Prediction of impending mood episode recurrence using real-time digital phenotypes in major depression and bipolar disorders in South Korea: a prospective nationwide cohort study

BackgroundMood disorders require consistent management of symptoms to prevent recurrences of mood episodes. Circadian rhythm (CR) disruption is a key symptom of mood disorders to be proactively managed to prevent mood episode recurrences. This study aims to predict impending mood episodes recurrence...

Full description

Saved in:
Bibliographic Details
Published inPsychological medicine Vol. 53; no. 12; pp. 5636 - 5644
Main Authors Lee, Heon-Jeong, Cho, Chul-Hyun, Lee, Taek, Jeong, Jaegwon, Yeom, Ji Won, Kim, Sojeong, Jeon, Sehyun, Seo, Ju Yeon, Moon, Eunsoo, Baek, Ji Hyun, Park, Dong Yeon, Kim, Se Joo, Ha, Tae Hyon, Cha, Boseok, Kang, Hee-Ju, Ahn, Yong-Min, Lee, Yujin, Lee, Jung-Been, Kim, Leen
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.09.2023
Subjects
Online AccessGet full text
ISSN0033-2917
1469-8978
1469-8978
DOI10.1017/S0033291722002847

Cover

Abstract BackgroundMood disorders require consistent management of symptoms to prevent recurrences of mood episodes. Circadian rhythm (CR) disruption is a key symptom of mood disorders to be proactively managed to prevent mood episode recurrences. This study aims to predict impending mood episodes recurrences using digital phenotypes related to CR obtained from wearable devices and smartphones.MethodsThe study is a multicenter, nationwide, prospective, observational study with major depressive disorder, bipolar disorder I, and bipolar II disorder. A total of 495 patients were recruited from eight hospitals in South Korea. Patients were followed up for an average of 279.7 days (a total sample of 75 506 days) with wearable devices and smartphones and with clinical interviews conducted every 3 months. Algorithms predicting impending mood episodes were developed with machine learning. Algorithm-predicted mood episodes were then compared to those identified through face-to-face clinical interviews incorporating ecological momentary assessments of daily mood and energy.ResultsTwo hundred seventy mood episodes recurred in 135 subjects during the follow-up period. The prediction accuracies for impending major depressive episodes, manic episodes, and hypomanic episodes for the next 3 days were 90.1, 92.6, and 93.0%, with the area under the curve values of 0.937, 0.957, and 0.963, respectively.ConclusionsWe predicted the onset of mood episode recurrences exclusively using digital phenotypes. Specifically, phenotypes indicating CR misalignment contributed the most to the prediction of episodes recurrences. Our findings suggest that monitoring of CR using digital devices can be useful in preventing and treating mood disorders.
AbstractList BackgroundMood disorders require consistent management of symptoms to prevent recurrences of mood episodes. Circadian rhythm (CR) disruption is a key symptom of mood disorders to be proactively managed to prevent mood episode recurrences. This study aims to predict impending mood episodes recurrences using digital phenotypes related to CR obtained from wearable devices and smartphones.MethodsThe study is a multicenter, nationwide, prospective, observational study with major depressive disorder, bipolar disorder I, and bipolar II disorder. A total of 495 patients were recruited from eight hospitals in South Korea. Patients were followed up for an average of 279.7 days (a total sample of 75 506 days) with wearable devices and smartphones and with clinical interviews conducted every 3 months. Algorithms predicting impending mood episodes were developed with machine learning. Algorithm-predicted mood episodes were then compared to those identified through face-to-face clinical interviews incorporating ecological momentary assessments of daily mood and energy.ResultsTwo hundred seventy mood episodes recurred in 135 subjects during the follow-up period. The prediction accuracies for impending major depressive episodes, manic episodes, and hypomanic episodes for the next 3 days were 90.1, 92.6, and 93.0%, with the area under the curve values of 0.937, 0.957, and 0.963, respectively.ConclusionsWe predicted the onset of mood episode recurrences exclusively using digital phenotypes. Specifically, phenotypes indicating CR misalignment contributed the most to the prediction of episodes recurrences. Our findings suggest that monitoring of CR using digital devices can be useful in preventing and treating mood disorders.
