CD28 co-stimulation is dispensable for the steady state homeostasis of intestinal regulatory T cells

Abstract It is well-established that CD28 co-stimulation is required for the development and the proliferation of thymus-derived regulatory T cells (tTregs). Meanwhile, the role of CD28 co-stimulation in the homeostasis of peripherally derived Tregs (pTregs) remains unclear. To clarify this issue, w...

Full description

Saved in:
Bibliographic Details
Published inInternational immunology Vol. 30; no. 4; pp. 171 - 180
Main Authors Wakamatsu, Ei, Omori, Hiroki, Tabata, Yuki, Akieda, Yuki, Watanabe, Shiho, Ogawa, Shuhei, Abe, Ryo
Format Journal Article
LanguageEnglish
Published UK Oxford University Press 03.04.2018
Subjects
Online AccessGet full text
ISSN0953-8178
1460-2377
1460-2377
DOI10.1093/intimm/dxy013

Cover

Abstract Abstract It is well-established that CD28 co-stimulation is required for the development and the proliferation of thymus-derived regulatory T cells (tTregs). Meanwhile, the role of CD28 co-stimulation in the homeostasis of peripherally derived Tregs (pTregs) remains unclear. To clarify this issue, we analyzed Tregs in small and large intestines (SI and LI), the principle sites of pTreg development. Interestingly, and different from in the thymus, Tregs were abundant in the intestines of CD28−/− mice, and most of them were phenotypically pTregs. We showed that CD28−/− naive T cells differentiated into pTregs in the LI after oral exposure to antigens and that CD28−/− pTregs in the LI had the same highly proliferative activity as CD28+/− cells. CD28−/− pTregs acquired these Treg-specific features at transcriptional and epigenetics levels. On the other hand, some immune suppressive molecules were down-regulated in CD28−/− pTregs. Correspondingly, the suppressive activity of CD28−/− pTregs was weaker than CD28+/+ cells. These results indicate that the homeostasis of pTregs in the intestines is maintained even in the absence of CD28, whereas CD28 is required for the maximal suppressive activity of intestinal pTregs. Lack of CD28 does not affect gut pTreg numbers but weakens their suppressive function
AbstractList Abstract It is well-established that CD28 co-stimulation is required for the development and the proliferation of thymus-derived regulatory T cells (tTregs). Meanwhile, the role of CD28 co-stimulation in the homeostasis of peripherally derived Tregs (pTregs) remains unclear. To clarify this issue, we analyzed Tregs in small and large intestines (SI and LI), the principle sites of pTreg development. Interestingly, and different from in the thymus, Tregs were abundant in the intestines of CD28−/− mice, and most of them were phenotypically pTregs. We showed that CD28−/− naive T cells differentiated into pTregs in the LI after oral exposure to antigens and that CD28−/− pTregs in the LI had the same highly proliferative activity as CD28+/− cells. CD28−/− pTregs acquired these Treg-specific features at transcriptional and epigenetics levels. On the other hand, some immune suppressive molecules were down-regulated in CD28−/− pTregs. Correspondingly, the suppressive activity of CD28−/− pTregs was weaker than CD28+/+ cells. These results indicate that the homeostasis of pTregs in the intestines is maintained even in the absence of CD28, whereas CD28 is required for the maximal suppressive activity of intestinal pTregs. Lack of CD28 does not affect gut pTreg numbers but weakens their suppressive function
It is well-established that CD28 co-stimulation is required for the development and the proliferation of thymus-derived regulatory T cells (tTregs). Meanwhile, the role of CD28 co-stimulation in the homeostasis of peripherally derived Tregs (pTregs) remains unclear. To clarify this issue, we analyzed Tregs in small and large intestines (SI and LI), the principle sites of pTreg development. Interestingly, and different from in the thymus, Tregs were abundant in the intestines of CD28-/- mice, and most of them were phenotypically pTregs. We showed that CD28-/- naive T cells differentiated into pTregs in the LI after oral exposure to antigens and that CD28-/- pTregs in the LI had the same highly proliferative activity as CD28+/- cells. CD28-/- pTregs acquired these Treg-specific features at transcriptional and epigenetics levels. On the other hand, some immune suppressive molecules were down-regulated in CD28-/- pTregs. Correspondingly, the suppressive activity of CD28-/- pTregs was weaker than CD28+/+ cells. These results indicate that the homeostasis of pTregs in the intestines is maintained even in the absence of CD28, whereas CD28 is required for the maximal suppressive activity of intestinal pTregs.
