Accurate Path Tracking by Adjusting Look-Ahead Point in Pure Pursuit Method

Path tracking is an essential aspect of the navigational process of self-driving cars. Especially, accurate path tracking is important for not only normal urban roads but also narrow and complex roads such as parking lot and alleyway. The pure pursuit method is one of the geometric path-tracking met...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of automotive technology Vol. 22; no. 1; pp. 119 - 129
Main Authors Ahn, Joonwoo, Shin, Seho, Kim, Minsung, Park, Jaeheung
Format Journal Article
LanguageEnglish
Published Seoul The Korean Society of Automotive Engineers 01.02.2021
Springer Nature B.V
한국자동차공학회
Subjects
Online AccessGet full text
ISSN1229-9138
1976-3832
DOI10.1007/s12239-021-0013-7

Cover

Abstract Path tracking is an essential aspect of the navigational process of self-driving cars. Especially, accurate path tracking is important for not only normal urban roads but also narrow and complex roads such as parking lot and alleyway. The pure pursuit method is one of the geometric path-tracking methods. Using this method, the look-ahead point can be selected far away and the control input is computed in real-time, which is advantageous when the given path is not smooth or when the path is specified using waypoints. Moreover, this method is more robust to localization errors than the model-based path-tracking method. However, the original pure pursuit method and its variants have limited tracking performance. Therefore, this paper proposes a new method that heuristically selects a look-ahead point by considering the relationship between a vehicle and a path. Using this new look-ahead point, the vehicle can stably converge to the desired path and track the path without encountering the cutting-corner problem. The proposed method was tested using simulation and our self-driving car platform. Our results show that the vehicle tracks the desired path more accurately using our proposed algorithm than using the previous pure pursuit methods.
AbstractList Path tracking is an essential aspect of the navigational process of self-driving cars. Especially, accurate pathtracking is important for not only normal urban roads but also narrow and complex roads such as parking lot and alleyway. The pure pursuit method is one of the geometric path-tracking methods. Using this method, the look-ahead point can be selected far away and the control input is computed in real-time, which is advantageous when the given path is not smooth or when the path is specified using waypoints. Moreover, this method is more robust to localization errors than the modelbased path-tracking method. However, the original pure pursuit method and its variants have limited tracking performance. Therefore, this paper proposes a new method that heuristically selects a look-ahead point by considering the relationship between a vehicle and a path. Using this new look-ahead point, the vehicle can stably converge to the desired path and track the path without encountering the cutting-corner problem. The proposed method was tested using simulation and our selfdriving car platform. Our results show that the vehicle tracks the desired path more accurately using our proposed algorithm than using the previous pure pursuit methods. KCI Citation Count: 15
Path tracking is an essential aspect of the navigational process of self-driving cars. Especially, accurate path tracking is important for not only normal urban roads but also narrow and complex roads such as parking lot and alleyway. The pure pursuit method is one of the geometric path-tracking methods. Using this method, the look-ahead point can be selected far away and the control input is computed in real-time, which is advantageous when the given path is not smooth or when the path is specified using waypoints. Moreover, this method is more robust to localization errors than the model-based path-tracking method. However, the original pure pursuit method and its variants have limited tracking performance. Therefore, this paper proposes a new method that heuristically selects a look-ahead point by considering the relationship between a vehicle and a path. Using this new look-ahead point, the vehicle can stably converge to the desired path and track the path without encountering the cutting-corner problem. The proposed method was tested using simulation and our self-driving car platform. Our results show that the vehicle tracks the desired path more accurately using our proposed algorithm than using the previous pure pursuit methods.