Mood disorders require consistent management of symptoms to prevent recurrences of mood episodes. Circadian rhythm (CR) disruption is a key symptom of mood disorders to be proactively managed to prevent mood episode recurrences. This study aims to predict impending mood episodes recurrences using digital phenotypes related to CR obtained from wearable devices and smartphones.BACKGROUNDMood disorders require consistent management of symptoms to prevent recurrences of mood episodes. Circadian rhythm (CR) disruption is a key symptom of mood disorders to be proactively managed to prevent mood episode recurrences. This study aims to predict impending mood episodes recurrences using digital phenotypes related to CR obtained from wearable devices and smartphones.The study is a multicenter, nationwide, prospective, observational study with major depressive disorder, bipolar disorder I, and bipolar II disorder. A total of 495 patients were recruited from eight hospitals in South Korea. Patients were followed up for an average of 279.7 days (a total sample of 75 506 days) with wearable devices and smartphones and with clinical interviews conducted every 3 months. Algorithms predicting impending mood episodes were developed with machine learning. Algorithm-predicted mood episodes were then compared to those identified through face-to-face clinical interviews incorporating ecological momentary assessments of daily mood and energy.METHODSThe study is a multicenter, nationwide, prospective, observational study with major depressive disorder, bipolar disorder I, and bipolar II disorder. A total of 495 patients were recruited from eight hospitals in South Korea. Patients were followed up for an average of 279.7 days (a total sample of 75 506 days) with wearable devices and smartphones and with clinical interviews conducted every 3 months. Algorithms predicting impending mood episodes were developed with machine learning. Algorithm-predicted mood episodes were then compared to those identified through face-to-face clinical interviews incorporating ecological momentary assessments of daily mood and energy.Two hundred seventy mood episodes recurred in 135 subjects during the follow-up period. The prediction accuracies for impending major depressive episodes, manic episodes, and hypomanic episodes for the next 3 days were 90.1, 92.6, and 93.0%, with the area under the curve values of 0.937, 0.957, and 0.963, respectively.RESULTSTwo hundred seventy mood episodes recurred in 135 subjects during the follow-up period. The prediction accuracies for impending major depressive episodes, manic episodes, and hypomanic episodes for the next 3 days were 90.1, 92.6, and 93.0%, with the area under the curve values of 0.937, 0.957, and 0.963, respectively.We predicted the onset of mood episode recurrences exclusively using digital phenotypes. Specifically, phenotypes indicating CR misalignment contributed the most to the prediction of episodes recurrences. Our findings suggest that monitoring of CR using digital devices can be useful in preventing and treating mood disorders.CONCLUSIONSWe predicted the onset of mood episode recurrences exclusively using digital phenotypes. Specifically, phenotypes indicating CR misalignment contributed the most to the prediction of episodes recurrences. Our findings suggest that monitoring of CR using digital devices can be useful in preventing and treating mood disorders.
Author Kim, Se Joo
Cha, Boseok
Yeom, Ji Won
Lee, Heon-Jeong
Ha, Tae Hyon
Lee, Jung-Been
Kim, Leen
Lee, Taek
Cho, Chul-Hyun
Kang, Hee-Ju
Park, Dong Yeon
Kim, Sojeong
Jeon, Sehyun
Seo, Ju Yeon
Ahn, Yong-Min
Jeong, Jaegwon
Lee, Yujin
Baek, Ji Hyun
Moon, Eunsoo
Author_xml – sequence: 1
  givenname: Heon-Jeong
  orcidid: 0000-0002-9560-2383
  surname: Lee
  fullname: Lee, Heon-Jeong
  email: leehjeong@korea.ac.kr
  organization: 1Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
– sequence: 2
  givenname: Chul-Hyun
  surname: Cho
  fullname: Cho, Chul-Hyun
  organization: 1Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
– sequence: 3
  givenname: Taek
  surname: Lee
  fullname: Lee, Taek
  email: leehjeong@korea.ac.kr
  organization: 3Department of Convergence Security Engineering, Sungshin University, Seoul, Republic of Korea
– sequence: 4
  givenname: Jaegwon
  surname: Jeong
  fullname: Jeong, Jaegwon
  organization: 1Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
– sequence: 5
  givenname: Ji Won
