A composite particle swarm algorithm for global optimization of multimodal functions
During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, but they usually face many challenges such as low solution quality and slow convergence speed on multimodal function optimization. A composite parti...
Saved in:
| Published in | Journal of Central South University Vol. 21; no. 5; pp. 1871 - 1880 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Heidelberg
Central South University
01.05.2014
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2095-2899 2227-5223 |
| DOI | 10.1007/s11771-014-2133-y |
Cover
| Abstract | During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, but they usually face many challenges such as low solution quality and slow convergence speed on multimodal function optimization. A composite particle swarm optimization (CPSO) for solving these difficulties is presented, in which a novel learning strategy plus an assisted search mechanism framework is used. Instead of simple learning strategy of the original PSO, the proposed CPSO combines one particle’s historical best information and the global best information into one learning exemplar to guide the particle movement. The proposed learning strategy can reserve the original search information and lead to faster convergence speed. The proposed assisted search mechanism is designed to look for the global optimum. Search direction of particles can be greatly changed by this mechanism so that the algorithm has a large chance to escape from local optima. In order to make the assisted search mechanism more efficient and the algorithm more reliable, the executive probability of the assisted search mechanism is adjusted by the feedback of the improvement degree of optimal value after each iteration. According to the result of numerical experiments on multimodal benchmark functions such as Schwefel, Rastrigin, Ackley and Griewank both with and without coordinate rotation, the proposed CPSO offers faster convergence speed, higher quality solution and stronger robustness than other variants of PSO. |
|---|---|
| AbstractList | During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, but they usually face many challenges such as low solution quality and slow convergence speed on multimodal function optimization. A composite particle swarm optimization (CPSO) for solving these difficulties is presented, in which a novel learning strategy plus an assisted search mechanism framework is used. Instead of simple learning strategy of the original PSO, the proposed CPSO combines one particle’s historical best information and the global best information into one learning exemplar to guide the particle movement. The proposed learning strategy can reserve the original search information and lead to faster convergence speed. The proposed assisted search mechanism is designed to look for the global optimum. Search direction of particles can be greatly changed by this mechanism so that the algorithm has a large chance to escape from local optima. In order to make the assisted search mechanism more efficient and the algorithm more reliable, the executive probability of the assisted search mechanism is adjusted by the feedback of the improvement degree of optimal value after each iteration. According to the result of numerical experiments on multimodal benchmark functions such as Schwefel, Rastrigin, Ackley and Griewank both with and without coordinate rotation, the proposed CPSO offers faster convergence speed, higher quality solution and stronger robustness than other variants of PSO. |
| Author | Rimiru, Richard Maina Tan, Guan-zheng Bao, Kun |
| Author_xml | – sequence: 1 givenname: Guan-zheng surname: Tan fullname: Tan, Guan-zheng email: tgz@csu.edu.cn organization: School of Information Science and Engineering, Central South University – sequence: 2 givenname: Kun surname: Bao fullname: Bao, Kun organization: School of Information Science and Engineering, Central South University – sequence: 3 givenname: Richard Maina surname: Rimiru fullname: Rimiru, Richard Maina organization: School of Information Science and Engineering, Central South University |
| BookMark | eNp9kM1OAyEUhYmpibX2AdzxAihw54dZNo0_TZq4qWvCMFAxM8MEaEx9eql15aKre3Juvntzzi2ajX40CN0z-sAorR8jY3XNCGUF4QyAHK_QnHNek5JzmGVNm5Jw0TQ3aBmjaykwXkHVVHO0W2Hth8lHlwyeVEhO9wbHLxUGrPq9Dy59DNj6gPe9b1WP_ZTc4L5Vcn7E3uLh0GfDd3llD6M-2fEOXVvVR7P8mwv0_vy0W7-S7dvLZr3aEg0lTUQJVdDOQmkVMAFdyURZc6rBtKLLCmoF1lhleFPkbKIFbkRhW14CF1pUsEDsfFcHH2MwVk7BDSocJaPy1Iw8NyMzLU_NyGNm6n-Mduk3TQrK9RdJfiZj_jLuTZCf_hDGHPAC9AOi7Xvn |
| CitedBy_id | crossref_primary_10_1007_s11771_022_5082_x crossref_primary_10_1108_EC_11_2014_0235 |