Author Ahn, Joonwoo
Shin, Seho
Park, Jaeheung
Kim, Minsung
Author_xml – sequence: 1
  givenname: Joonwoo
  surname: Ahn
  fullname: Ahn, Joonwoo
  organization: Graduate School of Convergence Science and Technology, Seoul National University
– sequence: 2
  givenname: Seho
  surname: Shin
  fullname: Shin, Seho
  organization: System LSI, Samsung Electronics Co., Ltd
– sequence: 3
  givenname: Minsung
  surname: Kim
  fullname: Kim, Minsung
  organization: Graduate School of Convergence Science and Technology, Seoul National University
– sequence: 4
  givenname: Jaeheung
  surname: Park
  fullname: Park, Jaeheung
  email: park73@snu.ac.kr
  organization: Graduate School of Convergence Science and Technology, Seoul National University, Advanced Institute of Convergence Technology
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002681706$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kE9LAzEQxYMoaKsfwNuCJw_RSbK72T0uxT_FikV6D2k2adPWRJPsod_erSsIgl7mzcD7DY83QsfOO43QJYEbAsBvI6GU1RgowQCEYX6EzkjNS8wqRo_7ndIa14RVp2gU4wagKAmDM_TUKNUFmXQ2l2mdLYJUW-tW2XKfNe2mi-lwzLzf4matZZvNvXUpsy6bd0EfRuxsyp51Wvv2HJ0YuYv64lvHaHF_t5g84tnLw3TSzLBiBSSsS14wSbmuSatVrjRIaqQxJmc8VyDLnDEDRBdmWSrVUsUI4wzyssg1VJSN0fXw1gUjtsoKL-2XrrzYBtG8Lqai5iRn_Z8xuhq878F_dDomsfFdcH06QfMK6qos6qJ38cGlgo8xaCOUTTJZ71KQdicIiEPJYihZ9CWLQ8mC9yT5Rb4H-ybD_l-GDkzsvW6lw0-mv6FP8mWOgg
CitedBy_id crossref_primary_10_3390_drones8050182
crossref_primary_10_3390_agriculture14101713
crossref_primary_10_1002_oca_3256
crossref_primary_10_1007_s11071_024_10456_7
crossref_primary_10_1007_s12239_024_00127_2
crossref_primary_10_1115_1_4064515
crossref_primary_10_3390_agriculture13030532
crossref_primary_10_1016_j_biosystemseng_2024_04_009
crossref_primary_10_1177_09544070221081299
crossref_primary_10_1177_09544062241290619
crossref_primary_10_1109_ACCESS_2022_3193667
crossref_primary_10_1109_ACCESS_2023_3326247
crossref_primary_10_47836_pjst_32_1_06
crossref_primary_10_26518_2071_7296_2022_19_2_156_169
crossref_primary_10_1002_rob_22208
crossref_primary_10_1109_ACCESS_2025_3546864
crossref_primary_10_1155_2022_9328398
crossref_primary_10_1007_s12239_024_00117_4
crossref_primary_10_3390_machines10090817
crossref_primary_10_3390_machines12110764
crossref_primary_10_1155_2022_4661401
crossref_primary_10_3390_s23083844
crossref_primary_10_1177_09544070231215852
crossref_primary_10_1007_s10846_022_01636_x
crossref_primary_10_1109_TTE_2023_3323797
crossref_primary_10_3390_act13060221
crossref_primary_10_1080_00423114_2023_2280215
crossref_primary_10_3390_s23094533
crossref_primary_10_1016_j_compag_2022_106760
crossref_primary_10_1109_TVT_2024_3367930
crossref_primary_10_1007_s12204_022_2423_8
crossref_primary_10_7467_KSAE_2023_31_10_737
crossref_primary_10_1109_ACCESS_2024_3353616
crossref_primary_10_3390_agriculture15030266
crossref_primary_10_3390_s24092715
crossref_primary_10_3390_app14051817
crossref_primary_10_3390_machines12070493
crossref_primary_10_1007_s11081_024_09949_6
crossref_primary_10_1177_09544070241287965
crossref_primary_10_1016_j_jfranklin_2023_11_046
crossref_primary_10_1038_s41598_022_23546_6
crossref_primary_10_1109_ACCESS_2023_3306239
crossref_primary_10_1016_j_robot_2025_104969
crossref_primary_10_1007_s10514_023_10097_6
crossref_primary_10_1007_s12555_022_0495_8
crossref_primary_10_3390_electronics13183747
crossref_primary_10_1109_TVT_2023_3304427
crossref_primary_10_1007_s11071_024_10042_x
crossref_primary_10_1007_s12239_024_00003_z
crossref_primary_10_3390_app13148495
Cites_doi 10.2307/2372560
10.1177/027836499501400602
10.1109/CAC48633.2019.8997258
10.1002/rob.20255
10.1007/s12239-014-0120-9
10.1109/TVT.2020.2981619
10.1109/TIV.2016.2578706
10.1109/ACC.1998.694619
10.1109/ROBOT.1990.126006
10.3182/20130902-3-CN-3020.00045
10.1109/TITS.2019.2892926
10.1109/AIM.2016.7577010
10.1002/rob.20147
10.2514/6.2008-7166
10.1109/ICICAS48597.2019.00197
ContentType Journal Article
Copyright KSAE 2021
KSAE 2021.