  surname: Yeom
  fullname: Yeom, Ji Won
  organization: 1Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
– sequence: 6
  givenname: Sojeong
  surname: Kim
  fullname: Kim, Sojeong
  organization: 1Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
– sequence: 7
  givenname: Sehyun
  surname: Jeon
  fullname: Jeon, Sehyun
  organization: 1Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
– sequence: 8
  givenname: Ju Yeon
  surname: Seo
  fullname: Seo, Ju Yeon
  organization: 1Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
– sequence: 9
  givenname: Eunsoo
  surname: Moon
  fullname: Moon, Eunsoo
  organization: 4Department of Psychiatry, Pusan National University School of Medicine, Busan, Republic of Korea
– sequence: 10
  givenname: Ji Hyun
  surname: Baek
  fullname: Baek, Ji Hyun
  organization: 5Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
– sequence: 11
  givenname: Dong Yeon
  surname: Park
  fullname: Park, Dong Yeon
  organization: 6Department of Psychiatry, National Center for Mental Health, Seoul, Republic of Korea
– sequence: 12
  givenname: Se Joo
  surname: Kim
  fullname: Kim, Se Joo
  organization: 7Department of Psychiatry and Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
– sequence: 13
  givenname: Tae Hyon
  surname: Ha
  fullname: Ha, Tae Hyon
  organization: 8Department of Psychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
– sequence: 14
  givenname: Boseok
  surname: Cha
  fullname: Cha, Boseok
  organization: 9Department of Psychiatry, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
– sequence: 15
  givenname: Hee-Ju
  surname: Kang
  fullname: Kang, Hee-Ju
  organization: 10Department of Psychiatry, Chonnam National University College of Medicine, Gwangju, Republic of Korea
– sequence: 16
  givenname: Yong-Min
  surname: Ahn
  fullname: Ahn, Yong-Min
  organization: 11Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
– sequence: 17
  givenname: Yujin
  surname: Lee
  fullname: Lee, Yujin
  organization: 12Seoul Metropolitan Eunpyeong Hospital, Seoul, Republic of Korea
– sequence: 18
  givenname: Jung-Been
  surname: Lee
  fullname: Lee, Jung-Been
  organization: 1Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
– sequence: 19
  givenname: Leen
  surname: Kim
  fullname: Kim, Leen
  organization: 1Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
BookMark eNp9kc1KHTEUx0NR6FX7AN0F3LiZNh8zk4y7IraWCi2o6yGTnHtvLjNJTDLKfa0-YTMqFJR2Fcj_g9855wgdOO8AoY-UfKKEis83hHDOOioYI4TJWrxDK1q3XSU7IQ_QapGrRX-PjlLaEUI5rdkK_f4VwVidrXfYr7GdAjhj3QZP3hsMwSZvAEfQc4zgNOA5LWoENVbZToCN3disRhy24HzeB0jYOjypnY_YQIiQ0tKtnMGDDX5U5buURgPxyXnj57zFP3xpPMcKh-hTgMLzANipBevRFgDttz5mnPJs9ifocK3GBB9e3mN09_Xy9uKquv757fvFl-tK84bkChSTLQXedI2WfDAt13zQtWGgB1NLo3VbM9mBKLoiNTe07rRpVActHUA1_BidPfcWpvsZUu4nmzSMo3Lg59QzQUUrpehosZ6-su78HF2h6xcISltJ2uISzy5dhkwR1r0uq1tmzFHZsaekX27Zv7llSdJXyRDtpOL-vxn-klHTEK3ZwF-of6f-AG1ztks
CitedBy_id crossref_primary_10_1001_jamanetworkopen_2023_3502
crossref_primary_10_3390_s23208544
crossref_primary_10_1017_S0033291722001799
crossref_primary_10_1016_j_compbiomed_2025_109984
crossref_primary_10_1145_3659604
crossref_primary_10_1016_j_psychres_2024_115882
crossref_primary_10_1111_acps_13765
crossref_primary_10_2196_69320
crossref_primary_10_3390_a17090408
crossref_primary_10_1016_j_ejor_2025_03_016
crossref_primary_10_33069_cim_2023_0014
crossref_primary_10_2196_44502
crossref_primary_10_1038_s41398_024_02876_1
crossref_primary_10_1192_bjo_2024_716
crossref_primary_10_1038_s41746_023_00760_8
crossref_primary_10_1016_j_neubiorev_2024_105541
crossref_primary_10_1017_S0033291722001234
crossref_primary_10_2196_55094
crossref_primary_10_1038_s41746_024_01333_z
Cites_doi 10.1176/appi.ajp.2008.08010098
10.1016/j.pharmthera.2007.02.003
10.1001/archpsyc.59.6.530
10.25080/Majora-92bf1922-011
10.7717/peerj.2537
10.2196/jmir.4273
10.1177/070674378603100402
10.2196/11029
10.1001/jamapsychiatry.2020.0108
10.1016/S0092-8674(00)80566-8
10.1016/j.ebiom.2016.08.019
10.1111/ejn.12593
10.1016/j.crmeth.2021.100058
10.1038/nbt.3223
10.1001/jama.2015.18421
10.1109/CBMS.2018.00062
10.1016/j.jad.2021.01.060
10.33069/cim.2019.0027
10.4306/pi.2017.14.1.100
10.33069/cim.2020.0022
10.1038/s41746-019-0078-0
10.5665/SLEEP.1170
ContentType Journal Article
Copyright Copyright © The Author(s), 2022. Published by Cambridge University Press
Copyright_xml – notice: Copyright © The Author(s), 2022. Published by Cambridge University Press
DBID AAYXX
CITATION
0-V
3V.
