Particle swarm optimization hybridized with genetic algorithm for uncertain integrated process planning and scheduling with interval processing time
•Propose the uncertain IPPS model with uncertain processing time.•The interval number is used as a representation of the uncertain processing time.•PSO algorithm hybridizing GA has been proposed to optimize the uncertain IPPS problem.•The experimental results illustrate that the proposed algorithm i...
        Saved in:
      
    
          | Published in | Computers & industrial engineering Vol. 135; pp. 1036 - 1046 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Ltd
    
        01.09.2019
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0360-8352 1879-0550  | 
| DOI | 10.1016/j.cie.2019.04.028 | 
Cover
| Abstract | •Propose the uncertain IPPS model with uncertain processing time.•The interval number is used as a representation of the uncertain processing time.•PSO algorithm hybridizing GA has been proposed to optimize the uncertain IPPS problem.•The experimental results illustrate that the proposed algorithm is effective for uncertain IPPS problem and outperforms GA.
Integrated process planning and scheduling (IPPS) is a hot research topic on providing a blueprint of efficient manufacturing system. Most existing IPPS models and methods focus on the static machining shop status. However, in the real-world production, the machining shop status changes dynamically because of external and internal fluctuations. The uncertain IPPS can better model the practical machining shop environment but is rarely researched because of its complexity (including the difficulties of modelling and algorithm design). To deal with the uncertain IPPS problem, this paper presents a new uncertain IPPS model with uncertain processing time represented by the interval number. A new probability and preference-ratio based interval ranking method is proposed for precise interval computation. Particle swarm optimization (PSO) algorithm hybridizing with genetic algorithm (GA) is designed to achieve the good solution. To improve the search capability of the hybrid algorithm, the special genetic operators are adopted corresponding to the characteristics of uncertain IPPS problem. Some strategies are designed to prevent the particles from trapping into a local optimum. Six experiments which are adopted from some famous IPPS benchmark problems have been used to evaluate the performance of the proposed algorithm. The experimental results illustrate that the proposed algorithm has achieved good improvement and is effective for uncertain IPPS problem. | 
    
|---|---|
| AbstractList | •Propose the uncertain IPPS model with uncertain processing time.•The interval number is used as a representation of the uncertain processing time.•PSO algorithm hybridizing GA has been proposed to optimize the uncertain IPPS problem.•The experimental results illustrate that the proposed algorithm is effective for uncertain IPPS problem and outperforms GA.
Integrated process planning and scheduling (IPPS) is a hot research topic on providing a blueprint of efficient manufacturing system. Most existing IPPS models and methods focus on the static machining shop status. However, in the real-world production, the machining shop status changes dynamically because of external and internal fluctuations. The uncertain IPPS can better model the practical machining shop environment but is rarely researched because of its complexity (including the difficulties of modelling and algorithm design). To deal with the uncertain IPPS problem, this paper presents a new uncertain IPPS model with uncertain processing time represented by the interval number. A new probability and preference-ratio based interval ranking method is proposed for precise interval computation. Particle swarm optimization (PSO) algorithm hybridizing with genetic algorithm (GA) is designed to achieve the good solution. To improve the search capability of the hybrid algorithm, the special genetic operators are adopted corresponding to the characteristics of uncertain IPPS problem. Some strategies are designed to prevent the particles from trapping into a local optimum. Six experiments which are adopted from some famous IPPS benchmark problems have been used to evaluate the performance of the proposed algorithm. The experimental results illustrate that the proposed algorithm has achieved good improvement and is effective for uncertain IPPS problem. | 
    
| Author | Gao, Liang Wen, Long Li, Xinyu Wang, Wenwen Wang, Cuiyu  | 
    
| Author_xml | – sequence: 1 givenname: Xinyu orcidid: 0000-0002-3730-0360 surname: Li fullname: Li, Xinyu – sequence: 2 givenname: Liang surname: Gao fullname: Gao, Liang email: gaoliang@mail.hust.edu.cn – sequence: 3 givenname: Wenwen surname: Wang fullname: Wang, Wenwen – sequence: 4 givenname: Cuiyu surname: Wang fullname: Wang, Cuiyu – sequence: 5 givenname: Long surname: Wen fullname: Wen, Long  | 
    
| BookMark | eNp9kEtOAzEMhiMEEqVwAHa5wAxO5i1WCPGSkGAB6yhNPK2raaZKAgjOwYHJUNiwYBU5_n5b_o7YvhsdMnYqIBcg6rN1bghzCaLLocxBtntsJtqmy6CqYJ_NoKgha4tKHrKjENYAUFadmLHPR-0jmQF5eNN-w8dtpA196Eij46v3hSdLH2j5G8UVX6LDBHM9LEefPja8Hz1_cQZ91OQ4uYhLr2Pit340GALfDto5ckuuneXBrNC-DFP5PW_i_asefumpkdbjMTvo9RDw5Oeds-frq6fL2-z-4ebu8uI-M0UFMetLbepa1qJGXZqFLNq2g-nGRoJp67IRjemrRWHLqlo02EjbtL22RSelaA3KYs7Ebq7xYwgee7X1tNH-XQlQk1a1VkmrmrQqKFXSmjLNn4yh-K0rek3Dv8nzXRLTSa-EXoWEJHmWPJqo7Ej_pL8AiBuY-g | 
    
