Wong (b0250) 2018; 29
Li, Lu, Gao, Xiao, Wen (b0105) 2018; 14
Wang, Lai, Wu, Xing, Wang, Ishibuchi (b0225) 2018; 450
Shao, Li, Gao, Zhang (b0210) 2009; 36
Jiang, Han, Liu (b0040) 2008; 188
Mou, Gao, Li, Pan, Mu (b0170) 2017; 20
Li, Gao, Shao (b0085) 2010; 37
Kennedy, Eberhart (b0050) 1997
Zhang, Gen, Jo (b9000) 2014; 25
Luo, Wen, Li, Ming, Xie (b0140) 2017; 2017
Moore (b0160) 1979
Nezhad, Assadi (b0180) 2008; 8
Sayadi, Heydari, Shahanaghi (b0195) 2009; 33
Zhang, Wong (b9005) 2015; 244
Haddadzade, Razfar, Zarandi (b0030) 2014; 71
Lu, Li, Gao, Liao, Yi (b0135) 2017; 104
Li, Xiao, Wang, Yi (b0125) 2019
Zhang, Wong (b9010) 2016; 340–341
Chryssolouris, Chan, Cobb (b0010) 1984; 1
Lei (b0065) 2011; 61
Li, Tang, Li, Li (b0115) 2013; 10
Lu, Gao, Li, Xiao (b0130) 2017; 57
Joo, Shim, Chua, Cai (b0045) 2018; 120
Manupati, Putnik, Tiwari, Avila, Cruz-Cunha (b0145) 2016; 94
Petrovic, Vukovic, Mitic, Miljkovic (b0185) 2016; 64
Chan, Kumar, Tiwari (b0005) 2006
Li, Gao, Pan, Wan, Chao (b0080) 2019
Li, Gao (b0070) 2016; 174
Seker, Erol, Botsali (b0200) 2013; 40
Li, Wang, Zhang, Ishibuchi (b0120) 2018; 6
Qin, Fan, Tang, Huang, Fang, Pan (b0190) 2019; 128
Gao, Suganthan, Pan, Chua, Chong, Cai (b0015) 2016; 65
Wang, Ishibuchi, Zhou, Liao, Zhang (b0220) 2018; 22
Ghrayeb (10.1016/j.cie.2019.04.028_b0025) 2003; 2
Petrovic (10.1016/j.cie.2019.04.028_b0185) 2016; 64
Wang (10.1016/j.cie.2019.04.028_b0220) 2018; 22
Manupati (10.1016/j.cie.2019.04.028_b0145) 2016; 94
Li (10.1016/j.cie.2019.04.028_b0085) 2010; 37
Zhang (10.1016/j.cie.2019.04.028_b9005) 2015; 244
Kennedy (10.1016/j.cie.2019.04.028_b0050) 1997
Zhang (10.1016/j.cie.2019.04.028_b9010) 2016; 340–341
Li (10.1016/j.cie.2019.04.028_b0100) 2010; 5
Mou (10.1016/j.cie.2019.04.028_b0170) 2017; 20
Xiang (10.1016/j.cie.2019.04.028_b0240) 2019
Qin (10.1016/j.cie.2019.04.028_b0190) 2019; 128
Li (10.1016/j.cie.2019.04.028_b0105) 2018; 14
Li (10.1016/j.cie.2019.04.028_b0080) 2019
Modarres (10.1016/j.cie.2019.04.028_b0150) 2011; 118
Nezhad (10.1016/j.cie.2019.04.028_b0180) 2008; 8
Chan (10.1016/j.cie.2019.04.028_b0005) 2006
Joo (10.1016/j.cie.2019.04.028_b0045) 2018; 120
Lu (10.1016/j.cie.2019.04.028_b0135) 2017; 104
Li (10.1016/j.cie.2019.04.028_b0110) 2010; 126
Kim (10.1016/j.cie.2019.04.028_b0055) 2003; 30
Lei (10.1016/j.cie.2019.04.028_b0065) 2011; 61
Wu (10.1016/j.cie.2019.04.028_b0230) 2017; 28
Wang (10.1016/j.cie.2019.04.028_b0225) 2018; 450
Zhang (10.1016/j.cie.2019.04.028_b9000) 2014; 25
Xia (10.1016/j.cie.2019.04.028_b0235) 2016; 102
Shahrabi (10.1016/j.cie.2019.04.028_b0205) 2017; 110
Li (10.1016/j.cie.2019.04.028_b0120) 2018; 6
Chryssolouris (10.1016/j.cie.2019.04.028_b0010) 1984; 1
Gao (10.1016/j.cie.2019.04.028_b0020) 2016; 109
Mou (10.1016/j.cie.2019.04.028_b0165) 2018
Yi (10.1016/j.cie.2019.04.028_b0245) 2018
Seker (10.1016/j.cie.2019.04.028_b0200) 2013; 40
Moon (10.1016/j.cie.2019.04.028_b0155) 2008; 54
Li (10.1016/j.cie.2019.04.028_b0090) 2012; 39
Shao (10.1016/j.cie.2019.04.028_b0210) 2009; 36
Sayadi (10.1016/j.cie.2019.04.028_b0195) 2009; 33
Li (10.1016/j.cie.2019.04.028_b0125) 2019
Sobeyko (10.1016/j.cie.2019.04.028_b0215) 2017; 55
Jiang (10.1016/j.cie.2019.04.028_b0040) 2008; 188
Gao (10.1016/j.cie.2019.04.028_b0015) 2016; 65
Li (10.1016/j.cie.2019.04.028_b0070) 2016; 174
Lee (10.1016/j.cie.2019.04.028_b0060) 1988; 15
Li (10.1016/j.cie.2019.04.028_b0115) 2013; 10
Nabil (10.1016/j.cie.2019.04.028_b0175) 1990; 28
Lu (10.1016/j.cie.2019.04.028_b0130) 2017; 57
Haddadzade (10.1016/j.cie.2019.04.028_b0030) 2014; 71
Li (10.1016/j.cie.2019.04.028_b0095) 2013; 67
Zhang (10.1016/j.cie.2019.04.028_b0250) 2018; 29
Jamrus (10.1016/j.cie.2019.04.028_b0035) 2018; 31
Moore (10.1016/j.cie.2019.04.028_b0160) 1979
Luo (10.1016/j.cie.2019.04.028_b0140) 2017; 2017
Li (10.1016/j.cie.2019.04.028_b0075) 2012; 39
References_xml – volume: 22
  start-page: 3
  year: 2018
  end-page: 18
  ident: b0220
  article-title: Localized weighted sum method for many-objective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– year: 2019
  ident: b0125
  article-title: Mathematical modeling and a discrete artificial bee colony algorithm for the welding shop scheduling problem
  publication-title: Memetic Computing
– volume: 244
  start-page: 434
  year: 2015
  end-page: 444