It is well-established that CD28 co-stimulation is required for the development and the proliferation of thymus-derived regulatory T cells (tTregs). Meanwhile, the role of CD28 co-stimulation in the homeostasis of peripherally derived Tregs (pTregs) remains unclear. To clarify this issue, we analyzed Tregs in small and large intestines (SI and LI), the principle sites of pTreg development. Interestingly, and different from in the thymus, Tregs were abundant in the intestines of CD28−/− mice, and most of them were phenotypically pTregs. We showed that CD28−/− naive T cells differentiated into pTregs in the LI after oral exposure to antigens and that CD28−/− pTregs in the LI had the same highly proliferative activity as CD28+/− cells. CD28−/− pTregs acquired these Treg-specific features at transcriptional and epigenetics levels. On the other hand, some immune suppressive molecules were down-regulated in CD28−/− pTregs. Correspondingly, the suppressive activity of CD28−/− pTregs was weaker than CD28+/+ cells. These results indicate that the homeostasis of pTregs in the intestines is maintained even in the absence of CD28, whereas CD28 is required for the maximal suppressive activity of intestinal pTregs.
It is well-established that CD28 co-stimulation is required for the development and the proliferation of thymus-derived regulatory T cells (tTregs). Meanwhile, the role of CD28 co-stimulation in the homeostasis of peripherally derived Tregs (pTregs) remains unclear. To clarify this issue, we analyzed Tregs in small and large intestines (SI and LI), the principle sites of pTreg development. Interestingly, and different from in the thymus, Tregs were abundant in the intestines of CD28-/- mice, and most of them were phenotypically pTregs. We showed that CD28-/- naive T cells differentiated into pTregs in the LI after oral exposure to antigens and that CD28-/- pTregs in the LI had the same highly proliferative activity as CD28+/- cells. CD28-/- pTregs acquired these Treg-specific features at transcriptional and epigenetics levels. On the other hand, some immune suppressive molecules were down-regulated in CD28-/- pTregs. Correspondingly, the suppressive activity of CD28-/- pTregs was weaker than CD28+/+ cells. These results indicate that the homeostasis of pTregs in the intestines is maintained even in the absence of CD28, whereas CD28 is required for the maximal suppressive activity of intestinal pTregs.It is well-established that CD28 co-stimulation is required for the development and the proliferation of thymus-derived regulatory T cells (tTregs). Meanwhile, the role of CD28 co-stimulation in the homeostasis of peripherally derived Tregs (pTregs) remains unclear. To clarify this issue, we analyzed Tregs in small and large intestines (SI and LI), the principle sites of pTreg development. Interestingly, and different from in the thymus, Tregs were abundant in the intestines of CD28-/- mice, and most of them were phenotypically pTregs. We showed that CD28-/- naive T cells differentiated into pTregs in the LI after oral exposure to antigens and that CD28-/- pTregs in the LI had the same highly proliferative activity as CD28+/- cells. CD28-/- pTregs acquired these Treg-specific features at transcriptional and epigenetics levels. On the other hand, some immune suppressive molecules were down-regulated in CD28-/- pTregs. Correspondingly, the suppressive activity of CD28-/- pTregs was weaker than CD28+/+ cells. These results indicate that the homeostasis of pTregs in the intestines is maintained even in the absence of CD28, whereas CD28 is required for the maximal suppressive activity of intestinal pTregs.