7QJ
7QP
7QR
7RV
7TK
7X7
7XB
88E
88G
8FD
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ALSLI
AZQEC
BENPR
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HEHIP
K9.
KB0
M0S
M1P
M2M
M2O
M2S
MBDVC
NAPCQ
P64
PHGZM
PHGZT
PJZUB
PKEHL
POGQB
PPXIY
PQEST
PQQKQ
PQUKI
PRQQA
PSYQQ
Q9U
7X8
DOI 10.1017/S0033291722002847
DatabaseName CrossRef
ProQuest Social Sciences Premium Collection【Remote access available】
ProQuest Central (Corporate)
Applied Social Sciences Index & Abstracts (ASSIA)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Technology Research Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
Sociology Collection (OCUL)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Research Library
Sociology Database (OCUL)
Research Library (Corporate)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest Sociology & Social Sciences Collection
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest One Social Sciences
ProQuest One Psychology
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
Sociology & Social Sciences Collection
Health Research Premium Collection
Health & Medical Research Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Sociology
ProQuest Medical Library (Alumni)
Social Science Premium Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Sociology Collection
Health Research Premium Collection (Alumni)
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Social Sciences Premium Collection
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Sociology & Social Sciences Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
Applied Social Sciences Index and Abstracts (ASSIA)
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Sociology Collection
ProQuest One Social Sciences
ProQuest Central Basic
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest One Psychology
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central - New (Subscription)
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1469-8978
EndPage 5644
ExternalDocumentID 10_1017_S0033291722002847
GeographicLocations South Korea
GeographicLocations_xml – name: South Korea
GroupedDBID ---
-1D
-1F
-2P
-2V
-E.
-~6
-~N
.FH
.GJ
.XZ
0-V
08P
09C
09E
0E1
0R~
123
29P
3V.
4.4
41~
53G
5RE
5VS
6~7
74X
74Y
7RV
7X7
7~V
88E
8FI
8FJ
8G5
8R4
8R5
9M5
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAMNQ
AARAB
AASVR
AAUIS
AAUKB
AAWTL
AAYEP
ABBXD
ABBZL
ABGDZ
ABITZ
ABIVO
ABJNI
ABKKG
ABLJU
ABMYL
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABVFV
ABWCF
ABXAU
ABZCX
ABZUI
ACBMC
ACCHT
ACETC
ACGFO
ACGFS
ACHQT
ACIMK
ACIWK
ACPRK
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ADAZD
ADBBV
ADDNB
ADFEC
ADFRT
ADGEJ
ADKIL
ADOCW
ADOVH
ADOVT
ADVJH
AEBAK
AEBPU
AEHGV
AEMTW
AENCP
AENEX
AENGE
AEPLO
AEYHU
AEYYC
AFFNX
AFFUJ
AFKQG
AFKRA
AFKSM
AFLOS
AFLVW
AFUTZ
AGABE
AGJUD
AGLWM
AGOOT
AHIPN
AHLTW
AHMBA
AHQXX
AHRGI
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALVPG
ANPSP
AQJOH
ARABE
ARALO
ARZZG
ASOEW
ATUCA
AUXHV
AYIQA
AZGZS
AZQEC
BBLKV
BCGOX
BENPR
BESQT
BGHMG
BJBOZ
BKEYQ
BLZWO
BMAJL
BPHCQ
BQFHP
BRIRG
BVXVI
C0O
C45
CAG
CBIIA
CCPQU
CCQAD
CCUQV
CDIZJ
CFAFE
CFBFF
CGQII
CHEAL
CJCSC
COF
CS3
DC4
DOHLZ
DU5
DWQXO
EBS
EGQIC
EJD
EX3
F5P
FA8
FYUFA
GNUQQ
GUQSH
HEHIP
HG-
HMCUK
HST
HZ~
H~9
I.6
I.7
I.9
IH6
IOEEP
IOO
IS6
I~P
J36
J38
J3A
J5H
JHPGK
JQKCU
JVRFK
KAFGG
KC5
KCGVB
KFECR
L7B
L98
LHUNA
LW7
M-V
M1P
M2M
M2O
M2S
M7~
M8.