| CitedBy_id | crossref_primary_10_1109_LRA_2023_3265594 crossref_primary_10_1007_s40747_021_00461_3 crossref_primary_10_1109_TASE_2022_3151648 crossref_primary_10_1007_s10489_023_05186_z crossref_primary_10_1109_TSMC_2022_3187082 crossref_primary_10_3233_JIFS_233408 crossref_primary_10_1093_jigpal_jzac016 crossref_primary_10_1155_2020_6012737 crossref_primary_10_1016_j_asoc_2024_112661 crossref_primary_10_1007_s00170_021_06755_7 crossref_primary_10_1007_s10489_021_02869_3 crossref_primary_10_1007_s11431_022_2096_6 crossref_primary_10_3233_ICA_230705 crossref_primary_10_1108_GS_03_2023_0030 crossref_primary_10_1007_s10845_024_02545_6 crossref_primary_10_1007_s11047_023_09953_2 crossref_primary_10_1049_cim2_12117 crossref_primary_10_1109_ACCESS_2021_3114712 crossref_primary_10_1016_j_cie_2021_107194 crossref_primary_10_1016_j_swevo_2020_100820 crossref_primary_10_1080_01605682_2022_2122738 crossref_primary_10_1080_00207543_2019_1693659 crossref_primary_10_1016_j_knosys_2021_107555 crossref_primary_10_3934_jimo_2022037 crossref_primary_10_1177_0020294020959117 crossref_primary_10_1016_j_ast_2021_107004 crossref_primary_10_3390_en13236181 crossref_primary_10_1007_s12351_022_00700_6 crossref_primary_10_1371_journal_pone_0306024 crossref_primary_10_1016_j_cor_2022_105731 crossref_primary_10_1016_j_rcim_2024_102919 crossref_primary_10_1016_j_rcim_2022_102334 crossref_primary_10_1016_j_jii_2022_100364 crossref_primary_10_1109_TCYB_2020_3026651 crossref_primary_10_1016_j_asoc_2022_109783 crossref_primary_10_3390_app11146314  | 
    
| Cites_doi | 10.1016/j.eswa.2016.07.046 10.1109/TASE.2012.2217330 10.1016/j.cie.2016.01.017 10.1007/s10845-013-0814-2 10.1016/0898-1221(88)90124-1 10.1016/j.eswa.2011.11.074 10.1007/s00170-012-4572-7 10.1016/j.asoc.2007.06.004 10.1016/j.apm.2008.06.002 10.1007/s00170-013-5469-9 10.1016/S0165-0114(98)00427-8 10.1016/j.cie.2011.07.010 10.1016/j.cor.2008.07.006 10.1007/s10586-016-0717-z 10.1007/s12293-019-00283-4 10.1016/j.cor.2009.06.008 10.1080/00207549008942818 10.1016/0736-5845(84)90020-6 10.1016/j.engappai.2016.10.013 10.1016/j.cie.2016.12.020 10.1016/j.eswa.2011.07.019 10.1080/00207543.2016.1182227 10.1109/TSM.2017.2758380 10.1109/TII.2018.2843441 10.1016/j.knosys.2016.06.014 10.1016/j.cie.2018.02.003 10.1016/j.ijpe.2016.01.016 10.1016/j.ejor.2015.01.032 10.1016/S0305-0548(02)00063-1 10.1016/j.ijpe.2010.04.001 10.1109/ACCESS.2018.2832181 10.1016/j.ejor.2007.03.031 10.1016/j.eswa.2016.08.019 10.1016/j.ins.2018.03.047 10.1016/j.eswa.2013.03.043 10.1007/s10845-014-1023-3 10.1109/TSMC.2018.2881686 10.1016/j.cie.2017.05.026 10.1016/j.cie.2007.06.018 10.1016/j.cie.2016.10.015 10.1016/j.cie.2018.12.061 10.1109/TEVC.2016.2611642 10.1007/s10845-015-1060-6 10.1504/IJMR.2010.031630 10.1007/s11432-018-9728-x 10.1016/S1568-4946(02)00069-8 10.1007/s00170-017-0020-z  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2019 Elsevier Ltd | 
    
| Copyright_xml | – notice: 2019 Elsevier Ltd | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.cie.2019.04.028 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Applied Sciences Engineering  | 
    
| EISSN | 1879-0550 | 
    
| EndPage | 1046 | 
    
| ExternalDocumentID | 10_1016_j_cie_2019_04_028 S0360835219302311  | 
    
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKG AABNK AACTN AAEDT AAEDW AAFWJ AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AARIN AAXUO ABAOU ABMAC ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACNCT ACNNM ACRLP ADBBV ADEZE ADGUI ADMUD ADRHT ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LX9 LY1 LY7 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ RXW SBC SDF SDG SDP SDS SES SET SEW SPC SPCBC SSB SSD SST SSW SSZ T5K TAE TN5 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD  | 
    
| ID | FETCH-LOGICAL-c350t-f4ac662616ea4cb2388908352720c864717cf5b3d455b7e72d78fad392218ce23 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0360-8352 | 
    
| IngestDate | Wed Oct 01 03:38:41 EDT 2025 Thu Apr 24 22:59:47 EDT 2025 Fri Feb 23 02:29:10 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Uncertain integrated process planning and scheduling Interval processing time Particle swarm optimization Interval number Hybrid algorithm  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c350t-f4ac662616ea4cb2388908352720c864717cf5b3d455b7e72d78fad392218ce23 | 
    
| ORCID | 0000-0002-3730-0360 | 
    
| PageCount | 11 | 
    
| ParticipantIDs | crossref_primary_10_1016_j_cie_2019_04_028 crossref_citationtrail_10_1016_j_cie_2019_04_028 elsevier_sciencedirect_doi_10_1016_j_cie_2019_04_028  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2019-09-01 | 
    
| PublicationDateYYYYMMDD | 2019-09-01 | 
    
| PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | Computers & industrial engineering | 
    