Copyright_xml – notice: KSAE 2021
– notice: KSAE 2021.
DBID AAYXX
CITATION
3V.
7TB
7WY
7WZ
7XB
87Z
88I
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
D1I
DWQXO
FR3
FRNLG
F~G
GNUQQ
HCIFZ
K60
K6~
KB.
L.-
M0C
M2P
PDBOC
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
ACYCR
DOI 10.1007/s12239-021-0013-7
DatabaseName CrossRef
ProQuest Central (Corporate)
Mechanical & Transportation Engineering Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Materials Science Database
ABI/INFORM Professional Advanced
ABI/INFORM Global
Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Korean Citation Index
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
ProQuest Materials Science Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Science Journals (Alumni Edition)
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
ProQuest One Academic (New)
DatabaseTitleList

ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1976-3832
EndPage 129
ExternalDocumentID oai_kci_go_kr_ARTI_9714343
10_1007_s12239_021_0013_7
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.UV
.VR
06D
0R~
0VY
1N0
203
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
40D
40E
5GY
5VS
6NX
7WY
88I
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
9ZL
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
CZ9
D1I
DBRKI
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
GW5
H13
HCIFZ
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
I-F
IJ-
IKXTQ
IWAJR
IXC
IXD
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
K60
K6~
KB.
KC.
KOV
KVFHK
LLZTM
M0C
M2P
M4Y
MA-
MK~
ML~
MZR
NPVJJ
NQJWS
NU0
O9-
O9J
P9P
PDBOC
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
Q2X
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TDB
TR2
TSG
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z88
ZMTXR
ZZE
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
PHGZT
7TB
7XB
8FD
8FK
ABRTQ
FR3
L.-
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
AAFGU
ABFGW
ABKAS
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ACYCR
ADMDM
ADOXG
AEFTE
AESTI
AEVTX
AFNRJ
AGGBP
AIMYW
AJDOV
AKQUC
UNUBA
ID FETCH-LOGICAL-c350t-e6753a27e91dec4ce0a2fafff4374c0a6433f01e5fb6ccd2c3137304654e0823
IEDL.DBID AGYKE
ISSN 1229-9138
IngestDate Tue Jun 25 21:09:02 EDT 2024
Fri Jul 25 09:45:39 EDT 2025
Tue Jul 01 02:44:14 EDT 2025
Thu Apr 24 23:00:12 EDT 2025
Fri Feb 21 02:48:49 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Geometric path-tracking method
Accurate path tracking
Path tracking
Look-ahead point selection
Pure pursuit method
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c350t-e6753a27e91dec4ce0a2fafff4374c0a6433f01e5fb6ccd2c3137304654e0823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2480986595
PQPubID 54404
PageCount 11
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9714343
proquest_journals_2480986595
crossref_citationtrail_10_1007_s12239_021_0013_7
crossref_primary_10_1007_s12239_021_0013_7
springer_journals_10_1007_s12239_021_0013_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210200
2021-02-00
20210201
2021-02
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 2
  year: 2021
  text: 20210200
PublicationDecade 2020
PublicationPlace Seoul
PublicationPlace_xml – name: Seoul
– name: Dordrecht
PublicationTitle International journal of automotive technology
PublicationTitleAbbrev Int.J Automot. Technol
PublicationYear 2021
Publisher The Korean Society of Automotive Engineers
Springer Nature B.V
한국자동차공학회
Publisher_xml – name: The Korean Society of Automotive Engineers
– name: Springer Nature B.V
– name: 한국자동차공학회
References DubinsL EOn curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangentsAmerican J. Mathematics19577934975168945710.2307/2372560
BuXHouZChiRModel free adaptive iterative learning control for farm vehicle path trackingIFAC Proc. Volumes2013462015315810.3182/20130902-3-CN-3020.00045
Kuwata, Y., Teo, J., Karaman, S., Fiore, G., Frazzoli, E. and How, J. (2008). Motion planning in complex environments using closed-loop prediction. AIAA Guidance, Navigation and Control Conf. Exhibit. Honolulu, Hawaii.