  ident: b9005
  article-title: An object-coding genetic algorithm for integrated process planning and scheduling
  publication-title: European Journal of Operational Research
– volume: 55
  start-page: 392
  year: 2017
  end-page: 409
  ident: b0215
  article-title: Integrated process planning and scheduling for large-scale flexible job shops using metaheuristics
  publication-title: International Journal of Production Research
– volume: 71
  start-page: 241
  year: 2014
  end-page: 252
  ident: b0030
  article-title: Integration of process planning and job shop scheduling with stochastic processing time
  publication-title: International Journal of Advanced Manufacturing Technology
– volume: 10
  start-page: 86
  year: 2013
  end-page: 98
  ident: b0115
  article-title: A modeling approach to analyze variability of remanufacturing process routing
  publication-title: IEEE Transactions on Automation Science and Engineering
– volume: 1
  start-page: 315
  year: 1984
  end-page: 319
  ident: b0010
  article-title: Decision making on the factory floor, An integrated approach to process planning and scheduling
  publication-title: Robotics and Computer-Integrated Manufacturing
– start-page: 4104
  year: 1997
  end-page: 4109
  ident: b0050
  article-title: Particle swarm optimization
  publication-title: Proceedings of IEEE International Conference on Systems, Man, and Cybernetics
– volume: 126
  start-page: 289
  year: 2010
  end-page: 298
  ident: b0110
  article-title: An effective hybrid algorithm for integrated process planning and scheduling
  publication-title: International Journal of Production Economics
– volume: 64
  start-page: 569
  year: 2016
  end-page: 588
  ident: b0185
  article-title: Integration of process planning and scheduling using chaotic particle swarm optimization algorithm
  publication-title: Expert Systems with Applications
– volume: 20
  start-page: 371
  year: 2017
  end-page: 390
  ident: b0170
  article-title: Multi-objective inverse scheduling optimization of single-machine shop system with uncertain due-dates and processing times
  publication-title: Cluster Computing
– volume: 39
  start-page: 288
  year: 2012
  end-page: 297
  ident: b0075
  article-title: Application of game theory based hybrid algorithm for multi-objective integrated process planning and scheduling
  publication-title: Expert Systems with Applications
– volume: 109
  start-page: 1
  year: 2016
  end-page: 16
  ident: b0020
  article-title: Artificial bee colony algorithm for scheduling and rescheduling fuzzy flexible job shop problem with new job insertion
  publication-title: Knowledge-Based Systems
– volume: 29
  start-page: 585
  year: 2018
  end-page: 601
  ident: b0250
  article-title: Integrated process planning and scheduling: An enhanced ant colony optimization heuristic with parameter tuning
  publication-title: Journal of Intelligent Manufacturing
– volume: 104
  start-page: 156
  year: 2017
  end-page: 174
  ident: b0135
  article-title: An effective multi-objective discrete virus optimization algorithm for flexible job-shop scheduling problem with controllable processing times
  publication-title: Computers & Industrial Engineering
– volume: 2017
  start-page: 3145
  year: 2017
  end-page: 3158
  ident: b0140
  article-title: An effective multi-objective genetic algorithm based on immune principle and external archive for multi-objective integrated process planning and scheduling
  publication-title: International Journal of Advanced Manufacturing Technology
– volume: 118
  start-page: 429
  year: 2011
  end-page: 436
  ident: b0150
  article-title: Ranking fuzzy numbers by preference ratio
  publication-title: Fuzzy Sets and System
– volume: 33
  start-page: 2257
  year: 2009
  end-page: 2262
  ident: b0195
  article-title: Extension of VIKOR method for decision making problem with interval numbers
  publication-title: Applied Mathematical Modelling
– volume: 450
  start-page: 128
  year: 2018
  end-page: 140
  ident: b0225
  article-title: Multi-clustering via evolutionary multi-objective optimization
  publication-title: Information Sciences
– volume: 31
  start-page: 32
  year: 2018
  end-page: 41
  ident: b0035