Author Watanabe, Shiho
Tabata, Yuki
Akieda, Yuki
Abe, Ryo
Wakamatsu, Ei
Ogawa, Shuhei
Omori, Hiroki
Author_xml – sequence: 1
  givenname: Ei
  surname: Wakamatsu
  fullname: Wakamatsu, Ei
  organization: Division of Immunobiology, Tokyo University of Science, Yamazaki, Noda City, Chiba, Japan
– sequence: 2
  givenname: Hiroki
  surname: Omori
  fullname: Omori, Hiroki
  organization: Division of Immunobiology, Tokyo University of Science, Yamazaki, Noda City, Chiba, Japan
– sequence: 3
  givenname: Yuki
  surname: Tabata
  fullname: Tabata, Yuki
  organization: Division of Immunobiology, Tokyo University of Science, Yamazaki, Noda City, Chiba, Japan
– sequence: 4
  givenname: Yuki
  surname: Akieda
  fullname: Akieda, Yuki
  organization: Division of Immunobiology, Tokyo University of Science, Yamazaki, Noda City, Chiba, Japan
– sequence: 5
  givenname: Shiho
  surname: Watanabe
  fullname: Watanabe, Shiho
  organization: Division of Immunobiology, Tokyo University of Science, Yamazaki, Noda City, Chiba, Japan
– sequence: 6
  givenname: Shuhei
  surname: Ogawa
  fullname: Ogawa, Shuhei
  organization: Division of Experimental Animal Immunology, Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki, Noda City, Chiba, Japan
– sequence: 7
  givenname: Ryo
  surname: Abe
  fullname: Abe, Ryo
  email: rabe@rs.noda.tus.ac.jp
  organization: Division of Immunobiology, Tokyo University of Science, Yamazaki, Noda City, Chiba, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29425339$$D View this record in MEDLINE/PubMed
BookMark eNqFkDtPwzAURi0Eog8YWZFHllA_kjoeUXlKlVjKHDn2NTVK4mInEv33uLQwICGme4fj734-E3Tc-Q4QuqDkmhLJZ67rXdvOzMeWUH6ExjSfk4xxIY7RmMiCZyUV5QhNYnwjhHAm-SkaMZmzgnM5RmZxy0qsfRZTzNCo3vkOu4iNixvooqobwNYH3K8Bxx6U2aahesBr34JPa0ywtzjVgBTRqQYHeN0F-bDFK6yhaeIZOrGqiXB-mFP0cn-3Wjxmy-eHp8XNMtO8IH1mgBLQzOZU1ry0OteKWUtlLpQWgkH6FBGM03Iui5LnhZWFrOtclPO6NIUxfIqu9rmb4N-H1KdqXdw1UB34IVaMEErmguY0oZcHdKhbMNUmuFaFbfVtJgHZHtDBxxjA_iCUVDvz1d58tTefeP6L167_0tkH5Zo_Xx0a-2Hzz4FP9HqZCw
CitedBy_id crossref_primary_10_1007_s11427_022_2212_5
crossref_primary_10_1016_j_bbrc_2018_07_021
crossref_primary_10_1016_j_molimm_2018_05_021
crossref_primary_10_1073_pnas_1922600117
crossref_primary_10_3389_fimmu_2022_861607
crossref_primary_10_1016_j_celrep_2024_114655
crossref_primary_10_3389_fimmu_2020_02104
crossref_primary_10_3389_fimmu_2023_1243204
Cites_doi 10.1038/nature12721
10.1038/ng1180
10.4049/jimmunol.0904100
10.1002/(SICI)1521-4141(199903)29:03<789::AID-IMMU789>3.0.CO;2-5
10.1182/blood-2010-08-301275
10.1038/ni1160
10.1126/science.1241165
10.1126/science.1198469
10.1016/j.immuni.2014.02.012
10.1016/j.immuni.2007.09.010
10.1038/ni.2649
10.1038/mi.2015.74
10.1016/j.immuni.2014.10.012
10.1084/jem.20120914
10.1038/ni.2886
10.4049/jimmunol.171.7.3348
10.4049/jimmunol.166.6.3797
10.1016/j.immuni.2011.03.021
10.4049/jimmunol.181.4.2285
10.1073/pnas.0506580102
10.4049/jimmunol.1202068
10.1101/cshperspect.a007021
10.1093/nar/gkn923
10.1101/cshperspect.a002436
10.1016/j.immuni.2012.09.010
10.1002/eji.200425882
10.1038/ni.2554
10.1126/science.aaa9420
10.1038/nature08750
10.1038/ni.3646
10.4049/jimmunol.0904028
10.1126/science.2125367
10.1038/nprot.2008.211
10.1038/ng0506-500
10.1073/pnas.1220688110
10.4049/jimmunol.180.3.1565
10.1016/0092-8674(92)90029-C
10.1126/science.aac5560
10.1038/nri.2016.36
10.1038/86302
10.1126/science.7688139
ContentType Journal Article
Copyright The Japanese Society for Immunology. 2018. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2018
Copyright_xml – notice: The Japanese Society for Immunology. 2018. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1093/intimm/dxy013
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1460-2377
EndPage 180
ExternalDocumentID 29425339
10_1093_intimm_dxy013
10.1093/intimm/dxy013
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Uehara Memorial Foundation
