Pseudo-electromagnetic fields in 3D topological semimetals
Dirac and Weyl semimetals react to position-dependent and time-dependent perturbations, such as strain, as if subject to emergent electromagnetic fields, known as pseudo-fields. Pseudo-fields differ from external electromagnetic fields in their symmetries and phenomenology and enable a simple and un...
Saved in:
Published in | Nature reviews physics Vol. 2; no. 1; pp. 29 - 41 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group
01.01.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 2522-5820 |
DOI | 10.1038/s42254-019-0121-8 |
Cover
Abstract | Dirac and Weyl semimetals react to position-dependent and time-dependent perturbations, such as strain, as if subject to emergent electromagnetic fields, known as pseudo-fields. Pseudo-fields differ from external electromagnetic fields in their symmetries and phenomenology and enable a simple and unified description of a variety of inhomogeneous systems. We review the different physical means of generating pseudo-fields, the observable consequences of pseudo-fields and their similarities to and differences from electromagnetic fields. Among these differences is their effect on quantum anomalies — absences of classical symmetries in the quantum theory — which we revisit from a quantum field theory and a semi-classical viewpoint. We conclude with predicted observable signatures of the pseudo-fields and the status of the nascent experimental research.Pseudo-electromagnetic fields emerge in inhomogeneous materials. This Review discusses the properties of such fields in the context of 3D topological semimetals, the origin and consequences of pseudo-fields in real materials and their field theory description. |
---|---|
AbstractList | Dirac and Weyl semimetals react to position-dependent and time-dependent perturbations, such as strain, as if subject to emergent electromagnetic fields, known as pseudo-fields. Pseudo-fields differ from external electromagnetic fields in their symmetries and phenomenology and enable a simple and unified description of a variety of inhomogeneous systems. We review the different physical means of generating pseudo-fields, the observable consequences of pseudo-fields and their similarities to and differences from electromagnetic fields. Among these differences is their effect on quantum anomalies — absences of classical symmetries in the quantum theory — which we revisit from a quantum field theory and a semi-classical viewpoint. We conclude with predicted observable signatures of the pseudo-fields and the status of the nascent experimental research.Pseudo-electromagnetic fields emerge in inhomogeneous materials. This Review discusses the properties of such fields in the context of 3D topological semimetals, the origin and consequences of pseudo-fields in real materials and their field theory description. |
Author | Ilan, Roni Grushin, Adolfo G Pikulin, Dmitry I |
Author_xml | – sequence: 1 givenname: Roni surname: Ilan fullname: Ilan, Roni – sequence: 2 givenname: Adolfo G surname: Grushin fullname: Grushin, Adolfo G – sequence: 3 givenname: Dmitry I surname: Pikulin fullname: Pikulin, Dmitry I |
BookMark | eNotjU1LxDAUAIMouK77A7wVPEdf3kvSxJusn7CgBz0vTfq6dGmbtWn_vwU9DHObuRLnQxpYiBsFdwrI3WeNaLQE5RdQSXcmVmgQpXEIl2KT8xEAUGltgFbi4TPzXCfJHcdpTH11GHhqY9G03NW5aIeCnoopnVKXDm2suiJz3_Y8VV2-FhfNIt78ey2-X56_tm9y9_H6vn3cyUgGJhmAtDNRk7UlqoZdY4z2pgZVBuusJSQVSgoB0GrUaCD4iKG27H3jNdFa3P51T2P6mTlP-2Oax2FZ7gnRoqcSS_oFN2BIUA |