N4W
NAPCQ
NEJ
NIKVX
NMFBF
NZEOI
O9-
OMB
OMC
OMH
OVD
OYBOY
P2P
PQQKQ
PROAC
PSQYO
PSYQQ
Q2X
RCA
RIG
ROL
RR0
S6-
S6U
SAAAG
SY4
T9M
TEORI
UAP
UCJ
UKHRP
UT1
UU6
VVN
WFFJZ
WH7
WOW
WQ3
WXU
WXY
WYP
YOC
YZZ
ZA5
ZCA
ZDLDU
ZGI
ZJOSE
ZMEZD
ZXP
ZYDXJ
~V1
AAKNA
AATMM
AAYXX
ABHFL
ABVKB
ABVZP
ABXHF
ACDLN
ACEJA
ACOZI
ACRPL
ADNMO
ADPDF
AEMFK
AFZFC
AGQPQ
AKMAY
ALIPV
ANOYL
CITATION
IPYYG
PHGZM
PHGZT
7QJ
7QP
7QR
7TK
7XB
8FD
8FK
FR3
K9.
MBDVC
P64
PJZUB
PKEHL
POGQB
PPXIY
PQEST
PQUKI
PRQQA
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c350t-ea2861e3595c83bd63c3bc4d2ecbd48dcc64289e795ca043d149cd5a9e61bea53
IEDL.DBID 7X7
ISSN 0033-2917
1469-8978
IngestDate Fri Sep 05 08:44:33 EDT 2025
Fri Jul 25 09:52:59 EDT 2025
Thu Apr 24 23:02:27 EDT 2025
Tue Jul 01 04:16:10 EDT 2025
Wed Mar 13 05:55:06 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Circadian rhythms
prediction
wearable devices
machine learning
mood disorders
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c350t-ea2861e3595c83bd63c3bc4d2ecbd48dcc64289e795ca043d149cd5a9e61bea53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
ORCID 0000-0002-9560-2383
PQID 2861116806
PQPubID 35753
PageCount 9
ParticipantIDs proquest_miscellaneous_2717688791
proquest_journals_2861116806
crossref_citationtrail_10_1017_S0033291722002847
crossref_primary_10_1017_S0033291722002847
cambridge_journals_10_1017_S0033291722002847
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Psychological medicine
PublicationTitleAlternate Psychol. Med
PublicationYear 2023
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References 2007; 114
2016; 4
2002; 59
2015; 17
2020; 2
2017; 14
1986; 31
2019; 2
2019; 21
2019; 1
2015; 33
2021; 283
2016; 315
1999; 96
2011; 34
2011; 12
2020; 77
2014; 39
2021; 1
2008; 165
2016; 11
S0033291722002847_ref10
S0033291722002847_ref11
S0033291722002847_ref12
S0033291722002847_ref13
Kraepelin (S0033291722002847_ref16) 1906
S0033291722002847_ref9
S0033291722002847_ref8
S0033291722002847_ref26
S0033291722002847_ref27
S0033291722002847_ref6
S0033291722002847_ref5
S0033291722002847_ref4
Pedregosa (S0033291722002847_ref21) 2011; 12
S0033291722002847_ref3
S0033291722002847_ref2
S0033291722002847_ref1
S0033291722002847_ref22
S0033291722002847_ref23
Shapley (S0033291722002847_ref25) 1953; II
S0033291722002847_ref24
S0033291722002847_ref20
S0033291722002847_ref18
S0033291722002847_ref19
S0033291722002847_ref14
S0033291722002847_ref15
S0033291722002847_ref17
Ethem (S0033291722002847_ref7) 2014
References_xml – volume: 165
  start-page: 820
  issue: 7
  year: 2008
  end-page: 829
  article-title: Sleep and circadian rhythms in bipolar disorder: Seeking synchrony, harmony, and regulation
  publication-title: American Journal of Psychiatry
– volume: 77
  start-page: 557
  issue: 6
  year: 2020
  end-page: 558
  article-title: Assessment of psychopathology: Is asking questions good enough?