Peng, H., Wang, W., An, Q., Xiang, C. and Li, L. (2020). Path tracking and direct yaw moment coordinated control based on robust MPC with the finite time horizon for autonomous independent-drive vehicles. IEEE Trans. Vehicular Technology.
RajamaniRVehicle dynamics and control2011Berlin, GermanySpringer Science & Business Media1097.70001
Coulter, R. C. (1992). Implementation of the pure pursuit path tracking algorithm. Carnegie-Mellon UNIV Pittsburgh PA Robotics INST.
Wit, J. S. (2000). Vector pursuit path tracking for autonomous ground vehicles. Ph.D. Doctoral dissertation. University of Florida. Gainesville, FL, USA.
XuSPengHDesign, analysis, and experiments of preview path tracking control for autonomous vehiclesIEEE Trans. Intelligent Transportation Systems2019211485810.1109/TITS.2019.2892926
Qinpeng, S., Zhonghua, W., Meng, L., Bin, L., Jin, C. and Jiaxiang, T. (2019). Path tracking control of wheeled mobile robot based on improved pure pursuit algorithm. 2019 Chinese Automation Congress (CAC). Hangzhou, China.
Hingwe, P. and Tomizuka, M. (1998). A variable look-ahead controller for lateral guidance of four wheeled vehicles. Proc. 1998 American Control Conf. Philadelphia, PA, USA.
PadenBČápMYongS ZYershovDFrazzoliEA survey of motion planning and control techniques for self-driving urban vehiclesIEEE Trans. Intelligent Vehicles201611335510.1109/TIV.2016.2578706
Campbell, S. (2007). Steering control of an autonomous ground vehicle with application to the DARPA urban challenge. Ph.D. Doctoral dissertation. Massachusetts Institute of Technology, Cambridge, MA, USA.
Piao, C., Liu, X. and Lu, C. (2019). Lateral control using parameter self-tuning LQR on autonomous vehicle. 2019 Int. Conf. Intelligent Computing, Automation and Systems (ICICAS). Chongqing, China.
d’Andréa-NovelBCampionGBastinGControl of nonholonomic wheeled mobile robots by state feedback linearizationInt. J. Robotics Research199514654355910.1177/027836499501400602
Kilinç, A. S. and Baybura, T. (2012). Determination of minimum horizontal curve radius used in the design of transportation structures, depending on the limit value of comfort criterion lateral jerk. TS06G-Engineering Surveying, Machine Control and Guidance, Rome, Italy.
Chen, C. and Tan, H. S. (1999). Experimental study of dynamic look-ahead scheme for vehicle steering control. Proc. 1999 American Control Conf. San Diego, CA, USA.
Andersen, H., Chong, Z. J., Eng, Y. H., Pendleton, S. and Ang, M. H. (2016). Geometric path tracking algorithm for autonomous driving in pedestrian environment. 2016 IEEE Int. Conf. Advanced Intelligent Mechatronics (AIM). Banff, Alberta, Canada.
Kanayama, Y., Kimura, Y., Miyazaki, F. and Noguchi, T. (1990). A stable tracking control method for an autonomous mobile robot. Proc., IEEE Int. Conf. Robotics and Automation. Cincinnati, OH, USA.
ThrunSMontemerloMDahlkampHStavensDAronADiebelJFongPGaleJHalpennyMHoffmannGLauKOakleyCPalatucciMPrattVStangPStrohbandSDupontCJendrossekL-EKoelenCMarkeyCRummelCvan NiekerkJJensenEAlessandriniPBradskiGDaviesBEttingerSKaehlerANefianAMahoneyPStanley: The robot that won the DARPA Grand ChallengeJ. Field Robotics200623966169210.1002/rob.20147
UrmsonCAnhaltJBagnellDBakerCBittnerRClarkM NDolanJDugginsDGalataliTGeyerCGittlemanMHarbaughSHebertMHowardT MKolskiSKellyALikhachevMMcNaughtonMMillerNPetersonKPilnickBRajkumarRRybskiPSaleskyBSeoY-WSinghSSniderJStentzAWhittakerWWolkowickiZZiglarJBaeHBrownTDemitrishDLitkouhiBNickolaouJSadekarVZhangWStrubleJTaylorMDarmsMFergusonDAutonomous driving in urban environments: Boss and the urban challengeJ. Field Robotics200825842546610.1002/rob.20255
Zhang, J. and Singh, S. (2014). LOAM: Lidar Odometry and Mapping in Real-time. 2014 Robotics: Science and Systems Conf. Berkeley, CA, USA.