CitedBy_id | crossref_primary_10_1063_5_0006015 crossref_primary_10_1103_PhysRevB_105_045112 crossref_primary_10_1103_PhysRevLett_127_136401 crossref_primary_10_1016_j_scib_2024_04_055 crossref_primary_10_1103_PhysRevB_102_235163 crossref_primary_10_1103_PhysRevB_103_155202 crossref_primary_10_1103_PhysRevLett_124_117002 crossref_primary_10_1515_nanoph_2021_0692 crossref_primary_10_1103_PhysRevLett_132_266601 crossref_primary_10_1088_1742_6596_2531_1_012002 crossref_primary_10_1103_PhysRevB_102_115146 crossref_primary_10_1103_PhysRevB_106_075125 crossref_primary_10_1103_PhysRevD_105_045009 crossref_primary_10_1103_PhysRevLett_130_196602 crossref_primary_10_1103_PhysRevB_102_241401 crossref_primary_10_1103_PhysRevB_109_115159 crossref_primary_10_1103_PhysRevB_104_174406 crossref_primary_10_1103_PhysRevLett_127_125901 crossref_primary_10_1103_PhysRevB_106_115102 crossref_primary_10_1134_S0021364021080014 crossref_primary_10_1038_s42254_021_00344_z crossref_primary_10_7566_JPSJ_93_094704 crossref_primary_10_1103_PhysRevB_103_094513 crossref_primary_10_1103_PhysRevB_103_115143 crossref_primary_10_1103_PhysRevB_103_214309 crossref_primary_10_1103_PhysRevB_105_L081117 crossref_primary_10_1038_s41467_024_53319_w crossref_primary_10_3390_nano14070620 crossref_primary_10_1088_1361_648X_abaa7e crossref_primary_10_1038_s41598_024_56894_6 crossref_primary_10_1038_s41467_023_44547_7 crossref_primary_10_1103_PhysRevB_109_045106 crossref_primary_10_1038_s42254_020_0240_2 crossref_primary_10_1103_PhysRevResearch_2_043311 crossref_primary_10_1103_PhysRevB_107_035144 crossref_primary_10_1088_1367_2630_ac068d crossref_primary_10_1088_1361_6463_ac357f crossref_primary_10_1103_PhysRevB_109_075123 crossref_primary_10_1103_PhysRevB_109_155151 crossref_primary_10_1103_PhysRevB_104_235119 crossref_primary_10_1103_PhysRevLett_133_126602 crossref_primary_10_1139_cjp_2023_0057 crossref_primary_10_1103_PhysRevB_107_214450 crossref_primary_10_1103_PhysRevResearch_4_013055 crossref_primary_10_1103_PhysRevB_108_155132 crossref_primary_10_1103_PhysRevB_103_035306 crossref_primary_10_1103_PhysRevLett_124_126602 crossref_primary_10_1103_PhysRevB_101_165309 crossref_primary_10_1016_j_physrep_2022_06_002 crossref_primary_10_1103_PhysRevResearch_4_023137 crossref_primary_10_1103_PhysRevLett_128_155301 crossref_primary_10_1103_PhysRevB_106_045132 crossref_primary_10_1103_PhysRevB_102_085426 crossref_primary_10_3788_AOSOL240455 crossref_primary_10_1103_PhysRevB_104_155425 crossref_primary_10_1103_PhysRevLett_126_247202 crossref_primary_10_1103_PhysRevB_100_245148 crossref_primary_10_1103_PhysRevLett_134_046404 crossref_primary_10_1007_s43673_025_00145_x crossref_primary_10_1103_PhysRevLett_130_266304 crossref_primary_10_1103_PhysRevLett_129_196602 crossref_primary_10_1126_sciadv_abl6192 crossref_primary_10_1063_5_0202451 crossref_primary_10_1103_PhysRevB_104_035410 crossref_primary_10_1103_PhysRevB_102_014513 crossref_primary_10_1103_PhysRevB_104_155140 crossref_primary_10_1103_PhysRevResearch_4_L042004 crossref_primary_10_1103_PhysRevLett_129_016801 crossref_primary_10_3390_s22187029 crossref_primary_10_1103_PhysRevApplied_19_064064 crossref_primary_10_1103_PhysRevResearch_3_033139 crossref_primary_10_1002_qute_202000101 crossref_primary_10_1103_PhysRevX_11_031017 crossref_primary_10_1088_1361_648X_ab8b9d crossref_primary_10_1103_PhysRevB_102_155311 crossref_primary_10_1103_PhysRevB_108_024301 crossref_primary_10_1038_s42005_022_01106_8 crossref_primary_10_1103_PhysRevB_103_155417 crossref_primary_10_3390_nano11102755 crossref_primary_10_1088_1367_2630_ab6574 crossref_primary_10_1103_PhysRevB_101_235117 crossref_primary_10_1103_PhysRevLett_133_233801 crossref_primary_10_1021_acs_nanolett_3c00345 crossref_primary_10_1103_PhysRevB_110_L161301 crossref_primary_10_1146_annurev_conmatphys_031620_104226 crossref_primary_10_1103_PhysRevD_111_056017 crossref_primary_10_1103_PhysRevResearch_5_013178 crossref_primary_10_1103_PhysRevB_102_184407 crossref_primary_10_1103_PhysRevResearch_2_033269 crossref_primary_10_1038_s41467_021_23963_7 crossref_primary_10_1103_PhysRevB_103_214310 |
ContentType | Journal Article |
Copyright | Copyright Nature Publishing Group Jan 2020 |
