A composite particle swarm algorithm for global optimization of multimodal functions

During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, but they usually face many challenges such as low solution quality and slow convergence speed on multimodal function optimization. A composite parti...

Full description

Saved in:
Bibliographic Details
Published inJournal of Central South University Vol. 21; no. 5; pp. 1871 - 1880
Main Authors Tan, Guan-zheng, Bao, Kun, Rimiru, Richard Maina
Format Journal Article
LanguageEnglish
Published Heidelberg Central South University 01.05.2014
Subjects
Online AccessGet full text
ISSN2095-2899
2227-5223
DOI10.1007/s11771-014-2133-y

Cover

Abstract During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, but they usually face many challenges such as low solution quality and slow convergence speed on multimodal function optimization. A composite particle swarm optimization (CPSO) for solving these difficulties is presented, in which a novel learning strategy plus an assisted search mechanism framework is used. Instead of simple learning strategy of the original PSO, the proposed CPSO combines one particle’s historical best information and the global best information into one learning exemplar to guide the particle movement. The proposed learning strategy can reserve the original search information and lead to faster convergence speed. The proposed assisted search mechanism is designed to look for the global optimum. Search direction of particles can be greatly changed by this mechanism so that the algorithm has a large chance to escape from local optima. In order to make the assisted search mechanism more efficient and the algorithm more reliable, the executive probability of the assisted search mechanism is adjusted by the feedback of the improvement degree of optimal value after each iteration. According to the result of numerical experiments on multimodal benchmark functions such as Schwefel, Rastrigin, Ackley and Griewank both with and without coordinate rotation, the proposed CPSO offers faster convergence speed, higher quality solution and stronger robustness than other variants of PSO.
AbstractList During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, but they usually face many challenges such as low solution quality and slow convergence speed on multimodal function optimization. A composite particle swarm optimization (CPSO) for solving these difficulties is presented, in which a novel learning strategy plus an assisted search mechanism framework is used. Instead of simple learning strategy of the original PSO, the proposed CPSO combines one particle’s historical best information and the global best information into one learning exemplar to guide the particle movement. The proposed learning strategy can reserve the original search information and lead to faster convergence speed. The proposed assisted search mechanism is designed to look for the global optimum. Search direction of particles can be greatly changed by this mechanism so that the algorithm has a large chance to escape from local optima. In order to make the assisted search mechanism more efficient and the algorithm more reliable, the executive probability of the assisted search mechanism is adjusted by the feedback of the improvement degree of optimal value after each iteration. According to the result of numerical experiments on multimodal benchmark functions such as Schwefel, Rastrigin, Ackley and Griewank both with and without coordinate rotation, the proposed CPSO offers faster convergence speed, higher quality solution and stronger robustness than other variants of PSO.
Author Rimiru, Richard Maina
Tan, Guan-zheng
Bao, Kun
Author_xml – sequence: 1
  givenname: Guan-zheng
  surname: Tan
  fullname: Tan, Guan-zheng
  email: tgz@csu.edu.cn
  organization: School of Information Science and Engineering, Central South University
– sequence: 2
  givenname: Kun
  surname: Bao
  fullname: Bao, Kun
  organization: School of Information Science and Engineering, Central South University
– sequence: 3
  givenname: Richard Maina
  surname: Rimiru
  fullname: Rimiru, Richard Maina
  organization: School of Information Science and Engineering, Central South University
BookMark eNp9kM1OAyEUhYmpibX2AdzxAihw54dZNo0_TZq4qWvCMFAxM8MEaEx9eql15aKre3Juvntzzi2ajX40CN0z-sAorR8jY3XNCGUF4QyAHK_QnHNek5JzmGVNm5Jw0TQ3aBmjaykwXkHVVHO0W2Hth8lHlwyeVEhO9wbHLxUGrPq9Dy59DNj6gPe9b1WP_ZTc4L5Vcn7E3uLh0GfDd3llD6M-2fEOXVvVR7P8mwv0_vy0W7-S7dvLZr3aEg0lTUQJVdDOQmkVMAFdyURZc6rBtKLLCmoF1lhleFPkbKIFbkRhW14CF1pUsEDsfFcHH2MwVk7BDSocJaPy1Iw8NyMzLU_NyGNm6n-Mduk3TQrK9RdJfiZj_jLuTZCf_hDGHPAC9AOi7Xvn
CitedBy_id crossref_primary_10_1007_s11771_022_5082_x
crossref_primary_10_1108_EC_11_2014_0235
Cites_doi 10.1109/TEVC.2004.826074
10.1007/978-3-540-24653-4_52
10.1109/ICNN.1995.488968
10.1016/j.amc.2011.09.021
10.1109/TEVC.2005.857610
10.1007/978-1-4615-0015-5
10.1016/j.ins.2010.05.025
10.1109/TEVC.2004.826069
10.1109/4235.985692
10.1007/s11771-012-1029-y
10.1109/TEVC.2009.2021465
10.1109/TEVC.2010.2052054
10.1109/TEVC.2004.826076
ContentType Journal Article
Copyright Central South University Press and Springer-Verlag Berlin Heidelberg 2014
Copyright_xml – notice: Central South University Press and Springer-Verlag Berlin Heidelberg 2014
DBID AAYXX
CITATION
DOI 10.1007/s11771-014-2133-y
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2227-5223
EndPage 1880
ExternalDocumentID 10_1007_s11771_014_2133_y
GroupedDBID -03
-0C
-EM
-SC
-S~
.VR
06D
0R~
29~
2B.