  article-title: Hybrid particle swarm optimization combined with genetic operators for flexible job-shop scheduling under uncertain processing time for semiconductor manufacturing
  publication-title: IEEE Transactions on Semiconductor Manufacturing
– volume: 30
  start-page: 1151
  year: 2003
  end-page: 1171
  ident: b0055
  article-title: A symbiotic evolutionary algorithm for the integration of process planning and job shop scheduling
  publication-title: Computers & Operations Research
– year: 2019
  ident: b0240
  article-title: Comprehensive learning pigeon-inspired optimization with tabu list
  publication-title: Science China Information Sciences
– year: 2019
  ident: b0080
  article-title: An effective hybrid genetic algorithm and variable neighborhood search for integrated process planning and scheduling in a packaging machine workshop
  publication-title: IEEE Transactions on Systems, Man and Cybernetics: Systems
– volume: 128
  start-page: 458
  year: 2019
  end-page: 476
  ident: b0190
  article-title: An effective hybrid discrete grey wolf optimizer for the casting production scheduling problem with multi-objective and multi-constraint
  publication-title: Computers & Industrial Engineering
– volume: 110
  start-page: 75
  year: 2017
  end-page: 82
  ident: b0205
  article-title: A reinforcement learning approach to parameter estimation in dynamic job shop scheduling
  publication-title: Computers & Industrial Engineering
– volume: 39
  start-page: 6683
  year: 2012
  end-page: 6691
  ident: b0090
  article-title: An active learning genetic algorithm for integrated process planning and scheduling
  publication-title: Expert Systems with Applications
– volume: 5
  start-page: 161
  year: 2010
  end-page: 180
  ident: b0100
  article-title: A review on integrated process planning and scheduling
  publication-title: International Journal of Manufacturing Research
– volume: 67
  start-page: 1355
  year: 2013
  end-page: 1369
  ident: b0095
  article-title: Application of an efficient modified particle swarm optimization algorithm for process planning
  publication-title: International Journal of Advanced Manufacturing Technology
– volume: 25
  start-page: 881
  year: 2014
  end-page: 897
  ident: b9000
  article-title: Hybrid sampling strategy – based multiobjective evolutionary algorithm for process planning and scheduling problem
  publication-title: Journal of Intelligent Manufacturing
– year: 2018
  ident: b0245
  article-title: Behavior of crossover operators in NSGA-III for large-scale optimization problems
  publication-title: Information Science
– volume: 57
  start-page: 61
  year: 2017
  end-page: 79
  ident: b0130
  article-title: A hybrid multi-objective grey wolf optimizer for dynamic scheduling in a real-world welding industry
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 174
  start-page: 93
  year: 2016
  end-page: 110
  ident: b0070
  article-title: An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem
  publication-title: International Journal of Production Economics
– volume: 36
  start-page: 2082
  year: 2009
  end-page: 2096
  ident: b0210
  article-title: Integration of process planning and scheduling — A modified genetic algorithm-based approach
  publication-title: Computers & Operations Research
– year: 1979
  ident: b0160
  article-title: Method and Application of Interval Analysis
– volume: 15
  start-page: 887
  year: 1988
  end-page: 896
  ident: b0060
  article-title: Comparison of fuzzy numbers based on the probability measure of fuzzy events
  publication-title: Computers and Mathematics with Applications
– volume: 14
  start-page: 5400
  year: 2018
  end-page: 5409
  ident: b0105
  article-title: An effective multiobjective algorithm for energy-efficient scheduling in a real-life welding shop
  publication-title: IEEE Transactions on Industrial Informatics
– volume: 6
  start-page: 26194
  year: 2018
  end-page: 26214
  ident: b0120
  article-title: Evolutionary many-objective optimization: A comparative study of the state-of-the-art
  publication-title: IEEE Access
– volume: 102
  start-page: 99
  year: 2016
  end-page: 112
  ident: b0235
  article-title: A hybrid genetic algorithm with variable neighborhood search for dynamic integrated process planning and scheduling