  funderid: 10.13039/100008732
– fundername: Japan Society for the Promotion of Science
  grantid: JP15K19137
  funderid: 10.13039/501100001691
GroupedDBID ---
-E4
.2P
.55
.GJ
.I3
.ZR
0R~
18M
1TH
29J
2WC
4.4
482
48X
53G
5GY
5RE
5VS
5WA
5WD
6.Y
70D
A8Z
AABZA
AACZT
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPGJ
AAPNW
AAPQZ
AAPXW
AARHZ
AASNB
AAUAY
AAUQX
AAVAP
AAVLN
AAWDT
ABEUO
ABIXL
ABJNI
ABKDP
ABMNT
ABNHQ
ABNKS
ABOCM
ABPTD
ABQLI
ABQNK
ABQTQ
ABSAR
ABSMQ
ABWST
ABXVV
ABZBJ
ACFRR
ACGFO
ACGFS
ACIWK
ACMRT
ACPQN
ACPRK
ACUFI
ACUTJ
ACUTO
ACYHN
ACZBC
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADJQC
ADOCK
ADQBN
ADRIX
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AEGPL
AEGXH
AEJOX
AEKPW
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFSHK
AFXAL
AFXEN
AFYAG
AGINJ
AGKEF
AGKRT
AGMDO
AGQXC
AGSYK
AGUTN
AHMBA
AHXPO
AI.
AIAGR
AIJHB
AJEEA
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ANFBD
APIBT
APJGH
APWMN
AQDSO
AQKUS
ARIXL
ASAOO
ASPBG
ATDFG
ATGXG
ATTQO
AVNTJ
AVWKF
AXUDD
AYOIW
AZFZN
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BSWAC
BTRTY
BVRKM
BZKNY
C1A
C45
CAG
CDBKE
COF
CS3
CXTWN
CZ4
DAKXR
DFGAJ
DIK
DILTD
DU5
D~K
E3Z
EBD
EBS
EE~
EIHJH
EJD
ELUNK
EMOBN
ENERS
ESTFP
F5P
F9B
FECEO
FEDTE
FHSFR
FLUFQ
FOEOM
FOTVD
FQBLK
FRP
GAUVT
GJXCC
GX1
H13
H5~
HAR
HVGLF
HW0
HZ~
IH2
IOX
J21
J8S
JXSIZ
KAQDR
KBUDW
KC5
KOP
KQ8
KSI
KSN
M-Z
M49
MBLQV
MBTAY
MHKGH
N9A
NGC
NLBLG
NOMLY
NOYVH
NTWIH
NU-
NVLIB
O0~
O9-
OAUYM
OAWHX
OBC
OBOKY
OBS
OCZFY
ODMLO
OEB
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
QBD
R44
RD5
RIG
RNI
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZF
RZO
SV3
TCN
TEORI
TJX
TLC
TMA
TR2
UDS
VH1
W8F
WOQ
X7H
X7M
Y6R
YAYTL
YHZ
YKOAZ
YXANX
ZKX
~91
AAYXX
ABDFA
ABEJV
ABGNP
ABPQP
ABVGC
ABXZS
ADNBA
AEMQT
AGORE
AHMMS
AJBYB
AJNCP
ALXQX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c350t-de10ec2f419b38fc4ca2ff1947ac772e3770723186958345f959bb4786b8d5dd3
ISSN 0953-8178
1460-2377
IngestDate Sun Sep 28 09:15:37 EDT 2025
Wed Feb 19 02:34:58 EST 2025
Tue Jul 01 00:40:39 EDT 2025
Thu Apr 24 23:06:19 EDT 2025
Wed Aug 28 03:25:58 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords CD28
development
peripherally derived regulatory T cells
proliferation
intestines
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c350t-de10ec2f419b38fc4ca2ff1947ac772e3770723186958345f959bb4786b8d5dd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 29425339
PQID 2001067141
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2001067141
pubmed_primary_29425339
crossref_primary_10_1093_intimm_dxy013
crossref_citationtrail_10_1093_intimm_dxy013
oup_primary_10_1093_intimm_dxy013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-04-03
PublicationDateYYYYMMDD 2018-04-03
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-03
  day: 03
PublicationDecade 2010
PublicationPlace UK
PublicationPlace_xml – name: UK
– name: England
PublicationTitle International immunology
PublicationTitleAlternate Int Immunol
PublicationYear 2018
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Smith (2022071302391756900_CIT0008) 2013; 341
Takimoto (2022071302391756900_CIT0007) 2010; 185
Hill (2022071302391756900_CIT0042) 2007; 27
Boomer (2022071302391756900_CIT0011) 2010; 2
Wang (2022071302391756900_CIT0017) 2008; 180
Zheng (2022071302391756900_CIT0033) 2010; 463
Jordan (2022071302391756900_CIT0040) 2001; 2
Wakamatsu (2022071302391756900_CIT0038) 2013; 110
Huang (2022071302391756900_CIT0024) 2009; 37
Pierson (2022071302391756900_CIT0031) 2013; 14
Shahinian (2022071302391756900_CIT0019) 1993; 261
Furusawa (2022071302391756900_CIT0009) 2013; 504
Chirdo (2022071302391756900_CIT0034) 2005; 35
Shinkai (2022071302391756900_CIT0021) 1992; 68
Mootha (2022071302391756900_CIT0025) 2003; 34
Semple (2022071302391756900_CIT0016) 2011; 117
Reich (2022071302391756900_CIT0022) 2006; 38
