Accurate Path Tracking by Adjusting Look-Ahead Point in Pure Pursuit Method
Path tracking is an essential aspect of the navigational process of self-driving cars. Especially, accurate path tracking is important for not only normal urban roads but also narrow and complex roads such as parking lot and alleyway. The pure pursuit method is one of the geometric path-tracking met...
Saved in:
Published in | International journal of automotive technology Vol. 22; no. 1; pp. 119 - 129 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Seoul
The Korean Society of Automotive Engineers
01.02.2021
Springer Nature B.V 한국자동차공학회 |
Subjects | |
Online Access | Get full text |
ISSN | 1229-9138 1976-3832 |
DOI | 10.1007/s12239-021-0013-7 |
Cover
Abstract | Path tracking is an essential aspect of the navigational process of self-driving cars. Especially, accurate path tracking is important for not only normal urban roads but also narrow and complex roads such as parking lot and alleyway. The pure pursuit method is one of the geometric path-tracking methods. Using this method, the look-ahead point can be selected far away and the control input is computed in real-time, which is advantageous when the given path is not smooth or when the path is specified using waypoints. Moreover, this method is more robust to localization errors than the model-based path-tracking method. However, the original pure pursuit method and its variants have limited tracking performance. Therefore, this paper proposes a new method that heuristically selects a look-ahead point by considering the relationship between a vehicle and a path. Using this new look-ahead point, the vehicle can stably converge to the desired path and track the path without encountering the cutting-corner problem. The proposed method was tested using simulation and our self-driving car platform. Our results show that the vehicle tracks the desired path more accurately using our proposed algorithm than using the previous pure pursuit methods. |
---|---|
AbstractList | Path tracking is an essential aspect of the navigational process of self-driving cars. Especially, accurate pathtracking is important for not only normal urban roads but also narrow and complex roads such as parking lot and alleyway. The pure pursuit method is one of the geometric path-tracking methods. Using this method, the look-ahead point can be selected far away and the control input is computed in real-time, which is advantageous when the given path is not smooth or when the path is specified using waypoints. Moreover, this method is more robust to localization errors than the modelbased path-tracking method. However, the original pure pursuit method and its variants have limited tracking performance. Therefore, this paper proposes a new method that heuristically selects a look-ahead point by considering the relationship between a vehicle and a path. Using this new look-ahead point, the vehicle can stably converge to the desired path and track the path without encountering the cutting-corner problem. The proposed method was tested using simulation and our selfdriving car platform. Our results show that the vehicle tracks the desired path more accurately using our proposed algorithm than using the previous pure pursuit methods. KCI Citation Count: 15 Path tracking is an essential aspect of the navigational process of self-driving cars. Especially, accurate path tracking is important for not only normal urban roads but also narrow and complex roads such as parking lot and alleyway. The pure pursuit method is