2C0
2J2
2JN
2JY
2KG
2KM
2LR
30V
4.4
406
408
40E
5VR
5VS
8UJ
92H
92I
92M
92R
93N
95-
95.
95~
96X
9D9
9DC
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXDM
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFUIB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARCEE
ARMRJ
AXYYD
B-.
BA0
BDATZ
BGNMA
CAJEC
CCEZO
CEKLB
CHBEP
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HF~
HG6
HMJXF
HRMNR
IKXTQ
IWAJR
IXD
I~Z
J-C
JBSCW
JUIAU
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9J
PF0
PT4
Q--
Q-2
R-C
R89
ROL
RPX
RSV
RT3
S16
S3B
SAP
SCL
SCLPG
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T8S
TCJ
TGT
TSG
TUC
U1F
U1G
U2A
U5C
U5M
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
YLTOR
Z7R
Z7V
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c350t-a8a40df35fa3183d5185720c3eb8d57237a3fefae2940148b32e84fb25328c863
IEDL.DBID AGYKE
ISSN 2095-2899
IngestDate Wed Oct 01 04:10:37 EDT 2025
Thu Apr 24 23:00:56 EDT 2025
Fri Feb 21 02:27:51 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords novel learning strategy
particle swarm algorithm
feedback probability regulation
global numerical optimization
assisted search mechanism
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c350t-a8a40df35fa3183d5185720c3eb8d57237a3fefae2940148b32e84fb25328c863
PageCount 10
ParticipantIDs crossref_primary_10_1007_s11771_014_2133_y
crossref_citationtrail_10_1007_s11771_014_2133_y
springer_journals_10_1007_s11771_014_2133_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-05-01
PublicationDateYYYYMMDD 2014-05-01
PublicationDate_xml – month: 05
  year: 2014
  text: 2014-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationSubtitle Science & Technology of Mining and Metallurgy
PublicationTitle Journal of Central South University
PublicationTitleAbbrev J. Cent. South Univ
PublicationYear 2014
Publisher Central South University
Publisher_xml – name: Central South University
References ParsopoulosK EVrahatisM NOn the computation of all global minimizers through particle swarm optimization [J]IEEE Transaction on Evolutionary Computation20048321122410.1109/TEVC.2004.8260762158192
JansonSMiddendorfMA hierarchical particle swarm optimizer for dynamic optimization problems [J]Applications of Evolutionary Computing200451352310.1007/978-3-540-24653-4_52
LingJ JQinA KSuganthanP NBaskarSComprehensive learning particle swarm optimizer for global optimization of multimodal functions [J]IEEE Transaction on Evolutionary Computation200610328129510.1109/TEVC.2005.857610
van Den BerghFEngelbrechtA PA cooperative approach to particle swarm optimization [J]IEEE Transaction on Evolutionary Computation20048322523910.1109/TEVC.2004.826069
HuXEberhartR CMultiobjective optimization using dynamic neighborhood operator [C]IEEE international conference on evolutionary computation2002Hawaii, USIEEE Press16771681
ZhouX-cZhaoZ-xZhouK-jHeC-hongRemanufacturing closed-loop supply chain network design based on genetic particle swarm optimization algorithm [J]Journal of Central South University: Science and Technology20121948248710.1007/s11771-012-1029-y
CorneDDorigoMGloverFNew ideas in optimization [M]1999USAMcGraw-Hill3436
MendesRKennedyJNevesJThe fully informed particle swarm: Simpler, maybe better [J]IEEE Transaction on Evolutionary Computation20048320421010.1109/TEVC.2004.826074
MONTES De OcaM AStutzleTBirattariMDorigoMFrankenstein’s PSO: A composite particle swarm optimization algorithm [J]IEEE Transaction on Evolutionary Computation20091351120113210.1109/TEVC.2009.2021465