  publication-title: Computers & Industrial Engineering
– volume: 37
  start-page: 656
  year: 2010
  end-page: 667
  ident: b0085
  article-title: Mathematical modeling and evolutionary algorithm-based approach for integrated process planning and scheduling
  publication-title: Computers & Operations Research
– volume: 94
  start-page: 63
  year: 2016
  end-page: 73
  ident: b0145
  article-title: Integration of process planning and scheduling using mobile-agent based approach in a networked manufacturing environment
  publication-title: Computers & Industrial Engineering
– volume: 120
  start-page: 480
  year: 2018
  end-page: 487
  ident: b0045
  article-title: Multi-level job scheduling under processing time uncertainty
  publication-title: Computers & Industrial Engineering
– volume: 28
  start-page: 1441
  year: 2017
  end-page: 1457
  ident: b0230
  article-title: An elitist quantum-inspired evolutionary algorithm for the flexible job-shop scheduling problem
  publication-title: Journal of Intelligent Manufacturing
– volume: 28
  start-page: 1595
  year: 1990
  end-page: 1609
  ident: b0175
  article-title: Job shop scheduling with alternative machines
  publication-title: International Journal of Production Research
– volume: 54
  start-page: 1048
  year: 2008
  end-page: 1061
  ident: b0155
  article-title: Integrated process planning and scheduling in a supply chain
  publication-title: Computers & Industrial Engineering
– volume: 65
  start-page: 52
  year: 2016
  end-page: 67
  ident: b0015
  article-title: An improved artificial bee colony algorithm for multi-objective flexible job shop scheduling problem with fuzzy processing time
  publication-title: Expert Systems with Applications
– start-page: 1
  year: 2006
  end-page: 8
  ident: b0005
  article-title: Optimizing the performance of an integrated process planning and scheduling problem: an AIS-FLC based approach
  publication-title: Proceedings of CIS
– volume: 8
  start-page: 759
  year: 2008
  end-page: 766
  ident: b0180
  article-title: Preference ratio-based maximum operator approximation and its application in fuzzy flow shop scheduling
  publication-title: Applied Soft Computing
– volume: 61
  start-page: 1200
  year: 2011
  end-page: 1208
  ident: b0065
  article-title: Population-based neighborhood search for job shop scheduling with interval processing time
  publication-title: Computers & Industrial Engineering
– volume: 2
  start-page: 197
  year: 2003
  end-page: 210
  ident: b0025
  article-title: A bi-criteria optimization, minimizing the integral value and spread of the fuzzy makespan of job shop scheduling problems
  publication-title: Applied Soft Computing
– volume: 40
  start-page: 5341
  year: 2013
  end-page: 5351
  ident: b0200
  article-title: A neuro-fuzzy model for a new hybrid integrated Process Planning and Scheduling system
  publication-title: Expert Systems with Applications
– volume: 188
  start-page: 1
  year: 2008
  end-page: 13
  ident: b0040
  article-title: A nonlinear interval number programming method for uncertainty optimization problems
  publication-title: European Journal of Operational Research
– year: 2018
  ident: b0165
  article-title: Hybrid optimization algorithms by various structures for a real-world inverse scheduling problem with uncertain due-dates under single-machine shop systems
  publication-title: Neural Computing and Applications, article in press,
– volume: 340–341
  start-page: 1
  year: 2016
  end-page: 16
  ident: b9010
  article-title: Solving integrated process planning and scheduling problem with constructive meta-heuristics
  publication-title: Information Sciences
– volume: 65
  start-page: 52
  year: 2016
  ident: 10.1016/j.cie.2019.04.028_b0015
  article-title: An improved artificial bee colony algorithm for multi-objective flexible job shop scheduling problem with fuzzy processing time
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2016.07.046
– volume: 10
  start-page: 86
  issue: 1
  year: 2013
  ident: 10.1016/j.cie.2019.04.028_b0115
  article-title: A modeling approach to analyze variability of remanufacturing process routing
  publication-title: IEEE Transactions on Automation Science and Engineering