KimEKimJSunwooMModel predictive control strategy for smooth path tracking of autonomous vehicles with steering actuator dynamicsInt. J. Automotive Technology20141571155116410.1007/s12239-014-0120-9
Challenge, D. U. (2007). Route network definition file (RNDF) and mission data file (MDF) formats. Tech. Rep., Defense Advanced Research Projects Agency, Tech. Rep.
13_CR17
C Urmson (13_CR20) 2008; 25
R Rajamani (13_CR18) 2011
S Thrun (13_CR19) 2006; 23
13_CR15
B d’Andréa-Novel (13_CR7) 1995; 14
13_CR16
X Bu (13_CR2) 2013; 46
B Paden (13_CR14) 2016; 1
13_CR4
13_CR5
E Kim (13_CR12) 2014; 15
13_CR6
13_CR9
13_CR10
13_CR21
S Xu (13_CR22) 2019; 21
L E Dubins (13_CR8) 1957; 79
13_CR13
13_CR1
13_CR11
13_CR3
13_CR23
References_xml – reference: Campbell, S. (2007). Steering control of an autonomous ground vehicle with application to the DARPA urban challenge. Ph.D. Doctoral dissertation. Massachusetts Institute of Technology, Cambridge, MA, USA.
– reference: KimEKimJSunwooMModel predictive control strategy for smooth path tracking of autonomous vehicles with steering actuator dynamicsInt. J. Automotive Technology20141571155116410.1007/s12239-014-0120-9
– reference: XuSPengHDesign, analysis, and experiments of preview path tracking control for autonomous vehiclesIEEE Trans. Intelligent Transportation Systems2019211485810.1109/TITS.2019.2892926
– reference: UrmsonCAnhaltJBagnellDBakerCBittnerRClarkM NDolanJDugginsDGalataliTGeyerCGittlemanMHarbaughSHebertMHowardT MKolskiSKellyALikhachevMMcNaughtonMMillerNPetersonKPilnickBRajkumarRRybskiPSaleskyBSeoY-WSinghSSniderJStentzAWhittakerWWolkowickiZZiglarJBaeHBrownTDemitrishDLitkouhiBNickolaouJSadekarVZhangWStrubleJTaylorMDarmsMFergusonDAutonomous driving in urban environments: Boss and the urban challengeJ. Field Robotics200825842546610.1002/rob.20255
– reference: Andersen, H., Chong, Z. J., Eng, Y. H., Pendleton, S. and Ang, M. H. (2016). Geometric path tracking algorithm for autonomous driving in pedestrian environment. 2016 IEEE Int. Conf. Advanced Intelligent Mechatronics (AIM). Banff, Alberta, Canada.
– reference: Kanayama, Y., Kimura, Y., Miyazaki, F. and Noguchi, T. (1990). A stable tracking control method for an autonomous mobile robot. Proc., IEEE Int. Conf. Robotics and Automation. Cincinnati, OH, USA.
– reference: Hingwe, P. and Tomizuka, M. (1998). A variable look-ahead controller for lateral guidance of four wheeled vehicles. Proc. 1998 American Control Conf. Philadelphia, PA, USA.
– reference: d’Andréa-NovelBCampionGBastinGControl of nonholonomic wheeled mobile robots by state feedback linearizationInt. J. Robotics Research199514654355910.1177/027836499501400602
– reference: RajamaniRVehicle dynamics and control2011Berlin, GermanySpringer Science & Business Media1097.70001
– reference: PadenBČápMYongS ZYershovDFrazzoliEA survey of motion planning and control techniques for self-driving urban vehiclesIEEE Trans. Intelligent Vehicles201611335510.1109/TIV.2016.2578706
– reference: Qinpeng, S., Zhonghua, W., Meng, L., Bin, L., Jin, C. and Jiaxiang, T. (2019). Path tracking control of wheeled mobile robot based on improved pure pursuit algorithm. 2019 Chinese Automation Congress (CAC). Hangzhou, China.