one of the geometric path-tracking methods. Using this method, the look-ahead point can be selected far away and the control input is computed in real-time, which is advantageous when the given path is not smooth or when the path is specified using waypoints. Moreover, this method is more robust to localization errors than the model-based path-tracking method. However, the original pure pursuit method and its variants have limited tracking performance. Therefore, this paper proposes a new method that heuristically selects a look-ahead point by considering the relationship between a vehicle and a path. Using this new look-ahead point, the vehicle can stably converge to the desired path and track the path without encountering the cutting-corner problem. The proposed method was tested using simulation and our self-driving car platform. Our results show that the vehicle tracks the desired path more accurately using our proposed algorithm than using the previous pure pursuit methods. |
Author | Ahn, Joonwoo Shin, Seho Park, Jaeheung Kim, Minsung |
Author_xml | – sequence: 1 givenname: Joonwoo surname: Ahn fullname: Ahn, Joonwoo organization: Graduate School of Convergence Science and Technology, Seoul National University – sequence: 2 givenname: Seho surname: Shin fullname: Shin, Seho organization: System LSI, Samsung Electronics Co., Ltd – sequence: 3 givenname: Minsung surname: Kim fullname: Kim, Minsung organization: Graduate School of Convergence Science and Technology, Seoul National University – sequence: 4 givenname: Jaeheung surname: Park fullname: Park, Jaeheung email: park73@snu.ac.kr organization: Graduate School of Convergence Science and Technology, Seoul National University, Advanced Institute of Convergence Technology |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002681706$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kE9LAzEQxYMoaKsfwNuCJw_RSbK72T0uxT_FikV6D2k2adPWRJPsod_erSsIgl7mzcD7DY83QsfOO43QJYEbAsBvI6GU1RgowQCEYX6EzkjNS8wqRo_7ndIa14RVp2gU4wagKAmDM_TUKNUFmXQ2l2mdLYJUW-tW2XKfNe2mi-lwzLzf4matZZvNvXUpsy6bd0EfRuxsyp51Wvv2HJ0YuYv64lvHaHF_t5g84tnLw3TSzLBiBSSsS14wSbmuSatVrjRIaqQxJmc8VyDLnDEDRBdmWSrVUsUI4wzyssg1VJSN0fXw1gUjtsoKL-2XrrzYBtG8Lqai5iRn_Z8xuhq878F_dDomsfFdcH06QfMK6qos6qJ38cGlgo8xaCOUTTJZ71KQdicIiEPJYihZ9CWLQ8mC9yT5Rb4H-ybD_l-GDkzsvW6lw0-mv6FP8mWOgg |
CitedBy_id | crossref_primary_10_3390_drones8050182 crossref_primary_10_3390_agriculture14101713 crossref_primary_10_1002_oca_3256 crossref_primary_10_1007_s11071_024_10456_7 crossref_primary_10_1007_s12239_024_00127_2 crossref_primary_10_1115_1_4064515 crossref_primary_10_3390_agriculture13030532 crossref_primary_10_1016_j_biosystemseng_2024_04_009 crossref_primary_10_1177_09544070221081299 crossref_primary_10_1177_09544062241290619 crossref_primary_10_1109_ACCESS_2022_3193667 crossref_primary_10_1109_ACCESS_2023_3326247 crossref_primary_10_47836_pjst_32_1_06 crossref_primary_10_26518_2071_7296_2022_19_2_156_169 crossref_primary_10_1002_rob_22208 crossref_primary_10_1109_ACCESS_2025_3546864 crossref_primary_10_1155_2022_9328398 crossref_primary_10_1007_s12239_024_00117_4 crossref_primary_10_3390_machines10090817 crossref_primary_10_3390_machines12110764 crossref_primary_10_1155_2022_4661401 crossref_primary_10_3390_s23083844 crossref_primary_10_1177_09544070231215852 crossref_primary_10_1007_s10846_022_01636_x crossref_primary_10_1109_TTE_2023_3323797 crossref_primary_10_3390_act13060221 crossref_primary_10_1080_00423114_2023_2280215 crossref_primary_10_3390_s23094533 crossref_primary_10_1016_j_compag_2022_106760 