  publication-title: JAMA Psychiatry
– volume: 315
  start-page: 551
  issue: 6
  year: 2016
  end-page: 552
  article-title: Machine learning and the profession of medicine
  publication-title: Jama
– volume: 14
  start-page: 100
  issue: 1
  year: 2017
  article-title: Design and methods of the mood disorder cohort research consortium (MDCRC) study
  publication-title: Psychiatry Investigation
– volume: 1
  start-page: 132
  issue: 4
  year: 2019
  end-page: 136
  article-title: Circadian misalignment and bipolar disorder
  publication-title: Chronobiology in Medicine
– volume: 11
  start-page: 285
  year: 2016
  end-page: 295
  article-title: Advanced circadian phase in mania and delayed circadian phase in mixed mania and depression returned to normal after treatment of bipolar disorder
  publication-title: EBioMedicine
– volume: 283
  start-page: 402
  year: 2021
  end-page: 409
  article-title: Can actigraphy be used to define lithium response dimensions in bipolar disorders?
  publication-title: Journal of Affective Disorders
– volume: 2
  start-page: 1
  issue: 1
  year: 2019
  end-page: 3
  article-title: Digital biomarkers of mood disorders and symptom change
  publication-title: NPJ Digital Medicine
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  article-title: Scikit-learn: Machine learning in Python
  publication-title: The Journal of Machine Learning Research
– volume: 2
  start-page: 109
  issue: 3
  year: 2020
  end-page: 114
  article-title: Circadian rhythm of heart rate assessed by wearable devices tends to correlate with the circadian rhythm of salivary cortisol concentration in healthy young adults
  publication-title: Chronobiology in Medicine
– volume: 17
  start-page: e4273
  issue: 7
  year: 2015
  article-title: Mobile phone sensor correlates of depressive symptom severity in daily-life behavior: An exploratory study
  publication-title: Journal of Medical Internet Research
– volume: 21
  start-page: e11029
  issue: 4
  year: 2019
  article-title: Mood prediction of patients with mood disorders by machine learning using passive digital phenotypes based on the circadian rhythm: Prospective observational cohort study
  publication-title: Journal of Medical Internet Research
– volume: 31
  start-page: 295
  issue: 4
  year: 1986
  end-page: 298
  article-title: The sleep of remitted bipolar depressives: Comparison with sex and age-matched controls
  publication-title: The Canadian Journal of Psychiatry
– volume: 4
  start-page: e2537
  year: 2016
  article-title: The relationship between mobile phone location sensor data and depressive symptom severity
  publication-title: PeerJ
– volume: 39
  start-page: 1866
  issue: 11
  year: 2014
  end-page: 1880
  article-title: Circadian rhythms have broad implications for understanding brain and behavior
  publication-title: European Journal of Neuroscience
– volume: 1
  start-page: 100058
  issue: 4
  year: 2021
  article-title: A method for characterizing daily physiology from widely used wearables
  publication-title: Cell Reports Methods
– volume: 96
  start-page: 271
  issue: 2
  year: 1999
  end-page: 290
  article-title: Molecular bases for circadian clocks
  publication-title: Cell
– volume: 34
  start-page: 1103
  issue: 8
  year: 2011
  end-page: 1110
  article-title: Insomnia and daytime sleepiness are risk factors for depressive symptoms in the elderly