– reference: ThrunSMontemerloMDahlkampHStavensDAronADiebelJFongPGaleJHalpennyMHoffmannGLauKOakleyCPalatucciMPrattVStangPStrohbandSDupontCJendrossekL-EKoelenCMarkeyCRummelCvan NiekerkJJensenEAlessandriniPBradskiGDaviesBEttingerSKaehlerANefianAMahoneyPStanley: The robot that won the DARPA Grand ChallengeJ. Field Robotics200623966169210.1002/rob.20147
– reference: Wit, J. S. (2000). Vector pursuit path tracking for autonomous ground vehicles. Ph.D. Doctoral dissertation. University of Florida. Gainesville, FL, USA.
– reference: BuXHouZChiRModel free adaptive iterative learning control for farm vehicle path trackingIFAC Proc. Volumes2013462015315810.3182/20130902-3-CN-3020.00045
– reference: Zhang, J. and Singh, S. (2014). LOAM: Lidar Odometry and Mapping in Real-time. 2014 Robotics: Science and Systems Conf. Berkeley, CA, USA.
– reference: Kuwata, Y., Teo, J., Karaman, S., Fiore, G., Frazzoli, E. and How, J. (2008). Motion planning in complex environments using closed-loop prediction. AIAA Guidance, Navigation and Control Conf. Exhibit. Honolulu, Hawaii.
– reference: DubinsL EOn curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangentsAmerican J. Mathematics19577934975168945710.2307/2372560
– reference: Chen, C. and Tan, H. S. (1999). Experimental study of dynamic look-ahead scheme for vehicle steering control. Proc. 1999 American Control Conf. San Diego, CA, USA.
– reference: Peng, H., Wang, W., An, Q., Xiang, C. and Li, L. (2020). Path tracking and direct yaw moment coordinated control based on robust MPC with the finite time horizon for autonomous independent-drive vehicles. IEEE Trans. Vehicular Technology.
– reference: Piao, C., Liu, X. and Lu, C. (2019). Lateral control using parameter self-tuning LQR on autonomous vehicle. 2019 Int. Conf. Intelligent Computing, Automation and Systems (ICICAS). Chongqing, China.
– reference: Kilinç, A. S. and Baybura, T. (2012). Determination of minimum horizontal curve radius used in the design of transportation structures, depending on the limit value of comfort criterion lateral jerk. TS06G-Engineering Surveying, Machine Control and Guidance, Rome, Italy.
– reference: Coulter, R. C. (1992). Implementation of the pure pursuit path tracking algorithm. Carnegie-Mellon UNIV Pittsburgh PA Robotics INST.
– reference: Challenge, D. U. (2007). Route network definition file (RNDF) and mission data file (MDF) formats. Tech. Rep., Defense Advanced Research Projects Agency, Tech. Rep.
– volume: 79
  start-page: 497
  issue: 3
  year: 1957
  ident: 13_CR8
  publication-title: American J. Mathematics
  doi: 10.2307/2372560
– volume: 14
  start-page: 543
  issue: 6
  year: 1995
  ident: 13_CR7
  publication-title: Int. J. Robotics Research
  doi: 10.1177/027836499501400602
– ident: 13_CR23
– ident: 13_CR17
  doi: 10.1109/CAC48633.2019.8997258
– volume: 25
  start-page: 425
  issue: 8
  year: 2008
  ident: 13_CR20
  publication-title: J. Field Robotics
  doi: 10.1002/rob.20255
– ident: 13_CR21
– ident: 13_CR3
– volume: 15
  start-page: 1155
  issue: 7
  year: 2014
  ident: 13_CR12
  publication-title: Int. J. Automotive Technology
  doi: 10.1007/s12239-014-0120-9
– ident: 13_CR5
– ident: 13_CR4
– ident: 13_CR6
– ident: 13_CR15
  doi: 10.1109/TVT.2020.2981619
– volume: 1
  start-page: 33
  issue: 1
  year: 2016
  ident: 13_CR14
  publication-title: IEEE Trans. Intelligent Vehicles
  doi: 10.1109/TIV.2016.2578706
– ident: 13_CR9
  doi: 10.1109/ACC.1998.694619
– ident: 13_CR10
  doi: 10.1109/ROBOT.1990.126006
– volume: 46
  start-page: 153
  issue: 20
  year: 2013
  ident: 13_CR2
  publication-title: IFAC Proc. Volumes
  doi: 10.3182/20130902-3-CN-3020.00045
– ident: 13_CR11
– volume: 21
  start-page: 48
  issue: 1
  year: 2019
  ident: 13_CR22
  publication-title: IEEE Trans. Intelligent Transportation Systems
  doi: 10.1109/TITS.2019.2892926
– volume-title: Vehicle dynamics and control
  year: 2011
  ident: 13_CR18
– ident: 13_CR1
  doi: 10.1109/AIM.2016.7577010
– volume: 23
  start-page: 661
  issue: 9
  year: 2006
  ident: 13_CR19
  publication-title: J. Field Robotics
  doi: 10.1002/rob.20147
– ident: 13_CR13
  doi: 10.2514/6.2008-7166
– ident: 13_CR16
  doi: 10.1109/ICICAS48597.2019.00197
SSID ssj0056130
Score 2.4832072
Snippet Path tracking is an essential aspect of the navigational process of self-driving cars. Especially, accurate path tracking is important for not only normal...