Geuking (2022071302391756900_CIT0004) 2011; 34
Tai (2022071302391756900_CIT0013) 2005; 6
Huang (2022071302391756900_CIT0023) 2009; 4
Qiao (2022071302391756900_CIT0041) 2013; 191
Ohkura (2022071302391756900_CIT0027) 2012; 37
Guo (2022071302391756900_CIT0015) 2008; 181
Boonen (2022071302391756900_CIT0030) 1999; 29
Abbas (2022071302391756900_CIT0002) 2013; 14
Vahl (2022071302391756900_CIT0035) 2014; 41
Harada (2022071302391756900_CIT0018) 2001; 166
Kitagawa (2022071302391756900_CIT0032) 2017; 18
Atarashi (2022071302391756900_CIT0005) 2011; 331
Weiss (2022071302391756900_CIT0029) 2012; 209
Sefik (2022071302391756900_CIT0006) 2015; 349
Obata (2022071302391756900_CIT0010) 2014; 15
Subramanian (2022071302391756900_CIT0026) 2005; 102
Kim (2022071302391756900_CIT0036) 2016; 351
Benoist (2022071302391756900_CIT0001) 2012; 4
Tang (2022071302391756900_CIT0012) 2003; 171
Murphy (2022071302391756900_CIT0020) 1990; 250
Zhang (2022071302391756900_CIT0014) 2013; 123
Joller (2022071302391756900_CIT0037) 2014; 40
Thornton (2022071302391756900_CIT0028) 2010; 184
Yang (2022071302391756900_CIT0039) 2016; 9
Tanoue (2022071302391756900_CIT0003) 2016; 16
References_xml – volume: 504
  start-page: 446
  year: 2013
  ident: 2022071302391756900_CIT0009
  article-title: Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells
  publication-title: Nature
  doi: 10.1038/nature12721
– volume: 34
  start-page: 267
  year: 2003
  ident: 2022071302391756900_CIT0025
  article-title: PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes
  publication-title: Nat. Genet
  doi: 10.1038/ng1180
– volume: 185
  start-page: 842
  year: 2010
  ident: 2022071302391756900_CIT0007
  article-title: Smad2 and Smad3 are redundantly essential for the TGF-beta-mediated regulation of regulatory T plasticity and Th1 development
  publication-title: J. Immunol
  doi: 10.4049/jimmunol.0904100
– volume: 29
  start-page: 789
  year: 1999
  ident: 2022071302391756900_CIT0030
  article-title: CD28 induces cell cycle progression by IL-2-independent down-regulation of p27kip1 expression in human peripheral T lymphocytes
  publication-title: Eur. J. Immunol
  doi: 10.1002/(SICI)1521-4141(199903)29:03<789::AID-IMMU789>3.0.CO;2-5
– volume: 117
  start-page: 3096
  year: 2011
  ident: 2022071302391756900_CIT0016
  article-title: Strong CD28 costimulation suppresses induction of regulatory T cells from naive precursors through Lck signaling
  publication-title: Blood
  doi: 10.1182/blood-2010-08-301275
– volume: 6
  start-page: 152
  year: 2005
  ident: 2022071302391756900_CIT0013
  article-title: CD28 costimulation of developing thymocytes induces Foxp3 expression and regulatory T cell differentiation independently of interleukin 2
  publication-title: Nat. Immunol
  doi: 10.1038/ni1160
– volume: 341
  start-page: 569
  year: 2013
  ident: 2022071302391756900_CIT0008
  article-title: The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis
  publication-title: Science
  doi: 10.1126/science.1241165
– volume: 331
  start-page: 337
  year: 2011
  ident: 2022071302391756900_CIT0005
  article-title: Induction of colonic regulatory T cells by indigenous Clostridium species
  publication-title: Science
  doi: 10.1126/science.1198469
– volume: 40
  start-page: 569
  year: 2014
  ident: 2022071302391756900_CIT0037
  article-title: Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses
  publication-title: Immunity
  doi: 10.1016/j.immuni.2014.02.012
– volume: 27
  start-page: 786
  year: 2007
  ident: 2022071302391756900_CIT0042
  article-title: Foxp3 transcription-factor-dependent and -independent regulation of the regulatory T cell transcriptional signature
  publication-title: Immunity
  doi: 10.1016/j.immuni.2007.09.010
– volume: 14
  start-page: 959
  year: 2013
  ident: 2022071302391756900_CIT0031
  article-title: Antiapoptotic Mcl-1 is critical for the survival and niche-filling capacity of Foxp3⁺ regulatory T cells