MauriceCKennedyJThe particle swarm-explosion, stability, and convergence in a multidimensional complex space [J]IEEE Transaction on Evolutionary Computation200261587310.1109/4235.985692
HorstRPardalosP MThoaiN VIntroduction to global optimization. Dordrecht [M]2000NetherlandKluwer Academic Publishers676810.1007/978-1-4615-0015-5
ZhanZ HZhangJLiYShiY HOrthogonal learning particle swarm optimization [J]IEEE Transaction on Evolutionary Computation201115683284710.1109/TEVC.2010.2052054
SunJFangWPaladeVWuX JXuW BQuantum-behaved particle swarm optimization with Gaussian distributed local attractor point [J]Applied Mathematics and Computation201121873763376510.1016/j.amc.2011.09.021
SuganthanP NParticle swarm optimizer with neighborhood operator [C]IEEE international conference on evolutionary computation1999Washington DC, USIEEE Press19581962
ShiX HLiY WLiH JGuanR CWangL PLiangY CAn integrated algorithm based on artificial bee colony and particle swarm optimization [C]6th international conference on neural computation2010Changchun, ChinaIEEE Press25862590
WangFHeX SLuoL GWangYHybrid optimization algorithm of PSO and Cuckoo Search [C]International conference on artificial intelligence. management science and electronic2011Xi’an, ChinaIEEE Press11721175
ParsopoulosK EVrahatisM NUPSO-A unified particle swarm optimization scheme [C]Proceedings of the International Conference of Computational Methods in Sciences and Engineering2004AtticaVSP Science Publishers868873
ShiYEberhartRA Modified Particle Swarm Optimizer [C]IEEE international conference on evolutionary computation1999Washington DC, USIEEE Press6973
KennedyJEberhartRParticle swarm optimization [C]IEEE international conference on neural networks1995AustraliaIEEE Press19421948
WangYLiBWeiseTWangJ YYuanBTianQ JSelf-adaptive learning based particle swarm optimization [J]Information Sciences20111812045144538
KennedyJMendesRPopulation structure and particle swarm performance [C]IEEE international conference on evolutionary computation2002Hawaii, USIEEE Press16711676
ShiYLiuH CGaoLZhangG HCellular particle swarm optimization [J]Information Sciences2011181204460449310.1016/j.ins.2010.05.0252823242
R Horst (2133_CR2) 2000
Y Shi (2133_CR12) 2011; 18
F Wang (2133_CR15) 2011
J J Ling (2133_CR5) 2006; 10
Y Wang (2133_CR7) 2011; 18
X H Shi (2133_CR14) 2010
K E Parsopoulos (2133_CR22) 2004
J Sun (2133_CR13) 2011; 21
K E Parsopoulos (2133_CR18) 2004; 8
S Janson (2133_CR11) 2004
C Maurice (2133_CR21) 2002; 6
R Mendes (2133_CR4) 2004; 8
M A MONTES De Oca (2133_CR17) 2009; 13
Z H Zhan (2133_CR6) 2011; 15
J Kennedy (2133_CR8) 2002
P N Suganthan (2133_CR9) 1999
F Bergh van Den (2133_CR19) 2004; 8
Y Shi (2133_CR20) 1999
J Kennedy (2133_CR3) 1995
X Hu (2133_CR10) 2002
D Corne (2133_CR1) 1999
X-c Zhou (2133_CR16) 2012; 19
References_xml – reference: ShiYEberhartRA Modified Particle Swarm Optimizer [C]IEEE international conference on evolutionary computation1999Washington DC, USIEEE Press6973
– reference: SuganthanP NParticle swarm optimizer with neighborhood operator [C]IEEE international conference on evolutionary computation1999Washington DC, USIEEE Press19581962
– reference: WangYLiBWeiseTWangJ YYuanBTianQ JSelf-adaptive learning based particle swarm optimization [J]Information Sciences20111812045144538