  doi: 10.1109/TASE.2012.2217330
– volume: 94
  start-page: 63
  year: 2016
  ident: 10.1016/j.cie.2019.04.028_b0145
  article-title: Integration of process planning and scheduling using mobile-agent based approach in a networked manufacturing environment
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2016.01.017
– volume: 25
  start-page: 881
  issue: 5
  year: 2014
  ident: 10.1016/j.cie.2019.04.028_b9000
  article-title: Hybrid sampling strategy – based multiobjective evolutionary algorithm for process planning and scheduling problem
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-013-0814-2
– volume: 15
  start-page: 887
  year: 1988
  ident: 10.1016/j.cie.2019.04.028_b0060
  article-title: Comparison of fuzzy numbers based on the probability measure of fuzzy events
  publication-title: Computers and Mathematics with Applications
  doi: 10.1016/0898-1221(88)90124-1
– volume: 39
  start-page: 6683
  issue: 8
  year: 2012
  ident: 10.1016/j.cie.2019.04.028_b0090
  article-title: An active learning genetic algorithm for integrated process planning and scheduling
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.11.074
– volume: 67
  start-page: 1355
  year: 2013
  ident: 10.1016/j.cie.2019.04.028_b0095
  article-title: Application of an efficient modified particle swarm optimization algorithm for process planning
  publication-title: International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-012-4572-7
– volume: 8
  start-page: 759
  issue: 1
  year: 2008
  ident: 10.1016/j.cie.2019.04.028_b0180
  article-title: Preference ratio-based maximum operator approximation and its application in fuzzy flow shop scheduling
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2007.06.004
– volume: 33
  start-page: 2257
  issue: 5
  year: 2009
  ident: 10.1016/j.cie.2019.04.028_b0195
  article-title: Extension of VIKOR method for decision making problem with interval numbers
  publication-title: Applied Mathematical Modelling
  doi: 10.1016/j.apm.2008.06.002
– year: 2018
  ident: 10.1016/j.cie.2019.04.028_b0165
  article-title: Hybrid optimization algorithms by various structures for a real-world inverse scheduling problem with uncertain due-dates under single-machine shop systems
  publication-title: Neural Computing and Applications, article in press,
– volume: 71
  start-page: 241
  issue: 1–4
  year: 2014
  ident: 10.1016/j.cie.2019.04.028_b0030
  article-title: Integration of process planning and job shop scheduling with stochastic processing time
  publication-title: International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-013-5469-9
– volume: 118
  start-page: 429
  year: 2011
  ident: 10.1016/j.cie.2019.04.028_b0150
  article-title: Ranking fuzzy numbers by preference ratio
  publication-title: Fuzzy Sets and System
  doi: 10.1016/S0165-0114(98)00427-8
– volume: 61
  start-page: 1200
  issue: 4
  year: 2011
  ident: 10.1016/j.cie.2019.04.028_b0065
  article-title: Population-based neighborhood search for job shop scheduling with interval processing time
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2011.07.010
– volume: 36
  start-page: 2082
  year: 2009
  ident: 10.1016/j.cie.2019.04.028_b0210
  article-title: Integration of process planning and scheduling — A modified genetic algorithm-based approach
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2008.07.006
– start-page: 1
  year: 2006
  ident: 10.1016/j.cie.2019.04.028_b0005
  article-title: Optimizing the performance of an integrated process planning and scheduling problem: an AIS-FLC based approach
– volume: 20
  start-page: 371
  year: 2017
  ident: 10.1016/j.cie.2019.04.028_b0170
  article-title: Multi-objective inverse scheduling optimization of single-machine shop system with uncertain due-dates and processing times
  publication-title: Cluster Computing
  doi: 10.1007/s10586-016-0717-z
– year: 2019
  ident: 10.1016/j.cie.2019.04.028_b0125
  article-title: Mathematical modeling and a discrete artificial bee colony algorithm for the welding shop scheduling problem
  publication-title: Memetic Computing
  doi: 10.1007/s12293-019-00283-4
– volume: 37
  start-page: 656
  issue: 4
  year: 2010
  ident: 10.1016/j.cie.2019.04.028_b0085