Path tracking is an essential aspect of the navigational process of self-driving cars. Especially, accurate pathtracking is important for not only normal urban...
SourceID nrf
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 119
SubjectTerms Algorithms
Automotive Engineering
Autonomous cars
Engineering
Path tracking
Roads & highways
Tracks (paths)
Waypoints
자동차공학
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxELZKuMChojxESqisihOVxa7tfZ2qCBFCS1AOVOJmef1AIdUmTTYH_n1nnF1SkMplV6u119LYO_N5ZjwfIWeZS0ED5JbB3kAzaeOc5WViGM9cLLmxWgdX9uguHf6SPx6Sh8bhtmzSKludGBS1nRn0kV9wmUdFjtXvvs__MGSNwuhqQ6GxRbZjDrYWT4oPrltNHLAxbrg4LzDCnLdRzXB0DuxiwTBBIRAcZK_s0la18K8g55soaTA-gz3ysUGNtL-e5k_kg6v2ye4_tQQPyM--MSus-0DHAOoo2CCDXnBaPtO-fULOLni4BUjN-qB_LR3PJlVNJxUdrxYOL8vVpKajQCh9SO4HV_eXQ9YwJTAjkqhmDmC_0CDfIrbOSOMizb323kuRSRNpgB3CR7FLfJkaY7kRscgwJppIh6G2I9KpZpU7JjT1sbOy0LIwVooyL6ERgHAdl2lUSp91SdSKSZmmijiSWfxWm_rHKFkFksV8OaGgy_lLl_m6hMZ7jb-C7NXUTBQWvsb740xNFwrg_Y0qkK1dii7ptVOjml9uqTYLpEu-tdO1ef3fET-__7ETssPDKsEMlh7p1IuVOwUcUpdfwmL7C-WV1ew
  priority: 102
  providerName: ProQuest
Title Accurate Path Tracking by Adjusting Look-Ahead Point in Pure Pursuit Method
URI https://link.springer.com/article/10.1007/s12239-021-0013-7
https://www.proquest.com/docview/2480986595
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002681706
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX International Journal of Automotive Technology, 2021, 22(1), 119, pp.119-129
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbY9gIHSnmIhVJZiFORq8R2Xse02m1LabWqtlI5WX6iZVEW7SYH-PWdySYsrQCpl1hJ7Dw89sw3nvEMIR8ynwIHyB0D3UAz6eKc5SaxjGc-ltw6rdul7IvL9PRafrpJbrp93Kve2703SbacerPZDSRZwdCloE1JkA3IdgL6CczG7fLky_moZ8AtJEY9i_MCDct5b8z820PuiKNBtQx3kOY942grc8Y7ZNp_7drVZH7Y1ObQ_roXyPGBv_OMPO0wKC3Xg2aXPPLVc_Lkj8iEL8h5aW2DUSToBCAiBYlmcU2dmp-0dN8wAxicfAaAzkrg5o5OFrOqprOKTpqlx8OqmdX0ok1P_ZJMx6Pp8Snr8i4wK5KoZh6UCKGBWkXsvJXWR5oHHUKQIpM20gBiRIhinwSTWuu4FbHI0MKaSI-Gu1dkq1pU_jWhaYi9k4WWhXVSmNxAJYD0OjZpZGTIhiTqe1_ZLiY5psb4rjbRlLGbFHQTet8JBU0Ofjf5sQ7I8b_K74Gkam5nCsNoY_l1oeZLBcrCmSow97sUQ7LXU1x1E3iluMyjIsdgi0PysSfg5vY_3_jmQbXfkse8HQHoHrNHtupl498ByKnNPhnk45P9bmhDeTS6nFzB1Wte3gJPavJh