crossref_primary_10_1109_TVT_2024_3367930 crossref_primary_10_1007_s12204_022_2423_8 crossref_primary_10_7467_KSAE_2023_31_10_737 crossref_primary_10_1109_ACCESS_2024_3353616 crossref_primary_10_3390_agriculture15030266 crossref_primary_10_3390_s24092715 crossref_primary_10_3390_app14051817 crossref_primary_10_3390_machines12070493 crossref_primary_10_1007_s11081_024_09949_6 crossref_primary_10_1177_09544070241287965 crossref_primary_10_1016_j_jfranklin_2023_11_046 crossref_primary_10_1038_s41598_022_23546_6 crossref_primary_10_1109_ACCESS_2023_3306239 crossref_primary_10_1016_j_robot_2025_104969 crossref_primary_10_1007_s10514_023_10097_6 crossref_primary_10_1007_s12555_022_0495_8 crossref_primary_10_3390_electronics13183747 crossref_primary_10_1109_TVT_2023_3304427 crossref_primary_10_1007_s11071_024_10042_x crossref_primary_10_1007_s12239_024_00003_z crossref_primary_10_3390_app13148495 |
Cites_doi | 10.2307/2372560 10.1177/027836499501400602 10.1109/CAC48633.2019.8997258 10.1002/rob.20255 10.1007/s12239-014-0120-9 10.1109/TVT.2020.2981619 10.1109/TIV.2016.2578706 10.1109/ACC.1998.694619 10.1109/ROBOT.1990.126006 10.3182/20130902-3-CN-3020.00045 10.1109/TITS.2019.2892926 10.1109/AIM.2016.7577010 10.1002/rob.20147 10.2514/6.2008-7166 10.1109/ICICAS48597.2019.00197 |
ContentType | Journal Article |
Copyright | KSAE 2021 KSAE 2021. |
Copyright_xml | – notice: KSAE 2021 – notice: KSAE 2021. |
DBID | AAYXX CITATION 3V. 7TB 7WY 7WZ 7XB 87Z 88I 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA AZQEC BENPR BEZIV BGLVJ CCPQU D1I DWQXO FR3 FRNLG F~G GNUQQ HCIFZ K60 K6~ KB. L.- M0C M2P PDBOC PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U ACYCR |
DOI | 10.1007/s12239-021-0013-7 |
DatabaseName | CrossRef ProQuest Central (Corporate) Mechanical & Transportation Engineering Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Business Premium Collection Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Materials Science Database ABI/INFORM Professional Advanced ABI/INFORM Global Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Korean Citation Index |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea Materials Science Database ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) ProQuest Materials Science Collection Business Premium Collection ABI/INFORM Global ProQuest Science Journals (Alumni Edition) ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Business (Alumni) Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) Business Premium Collection (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1976-3832 |
EndPage | 129 |
ExternalDocumentID | oai_kci_go_kr_ARTI_9714343 10_1007_s12239_021_0013_7 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .UV .VR 06D 0R~ 0VY 1N0 203 29J 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 406 408 40D 40E 5GY 5VS 6NX 7WY 88I 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X 9ZL AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AYJHY AZQEC B-. BA0 BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ CAG CCPQU COF CS3 CSCUP CZ9 D1I DBRKI DDRTE DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE GW5 H13 HCIFZ HF~ HG6 HLICF HMJXF HRMNR HZ~ I-F IJ- IKXTQ IWAJR IXC IXD I~X I~Z J-C J0Z JBSCW JZLTJ K60 K6~ KB. KC. KOV KVFHK LLZTM M0C M2P M4Y MA- MK~ ML~ MZR NPVJJ NQJWS NU0 O9- O9J P9P PDBOC PF0 PQBIZ PQBZA PQQKQ PROAC PT4 Q2X QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TDB TR2 TSG TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 Z7R Z7S Z7X Z7Y Z7Z Z83 Z88 ZMTXR ZZE ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR CITATION PHGZM PHGZT 7TB 7XB 8FD 8FK ABRTQ FR3 L.- PKEHL PQEST PQGLB PQUKI PRINS Q9U AAFGU ABFGW ABKAS ACBMV ACBRV ACBYP ACIGE ACIPQ ACTTH ACVWB ACWMK ACYCR ADMDM ADOXG AEFTE AESTI AEVTX AFNRJ AGGBP AIMYW AJDOV AKQUC UNUBA |