  publication-title: Nat. Immunol
  doi: 10.1038/ni.2649
– volume: 9
  start-page: 444
  year: 2016
  ident: 2022071302391756900_CIT0039
  article-title: Foxp3(+) T cells expressing RORγt represent a stable regulatory T-cell effector lineage with enhanced suppressive capacity during intestinal inflammation
  publication-title: Mucosal Immunol
  doi: 10.1038/mi.2015.74
– volume: 41
  start-page: 722
  year: 2014
  ident: 2022071302391756900_CIT0035
  article-title: Continuous T cell receptor signals maintain a functional regulatory T cell pool
  publication-title: Immunity
  doi: 10.1016/j.immuni.2014.10.012
– volume: 209
  start-page: 1723
  year: 2012
  ident: 2022071302391756900_CIT0029
  article-title: Neuropilin 1 is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3+ T reg cells
  publication-title: J. Exp. Med
  doi: 10.1084/jem.20120914
– volume: 15
  start-page: 571
  year: 2014
  ident: 2022071302391756900_CIT0010
  article-title: The epigenetic regulator Uhrf1 facilitates the proliferation and maturation of colonic regulatory T cells
  publication-title: Nat. Immunol
  doi: 10.1038/ni.2886
– volume: 171
  start-page: 3348
  year: 2003
  ident: 2022071302391756900_CIT0012
  article-title: Cutting edge: CD28 controls peripheral homeostasis of CD4+CD25+ regulatory T cells
  publication-title: J. Immunol
  doi: 10.4049/jimmunol.171.7.3348
– volume: 166
  start-page: 3797
  year: 2001
  ident: 2022071302391756900_CIT0018
  article-title: Critical requirement for the membrane-proximal cytosolic tyrosine residue for CD28-mediated costimulation in vivo
  publication-title: J. Immunol
  doi: 10.4049/jimmunol.166.6.3797
– volume: 34
  start-page: 794
  year: 2011
  ident: 2022071302391756900_CIT0004
  article-title: Intestinal bacterial colonization induces mutualistic regulatory T cell responses
  publication-title: Immunity
  doi: 10.1016/j.immuni.2011.03.021
– volume: 181
  start-page: 2285
  year: 2008
  ident: 2022071302391756900_CIT0015
  article-title: CD28 controls differentiation of regulatory T cells from naive CD4 T cells
  publication-title: J. Immunol
  doi: 10.4049/jimmunol.181.4.2285
– volume: 102
  start-page: 15545
  year: 2005
  ident: 2022071302391756900_CIT0026
  article-title: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0506580102
– volume: 191
  start-page: 632
  year: 2013
  ident: 2022071302391756900_CIT0041
  article-title: T cell activation threshold regulated by E3 ubiquitin ligase Cbl-b determines fate of inducible regulatory T cells
  publication-title: J. Immunol
  doi: 10.4049/jimmunol.1202068
– volume: 4
  start-page: a007021
  year: 2012
  ident: 2022071302391756900_CIT0001
  article-title: Treg cells, life history, and diversity
  publication-title: Cold Spring Harb. Perspect. Biol
  doi: 10.1101/cshperspect.a007021
– volume: 37
  start-page: 1
  year: 2009
  ident: 2022071302391756900_CIT0024
  article-title: Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkn923
– volume: 2
  start-page: a002436
  year: 2010
  ident: 2022071302391756900_CIT0011
  article-title: An enigmatic tail of CD28 signaling
  publication-title: Cold Spring Harb. Perspect. Biol
  doi: 10.1101/cshperspect.a002436
– volume: 37
  start-page: 785
  year: 2012
  ident: 2022071302391756900_CIT0027
  article-title: T cell receptor stimulation-induced epigenetic changes and Foxp3 expression are independent and complementary events required for Treg cell development
  publication-title: Immunity
  doi: 10.1016/j.immuni.2012.09.010
– volume: 35
  start-page: 1831
  year: 2005
  ident: 2022071302391756900_CIT0034
  article-title: Immunomodulatory dendritic cells in intestinal lamina propria
  publication-title: Eur. J. Immunol
  doi: 10.1002/eji.200425882
– volume: 14
  start-page: 307
  year: 2013
  ident: 2022071302391756900_CIT0002