  publication-title: Sleep
– volume: 33
  start-page: 462
  issue: 5
  year: 2015
  end-page: 463
  article-title: The digital phenotype
  publication-title: Nature Biotechnology
– volume: 114
  start-page: 222
  issue: 2
  year: 2007
  end-page: 232
  article-title: Circadian genes, rhythms and the biology of mood disorders
  publication-title: Pharmacology & Therapeutics
– volume: 59
  start-page: 530
  issue: 6
  year: 2002
  end-page: 537
  article-title: The long-term natural history of the weekly symptomatic status of bipolar I disorder
  publication-title: Archives of General Psychiatry
– ident: S0033291722002847_ref9
  doi: 10.1176/appi.ajp.2008.08010098
– ident: S0033291722002847_ref18
  doi: 10.1016/j.pharmthera.2007.02.003
– ident: S0033291722002847_ref14
  doi: 10.1001/archpsyc.59.6.530
– ident: S0033291722002847_ref24
  doi: 10.25080/Majora-92bf1922-011
– ident: S0033291722002847_ref22
  doi: 10.7717/peerj.2537
– ident: S0033291722002847_ref23
  doi: 10.2196/jmir.4273
– volume-title: Über sprachstörungen im traume
  year: 1906
  ident: S0033291722002847_ref16
– ident: S0033291722002847_ref15
  doi: 10.1177/070674378603100402
– ident: S0033291722002847_ref3
  doi: 10.2196/11029
– ident: S0033291722002847_ref20
  doi: 10.1001/jamapsychiatry.2020.0108
– ident: S0033291722002847_ref5
  doi: 10.1016/S0092-8674(00)80566-8
– volume: 12
  start-page: 2825
  year: 2011
  ident: S0033291722002847_ref21
  article-title: Scikit-learn: Machine learning in Python
  publication-title: The Journal of Machine Learning Research
– ident: S0033291722002847_ref19
  doi: 10.1016/j.ebiom.2016.08.019
– ident: S0033291722002847_ref27
  doi: 10.1111/ejn.12593
– ident: S0033291722002847_ref1
  doi: 10.1016/j.crmeth.2021.100058
– ident: S0033291722002847_ref11
  doi: 10.1038/nbt.3223
– ident: S0033291722002847_ref4
  doi: 10.1001/jama.2015.18421
– ident: S0033291722002847_ref8
  doi: 10.1109/CBMS.2018.00062
– ident: S0033291722002847_ref26
– ident: S0033291722002847_ref6
  doi: 10.1016/j.jad.2021.01.060
– ident: S0033291722002847_ref17
  doi: 10.33069/cim.2019.0027
– volume-title: Introduction to machine learning
  year: 2014
  ident: S0033291722002847_ref7
– ident: S0033291722002847_ref2
  doi: 10.4306/pi.2017.14.1.100
– volume: II
  start-page: 307
  volume-title: Contributions to the theory of games (AM-28)
  year: 1953
  ident: S0033291722002847_ref25
– ident: S0033291722002847_ref13
  doi: 10.33069/cim.2020.0022
– ident: S0033291722002847_ref10
  doi: 10.1038/s41746-019-0078-0
– ident: S0033291722002847_ref12
  doi: 10.5665/SLEEP.1170
SSID ssj0013142
Score 2.56346
Snippet BackgroundMood disorders require consistent management of symptoms to prevent recurrences of mood episodes. Circadian rhythm (CR) disruption is a key symptom...
Mood disorders require consistent management of symptoms to prevent recurrences of mood episodes. Circadian rhythm (CR) disruption is a key symptom of mood...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5636
SubjectTerms Algorithms
Bipolar disorder
Circadian rhythm
Circadian rhythms
Clinical interviews
Cohort analysis
Consortia
Depressive personality disorders
Disruption
Ecological momentary assessment
Emotional disorders
Heart rate
Hospitals
Impending
Mental depression
Mental disorders
Mood
Mood disorders
Original Article
Patients
Phenotypes
Predictions
Recurrence
Rhythm
Sleep
Smartphones
Symptom management
Wearable computers