  article-title: Mathematical modeling and evolutionary algorithm-based approach for integrated process planning and scheduling
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2009.06.008
– volume: 28
  start-page: 1595
  issue: 9
  year: 1990
  ident: 10.1016/j.cie.2019.04.028_b0175
  article-title: Job shop scheduling with alternative machines
  publication-title: International Journal of Production Research
  doi: 10.1080/00207549008942818
– volume: 1
  start-page: 315
  issue: 3–4
  year: 1984
  ident: 10.1016/j.cie.2019.04.028_b0010
  article-title: Decision making on the factory floor, An integrated approach to process planning and scheduling
  publication-title: Robotics and Computer-Integrated Manufacturing
  doi: 10.1016/0736-5845(84)90020-6
– volume: 57
  start-page: 61
  year: 2017
  ident: 10.1016/j.cie.2019.04.028_b0130
  article-title: A hybrid multi-objective grey wolf optimizer for dynamic scheduling in a real-world welding industry
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2016.10.013
– volume: 104
  start-page: 156
  year: 2017
  ident: 10.1016/j.cie.2019.04.028_b0135
  article-title: An effective multi-objective discrete virus optimization algorithm for flexible job-shop scheduling problem with controllable processing times
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2016.12.020
– volume: 39
  start-page: 288
  issue: 1
  year: 2012
  ident: 10.1016/j.cie.2019.04.028_b0075
  article-title: Application of game theory based hybrid algorithm for multi-objective integrated process planning and scheduling
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.07.019
– volume: 55
  start-page: 392
  issue: 2
  year: 2017
  ident: 10.1016/j.cie.2019.04.028_b0215
  article-title: Integrated process planning and scheduling for large-scale flexible job shops using metaheuristics
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2016.1182227
– volume: 31
  start-page: 32
  issue: 1
  year: 2018
  ident: 10.1016/j.cie.2019.04.028_b0035
  article-title: Hybrid particle swarm optimization combined with genetic operators for flexible job-shop scheduling under uncertain processing time for semiconductor manufacturing
  publication-title: IEEE Transactions on Semiconductor Manufacturing
  doi: 10.1109/TSM.2017.2758380
– volume: 14
  start-page: 5400
  issue: 12
  year: 2018
  ident: 10.1016/j.cie.2019.04.028_b0105
  article-title: An effective multiobjective algorithm for energy-efficient scheduling in a real-life welding shop
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2018.2843441
– volume: 109
  start-page: 1
  year: 2016
  ident: 10.1016/j.cie.2019.04.028_b0020
  article-title: Artificial bee colony algorithm for scheduling and rescheduling fuzzy flexible job shop problem with new job insertion
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2016.06.014
– start-page: 4104
  year: 1997
  ident: 10.1016/j.cie.2019.04.028_b0050
  article-title: Particle swarm optimization
– volume: 120
  start-page: 480
  year: 2018
  ident: 10.1016/j.cie.2019.04.028_b0045
  article-title: Multi-level job scheduling under processing time uncertainty
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2018.02.003
– volume: 174
  start-page: 93
  year: 2016
  ident: 10.1016/j.cie.2019.04.028_b0070
  article-title: An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem
  publication-title: International Journal of Production Economics
  doi: 10.1016/j.ijpe.2016.01.016
– volume: 244
  start-page: 434
  year: 2015
  ident: 10.1016/j.cie.2019.04.028_b9005
  article-title: An object-coding genetic algorithm for integrated process planning and scheduling
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2015.01.032
– volume: 30
  start-page: 1151
  year: 2003
  ident: 10.1016/j.cie.2019.04.028_b0055
  article-title: A symbiotic evolutionary algorithm for the integration of process planning and job shop scheduling
  publication-title: Computers & Operations Research
  doi: 10.1016/S0305-0548(02)00063-1
– volume: 126
  start-page: 289
  year: 2010
  ident: 10.1016/j.cie.2019.04.028_b0110
  article-title: An effective hybrid algorithm for integrated process planning and scheduling
  publication-title: International Journal of Production Economics
  doi: 10.1016/j.ijpe.2010.04.001
– volume: 6
  start-page: 26194