  article-title: Regulatory T cells: recommendations to simplify the nomenclature
  publication-title: Nat. Immunol
  doi: 10.1038/ni.2554
– volume: 349
  start-page: 993
  year: 2015
  ident: 2022071302391756900_CIT0006
  article-title: Mucosal immunology. Individual intestinal symbionts induce a distinct population of RORγ⁺ regulatory T cells
  publication-title: Science
  doi: 10.1126/science.aaa9420
– volume: 463
  start-page: 808
  year: 2010
  ident: 2022071302391756900_CIT0033
  article-title: Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate
  publication-title: Nature
  doi: 10.1038/nature08750
– volume: 123
  start-page: 580
  year: 2013
  ident: 2022071302391756900_CIT0014
  article-title: An obligate cell-intrinsic function for CD28 in Tregs
  publication-title: J. Clin. Invest
– volume: 18
  start-page: 173
  year: 2017
  ident: 2022071302391756900_CIT0032
  article-title: Guidance of regulatory T cell development by Satb1-dependent super-enhancer establishment
  publication-title: Nat. Immunol
  doi: 10.1038/ni.3646
– volume: 184
  start-page: 3433
  year: 2010
  ident: 2022071302391756900_CIT0028
  article-title: Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells
  publication-title: J. Immunol
  doi: 10.4049/jimmunol.0904028
– volume: 250
  start-page: 1720
  year: 1990
  ident: 2022071302391756900_CIT0020
  article-title: Induction by antigen of intrathymic apoptosis of CD4+CD8+TCRlo thymocytes in vivo
  publication-title: Science
  doi: 10.1126/science.2125367
– volume: 4
  start-page: 44
  year: 2009
  ident: 2022071302391756900_CIT0023
  article-title: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources
  publication-title: Nat. Protoc
  doi: 10.1038/nprot.2008.211
– volume: 38
  start-page: 500
  year: 2006
  ident: 2022071302391756900_CIT0022
  article-title: GenePattern 2.0
  publication-title: Nat. Genet
  doi: 10.1038/ng0506-500
– volume: 110
  start-page: 1023
  year: 2013
  ident: 2022071302391756900_CIT0038
  article-title: Convergent and divergent effects of costimulatory molecules in conventional and regulatory CD4+ T cells
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1220688110
– volume: 180
  start-page: 1565
  year: 2008
  ident: 2022071302391756900_CIT0017
  article-title: Th2 lymphoproliferative disorder of LatY136F mutant mice unfolds independently of TCR-MHC engagement and is insensitive to the action of Foxp3+ regulatory T cells
  publication-title: J. Immunol
  doi: 10.4049/jimmunol.180.3.1565
– volume: 68
  start-page: 855
  year: 1992
  ident: 2022071302391756900_CIT0021
  article-title: RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement
  publication-title: Cell
  doi: 10.1016/0092-8674(92)90029-C
– volume: 351
  start-page: 858
  year: 2016
  ident: 2022071302391756900_CIT0036
  article-title: Dietary antigens limit mucosal immunity by inducing regulatory T cells in the small intestine
  publication-title: Science
  doi: 10.1126/science.aac5560
– volume: 16
  start-page: 295
  year: 2016
  ident: 2022071302391756900_CIT0003
  article-title: Development and maintenance of intestinal regulatory T cells
  publication-title: Nat. Rev. Immunol
  doi: 10.1038/nri.2016.36
– volume: 2
  start-page: 301
  year: 2001
  ident: 2022071302391756900_CIT0040
  article-title: Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide
  publication-title: Nat. Immunol
  doi: 10.1038/86302
– volume: 261
  start-page: 609
  year: 1993
  ident: 2022071302391756900_CIT0019
  article-title: Differential T cell costimulatory requirements in CD28-deficient mice
  publication-title: Science
  doi: 10.1126/science.7688139
SSID ssj0003293
Score 2.3021576
Snippet Abstract It is well-established that CD28 co-stimulation is required for the development and the proliferation of thymus-derived regulatory T cells (tTregs)....