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB615QA9IJ4ipcAKwQW0wt5dvw4IRUBISFLlEKTeVvY-UNrKKYkj1B_V_9iZTUwoEr31Ysvyrm3Njme-3ZmdD-BN5lK0ALnlODcoubJxzvMqMVxkLlbC2LIMS9njo7T_Q30_To534LLdC0Npla1NDIbazg2tkX8QKo-KnKrffTr_xYk1iqKrLYXGWi2G7uI3TtmWHwdfcHzfCtH7Ov3c5xtWAW5kEjXcIUSWJX5LEVtnlHFRKXzpvVcyUyYq0UVLH8Uu8VVqjBVGxjKj-GGiHIWl8LG7cAcbScogzHvfWsMfoDjN74QoKKCdt0HUsFMP3XDBKR8i8Clk19zgbr3w1xDuP0HZ4Ot6D-D-BqSy7lqrHsKOqx_B_l-lCx_DsGvMispMsAliSIYuz9CiO6suWNeeEEUYXowQwfMumnvLJvNZ3bBZzSarhaPDcjVr2DjwVz-B6W2I8Cns1fPaPQOW-thZVZSqMFbJKq-wEWL-Mq7SqFI-60DUikmbTdFy4s4409tyyyRZjZKl9Dypscu7P13O1xU7bmr8GmWvT81MU51tOv-c69OFxtnEQBdEDq9kBw7bodGbP3ypt_rYgfftcG1v__eNBzc_7BXc7U_HIz0aHA2fwz0RNIaSZw5hr1ms3AuEQE31MigeA33Lin4FctMSaQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB71ISE4IJ5ioYCF4AKymjjO61ChhXbVZdtVhIrUm-X4gZaibNnNCvUn8q-YcROWItFbL4mi2Ek0nvib8YznA3iduwxngMJy9A00lzYueFGnhovcxVIYq3VYyj6eZodf5KfT9HQDfvV7YSitsp8Tw0Rt54bWyHeFLKKyoOp3u75Li6j2R-_Pf3BikKJIa0-noTuaBbsXyo11mzwm7uInunPLvfE-jv0bIUYHJx8Pecc4wE2SRi13aD4nGr-zjK0z0rhIC6-99zLJpYk0wnfio9ilvs6MscIkcZJTbDGVjkJW-NhN2M4R9NEP3P5wMK0-97AQDHXy_oQoKdxd9CHWsI8PQbrklC0R2BbyKyC52Sz8Ffv3n5BtQMLRPbjbmbBseKlz92HDNQ_gzl-FDR_CZGjMiopQsAotTIaAaGhJntUXbGi_EYEYXhyhfc-HCAaWVfNZ07JZw6rVwtFhuZq17DiwWz-Ck5sQ4mPYauaNewIs87GzstSyNFYmdVFjI_QIdFxnUS19PoCoF5MyXUlzYtb4rtbFmEmyCiVLyXuJwi5v_3Q5v6zncV3jVyh7dWZmiqpw0_nrXJ0tFPoaY1USdbxMBrDTD43q_v-lWmvrAN71w7W-_d83Pr3-YS_hFiq9OhpPJ8_gtggKQ5k1O7DVLlbuOdpHbf2i0zwG6oZ1_Td3Yh1E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accurate+Path+Tracking+by+Adjusting+Look-Ahead+Point+in+Pure+Pursuit+Method&rft.jtitle=International+journal+of+automotive+technology&rft.au=Ahn%2C+Joonwoo&rft.au=Shin%2C+Seho&rft.au=Kim%2C+Minsung&rft.au=Park%2C+Jaeheung&rft.date=2021-02-01&rft.pub=The+Korean+Society+of+Automotive+Engineers&rft.issn=1229-9138&rft.eissn=1976-3832&rft.volume=22&rft.issue=1&rft.spage=119&rft.epage=129&rft_id=info:doi/10.1007%2Fs12239-021-0013-7&rft.externalDocID=10_1007_s12239_021_0013_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1229-9138&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1229-9138&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1229-9138&client=summon