ID | FETCH-LOGICAL-c350t-e6753a27e91dec4ce0a2fafff4374c0a6433f01e5fb6ccd2c3137304654e0823 |
IEDL.DBID | AGYKE |
ISSN | 1229-9138 |
IngestDate | Tue Jun 25 21:09:02 EDT 2024 Fri Jul 25 09:45:39 EDT 2025 Tue Jul 01 02:44:14 EDT 2025 Thu Apr 24 23:00:12 EDT 2025 Fri Feb 21 02:48:49 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Geometric path-tracking method Accurate path tracking Path tracking Look-ahead point selection Pure pursuit method |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c350t-e6753a27e91dec4ce0a2fafff4374c0a6433f01e5fb6ccd2c3137304654e0823 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2480986595 |
PQPubID | 54404 |
PageCount | 11 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_9714343 proquest_journals_2480986595 crossref_citationtrail_10_1007_s12239_021_0013_7 crossref_primary_10_1007_s12239_021_0013_7 springer_journals_10_1007_s12239_021_0013_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210200 2021-02-00 20210201 2021-02 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 2 year: 2021 text: 20210200 |
PublicationDecade | 2020 |
PublicationPlace | Seoul |
PublicationPlace_xml | – name: Seoul – name: Dordrecht |
PublicationTitle | International journal of automotive technology |
PublicationTitleAbbrev | Int.J Automot. Technol |
PublicationYear | 2021 |
Publisher | The Korean Society of Automotive Engineers Springer Nature B.V 한국자동차공학회 |
Publisher_xml | – name: The Korean Society of Automotive Engineers – name: Springer Nature B.V – name: 한국자동차공학회 |
References | DubinsL EOn curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangentsAmerican J. Mathematics19577934975168945710.2307/2372560 BuXHouZChiRModel free adaptive iterative learning control for farm vehicle path trackingIFAC Proc. Volumes2013462015315810.3182/20130902-3-CN-3020.00045 Kuwata, Y., Teo, J., Karaman, S., Fiore, G., Frazzoli, E. and How, J. (2008). Motion planning in complex environments using closed-loop prediction. AIAA Guidance, Navigation and Control Conf. Exhibit. Honolulu, Hawaii. Peng, H., Wang, W., An, Q., Xiang, C. and Li, L. (2020). Path tracking and direct yaw moment coordinated control based on robust MPC with the finite time horizon for autonomous independent-drive vehicles. IEEE Trans. Vehicular Technology. RajamaniRVehicle dynamics and control2011Berlin, GermanySpringer Science & Business Media1097.70001 Coulter, R. C. (1992). Implementation of the pure pursuit path tracking algorithm. Carnegie-Mellon UNIV Pittsburgh PA Robotics INST. Wit, J. S. (2000). Vector pursuit path tracking for autonomous ground vehicles. Ph.D. Doctoral dissertation. University of Florida. Gainesville, FL, USA. XuSPengHDesign, analysis, and experiments of preview path tracking control for autonomous vehiclesIEEE Trans. Intelligent Transportation Systems2019211485810.1109/TITS.2019.2892926 Qinpeng, S., Zhonghua, W., Meng, L., Bin, L., Jin, C. and Jiaxiang, T. (2019). Path tracking control of wheeled mobile robot based on improved pure pursuit algorithm. 