Title Prediction of impending mood episode recurrence using real-time digital phenotypes in major depression and bipolar disorders in South Korea: a prospective nationwide cohort study
URI https://www.cambridge.org/core/product/identifier/S0033291722002847/type/journal_article
https://www.proquest.com/docview/2861116806
https://www.proquest.com/docview/2717688791
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ZSyQxEA4eIL6I64GzHtTCPomNfSXd44uoKLKLIqIwb0M6SUuL05ntGfF_-QutSqdnkIV5a3KRTqVSqSP1Mfa7MHGkc5EEKGzKIOUyRJaSPDAo3sp-LhV3Hvy7e3H7nP4Z8IE3uE18WGV3JrqDWltFNvLTOBfIliIPxfn4X0CoUeRd9RAay2w1wpsIQTdkg2zuRYjSNlu4wyuLss6r6VJGYyGVxRSlkBO6yjy3wncZ9f2IdnLnZpNt-AsjXLQU_sGWTL3F1u68S3ybfT409E3rC7aEakSgtiiPYGStBjOuJlYbaMis7h72AUW6v2CBfAsIWB509ULAIUDBXpYsshOoahjJV9vALE62BllrKKoxacKgfcpO19KB8MFfiyOegQT8j-71JrSWxo8KJ0BAvM0UXDbbHfZ8c_10dRt4IIZAJTycBkbS6ht6w6vypNAiUUmhUh0bVeg010qRFtM3GdbLME00ql1Kc9k3IiqM5MkuW6ltbfYYCJWXaSzDMjQqNTLE25HOuMp0VHLUTOMeO5mRYejZaTJsQ9Gy4X9U67Gwo9RQ-aTmhK3xtqjL8azLuM3osajxQUf--WzmW7HHfs2qkS3J1yJrY9-xDarJAg_wfvRz8RD7bJ0Q7NuwtQO2Mm3ezSHec6bFkdvMR2z18vr-4fELNGX8Mw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Na9RAFB9KC-ql-Ilra32CXsRgMplMsoIUUcvW7RYPLewtTmYmJdLNrNktpf-UB_9C35skuxRhb72F-WLCmzfvc96PsTeF5ZHJZBygsCkDkagQWUolgUXxVg4zpRMfwZ-cytG5-D5NplvsT_8WhtIq-zvRX9TGafKRf-CZRLaUWSgP578DQo2i6GoPodEei7G9uUaTbfHp-CvS9y3nR9_OvoyCDlUg0HESLgOraClLD1J1FhdGxjoutDDc6sKIzGhNKvnQptivQhEbtCG0SdTQyqiwilAi8MrfERRiRP5Jp-k6ahGJtjq5x0eL0j6K6ktUYyO1ccqKyAjNZV3L4bZMvC0SvJw7esh2OwUVPrcn6hHbsvVjdm_SheCfsL8_GvomeoIroZoRiC7KP5g5Z8DOq4UzFhpy4_uHhECZ9RfYoC4DArIHU10QUAlQcpkjD_ACqhpm6pdrYJWXW4OqDRTVnCxvMF2JUD_Sg_7B2OGKH0EB_kf_WhRaz-Z1hRsg4N9mCb567lN2fickesa2a1fb5wykzkrBVViGVgurQtTGTJro1ERlgpYwH7D3KzLkHfsu8jb1Lc3_o9qAhT2lct0VUScsj8tNU96tpszbCiKbBu_35F_vZn30B-z1qhuvAYrtqNq6KxyDZrlEgTGMXmxe4hW7PzqbnOQnx6fjPfaAo87Wpszts-1lc2Vfoo61LA78wQb286456R-4NTjX
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFB5KC8UX8YqrVY-gL2JoMkkmWaGI2i6ta5dFLPQtTmYmJdLNrNktxb_lz_BXec5ksksR9q1vYTK5cXLmO2fO5WPsdWl4pHMRBwg2VZCkMkSVkmlgEN6qYS5V6iL4pxNxfJZ8OU_Pt9jfvhaG0ir7NdEt1Noq2iPf57lAtRR5KPYrnxYxPRx9mP8KiEGKIq09nYb0NAv6wLUb80UeY_P7Gt25xcHJIcr-Deejo--fjwPPOBCoOA2XgZH0GEPFqiqPSy1iFZcq0dyoUie5VorM9aHJ8LwMk1ijf6F0KodGRKWRxCCBcLCTIeqjI7jz6Wgy_baOaURJ17vcsadFWR9jdQ2scZDGOOVM5MT1su70cBMxbwKGQ8HRPXbXm6_wsfvf7rMt0zxgu6c-QP-Q_Zm2dEzSBltBPSOKXURHmFmrwczrhdUGWtrkd2WGQHn3FzggLwOiuQddXxCNCVDqmaX94QXUDczkT9vCKmu3AdloKOs5-eWgfQNRN9NRAsLY4h3fgwT8jr6WFLp9z-saX4BogdsluN66j9jZrQjpMdtubGOeMBAqrxIuwyo0KjEyRFtNZ6nKdFSl6CfzAXu3EkPhlXtRdIlxWfGf1AYs7CVVKN9inZg-Ljdd8nZ1ybzrL7Jp8l4v_vXbrBVjwF6tTuMiQZEf2Rh7hXPQaRcIJ8Po6eZbvGS7qFXF15PJ-Bm7w9Gg6_Lp9tj2sr0yz9EAW5Yv_J8N7MdtK9M_29hDsg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+impending+mood+episode+recurrence+using+real-time+digital+phenotypes+in+major+depression+and+bipolar+disorders+in+South+Korea%3A+a+prospective+nationwide+cohort+study&rft.jtitle=Psychological+medicine&rft.au=Heon-Jeong%2C+Lee&rft.au=Cho%2C+Chul-Hyun&rft.au=Lee%2C+Taek&rft.au=Jeong%2C+Jaegwon&rft.date=2023-09-01&rft.pub=Cambridge+University+Press&rft.issn=0033-2917&rft.eissn=1469-8978&rft.volume=53&rft.issue=12&rft.spage=5636&rft.epage=5644&rft_id=info:doi/10.1017%2FS0033291722002847&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0033-2917&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0033-2917&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0033-2917&client=summon