| PublicationYear | 2019 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Gao, Suganthan, Pan, Tasgetiren, Sadollah (b0020) 2016; 109 Li, Shao, Gao, Qian (b0110) 2010; 126 Kim, Park, Ko (b0055) 2003; 30 Modarres, Sadi-Nezhad (b0150) 2011; 118 Li, Gao, Zhang, Shao (b0100) 2010; 5 Wu, Wu (b0230) 2017; 28 Li, Gao, Shao (b0090) 2012; 39 Li, Gao, Li (b0075) 2012; 39 Xia, Li, Gao (b0235) 2016; 102 Sobeyko, Monch (b0215) 2017; 55 Yi, Xing, Wang, Dong, Vasilakos, Alavi, Wang (b0245) 2018 Mou, Gao, Guo, Xu, Li (b0165) 2018 Ghrayeb (b0025) 2003; 2 Jamrus, Chien, Gen, Sethanan (b0035) 2018; 31 Shahrabi, Adibi, Mahootchi (b0205) 2017; 110 Xiang, Xing, Wang, Zou (b0240) 2019 Moon, Lee, Jeong, Yun (b0155) 2008; 54 Nabil, Elsayed (b0175) 1990; 28 Lee, Li (b0060) 1988; 15 Li, Gao, Wen (b0095) 2013; 67 Zhang, Wong (b0250) 2018; 29 Li, Lu, Gao, Xiao, Wen (b0105) 2018; 14 Wang, Lai, Wu, Xing, Wang, Ishibuchi (b0225) 2018; 450 Shao, Li, Gao, Zhang (b0210) 2009; 36 Jiang, Han, Liu (b0040) 2008; 188 Mou, Gao, Li, Pan, Mu (b0170) 2017; 20 Li, Gao, Shao (b0085) 2010; 37 Kennedy, Eberhart (b0050) 1997 Zhang, Gen, Jo (b9000) 2014; 25 Luo, Wen, Li, Ming, Xie (b0140) 2017; 2017 Moore (b0160) 1979 Nezhad, Assadi (b0180) 2008; 8 Sayadi, Heydari, Shahanaghi (b0195) 2009; 33 Zhang, Wong (b9005) 2015; 244 Haddadzade, Razfar, Zarandi (b0030) 2014; 71 Lu, Li, Gao, Liao, Yi (b0135) 2017; 104 Li, Xiao, Wang, Yi (b0125) 2019 Zhang, Wong (b9010) 2016; 340–341 Chryssolouris, Chan, Cobb (b0010) 1984; 1 Lei (b0065) 2011; 61 Li, Tang, Li, Li (b0115) 2013; 10 Lu, Gao, Li, Xiao (b0130) 2017; 57 Joo, Shim, Chua, Cai (b0045) 2018; 120 Manupati, Putnik, Tiwari, Avila, Cruz-Cunha (b0145) 2016; 94 Petrovic, Vukovic, Mitic, Miljkovic (b0185) 2016; 64 Chan, Kumar, Tiwari (b0005) 2006 Li, Gao, Pan, Wan, Chao (b0080) 2019 Li, Gao (b0070) 2016; 174 Seker, Erol, Botsali (b0200) 2013; 40 Li, Wang, Zhang, Ishibuchi (b0120) 2018; 6 Qin, Fan, Tang, Huang, Fang, Pan (b0190) 2019; 128 Gao, Suganthan, Pan, Chua, Chong, Cai (b0015) 2016; 65 Wang, Ishibuchi, Zhou, Liao, Zhang (b0220) 2018; 22 Ghrayeb (10.1016/j.cie.2019.04.028_b0025) 2003; 2 Petrovic (10.1016/j.cie.2019.04.028_b0185) 2016; 64 Wang (10.1016/j.cie.2019.04.028_b0220) 2018; 22 Manupati (10.1016/j.cie.2019.04.028_b0145) 2016; 94 Li (10.1016/j.cie.2019.04.028_b0085) 2010; 37 Zhang (10.1016/j.cie.2019.04.028_b9005) 2015; 244 Kennedy (10.1016/j.cie.2019.04.028_b0050) 1997 Zhang (10.1016/j.cie.2019.04.028_b9010) 2016; 340–341 Li (10.1016/j.cie.2019.04.028_b0100) 2010; 5 Mou (10.1016/j.cie.2019.04.028_b0170) 2017; 20 Xiang (10.1016/j.cie.2019.04.028_b0240) 2019 Qin (10.1016/j.cie.2019.04.028_b0190) 2019; 128 Li (10.1016/j.cie.2019.04.028_b0105) 2018; 14 Li (10.1016/j.cie.2019.04.028_b0080) 2019 Modarres (10.1016/j.cie.2019.04.028_b0150) 2011; 118 Nezhad (10.1016/j.cie.2019.04.028_b0180) 2008; 8 Chan (10.1016/j.cie.2019.04.028_b0005) 2006 Joo (10.1016/j.cie.2019.04.028_b0045) 2018; 120 Lu (10.1016/j.cie.2019.04.028_b0135) 2017; 104 Li (10.1016/j.cie.2019.04.028_b0110) 2010; 126 Kim (10.1016/j.cie.2019.04.028_b0055) 2003; 30 Lei (10.1016/j.cie.2019.04.028_b0065) 2011; 61 Wu (10.1016/j.cie.2019.04.028_b0230) 2017; 28 Wang (10.1016/j.cie.2019.04.028_b0225) 2018; 450 Zhang (10.1016/j.cie.2019.04.028_b9000) 2014; 25 Xia (10.1016/j.cie.2019.04.028_b0235) 2016; 102 Shahrabi (10.1016/j.cie.2019.04.028_b0205) 2017; 110 Li (10.1016/j.cie.2019.04.028_b0120) 2018; 6 Chryssolouris (10.1016/j.cie.2019.04.028_b0010) 1984; 1 Gao (10.1016/j.cie.2019.04.028_b0020) 2016; 109 Mou (10.1016/j.cie.2019.04.028_b0165) 2018 Yi (10.1016/j.cie.2019.04.028_b0245) 2018 Seker (10.1016/j.cie.2019.04.028_b0200) 2013; 40 Moon (10.1016/j.cie.2019.04.028_b0155) 2008; 54 Li (10.1016/j.cie.2019.04.028_b0090) 2012; 39 Shao (10.1016/j.cie.2019.04.028_b0210) 2009; 36 Sayadi (10.1016/j.cie.2019.04.028_b0195) 2009; 33 Li (10.1016/j.cie.2019.04.028_b0125) 2019 Sobeyko (10.1016/j.cie.2019.04.028_b0215) 2017; 55 Jiang (10.1016/j.cie.2019.04.028_b0040) 2008; 188 Gao (10.1016/j.cie.2019.04.028_b0015) 2016; 65 Li (10.1016/j.cie.2019.04.028_b0070) 2016; 174 Lee (10.1016/j.cie.2019.04.028_b0060) 1988; 15 Li (10.1016/j.cie.2019.04.028_b0115) 2013; 10 Nabil (10.1016/j.cie.2019.04.028_b0175) 1990; 28 Lu (10.1016/j.cie.2019.04.028_b0130) 2017; 57 Haddadzade (10.1016/j.cie.2019.04.028_b0030) 2014; 71 Li (10.1016/j.cie.2019.04.028_b0095) 2013; 67 Zhang (10.1016/j.cie.2019.04.028_b0250) 2018; 29 Jamrus (10.1016/j.cie.2019.04.028_b0035) 2018; 31 Moore (10.1016/j.cie.2019.04.028_b0160) 1979 Luo (10.1016/j.cie.2019.04.028_b0140) 2017; 2017 Li (10.1016/j.cie.2019.04.028_b0075) 2012; 39  | 
    