Copyright_xml | – notice: Copyright Nature Publishing Group Jan 2020 |
DBID | 3V. 7XB 88I 8FE 8FG 8FK ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO GNUQQ HCIFZ KB. L6V M2P M7S PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
DOI | 10.1038/s42254-019-0121-8 |
DatabaseName | ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) SciTech Premium Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central ProQuest Central Student SciTech Premium Materials Science Database ProQuest Engineering Collection Science Database Engineering Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
DatabaseTitle | ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | ProQuest Central Student |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2522-5820 |
EndPage | 41 |
GroupedDBID | 3V. 7XB 88I 8FE 8FG 8FK AARCD AAWYQ AAYZH ABJCF ABJNI ABUWG AFANA AFKRA AFSHS AIBTJ ALMA_UNASSIGNED_HOLDINGS ATHPR AZQEC BENPR BGLVJ CCPQU D1I DWQXO EBS EJD FSGXE GNUQQ HCIFZ KB. L6V M2P M7S NNMJJ PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U RNT SIXXV SNYQT SOJ TBHMF |
ID | FETCH-LOGICAL-c350t-b03485c4366721fe8f55495d017b68663231b73bb026424250b9c2bd6e99f9433 |
IEDL.DBID | 8FG |
IngestDate | Sat Aug 23 12:49:32 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c350t-b03485c4366721fe8f55495d017b68663231b73bb026424250b9c2bd6e99f9433 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3226293727 |
PQPubID | 7343578 |
PageCount | 13 |
ParticipantIDs | proquest_journals_3226293727 |
PublicationCentury | 2000 |
PublicationDate | 2020-01-01 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature reviews physics |
PublicationYear | 2020 |
Publisher | Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group |
SSID | ssj0002144503 |
Score | 2.4930656 |
SecondaryResourceType | review_article |
Snippet | Dirac and Weyl semimetals react to position-dependent and time-dependent perturbations, such as strain, as if subject to emergent electromagnetic fields, known... |
SourceID | proquest |
SourceType | Aggregation Database |
StartPage | 29 |
SubjectTerms | Electric fields Electromagnetic fields Electromagnetism Energy Inhomogeneous systems Magnetic fields Metalloids Phenomenology Physics Quantum theory Spacetime Symmetry Topology |
Title | Pseudo-electromagnetic fields in 3D topological semimetals |
URI | https://www.proquest.com/docview/3226293727 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA7aIngRn_ioJQevobubTbrxIj5ai2ApYqG3snmJh27VbP-_M9tUD4LnPWUyO983Xyb5CLkqEydUaiVz1jtoUPKSaS1TVkqXKmFV31vUIZ_HcjTNn2ZiFgW3EMcqNzWxKdR2aVAj70HiSYAmgNubj0-GrlF4uhotNLZJO80gk_Cm-PDxR2PB58BEwjeHmbzohRzyF8cucEgoS1nxpwQ3uDLcJ3uRENLb9Q4ekC1XHZKdZjDThCNyPQluZZcs2tUsyrcKrx3SZvIs0PeK8gdar50OMN40uMX7wgGlDsdkOhy83o9Y9DtghoukZjrheSFMzqWEvsy7wgPWQ8Dgp9GyAGoAXEz3udbQN-XYKiRamUxb6ZTyKuf8hLSqZeVOCdW-FEUirPP4ZpkEDDIauIBBT2kgdP6MdDbLnsekDfPfEJ____mC7GbYdjZKRIe06q-VuwRsrnW32YAuad8NxpOXbxjdjnw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwELaqIgQL4ikeBTzAaDUvuwkSQohSWvoQQyt1K3Fsow5NAadC_Cl-I3dpAgMSW7dIWeLc-b7vzuf7CLmIHc0jVwmmldGQoAQxk1K4LBbajbiKGkZhHbI_EO1R8Djm4wr5Ku_CYFtlGRPzQK3mCdbI6-B4AqAJ4Pbm9Y2hahSerpYSGku36OrPD0jZ7HWnCfa99LzW_fCuzQpVAZb43MmYdPwg5EngCwHZj9GhAUSFzwLXlCIEAAbGIxu-lJCdBEjIHRklnlRCR5GJAiyAQshfgwcfZ_WHrYefmg6OH-OOXx6e-mHdBrBfsM0Dm5I8l4V_Qn6OY61tslUQUHq79JgdUtHpLlnPG0ETu0eunqxeqDkr5HFm8UuK1xxp3ulm6TSlfpNmS2UFtC-1ejadaaDwdp-MVvInDkg1naf6kFBpYh46XGmDM9IEYF4igXskqGENBNIckVq57EmxSezk16TH_78-JxvtYb836XUG3ROy6WHKm1dBaqSavS_0KfCCTJ7lxqDkedXW_wZKJsaS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pseudo-electromagnetic+fields+in+3D+topological+semimetals&rft.jtitle=Nature+reviews+physics&rft.au=Ilan%2C+Roni&rft.au=Grushin%2C+Adolfo+G&rft.au=Pikulin%2C+Dmitry+I&rft.date=2020-01-01&rft.pub=Nature+Publishing+Group&rft.eissn=2522-5820&rft.volume=2&rft.issue=1&rft.spage=29&rft.epage=41&rft_id=info:doi/10.1038%2Fs42254-019-0121-8 |