  year: 2018
  ident: 10.1016/j.cie.2019.04.028_b0120
  article-title: Evolutionary many-objective optimization: A comparative study of the state-of-the-art
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2832181
– volume: 188
  start-page: 1
  issue: 1
  year: 2008
  ident: 10.1016/j.cie.2019.04.028_b0040
  article-title: A nonlinear interval number programming method for uncertainty optimization problems
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2007.03.031
– volume: 340–341
  start-page: 1
  year: 2016
  ident: 10.1016/j.cie.2019.04.028_b9010
  article-title: Solving integrated process planning and scheduling problem with constructive meta-heuristics
  publication-title: Information Sciences
– volume: 64
  start-page: 569
  year: 2016
  ident: 10.1016/j.cie.2019.04.028_b0185
  article-title: Integration of process planning and scheduling using chaotic particle swarm optimization algorithm
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2016.08.019
– volume: 450
  start-page: 128
  year: 2018
  ident: 10.1016/j.cie.2019.04.028_b0225
  article-title: Multi-clustering via evolutionary multi-objective optimization
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2018.03.047
– volume: 40
  start-page: 5341
  issue: 13
  year: 2013
  ident: 10.1016/j.cie.2019.04.028_b0200
  article-title: A neuro-fuzzy model for a new hybrid integrated Process Planning and Scheduling system
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2013.03.043
– volume: 29
  start-page: 585
  year: 2018
  ident: 10.1016/j.cie.2019.04.028_b0250
  article-title: Integrated process planning and scheduling: An enhanced ant colony optimization heuristic with parameter tuning
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-014-1023-3
– year: 2019
  ident: 10.1016/j.cie.2019.04.028_b0080
  article-title: An effective hybrid genetic algorithm and variable neighborhood search for integrated process planning and scheduling in a packaging machine workshop
  publication-title: IEEE Transactions on Systems, Man and Cybernetics: Systems
  doi: 10.1109/TSMC.2018.2881686
– volume: 110
  start-page: 75
  year: 2017
  ident: 10.1016/j.cie.2019.04.028_b0205
  article-title: A reinforcement learning approach to parameter estimation in dynamic job shop scheduling
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2017.05.026
– volume: 54
  start-page: 1048
  issue: 4
  year: 2008
  ident: 10.1016/j.cie.2019.04.028_b0155
  article-title: Integrated process planning and scheduling in a supply chain
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2007.06.018
– year: 2018
  ident: 10.1016/j.cie.2019.04.028_b0245
  article-title: Behavior of crossover operators in NSGA-III for large-scale optimization problems
  publication-title: Information Science
– volume: 102
  start-page: 99
  year: 2016
  ident: 10.1016/j.cie.2019.04.028_b0235
  article-title: A hybrid genetic algorithm with variable neighborhood search for dynamic integrated process planning and scheduling
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2016.10.015
– volume: 128
  start-page: 458
  year: 2019
  ident: 10.1016/j.cie.2019.04.028_b0190
  article-title: An effective hybrid discrete grey wolf optimizer for the casting production scheduling problem with multi-objective and multi-constraint
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2018.12.061
– volume: 22
  start-page: 3
  year: 2018
  ident: 10.1016/j.cie.2019.04.028_b0220
  article-title: Localized weighted sum method for many-objective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2016.2611642
– volume: 28
  start-page: 1441
  issue: 6
  year: 2017
  ident: 10.1016/j.cie.2019.04.028_b0230
  article-title: An elitist quantum-inspired evolutionary algorithm for the flexible job-shop scheduling problem
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-015-1060-6
– volume: 5
  start-page: 161
  issue: 2
  year: 2010
  ident: 10.1016/j.cie.2019.04.028_b0100
  article-title: A review on integrated process planning and scheduling
  publication-title: International Journal of Manufacturing Research
  doi: 10.1504/IJMR.2010.031630
– year: 2019
  ident: 10.1016/j.cie.2019.04.028_b0240
  article-title: Comprehensive learning pigeon-inspired optimization with tabu list