2019 Chinese Automation Congress (CAC). Hangzhou, China. Hingwe, P. and Tomizuka, M. (1998). A variable look-ahead controller for lateral guidance of four wheeled vehicles. Proc. 1998 American Control Conf. Philadelphia, PA, USA. PadenBČápMYongS ZYershovDFrazzoliEA survey of motion planning and control techniques for self-driving urban vehiclesIEEE Trans. Intelligent Vehicles201611335510.1109/TIV.2016.2578706 Campbell, S. (2007). Steering control of an autonomous ground vehicle with application to the DARPA urban challenge. Ph.D. Doctoral dissertation. Massachusetts Institute of Technology, Cambridge, MA, USA. Piao, C., Liu, X. and Lu, C. (2019). Lateral control using parameter self-tuning LQR on autonomous vehicle. 2019 Int. Conf. Intelligent Computing, Automation and Systems (ICICAS). Chongqing, China. d’Andréa-NovelBCampionGBastinGControl of nonholonomic wheeled mobile robots by state feedback linearizationInt. J. Robotics Research199514654355910.1177/027836499501400602 Kilinç, A. S. and Baybura, T. (2012). Determination of minimum horizontal curve radius used in the design of transportation structures, depending on the limit value of comfort criterion lateral jerk. TS06G-Engineering Surveying, Machine Control and Guidance, Rome, Italy. Chen, C. and Tan, H. S. (1999). Experimental study of dynamic look-ahead scheme for vehicle steering control. Proc. 1999 American Control Conf. San Diego, CA, USA. Andersen, H., Chong, Z. J., Eng, Y. H., Pendleton, S. and Ang, M. H. (2016). Geometric path tracking algorithm for autonomous driving in pedestrian environment. 2016 IEEE Int. Conf. Advanced Intelligent Mechatronics (AIM). Banff, Alberta, Canada. Kanayama, Y., Kimura, Y., Miyazaki, F. and Noguchi, T. (1990). A stable tracking control method for an autonomous mobile robot. Proc., IEEE Int. Conf. Robotics and Automation. Cincinnati, OH, USA. ThrunSMontemerloMDahlkampHStavensDAronADiebelJFongPGaleJHalpennyMHoffmannGLauKOakleyCPalatucciMPrattVStangPStrohbandSDupontCJendrossekL-EKoelenCMarkeyCRummelCvan NiekerkJJensenEAlessandriniPBradskiGDaviesBEttingerSKaehlerANefianAMahoneyPStanley: The robot that won the DARPA Grand ChallengeJ. Field Robotics200623966169210.1002/rob.20147 UrmsonCAnhaltJBagnellDBakerCBittnerRClarkM NDolanJDugginsDGalataliTGeyerCGittlemanMHarbaughSHebertMHowardT MKolskiSKellyALikhachevMMcNaughtonMMillerNPetersonKPilnickBRajkumarRRybskiPSaleskyBSeoY-WSinghSSniderJStentzAWhittakerWWolkowickiZZiglarJBaeHBrownTDemitrishDLitkouhiBNickolaouJSadekarVZhangWStrubleJTaylorMDarmsMFergusonDAutonomous driving in urban environments: Boss and the urban challengeJ. Field Robotics200825842546610.1002/rob.20255 Zhang, J. and Singh, S. (2014). LOAM: Lidar Odometry and Mapping in Real-time. 2014 Robotics: Science and Systems Conf. Berkeley, CA, USA. KimEKimJSunwooMModel predictive control strategy for smooth path tracking of autonomous vehicles with steering actuator dynamicsInt. J. Automotive Technology20141571155116410.1007/s12239-014-0120-9 Challenge, D. U. (2007). Route network definition file (RNDF) and mission data file (MDF) formats. Tech. Rep., Defense Advanced Research Projects Agency, Tech. Rep. 13_CR17 C Urmson (13_CR20) 2008; 25 R Rajamani (13_CR18) 2011 S Thrun (13_CR19) 2006; 23 13_CR15 B d’Andréa-Novel (13_CR7) 1995; 14 13_CR16 X Bu (13_CR2) 2013; 46 B Paden (13_CR14) 2016; 1 13_CR4 13_CR5 E Kim (13_CR12) 2014; 15 13_CR6 13_CR9 13_CR10 13_CR21 S Xu (13_CR22) 2019; 21 L E Dubins (13_CR8) 1957; 79 13_CR13 13_CR1 13_CR11 13_CR3 13_CR23 |