| References_xml | – volume: 22 start-page: 3 year: 2018 end-page: 18 ident: b0220 article-title: Localized weighted sum method for many-objective optimization publication-title: IEEE Transactions on Evolutionary Computation – year: 2019 ident: b0125 article-title: Mathematical modeling and a discrete artificial bee colony algorithm for the welding shop scheduling problem publication-title: Memetic Computing – volume: 244 start-page: 434 year: 2015 end-page: 444 ident: b9005 article-title: An object-coding genetic algorithm for integrated process planning and scheduling publication-title: European Journal of Operational Research – volume: 55 start-page: 392 year: 2017 end-page: 409 ident: b0215 article-title: Integrated process planning and scheduling for large-scale flexible job shops using metaheuristics publication-title: International Journal of Production Research – volume: 71 start-page: 241 year: 2014 end-page: 252 ident: b0030 article-title: Integration of process planning and job shop scheduling with stochastic processing time publication-title: International Journal of Advanced Manufacturing Technology – volume: 10 start-page: 86 year: 2013 end-page: 98 ident: b0115 article-title: A modeling approach to analyze variability of remanufacturing process routing publication-title: IEEE Transactions on Automation Science and Engineering – volume: 1 start-page: 315 year: 1984 end-page: 319 ident: b0010 article-title: Decision making on the factory floor, An integrated approach to process planning and scheduling publication-title: Robotics and Computer-Integrated Manufacturing – start-page: 4104 year: 1997 end-page: 4109 ident: b0050 article-title: Particle swarm optimization publication-title: Proceedings of IEEE International Conference on Systems, Man, and Cybernetics – volume: 126 start-page: 289 year: 2010 end-page: 298 ident: b0110 article-title: An effective hybrid algorithm for integrated process planning and scheduling publication-title: International Journal of Production Economics – volume: 64 start-page: 569 year: 2016 end-page: 588 ident: b0185 article-title: Integration of process planning and scheduling using chaotic particle swarm optimization algorithm publication-title: Expert Systems with Applications – volume: 20 start-page: 371 year: 2017 end-page: 390 ident: b0170 article-title: Multi-objective inverse scheduling optimization of single-machine shop system with uncertain due-dates and processing times publication-title: Cluster Computing – volume: 39 start-page: 288 year: 2012 end-page: 297 ident: b0075 article-title: Application of game theory based hybrid algorithm for multi-objective integrated process planning and scheduling publication-title: Expert Systems with Applications – volume: 109 start-page: 1 year: 2016 end-page: 16 ident: b0020 article-title: Artificial bee colony algorithm for scheduling and rescheduling fuzzy flexible job shop problem with new job insertion publication-title: Knowledge-Based Systems – volume: 29 start-page: 585 year: 2018 end-page: 601 ident: b0250 article-title: Integrated process planning and scheduling: An enhanced ant colony optimization heuristic with parameter tuning publication-title: Journal of Intelligent Manufacturing – volume: 104 start-page: 156 year: 2017 end-page: 174 ident: b0135 article-title: An effective multi-objective discrete virus optimization algorithm for flexible job-shop scheduling problem with controllable processing times publication-title: Computers & Industrial Engineering – volume: 2017 start-page: 3145 year: 2017 end-page: 3158 ident: b0140 article-title: An effective multi-objective genetic algorithm based on immune principle and external archive for multi-objective integrated process planning and scheduling publication-title: International Journal of Advanced Manufacturing Technology – volume: 118 start-page: 429 year: 2011 end-page: 436 ident: b0150 article-title: Ranking fuzzy numbers by preference ratio publication-title: Fuzzy Sets and System – volume: 33 start-page: 2257 year: 2009 end-page: 2262 ident: b0195 article-title: Extension of VIKOR method for decision making problem with interval numbers publication-title: Applied Mathematical Modelling – volume: 450 start-page: 128 year: 2018 end-page: 140 ident: b0225 article-title: Multi-clustering via evolutionary multi-objective optimization publication-title: Information Sciences – volume: 31 start-page: 32 year: 2018 end-page: 41 ident: b0035 article-title: Hybrid particle swarm optimization combined with genetic operators for flexible job-shop scheduling under uncertain processing time for semiconductor manufacturing publication-title: IEEE Transactions on Semiconductor Manufacturing – volume: 30 start-page: 1151 year: 2003 end-page: 1171 ident: b0055 article-title: A symbiotic evolutionary algorithm for the integration of process planning and job shop scheduling publication-title: Computers & Operations Research – year: 2019 ident: b0240 article-title: Comprehensive learning pigeon-inspired optimization with tabu list publication-title: Science China Information Sciences – year: 2019 ident: b0080 article-title: An effective hybrid genetic algorithm and variable neighborhood search for integrated process planning and scheduling in a packaging machine workshop publication-title: IEEE Transactions on Systems, Man and Cybernetics: Systems – volume: 128 start-page: 458 year: 2019 end-page: 476 ident: b0190 article-title: An effective hybrid discrete grey wolf optimizer for the casting production scheduling problem with multi-objective and multi-constraint publication-title: Computers & Industrial Engineering – volume: 110 start-page: 75 year: 2017 end-page: 82 ident: b0205 article-title: A reinforcement learning approach to parameter estimation in dynamic job shop scheduling publication-title: Computers & Industrial Engineering – volume: 39 start-page: 6683 year: 2012 end-page: 6691 ident: b0090 article-title: An active learning genetic algorithm for integrated process planning and scheduling publication-title: Expert Systems with Applications – volume: 5 start-page: 161 year: 2010 end-page: 180 ident: b0100 article-title: A review on integrated process planning and scheduling publication-title: International Journal of Manufacturing Research – volume: 67 start-page: 1355 year: 2013 end-page: 1369 ident: b0095 article-title: Application of an efficient modified particle swarm optimization algorithm for process planning