  publication-title: Science China Information Sciences
  doi: 10.1007/s11432-018-9728-x
– volume: 2
  start-page: 197
  issue: 3
  year: 2003
  ident: 10.1016/j.cie.2019.04.028_b0025
  article-title: A bi-criteria optimization, minimizing the integral value and spread of the fuzzy makespan of job shop scheduling problems
  publication-title: Applied Soft Computing
  doi: 10.1016/S1568-4946(02)00069-8
– volume: 2017
  start-page: 3145
  issue: 91
  year: 2017
  ident: 10.1016/j.cie.2019.04.028_b0140
  article-title: An effective multi-objective genetic algorithm based on immune principle and external archive for multi-objective integrated process planning and scheduling
  publication-title: International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-017-0020-z
– year: 1979
  ident: 10.1016/j.cie.2019.04.028_b0160
SSID ssj0004591
Score 2.4794116
Snippet •Propose the uncertain IPPS model with uncertain processing time.•The interval number is used as a representation of the uncertain processing time.•PSO...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1036
SubjectTerms Hybrid algorithm
Interval number
Interval processing time
Particle swarm optimization
Uncertain integrated process planning and scheduling
Title Particle swarm optimization hybridized with genetic algorithm for uncertain integrated process planning and scheduling with interval processing time
URI https://dx.doi.org/10.1016/j.cie.2019.04.028
Volume 135
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0550
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004591
  issn: 0360-8352
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1879-0550
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004591
  issn: 0360-8352
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-0550
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004591
  issn: 0360-8352
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1879-0550
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004591
  issn: 0360-8352
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0550
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004591
  issn: 0360-8352
  databaseCode: AKRWK
  dateStart: 19770101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXvTgoyrWR9mDJyE2TTaPHkuxVMUiaKG3kH1ppU1DWxE9-Cv8wc5sNqWCevC4m5ll2ZnMzCbzzRBypmMpuB9zR0sVOAyTcrgIWzBk0lVKgdNCcPJtP-wN2PUwGFZIp8TCYFqltf2FTTfW2s407Gk28tGocQ-218QPEIJgETODYGcRdjG4-GiuVAwvuuYBsYPU5Z9Nk-MFy2J2V8tUO8WG7D_5phV_090hWzZQpO1iL7ukorIq2bZBI7Wv5LxKNlcqCu6Rzzu7eTp_TWcTOgWLMLFQS_r0hvCs0Tvw4-dXCrqDEEaajh-nM5iYUIhgKTi6Ik2ALktJSJoXeAKa2x5HNM0khYsxOCrEsxfrjUz-JGzaUuMD7F2_Twbdy4dOz7GNFxzhB-7C0SwVIdx0mqFKmeDg1eOWOerIc0Ucgj-LhA64L1kQ8EhFnoxinUoItSBgEMrzD8haNs3UIaFMaxAOdzlCfoNQct_TXqC5y0AjUh7ViFseeSJsVXJsjjFOyvSzZ5hXCUopcVkCUqqR8yVLXpTk-IuYlXJMvulVAi7jd7aj_7Edkw0cFTloJ2RtMXtRpxC0LHjdaGWdrLevbnr9L8iw79s
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KHtSDj6pYn3vwJMSmyW6SHqVYqrZFsIXeQvallb5oK6IHf4U_2JlkUyqoB4_ZnVmWncnMt8k8CDk3kZLCj4RjlOYOw6AcIYMqPDLlaq3BaWFycqsdNLrstsd7BVLLc2EwrNLa_symp9bajpTtaZYn_X75AWxvih8AgmARM7gCrTLuhXgDu_yoLJUMz9rmAbWD5PmvzTTIC9bF8K5qWu4UO7L_5JyWHE59m2xapEivss3skIIeFcmWRY3UvpOzItlYKim4Sz7v7e7p7DWZDukYTMLQ5lrSpzfMz-q_Az9-f6WgPJjDSJPB43gKA0MKEJaCp8viBOiiloSikyyhgE5skyOajBSFmzF4Kkxoz9brpwGUsGlLjRPYvH6PdOvXnVrDsZ0XHOlzd-4YlsgArjqVQCdMCnDrUTU969BzZRSAQwul4cJXjHMR6tBTYWQSBVgLEIPUnr9PVkbjkT4glBkD0hGuwJxfHijhe8bjRrgMVCIRYYm4-ZHH0pYlx-4YgziPP3uGcR2jlGKXxSClErlYsEyymhx_EbNcjvE3xYrBZ_zOdvg_tjOy1ui0mnHzpn13RNZxJgtIOyYr8-mLPgEEMxenqYZ-AVoX8XA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Particle+swarm+optimization+hybridized+with+genetic+algorithm+for+uncertain+integrated+process+planning+and+scheduling+with+interval+processing+time&rft.jtitle=Computers+%26+industrial+engineering&rft.au=Li%2C+Xinyu&rft.au=Gao%2C+Liang&rft.au=Wang%2C+Wenwen&rft.au=Wang%2C+Cuiyu&rft.date=2019-09-01&rft.issn=0360-8352&rft.volume=135&rft.spage=1036&rft.epage=1046&rft_id=info:doi/10.1016%2Fj.cie.2019.04.028&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cie_2019_04_028
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-8352&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-8352&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-8352&client=summon