It is well-established that CD28 co-stimulation is required for the development and the proliferation of thymus-derived regulatory T cells (tTregs). Meanwhile,...
SourceID proquest
pubmed
crossref
oup
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 171
SubjectTerms Animals
CD28 Antigens - genetics
CD28 Antigens - immunology
CD28 Antigens - metabolism
Cell Differentiation - immunology
Cell Proliferation
DNA Methylation
Homeostasis
Immunomodulation
Intestinal Mucosa - immunology
Intestinal Mucosa - metabolism
Intraepithelial Lymphocytes - immunology
Intraepithelial Lymphocytes - metabolism
Mice
Mice, Knockout
Mice, Transgenic
T-Lymphocytes, Regulatory - immunology
T-Lymphocytes, Regulatory - metabolism
Title CD28 co-stimulation is dispensable for the steady state homeostasis of intestinal regulatory T cells
URI https://www.ncbi.nlm.nih.gov/pubmed/29425339
https://www.proquest.com/docview/2001067141
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKEGgvCMat3GQkxEvJFsdOaj9OA1RA4ymTxlMV24mISpNpaaSVv8Cf5vjSNNmGGLxElmtbjb8vx8fHPucg9CaicQg_yYBpQgNWABZCcxJQRrMkVmaVNye6x1-T2Qn7fBqfjka_ereW2pXcVz-v9Sv5H1ShDnA1XrL_gGw3KFRAGfCFJyAMzxthfPQ-4hNVB_CZLn0aLpOgXJfNGexOrVPU5hahBXM9sf5Dk-_1Mq-h6IORmJARMERlY_zb1PTm4D2dGKN-09deh-bD0riWXLLKLzLQgJvWStiyM-Aua-fPPivP60VXnWYyc7rrt3Zbe7gApXhY640ShNu7LHRgXaQBJy47z37uZCtLwiCiPmuLF77-UKbsWxasJCUuM4tflIlL93RF3rtYWDBN8MpQ0Bfr0Lm2DiNrX1rxunuI7gSezt0Ac9f9FrodTUERMxr2py_dsk4jF8F582Y-YCt0P3DdD1z3gYIzcJq8snexOkx6H93zmw986Jj0AI3yag_dcelI13vo7rG_aPEQaUMtPKQWLhvcoxYGamGgFnbUwpZauEctXBd4Sy28pRZOsaXWI3Ty8UN6NAt8Qo5AwSe9CnROwlxFBSNCUl4oprKoKIhg00zBLi0HbMMpbBh4ImJOWVyIWEjJpjyRXMda08dop6qr_CnCogg147DS6oyxKJIylkJllKucZImg8Ri928ziXPlo9SZpyo_5tZiN0duu-ZkL0_Knhq8Bkr-22QA2B2FrZiSr8rptTM5WE3KRMDJGTxyS3VCRgOWPUvHspn_lOdrdfjov0M7qvM1fgoa7kq8s834DoHGtvw
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CD28+co-stimulation+is+dispensable+for+the+steady+state+homeostasis+of+intestinal+regulatory+T+cells&rft.jtitle=International+immunology&rft.au=Wakamatsu%2C+Ei&rft.au=Omori%2C+Hiroki&rft.au=Tabata%2C+Yuki&rft.au=Akieda%2C+Yuki&rft.date=2018-04-03&rft.issn=0953-8178&rft.eissn=1460-2377&rft.volume=30&rft.issue=4&rft.spage=171&rft.epage=180&rft_id=info:doi/10.1093%2Fintimm%2Fdxy013&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_intimm_dxy013
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-8178&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-8178&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-8178&client=summon