publication-title: International Journal of Advanced Manufacturing Technology – volume: 25 start-page: 881 year: 2014 end-page: 897 ident: b9000 article-title: Hybrid sampling strategy – based multiobjective evolutionary algorithm for process planning and scheduling problem publication-title: Journal of Intelligent Manufacturing – year: 2018 ident: b0245 article-title: Behavior of crossover operators in NSGA-III for large-scale optimization problems publication-title: Information Science – volume: 57 start-page: 61 year: 2017 end-page: 79 ident: b0130 article-title: A hybrid multi-objective grey wolf optimizer for dynamic scheduling in a real-world welding industry publication-title: Engineering Applications of Artificial Intelligence – volume: 174 start-page: 93 year: 2016 end-page: 110 ident: b0070 article-title: An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem publication-title: International Journal of Production Economics – volume: 36 start-page: 2082 year: 2009 end-page: 2096 ident: b0210 article-title: Integration of process planning and scheduling — A modified genetic algorithm-based approach publication-title: Computers & Operations Research – year: 1979 ident: b0160 article-title: Method and Application of Interval Analysis – volume: 15 start-page: 887 year: 1988 end-page: 896 ident: b0060 article-title: Comparison of fuzzy numbers based on the probability measure of fuzzy events publication-title: Computers and Mathematics with Applications – volume: 14 start-page: 5400 year: 2018 end-page: 5409 ident: b0105 article-title: An effective multiobjective algorithm for energy-efficient scheduling in a real-life welding shop publication-title: IEEE Transactions on Industrial Informatics – volume: 6 start-page: 26194 year: 2018 end-page: 26214 ident: b0120 article-title: Evolutionary many-objective optimization: A comparative study of the state-of-the-art publication-title: IEEE Access – volume: 102 start-page: 99 year: 2016 end-page: 112 ident: b0235 article-title: A hybrid genetic algorithm with variable neighborhood search for dynamic integrated process planning and scheduling publication-title: Computers & Industrial Engineering – volume: 37 start-page: 656 year: 2010 end-page: 667 ident: b0085 article-title: Mathematical modeling and evolutionary algorithm-based approach for integrated process planning and scheduling publication-title: Computers & Operations Research – volume: 94 start-page: 63 year: 2016 end-page: 73 ident: b0145 article-title: Integration of process planning and scheduling using mobile-agent based approach in a networked manufacturing environment publication-title: Computers & Industrial Engineering – volume: 120 start-page: 480 year: 2018 end-page: 487 ident: b0045 article-title: Multi-level job scheduling under processing time uncertainty publication-title: Computers & Industrial Engineering – volume: 28 start-page: 1441 year: 2017 end-page: 1457 ident: b0230 article-title: An elitist quantum-inspired evolutionary algorithm for the flexible job-shop scheduling problem publication-title: Journal of Intelligent Manufacturing – volume: 28 start-page: 1595 year: 1990 end-page: 1609 ident: b0175 article-title: Job shop scheduling with alternative machines publication-title: International Journal of Production Research – volume: 54 start-page: 1048 year: 2008 end-page: 1061 ident: b0155 article-title: Integrated process planning and scheduling in a supply chain publication-title: Computers & Industrial Engineering – volume: 65 start-page: 52 year: 2016 end-page: 67 ident: b0015 article-title: An improved artificial bee colony algorithm for multi-objective flexible job shop scheduling problem with fuzzy processing time publication-title: Expert Systems with Applications – start-page: 1 year: 2006 end-page: 8 ident: b0005 article-title: Optimizing the performance of an integrated process planning and scheduling problem: an AIS-FLC based approach publication-title: Proceedings of CIS – volume: 8 start-page: 759 year: 2008 end-page: 766 ident: b0180 article-title: Preference ratio-based maximum operator approximation and its application in fuzzy flow shop scheduling publication-title: Applied Soft Computing – volume: 61 start-page: 1200 year: 2011 end-page: 1208 ident: b0065 article-title: Population-based neighborhood search for job shop scheduling with interval processing time publication-title: Computers & Industrial Engineering – volume: 2 start-page: 197 year: 2003 end-page: 210 ident: b0025 article-title: A bi-criteria optimization, minimizing the integral value and spread of the fuzzy makespan of job shop scheduling problems publication-title: Applied Soft Computing – volume: 40 start-page: 5341 year: 2013 end-page: 5351 ident: b0200 article-title: A neuro-fuzzy model for a new hybrid integrated Process Planning and Scheduling system publication-title: Expert Systems with Applications – volume: 188 start-page: 1 year: 2008 end-page: 13 ident: b0040 article-title: A nonlinear interval number programming method for uncertainty optimization problems publication-title: European Journal of Operational Research – year: 2018 ident: b0165 article-title: Hybrid optimization algorithms by various structures for a real-world inverse scheduling problem with uncertain due-dates under single-machine shop systems publication-title: Neural Computing and Applications, article in press, – volume: 340–341 start-page: 1 year: 2016 end-page: 16 ident: b9010 article-title: Solving integrated process planning and scheduling problem with constructive meta-heuristics publication-title: Information Sciences – volume: 65 start-page: 52 year: 2016 ident: 10.1016/j.cie.2019.04.028_b0015 article-title: An improved artificial bee colony algorithm for multi-objective flexible job shop scheduling problem with fuzzy processing time publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2016.07.046 – volume: 10 start-page: 86 issue: 1 year: 2013 ident: 10.1016/j.cie.2019.04.028_b0115 article-title: A modeling approach to analyze variability of remanufacturing process routing publication-title: IEEE Transactions on Automation Science and Engineering doi: 10.1109/TASE.2012.2217330 – volume: 94 start-page: 63 year: 2016 ident: 10.1016/j.cie.2019.04.028_b0145 article-title: Integration of process planning and scheduling using mobile-agent based approach in a networked manufacturing environment publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2016.01.017 – volume: 25 