– reference: HuXEberhartR CMultiobjective optimization using dynamic neighborhood operator [C]IEEE international conference on evolutionary computation2002Hawaii, USIEEE Press16771681
– reference: SunJFangWPaladeVWuX JXuW BQuantum-behaved particle swarm optimization with Gaussian distributed local attractor point [J]Applied Mathematics and Computation201121873763376510.1016/j.amc.2011.09.021
– reference: van Den BerghFEngelbrechtA PA cooperative approach to particle swarm optimization [J]IEEE Transaction on Evolutionary Computation20048322523910.1109/TEVC.2004.826069
– reference: CorneDDorigoMGloverFNew ideas in optimization [M]1999USAMcGraw-Hill3436
– reference: ParsopoulosK EVrahatisM NUPSO-A unified particle swarm optimization scheme [C]Proceedings of the International Conference of Computational Methods in Sciences and Engineering2004AtticaVSP Science Publishers868873
– reference: LingJ JQinA KSuganthanP NBaskarSComprehensive learning particle swarm optimizer for global optimization of multimodal functions [J]IEEE Transaction on Evolutionary Computation200610328129510.1109/TEVC.2005.857610
– reference: MendesRKennedyJNevesJThe fully informed particle swarm: Simpler, maybe better [J]IEEE Transaction on Evolutionary Computation20048320421010.1109/TEVC.2004.826074
– reference: ShiYLiuH CGaoLZhangG HCellular particle swarm optimization [J]Information Sciences2011181204460449310.1016/j.ins.2010.05.0252823242
– reference: JansonSMiddendorfMA hierarchical particle swarm optimizer for dynamic optimization problems [J]Applications of Evolutionary Computing200451352310.1007/978-3-540-24653-4_52
– reference: MONTES De OcaM AStutzleTBirattariMDorigoMFrankenstein’s PSO: A composite particle swarm optimization algorithm [J]IEEE Transaction on Evolutionary Computation20091351120113210.1109/TEVC.2009.2021465
– reference: MauriceCKennedyJThe particle swarm-explosion, stability, and convergence in a multidimensional complex space [J]IEEE Transaction on Evolutionary Computation200261587310.1109/4235.985692
– reference: ZhouX-cZhaoZ-xZhouK-jHeC-hongRemanufacturing closed-loop supply chain network design based on genetic particle swarm optimization algorithm [J]Journal of Central South University: Science and Technology20121948248710.1007/s11771-012-1029-y
– reference: ZhanZ HZhangJLiYShiY HOrthogonal learning particle swarm optimization [J]IEEE Transaction on Evolutionary Computation201115683284710.1109/TEVC.2010.2052054
– reference: ShiX HLiY WLiH JGuanR CWangL PLiangY CAn integrated algorithm based on artificial bee colony and particle swarm optimization [C]6th international conference on neural computation2010Changchun, ChinaIEEE Press25862590
– reference: ParsopoulosK EVrahatisM NOn the computation of all global minimizers through particle swarm optimization [J]IEEE Transaction on Evolutionary Computation20048321122410.1109/TEVC.2004.8260762158192
– reference: WangFHeX SLuoL GWangYHybrid optimization algorithm of PSO and Cuckoo Search [C]International conference on artificial intelligence. management science and electronic2011Xi’an, ChinaIEEE Press11721175
– reference: HorstRPardalosP MThoaiN VIntroduction to global optimization. Dordrecht [M]2000NetherlandKluwer Academic Publishers676810.1007/978-1-4615-0015-5
– reference: KennedyJMendesRPopulation structure and particle swarm performance [C]IEEE international conference on evolutionary computation2002Hawaii, USIEEE Press16711676
– reference: KennedyJEberhartRParticle swarm optimization [C]IEEE international conference on neural networks1995AustraliaIEEE Press19421948
