Conductive Polymer Composites for Soft Tactile Sensors

Soft tactile sensors have received a lot of attention since they can be used to create advanced wearable electronic gadgets. The design of smart electronics requires high-performance soft tactile sensors with high sensitivity, low-cost manufacturing, and excellent mechanical freedom to convey sophis...

Full description

Saved in:
Bibliographic Details
Published inMacromolecular research Vol. 29; no. 11; pp. 761 - 775
Main Authors Kim, Jongyoun, Jung, Hyeonwoo, Kim, Minkyoung, Bae, Hyejeong, Lee, Youngu
Format Journal Article
LanguageEnglish
Published Seoul The Polymer Society of Korea 01.11.2021
Springer Nature B.V
한국고분자학회
Subjects
Online AccessGet full text
ISSN1598-5032
2092-7673
DOI10.1007/s13233-021-9092-6

Cover

More Information
Summary:Soft tactile sensors have received a lot of attention since they can be used to create advanced wearable electronic gadgets. The design of smart electronics requires high-performance soft tactile sensors with high sensitivity, low-cost manufacturing, and excellent mechanical freedom to convey sophisticated activities. Conductive polymer composites (CPCs) have emerged recently as promising materials for realizing high-performance, multifunctional, and versatile tactile sensors because of their distinct mechanical and electrical properties. Current advances in the astounding development of CPCs-based tactile sensors, including CPCs preparation and device structure designs for tactile sensors to detect various external stimuli were regarded in this review. The component materials of CPCs that provide innovative features, including self-healing, self-cleaning, and biodegradability, as well as improve their electrical properties were further described. Structural modifications based on the operation mechanism, such as surface micropatterns, sponge, and fiber structures to improve the sensing qualities of the device are also investigated. Finally, contemporary multi-parametric tactile sensors are on display offering a potential solution to future electronics.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1598-5032
2092-7673
DOI:10.1007/s13233-021-9092-6