start-page: 881 issue: 5 year: 2014 ident: 10.1016/j.cie.2019.04.028_b9000 article-title: Hybrid sampling strategy – based multiobjective evolutionary algorithm for process planning and scheduling problem publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-013-0814-2 – volume: 15 start-page: 887 year: 1988 ident: 10.1016/j.cie.2019.04.028_b0060 article-title: Comparison of fuzzy numbers based on the probability measure of fuzzy events publication-title: Computers and Mathematics with Applications doi: 10.1016/0898-1221(88)90124-1 – volume: 39 start-page: 6683 issue: 8 year: 2012 ident: 10.1016/j.cie.2019.04.028_b0090 article-title: An active learning genetic algorithm for integrated process planning and scheduling publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2011.11.074 – volume: 67 start-page: 1355 year: 2013 ident: 10.1016/j.cie.2019.04.028_b0095 article-title: Application of an efficient modified particle swarm optimization algorithm for process planning publication-title: International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-012-4572-7 – volume: 8 start-page: 759 issue: 1 year: 2008 ident: 10.1016/j.cie.2019.04.028_b0180 article-title: Preference ratio-based maximum operator approximation and its application in fuzzy flow shop scheduling publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2007.06.004 – volume: 33 start-page: 2257 issue: 5 year: 2009 ident: 10.1016/j.cie.2019.04.028_b0195 article-title: Extension of VIKOR method for decision making problem with interval numbers publication-title: Applied Mathematical Modelling doi: 10.1016/j.apm.2008.06.002 – year: 2018 ident: 10.1016/j.cie.2019.04.028_b0165 article-title: Hybrid optimization algorithms by various structures for a real-world inverse scheduling problem with uncertain due-dates under single-machine shop systems publication-title: Neural Computing and Applications, article in press, – volume: 71 start-page: 241 issue: 1–4 year: 2014 ident: 10.1016/j.cie.2019.04.028_b0030 article-title: Integration of process planning and job shop scheduling with stochastic processing time publication-title: International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-013-5469-9 – volume: 118 start-page: 429 year: 2011 ident: 10.1016/j.cie.2019.04.028_b0150 article-title: Ranking fuzzy numbers by preference ratio publication-title: Fuzzy Sets and System doi: 10.1016/S0165-0114(98)00427-8 – volume: 61 start-page: 1200 issue: 4 year: 2011 ident: 10.1016/j.cie.2019.04.028_b0065 article-title: Population-based neighborhood search for job shop scheduling with interval processing time publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2011.07.010 – volume: 36 start-page: 2082 year: 2009 ident: 10.1016/j.cie.2019.04.028_b0210 article-title: Integration of process planning and scheduling — A modified genetic algorithm-based approach publication-title: Computers & Operations Research doi: 10.1016/j.cor.2008.07.006 – start-page: 1 year: 2006 ident: 10.1016/j.cie.2019.04.028_b0005 article-title: Optimizing the performance of an integrated process planning and scheduling problem: an AIS-FLC based approach – volume: 20 start-page: 371 year: 2017 ident: 10.1016/j.cie.2019.04.028_b0170 article-title: Multi-objective inverse scheduling optimization of single-machine shop system with uncertain due-dates and processing times publication-title: Cluster Computing doi: 10.1007/s10586-016-0717-z – year: 2019 ident: 10.1016/j.cie.2019.04.028_b0125 article-title: Mathematical modeling and a discrete artificial bee colony algorithm for the welding shop scheduling problem publication-title: Memetic Computing doi: 10.1007/s12293-019-00283-4 – volume: 37 start-page: 656 issue: 4 year: 2010 ident: 10.1016/j.cie.2019.04.028_b0085 article-title: Mathematical modeling and evolutionary algorithm-based approach for integrated process planning and scheduling publication-title: Computers & Operations Research doi: 10.1016/j.cor.2009.06.008 – volume: 28 start-page: 1595 issue: 9 year: 1990 ident: 10.1016/j.cie.2019.04.028_b0175 article-title: Job shop scheduling with alternative machines publication-title: International Journal of Production Research doi: 10.1080/00207549008942818 – volume: 1 start-page: 315 issue: 3–4 year: 1984 ident: 10.1016/j.cie.2019.04.028_b0010 article-title: Decision making on the factory floor, An integrated approach to process planning and scheduling publication-title: Robotics and Computer-Integrated Manufacturing doi: 10.1016/0736-5845(84)90020-6 – volume: 57 start-page: 61 year: 2017 ident: 10.1016/j.cie.2019.04.028_b0130 article-title: A hybrid multi-objective grey wolf optimizer for dynamic scheduling in a real-world welding industry publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2016.10.013 – volume: 104 start-page: 156 year: 2017 ident: 10.1016/j.cie.2019.04.028_b0135 article-title: An effective multi-objective discrete virus optimization algorithm for flexible job-shop scheduling problem with controllable processing times publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2016.12.020 – volume: 39 start-page: 288 issue: 1 year: 2012 ident: 10.1016/j.cie.2019.04.028_b0075 article-title: Application of game theory based hybrid algorithm for multi-objective integrated process planning and scheduling publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2011.07.019 – volume: 55 start-page: 392 issue: 2 year: 2017 ident: 10.1016/j.cie.2019.04.028_b0215 article-title: Integrated process planning and scheduling for large-scale flexible job shops using metaheuristics publication-title: International Journal of Production Research doi: 10.1080/00207543.2016.1182227 – volume: 31 start-page: 32 issue: 1 year: 2018 ident: 10.1016/j.cie.2019.04.028_b0035 article-title: Hybrid particle swarm optimization combined with genetic operators for flexible job-shop scheduling under uncertain processing time for semiconductor manufacturing publication-title: IEEE Transactions on Semiconductor Manufacturing doi: 10.1109/TSM.2017.2758380 – volume: 14 start-page: 5400 issue: 12 year: 2018 ident: 10.1016/j.cie.2019.04.028_b0105 article-title: An effective multiobjective algorithm for energy-efficient scheduling in a real-life welding shop publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2018.2843441 – volume: 109 start-page: 1 year: 2016 ident: 10.1016/j.cie.2019.04.028_b0020 article-title: Artificial bee colony algorithm for scheduling and rescheduling fuzzy flexible job shop