– volume: 8
  start-page: 204
  issue: 3
  year: 2004
  ident: 2133_CR4
  publication-title: IEEE Transaction on Evolutionary Computation
  doi: 10.1109/TEVC.2004.826074
– start-page: 513
  volume-title: Applications of Evolutionary Computing
  year: 2004
  ident: 2133_CR11
  doi: 10.1007/978-3-540-24653-4_52
– start-page: 1958
  volume-title: IEEE international conference on evolutionary computation
  year: 1999
  ident: 2133_CR9
– volume: 18
  start-page: 4514
  issue: 120
  year: 2011
  ident: 2133_CR7
  publication-title: Information Sciences
– start-page: 1942
  volume-title: IEEE international conference on neural networks
  year: 1995
  ident: 2133_CR3
  doi: 10.1109/ICNN.1995.488968
– volume: 21
  start-page: 3763
  issue: 87
  year: 2011
  ident: 2133_CR13
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2011.09.021
– start-page: 868
  volume-title: Proceedings of the International Conference of Computational Methods in Sciences and Engineering
  year: 2004
  ident: 2133_CR22
– start-page: 2586
  volume-title: 6th international conference on neural computation
  year: 2010
  ident: 2133_CR14
– start-page: 1172
  volume-title: International conference on artificial intelligence. management science and electronic
  year: 2011
  ident: 2133_CR15
– start-page: 1677
  volume-title: IEEE international conference on evolutionary computation
  year: 2002
  ident: 2133_CR10
– volume: 10
  start-page: 281
  issue: 3
  year: 2006
  ident: 2133_CR5
  publication-title: IEEE Transaction on Evolutionary Computation
  doi: 10.1109/TEVC.2005.857610
– start-page: 69
  volume-title: IEEE international conference on evolutionary computation
  year: 1999
  ident: 2133_CR20
– start-page: 67
  volume-title: Introduction to global optimization. Dordrecht [M]
  year: 2000
  ident: 2133_CR2
  doi: 10.1007/978-1-4615-0015-5
– start-page: 1671
  volume-title: IEEE international conference on evolutionary computation
  year: 2002
  ident: 2133_CR8
– volume: 18
  start-page: 4460
  issue: 120
  year: 2011
  ident: 2133_CR12
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2010.05.025
– volume: 8
  start-page: 225
  issue: 3
  year: 2004
  ident: 2133_CR19
  publication-title: IEEE Transaction on Evolutionary Computation
  doi: 10.1109/TEVC.2004.826069
– volume: 6
  start-page: 58
  issue: 1
  year: 2002
  ident: 2133_CR21
  publication-title: IEEE Transaction on Evolutionary Computation
  doi: 10.1109/4235.985692
– start-page: 34
  volume-title: New ideas in optimization [M]
  year: 1999
  ident: 2133_CR1
– volume: 19
  start-page: 482
  year: 2012
  ident: 2133_CR16
  publication-title: Journal of Central South University: Science and Technology
  doi: 10.1007/s11771-012-1029-y
– volume: 13
  start-page: 1120
  issue: 5
  year: 2009
  ident: 2133_CR17
  publication-title: IEEE Transaction on Evolutionary Computation
  doi: 10.1109/TEVC.2009.2021465
– volume: 15
  start-page: 832
  issue: 6
  year: 2011
  ident: 2133_CR6
  publication-title: IEEE Transaction on Evolutionary Computation
  doi: 10.1109/TEVC.2010.2052054
– volume: 8
  start-page: 211
  issue: 3
  year: 2004
  ident: 2133_CR18
  publication-title: IEEE Transaction on Evolutionary Computation
  doi: 10.1109/TEVC.2004.826076
SSID ssib031263696
ssib051367662
ssib026412149
ssib016993150
ssib024508231
ssj0001192107
ssib009883398
ssib016971650
Score 1.9750311