References_xml | – reference: Campbell, S. (2007). Steering control of an autonomous ground vehicle with application to the DARPA urban challenge. Ph.D. Doctoral dissertation. Massachusetts Institute of Technology, Cambridge, MA, USA. – reference: KimEKimJSunwooMModel predictive control strategy for smooth path tracking of autonomous vehicles with steering actuator dynamicsInt. J. Automotive Technology20141571155116410.1007/s12239-014-0120-9 – reference: XuSPengHDesign, analysis, and experiments of preview path tracking control for autonomous vehiclesIEEE Trans. Intelligent Transportation Systems2019211485810.1109/TITS.2019.2892926 – reference: UrmsonCAnhaltJBagnellDBakerCBittnerRClarkM NDolanJDugginsDGalataliTGeyerCGittlemanMHarbaughSHebertMHowardT MKolskiSKellyALikhachevMMcNaughtonMMillerNPetersonKPilnickBRajkumarRRybskiPSaleskyBSeoY-WSinghSSniderJStentzAWhittakerWWolkowickiZZiglarJBaeHBrownTDemitrishDLitkouhiBNickolaouJSadekarVZhangWStrubleJTaylorMDarmsMFergusonDAutonomous driving in urban environments: Boss and the urban challengeJ. Field Robotics200825842546610.1002/rob.20255 – reference: Andersen, H., Chong, Z. J., Eng, Y. H., Pendleton, S. and Ang, M. H. (2016). Geometric path tracking algorithm for autonomous driving in pedestrian environment. 2016 IEEE Int. Conf. Advanced Intelligent Mechatronics (AIM). Banff, Alberta, Canada. – reference: Kanayama, Y., Kimura, Y., Miyazaki, F. and Noguchi, T. (1990). A stable tracking control method for an autonomous mobile robot. Proc., IEEE Int. Conf. Robotics and Automation. Cincinnati, OH, USA. – reference: Hingwe, P. and Tomizuka, M. (1998). A variable look-ahead controller for lateral guidance of four wheeled vehicles. Proc. 1998 American Control Conf. Philadelphia, PA, USA. – reference: d’Andréa-NovelBCampionGBastinGControl of nonholonomic wheeled mobile robots by state feedback linearizationInt. J. Robotics Research199514654355910.1177/027836499501400602 – reference: RajamaniRVehicle dynamics and control2011Berlin, GermanySpringer Science & Business Media1097.70001 – reference: PadenBČápMYongS ZYershovDFrazzoliEA survey of motion planning and control techniques for self-driving urban vehiclesIEEE Trans. Intelligent Vehicles201611335510.1109/TIV.2016.2578706 – reference: Qinpeng, S., Zhonghua, W., Meng, L., Bin, L., Jin, C. and Jiaxiang, T. (2019). Path tracking control of wheeled mobile robot based on improved pure pursuit algorithm. 2019 Chinese Automation Congress (CAC). Hangzhou, China. – reference: ThrunSMontemerloMDahlkampHStavensDAronADiebelJFongPGaleJHalpennyMHoffmannGLauKOakleyCPalatucciMPrattVStangPStrohbandSDupontCJendrossekL-EKoelenCMarkeyCRummelCvan NiekerkJJensenEAlessandriniPBradskiGDaviesBEttingerSKaehlerANefianAMahoneyPStanley: The robot that won the DARPA Grand ChallengeJ. Field Robotics200623966169210.1002/rob.20147 – reference: Wit, J. S. (2000). Vector pursuit path tracking for autonomous ground vehicles. Ph.D. Doctoral dissertation. University of Florida. Gainesville, FL, USA. – reference: BuXHouZChiRModel free adaptive iterative learning control for farm vehicle path trackingIFAC Proc. Volumes2013462015315810.3182/20130902-3-CN-3020.00045 – reference: Zhang, J. and Singh, S. (2014). LOAM: Lidar Odometry and Mapping in Real-time. 2014 Robotics: Science and Systems Conf. Berkeley, CA, USA. – reference: Kuwata, Y., Teo, J., Karaman, S., Fiore, G., Frazzoli, E. and How, J. (2008). Motion planning in complex environments using closed-loop prediction. AIAA Guidance, Navigation and Control Conf. Exhibit. Honolulu, Hawaii. – reference: DubinsL EOn curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangentsAmerican J. Mathematics19577934975168945710.2307/2372560 – reference: Chen, C. and Tan, H. S. (1999). Experimental study of dynamic look-ahead scheme for vehicle steering control. Proc. 1999 American Control Conf. San Diego, CA, USA. – reference: Peng, H., Wang, W., An, Q., Xiang, C. and Li, L. (2020). Path tracking and direct yaw moment coordinated control based on robust MPC with the finite time horizon for autonomous independent-drive vehicles. IEEE Trans. Vehicular Technology. – reference: Piao, C., Liu, X. and Lu, C. (2019). Lateral control using parameter self-tuning LQR on autonomous vehicle. 