problem with new job insertion publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2016.06.014 – start-page: 4104 year: 1997 ident: 10.1016/j.cie.2019.04.028_b0050 article-title: Particle swarm optimization – volume: 120 start-page: 480 year: 2018 ident: 10.1016/j.cie.2019.04.028_b0045 article-title: Multi-level job scheduling under processing time uncertainty publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2018.02.003 – volume: 174 start-page: 93 year: 2016 ident: 10.1016/j.cie.2019.04.028_b0070 article-title: An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem publication-title: International Journal of Production Economics doi: 10.1016/j.ijpe.2016.01.016 – volume: 244 start-page: 434 year: 2015 ident: 10.1016/j.cie.2019.04.028_b9005 article-title: An object-coding genetic algorithm for integrated process planning and scheduling publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2015.01.032 – volume: 30 start-page: 1151 year: 2003 ident: 10.1016/j.cie.2019.04.028_b0055 article-title: A symbiotic evolutionary algorithm for the integration of process planning and job shop scheduling publication-title: Computers & Operations Research doi: 10.1016/S0305-0548(02)00063-1 – volume: 126 start-page: 289 year: 2010 ident: 10.1016/j.cie.2019.04.028_b0110 article-title: An effective hybrid algorithm for integrated process planning and scheduling publication-title: International Journal of Production Economics doi: 10.1016/j.ijpe.2010.04.001 – volume: 6 start-page: 26194 year: 2018 ident: 10.1016/j.cie.2019.04.028_b0120 article-title: Evolutionary many-objective optimization: A comparative study of the state-of-the-art publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2832181 – volume: 188 start-page: 1 issue: 1 year: 2008 ident: 10.1016/j.cie.2019.04.028_b0040 article-title: A nonlinear interval number programming method for uncertainty optimization problems publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2007.03.031 – volume: 340–341 start-page: 1 year: 2016 ident: 10.1016/j.cie.2019.04.028_b9010 article-title: Solving integrated process planning and scheduling problem with constructive meta-heuristics publication-title: Information Sciences – volume: 64 start-page: 569 year: 2016 ident: 10.1016/j.cie.2019.04.028_b0185 article-title: Integration of process planning and scheduling using chaotic particle swarm optimization algorithm publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2016.08.019 – volume: 450 start-page: 128 year: 2018 ident: 10.1016/j.cie.2019.04.028_b0225 article-title: Multi-clustering via evolutionary multi-objective optimization publication-title: Information Sciences doi: 10.1016/j.ins.2018.03.047 – volume: 40 start-page: 5341 issue: 13 year: 2013 ident: 10.1016/j.cie.2019.04.028_b0200 article-title: A neuro-fuzzy model for a new hybrid integrated Process Planning and Scheduling system publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2013.03.043 – volume: 29 start-page: 585 year: 2018 ident: 10.1016/j.cie.2019.04.028_b0250 article-title: Integrated process planning and scheduling: An enhanced ant colony optimization heuristic with parameter tuning publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-014-1023-3 – year: 2019 ident: 10.1016/j.cie.2019.04.028_b0080 article-title: An effective hybrid genetic algorithm and variable neighborhood search for integrated process planning and scheduling in a packaging machine workshop publication-title: IEEE Transactions on Systems, Man and Cybernetics: Systems doi: 10.1109/TSMC.2018.2881686 – volume: 110 start-page: 75 year: 2017 ident: 10.1016/j.cie.2019.04.028_b0205 article-title: A reinforcement learning approach to parameter estimation in dynamic job shop scheduling publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2017.05.026 – volume: 54 start-page: 1048 issue: 4 year: 2008 ident: 10.1016/j.cie.2019.04.028_b0155 article-title: Integrated process planning and scheduling in a supply chain publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2007.06.018 – year: 2018 ident: 10.1016/j.cie.2019.04.028_b0245 article-title: Behavior of crossover operators in NSGA-III for large-scale optimization problems publication-title: Information Science – volume: 102 start-page: 99 year: 2016 ident: 10.1016/j.cie.2019.04.028_b0235 article-title: A hybrid genetic algorithm with variable neighborhood search for dynamic integrated process planning and scheduling publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2016.10.015 – volume: 128 start-page: 458 year: 2019 ident: 10.1016/j.cie.2019.04.028_b0190 article-title: An effective hybrid discrete grey wolf optimizer for the casting production scheduling problem with multi-objective and multi-constraint publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2018.12.061 – volume: 22 start-page: 3 year: 2018 ident: 10.1016/j.cie.2019.04.028_b0220 article-title: Localized weighted sum method for many-objective optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2016.2611642 – volume: 28 start-page: 1441 issue: 6 year: 2017 ident: 10.1016/j.cie.2019.04.028_b0230 article-title: An elitist quantum-inspired evolutionary algorithm for the flexible job-shop scheduling problem publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-015-1060-6 – volume: 5 start-page: 161 issue: 2 year: 2010 ident: 10.1016/j.cie.2019.04.028_b0100 article-title: A review on integrated process planning and scheduling publication-title: International Journal of Manufacturing Research doi: 10.1504/IJMR.2010.031630 – year: 2019 ident: 10.1016/j.cie.2019.04.028_b0240 article-title: Comprehensive learning pigeon-inspired optimization with tabu list publication-title: Science China Information Sciences doi: 10.1007/s11432-018-9728-x – volume: 2 start-page: 197 issue: 3 year: 2003 ident: 10.1016/j.cie.2019.04.028_b0025 article-title: A bi-criteria optimization, minimizing the integral value and spread of the fuzzy makespan of job shop scheduling problems publication-title: Applied Soft Computing doi: 10.1016/S1568-4946(02)00069-8 – volume: 2017 start-page: 3145 issue: 91 year: 2017 ident: 10.1016/j.cie.2019.04.028_b0140 article-title: An effective multi-objective genetic algorithm based on immune principle and external archive for multi-objective integrated process planning and scheduling publication-title: International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-017-0020-z – year: 1979 ident: 10.1016/j.cie.2019.04.028_b0160  | 
    