Snippet During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, but...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 1871
SubjectTerms Engineering
Metallic Materials
Title A composite particle swarm algorithm for global optimization of multimodal functions
URI https://link.springer.com/article/10.1007/s11771-014-2133-y
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2227-5223
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001192107
  issn: 2095-2899
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 2227-5223
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001192107
  issn: 2095-2899
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 2227-5223
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001192107
  issn: 2095-2899
  databaseCode: U2A
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7BcmkPPEor3vKhpyKj-LVJjivEQyA47Ur0FNmO01ZlN2g3CMGvx-N1NlAVJG4ZZaJE48l4xjPzDcB362xinEmpzqWl0voAxTCmaSXKVJaKl3mJjcJX1_3zkby4UTexj3vWVru3KclgqbtmN5amGPpKyn1gRR-XYSXAbfVgZXD28_JkoUY5DtDtogjWR5ikLnnn6VywjuZSJS-TYd5FYJx1UYlgvL-YeudpFVDOIspeOMpBTLHQmM29w0IxhGnzp__77tc74Ov0a9jVTtdg2MpjXszy9-i-MUf26R-oyA8KbB1Wo5dLBnO13IAlN_kCn19gH27CcECwnB1rxhy5iwpMZg96Oib69lc9_dP8HhPvUpM5ZgmpvXEbx65RUlcklEKO69Lfws05_D9fYXR6Mjw-p3HEA7VCJQ3VmZZJWQlVaTQupUJoKp5Y4UxW-iuRalG5SjueSzz7NIK7TFaGK8Ezm_XFN-hN6onbAiIyqxPHDEfQtVRKI5XLtLXG8oprm25D0oq9sBH_HMdw3BYdcjMKrPDvKVBgxeM2_Fg8cjcH_3iP-bBdhiLagdnb3Dsf4t6FTxzXMRRa7kGvmd67fe8MNeYgKv8BLI_44BnBe_a-
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3dS8MwEMCDzgf1QfzEb_PgkxJovtb2cYhj6ranDXwrSZqqsK6yTWT_vbmsXSeo4FtDU1qu1-Sud_c7hK6NNYG2OiQqFoYI4xwUTakiGU9DkUqWxikUCvf6zc5QPD7L57KOe1plu1chSb9S18VuNAzB9RWEOceKzNfRBvCrAJg_ZK2lEsXQPrf2IWgTIEl16M6NY07rMRMyWA2FOQOBMlr7JJyy5rLnnRtLzzgrGXv-Rw4QxXxZNnPmCgEHpoqe_vTU3_e_78FXv6e1d9FOaYzi1kJ79tCaHe-j7RVE4QEatDBknUNql8XvpZ7h6aea5FiNXorJ2-w1x87yxQu0CC7cGpSXxZ24yLDPWMyL1J2CPdSr-SEatu8Hdx1SdmIghstgRlSkRJBmXGYK1oBUAkGKBYZbHaXuiIeKZzZTlsUCflFqzmwkMs0kZ5GJmvwINcbF2B4jzCOjAks1AzZaKIQW0kbKGG1YxpQJT1BQyScxJaYcumWMkhqwDCJN3H0SEGkyP0E3y0veF4yOvybfVkJPys91-vvs03_NvkKbnUGvm3Qf-k9naIvBW_e5keeoMZt82Atnv8z0pdfXL3-427U
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8NAEF48QPRBPPF2H3xSliZ7NMljUUs98cFC38KeKrRNaSPiv3cnTRoLKviWIZODyWRnZmfmG4TOtNWBsioiMuGacO0DFBWGkjhmIm4ENYmBRuGHx2any297olfOOZ1U1e5VSnLa0wAoTcO8MTKuUTe-hVEEYTAn1AdZ5HMRLXPASfAK3aWtmUIlMEq3jifCJgAm1Wk8TycsrGnKRfA9LeadBX_TOj5hIW3O5t95WhR4ZyXeXrGpA-hiRYs29a4LgWCmyqT-9NbztnA-EVvYt_YGWi8dU9yaatImWrDDLbT2Da5wGz23MFSgQ5mXxaNS5_DkQ44HWPZfsvFb_jrA3gvGU5gRnPn1aFA2euLM4aJ6cZAZfwrsaaHyO6jbvn6-7JByKgPRTAQ5kbHkgXFMOAnrgRGAJkUDzayKjT9ikWTOOmlpwmG7UjFqY-4UFYzGOm6yXbQ0zIZ2D2EWaxnYUFHASYs4V1zYWGqtNHVU6mgfBZV8Ul1ClsPkjH5agy2DSFP_nBREmn7uo_PZJaMpXsdfzBeV0NPy1538zn3wL-5TtPJ01U7vbx7vDtEqhY9elEkeoaV8_G6PvSuTq5NCXb8A3yPf8Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+composite+particle+swarm+algorithm+for+global+optimization+of+multimodal+functions&rft.jtitle=Journal+of+Central+South+University&rft.au=Tan%2C+Guan-zheng&rft.au=Bao%2C+Kun&rft.au=Rimiru%2C+Richard+Maina&rft.date=2014-05-01&rft.pub=Central+South+University&rft.issn=2095-2899&rft.eissn=2227-5223&rft.volume=21&rft.issue=5&rft.spage=1871&rft.epage=1880&rft_id=info:doi/10.1007%2Fs11771-014-2133-y&rft.externalDocID=10_1007_s11771_014_2133_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-2899&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-2899&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-2899&client=summon