2019 Int. Conf. Intelligent Computing, Automation and Systems (ICICAS). Chongqing, China. – reference: Kilinç, A. S. and Baybura, T. (2012). Determination of minimum horizontal curve radius used in the design of transportation structures, depending on the limit value of comfort criterion lateral jerk. TS06G-Engineering Surveying, Machine Control and Guidance, Rome, Italy. – reference: Coulter, R. C. (1992). Implementation of the pure pursuit path tracking algorithm. Carnegie-Mellon UNIV Pittsburgh PA Robotics INST. – reference: Challenge, D. U. (2007). Route network definition file (RNDF) and mission data file (MDF) formats. Tech. Rep., Defense Advanced Research Projects Agency, Tech. Rep. – volume: 79 start-page: 497 issue: 3 year: 1957 ident: 13_CR8 publication-title: American J. Mathematics doi: 10.2307/2372560 – volume: 14 start-page: 543 issue: 6 year: 1995 ident: 13_CR7 publication-title: Int. J. Robotics Research doi: 10.1177/027836499501400602 – ident: 13_CR23 – ident: 13_CR17 doi: 10.1109/CAC48633.2019.8997258 – volume: 25 start-page: 425 issue: 8 year: 2008 ident: 13_CR20 publication-title: J. Field Robotics doi: 10.1002/rob.20255 – ident: 13_CR21 – ident: 13_CR3 – volume: 15 start-page: 1155 issue: 7 year: 2014 ident: 13_CR12 publication-title: Int. J. Automotive Technology doi: 10.1007/s12239-014-0120-9 – ident: 13_CR5 – ident: 13_CR4 – ident: 13_CR6 – ident: 13_CR15 doi: 10.1109/TVT.2020.2981619 – volume: 1 start-page: 33 issue: 1 year: 2016 ident: 13_CR14 publication-title: IEEE Trans. Intelligent Vehicles doi: 10.1109/TIV.2016.2578706 – ident: 13_CR9 doi: 10.1109/ACC.1998.694619 – ident: 13_CR10 doi: 10.1109/ROBOT.1990.126006 – volume: 46 start-page: 153 issue: 20 year: 2013 ident: 13_CR2 publication-title: IFAC Proc. Volumes doi: 10.3182/20130902-3-CN-3020.00045 – ident: 13_CR11 – volume: 21 start-page: 48 issue: 1 year: 2019 ident: 13_CR22 publication-title: IEEE Trans. Intelligent Transportation Systems doi: 10.1109/TITS.2019.2892926 – volume-title: Vehicle dynamics and control year: 2011 ident: 13_CR18 – ident: 13_CR1 doi: 10.1109/AIM.2016.7577010 – volume: 23 start-page: 661 issue: 9 year: 2006 ident: 13_CR19 publication-title: J. Field Robotics doi: 10.1002/rob.20147 – ident: 13_CR13 doi: 10.2514/6.2008-7166 – ident: 13_CR16 doi: 10.1109/ICICAS48597.2019.00197 |
SSID | ssj0056130 |
Score | 2.4832072 |
Snippet | Path tracking is an essential aspect of the navigational process of self-driving cars. Especially, accurate path tracking is important for not only normal... Path tracking is an essential aspect of the navigational process of self-driving cars. Especially, accurate pathtracking is important for not only normal urban... |
SourceID | nrf proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 119 |
SubjectTerms | Algorithms Automotive Engineering Autonomous cars Engineering Path tracking Roads & highways Tracks (paths) Waypoints 자동차공학 |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxELZKuMChojxESqisihOVxa7tfZ2qCBFCS1AOVOJmef1AIdUmTTYH_n1nnF1SkMplV6u119LYO_N5ZjwfIWeZS0ED5JbB3kAzaeOc5WViGM9cLLmxWgdX9uguHf6SPx6Sh8bhtmzSKludGBS1nRn0kV9wmUdFjtXvvs__MGSNwuhqQ6GxRbZjDrYWT4oPrltNHLAxbrg4LzDCnLdRzXB0DuxiwTBBIRAcZK_s0la18K8g55soaTA-gz3ysUGNtL-e5k_kg6v2ye4_tQQPyM--MSus-0DHAOoo2CCDXnBaPtO-fULOLni4BUjN-qB_LR3PJlVNJxUdrxYOL8vVpKajQCh9SO4HV_eXQ9YwJTAjkqhmDmC_0CDfIrbOSOMizb323kuRSRNpgB3CR7FLfJkaY7kRscgwJppIh6G2I9KpZpU7JjT1sbOy0LIwVooyL6ERgHAdl2lUSp91SdSKSZmmijiSWfxWm_rHKFkFksV8OaGgy_lLl_m6hMZ7jb-C7NXUTBQWvsb740xNFwrg_Y0qkK1dii7ptVOjml9uqTYLpEu-tdO1ef3fET-__7ETssPDKsEMlh7p1IuVOwUcUpdfwmL7C-WV1ew priority: 102 providerName: ProQuest |