| SSID | ssj0004591 | 
    
| Score | 2.4794116 | 
    
| Snippet | •Propose the uncertain IPPS model with uncertain processing time.•The interval number is used as a representation of the uncertain processing time.•PSO... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 1036 | 
    
| SubjectTerms | Hybrid algorithm Interval number Interval processing time Particle swarm optimization Uncertain integrated process planning and scheduling  | 
    
| Title | Particle swarm optimization hybridized with genetic algorithm for uncertain integrated process planning and scheduling with interval processing time | 
    
| URI | https://dx.doi.org/10.1016/j.cie.2019.04.028 | 
    
| Volume | 135 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0550 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004591 issn: 0360-8352 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-0550 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004591 issn: 0360-8352 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-0550 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004591 issn: 0360-8352 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection customDbUrl: eissn: 1879-0550 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004591 issn: 0360-8352 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0550 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004591 issn: 0360-8352 databaseCode: AKRWK dateStart: 19770101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXvTgoyrWR9mDJyE2TTaPHkuxVMUiaKG3kH1ppU1DWxE9-Cv8wc5sNqWCevC4m5ll2ZnMzCbzzRBypmMpuB9zR0sVOAyTcrgIWzBk0lVKgdNCcPJtP-wN2PUwGFZIp8TCYFqltf2FTTfW2s407Gk28tGocQ-218QPEIJgETODYGcRdjG4-GiuVAwvuuYBsYPU5Z9Nk-MFy2J2V8tUO8WG7D_5phV_090hWzZQpO1iL7ukorIq2bZBI7Wv5LxKNlcqCu6Rzzu7eTp_TWcTOgWLMLFQS_r0hvCs0Tvw4-dXCrqDEEaajh-nM5iYUIhgKTi6Ik2ALktJSJoXeAKa2x5HNM0khYsxOCrEsxfrjUz-JGzaUuMD7F2_Twbdy4dOz7GNFxzhB-7C0SwVIdx0mqFKmeDg1eOWOerIc0Ucgj-LhA64L1kQ8EhFnoxinUoItSBgEMrzD8haNs3UIaFMaxAOdzlCfoNQct_TXqC5y0AjUh7ViFseeSJsVXJsjjFOyvSzZ5hXCUopcVkCUqqR8yVLXpTk-IuYlXJMvulVAi7jd7aj_7Edkw0cFTloJ2RtMXtRpxC0LHjdaGWdrLevbnr9L8iw79s | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KHtSDj6pYn3vwJMSmyW6SHqVYqrZFsIXeQvallb5oK6IHf4U_2JlkUyqoB4_ZnVmWncnMt8k8CDk3kZLCj4RjlOYOw6AcIYMqPDLlaq3BaWFycqsdNLrstsd7BVLLc2EwrNLa_symp9bajpTtaZYn_X75AWxvih8AgmARM7gCrTLuhXgDu_yoLJUMz9rmAbWD5PmvzTTIC9bF8K5qWu4UO7L_5JyWHE59m2xapEivss3skIIeFcmWRY3UvpOzItlYKim4Sz7v7e7p7DWZDukYTMLQ5lrSpzfMz-q_Az9-f6WgPJjDSJPB43gKA0MKEJaCp8viBOiiloSikyyhgE5skyOajBSFmzF4Kkxoz9brpwGUsGlLjRPYvH6PdOvXnVrDsZ0XHOlzd-4YlsgArjqVQCdMCnDrUTU969BzZRSAQwul4cJXjHMR6tBTYWQSBVgLEIPUnr9PVkbjkT4glBkD0hGuwJxfHijhe8bjRrgMVCIRYYm4-ZHH0pYlx-4YgziPP3uGcR2jlGKXxSClErlYsEyymhx_EbNcjvE3xYrBZ_zOdvg_tjOy1ui0mnHzpn13RNZxJgtIOyYr8-mLPgEEMxenqYZ-AVoX8XA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Particle+swarm+optimization+hybridized+with+genetic+algorithm+for+uncertain+integrated+process+planning+and+scheduling+with+interval+processing+time&rft.jtitle=Computers+%26+industrial+engineering&rft.au=Li%2C+Xinyu&rft.au=Gao%2C+Liang&rft.au=Wang%2C+Wenwen&rft.au=Wang%2C+Cuiyu&rft.date=2019-09-01&rft.issn=0360-8352&rft.volume=135&rft.spage=1036&rft.epage=1046&rft_id=info:doi/10.1016%2Fj.cie.2019.04.028&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cie_2019_04_028 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-8352&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-8352&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-8352&client=summon |