Title | Accurate Path Tracking by Adjusting Look-Ahead Point in Pure Pursuit Method |
URI | https://link.springer.com/article/10.1007/s12239-021-0013-7 https://www.proquest.com/docview/2480986595 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002681706 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | International Journal of Automotive Technology, 2021, 22(1), 119, pp.119-129 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbY9gIHSnmIhVJZiFORq8R2Xse02m1LabWqtlI5WX6iZVEW7SYH-PWdySYsrQCpl1hJ7Dw89sw3nvEMIR8ynwIHyB0D3UAz6eKc5SaxjGc-ltw6rdul7IvL9PRafrpJbrp93Kve2703SbacerPZDSRZwdCloE1JkA3IdgL6CczG7fLky_moZ8AtJEY9i_MCDct5b8z820PuiKNBtQx3kOY942grc8Y7ZNp_7drVZH7Y1ObQ_roXyPGBv_OMPO0wKC3Xg2aXPPLVc_Lkj8iEL8h5aW2DUSToBCAiBYlmcU2dmp-0dN8wAxicfAaAzkrg5o5OFrOqprOKTpqlx8OqmdX0ok1P_ZJMx6Pp8Snr8i4wK5KoZh6UCKGBWkXsvJXWR5oHHUKQIpM20gBiRIhinwSTWuu4FbHI0MKaSI-Gu1dkq1pU_jWhaYi9k4WWhXVSmNxAJYD0OjZpZGTIhiTqe1_ZLiY5psb4rjbRlLGbFHQTet8JBU0Ofjf5sQ7I8b_K74Gkam5nCsNoY_l1oeZLBcrCmSow97sUQ7LXU1x1E3iluMyjIsdgi0PysSfg5vY_3_jmQbXfkse8HQHoHrNHtupl498ByKnNPhnk45P9bmhDeTS6nFzB1Wte3gJPavJh |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB615QA9IJ4ipcAKwQW0wt5dvw4IRUBISFLlEKTeVvY-UNrKKYkj1B_V_9iZTUwoEr31Ysvyrm3Njme-3ZmdD-BN5lK0ALnlODcoubJxzvMqMVxkLlbC2LIMS9njo7T_Q30_To534LLdC0Npla1NDIbazg2tkX8QKo-KnKrffTr_xYk1iqKrLYXGWi2G7uI3TtmWHwdfcHzfCtH7Ov3c5xtWAW5kEjXcIUSWJX5LEVtnlHFRKXzpvVcyUyYq0UVLH8Uu8VVqjBVGxjKj-GGiHIWl8LG7cAcbScogzHvfWsMfoDjN74QoKKCdt0HUsFMP3XDBKR8i8Clk19zgbr3w1xDuP0HZ4Ot6D-D-BqSy7lqrHsKOqx_B_l-lCx_DsGvMispMsAliSIYuz9CiO6suWNeeEEUYXowQwfMumnvLJvNZ3bBZzSarhaPDcjVr2DjwVz-B6W2I8Cns1fPaPQOW-thZVZSqMFbJKq-wEWL-Mq7SqFI-60DUikmbTdFy4s4409tyyyRZjZKl9Dypscu7P13O1xU7bmr8GmWvT81MU51tOv-c69OFxtnEQBdEDq9kBw7bodGbP3ypt_rYgfftcG1v__eNBzc_7BXc7U_HIz0aHA2fwz0RNIaSZw5hr1ms3AuEQE31MigeA33Lin4FctMSaQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB71ISE4IJ5ioYCF4AKymjjO61ChhXbVZdtVhIrUm-X4gZaibNnNCvUn8q-YcROWItFbL4mi2Ek0nvib8YznA3iduwxngMJy9A00lzYueFGnhovcxVIYq3VYyj6eZodf5KfT9HQDfvV7YSitsp8Tw0Rt54bWyHeFLKKyoOp3u75Li6j2R-_Pf3BikKJIa0-noTuaBbsXyo11mzwm7uInunPLvfE-jv0bIUYHJx8Pecc4wE2SRi13aD4nGr-zjK0z0rhIC6-99zLJpYk0wnfio9ilvs6MscIkcZJTbDGVjkJW-NhN2M4R9NEP3P5wMK0-97AQDHXy_oQoKdxd9CHWsI8PQbrklC0R2BbyKyC52Sz8Ffv3n5BtQMLRPbjbmbBseKlz92HDNQ_gzl-FDR_CZGjMiopQsAotTIaAaGhJntUXbGi_EYEYXhyhfc-HCAaWVfNZ07JZw6rVwtFhuZq17DiwWz-Ck5sQ4mPYauaNewIs87GzstSyNFYmdVFjI_QIdFxnUS19PoCoF5MyXUlzYtb4rtbFmEmyCiVLyXuJwi5v_3Q5v6zncV3jVyh7dWZmiqpw0_nrXJ0tFPoaY1USdbxMBrDTD43q_v-lWmvrAN71w7W-_d83Pr3-YS_hFiq9OhpPJ8_gtggKQ5k1O7DVLlbuOdpHbf2i0zwG6oZ1_Td3Yh1E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accurate+Path+Tracking+by+Adjusting+Look-Ahead+Point+in+Pure+Pursuit+Method&rft.jtitle=International+journal+of+automotive+technology&rft.au=Ahn%2C+Joonwoo&rft.au=Shin%2C+Seho&rft.au=Kim%2C+Minsung&rft.au=Park%2C+Jaeheung&rft.date=2021-02-01&rft.pub=The+Korean+Society+of+Automotive+Engineers&rft.issn=1229-9138&rft.eissn=1976-3832&rft.volume=22&rft.issue=1&rft.spage=119&rft.epage=129&rft_id=info:doi/10.1007%2Fs12239-021-0013-7&rft.externalDocID=10_1007_s12239_021_0013_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1229-9138&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1229-9138&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1229-9138&client=summon |