| Cites_doi | 10.1109/TEVC.2004.826074 10.1007/978-3-540-24653-4_52 10.1109/ICNN.1995.488968 10.1016/j.amc.2011.09.021 10.1109/TEVC.2005.857610 10.1007/978-1-4615-0015-5 10.1016/j.ins.2010.05.025 10.1109/TEVC.2004.826069 10.1109/4235.985692 10.1007/s11771-012-1029-y 10.1109/TEVC.2009.2021465 10.1109/TEVC.2010.2052054 10.1109/TEVC.2004.826076 |
| ContentType | Journal Article |
| Copyright | Central South University Press and Springer-Verlag Berlin Heidelberg 2014 |
| Copyright_xml | – notice: Central South University Press and Springer-Verlag Berlin Heidelberg 2014 |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s11771-014-2133-y |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2227-5223 |
| EndPage | 1880 |
| ExternalDocumentID | 10_1007_s11771_014_2133_y |
| GroupedDBID | -03 -0C -EM -SC -S~ .VR 06D 0R~ 29~ 2B. 2C0 2J2 2JN 2JY 2KG 2KM 2LR 30V 4.4 406 408 40E 5VR 5VS 8UJ 92H 92I 92M 92R 93N 95- 95. 95~ 96X 9D9 9DC AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXDM AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACSNA ACZOJ ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFLOW AFQWF AFUIB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARCEE ARMRJ AXYYD B-. BA0 BDATZ BGNMA CAJEC CCEZO CEKLB CHBEP CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FA0 FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HF~ HG6 HMJXF HRMNR IKXTQ IWAJR IXD I~Z J-C JBSCW JUIAU JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9J PF0 PT4 Q-- Q-2 R-C R89 ROL RPX RSV RT3 S16 S3B SAP SCL SCLPG SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T8S TCJ TGT TSG TUC U1F U1G U2A U5C U5M UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 YLTOR Z7R Z7V Z7X Z7Y Z7Z Z81 Z83 Z85 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION |
| ID | FETCH-LOGICAL-c350t-a8a40df35fa3183d5185720c3eb8d57237a3fefae2940148b32e84fb25328c863 |
| IEDL.DBID | AGYKE |
| ISSN | 2095-2899 |
| IngestDate | Wed Oct 01 04:10:37 EDT 2025 Thu Apr 24 23:00:56 EDT 2025 Fri Feb 21 02:27:51 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | novel learning strategy particle swarm algorithm feedback probability regulation global numerical optimization assisted search mechanism |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c350t-a8a40df35fa3183d5185720c3eb8d57237a3fefae2940148b32e84fb25328c863 |
| PageCount | 10 |
| ParticipantIDs | crossref_primary_10_1007_s11771_014_2133_y crossref_citationtrail_10_1007_s11771_014_2133_y springer_journals_10_1007_s11771_014_2133_y |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2014-05-01 |
| PublicationDateYYYYMMDD | 2014-05-01 |
| PublicationDate_xml | – month: 05 year: 2014 text: 2014-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Heidelberg |
| PublicationPlace_xml | – name: Heidelberg |
| PublicationSubtitle | Science & Technology of Mining and Metallurgy |
| PublicationTitle | Journal of Central South University |
| PublicationTitleAbbrev | J. Cent. South Univ |
| PublicationYear | 2014 |
| Publisher | Central South University |
| Publisher_xml | – name: Central South University |
| References | ParsopoulosK EVrahatisM NOn the computation of all global minimizers through particle swarm optimization [J]IEEE Transaction on Evolutionary Computation20048321122410.1109/TEVC.2004.8260762158192 JansonSMiddendorfMA hierarchical particle swarm optimizer for dynamic optimization problems [J]Applications of Evolutionary Computing200451352310.1007/978-3-540-24653-4_52 LingJ JQinA KSuganthanP NBaskarSComprehensive learning particle swarm optimizer for global optimization of multimodal functions [J]IEEE Transaction on Evolutionary Computation200610328129510.1109/TEVC.2005.857610 van Den BerghFEngelbrechtA PA cooperative approach to particle swarm optimization [J]IEEE Transaction on Evolutionary Computation20048322523910.1109/TEVC.2004.826069 HuXEberhartR CMultiobjective optimization using dynamic neighborhood operator [C]IEEE international conference on evolutionary computation2002Hawaii, USIEEE Press16771681 ZhouX-cZhaoZ-xZhouK-jHeC-hongRemanufacturing closed-loop supply chain network design based on genetic particle swarm optimization algorithm [J]Journal of Central South University: Science and Technology20121948248710.1007/s11771-012-1029-y CorneDDorigoMGloverFNew ideas in optimization [M]1999USAMcGraw-Hill3436 MendesRKennedyJNevesJThe fully informed particle swarm: Simpler, maybe better [J]IEEE Transaction on Evolutionary Computation20048320421010.1109/TEVC.2004.826074 MONTES De OcaM AStutzleTBirattariMDorigoMFrankenstein’s PSO: A composite particle swarm optimization algorithm [J]IEEE Transaction on Evolutionary Computation20091351120113210.1109/TEVC.2009.2021465 MauriceCKennedyJThe particle swarm-explosion, stability, and convergence in a multidimensional complex space [J]IEEE Transaction on Evolutionary Computation200261587310.1109/4235.985692 HorstRPardalosP MThoaiN VIntroduction to global optimization. Dordrecht [M]2000NetherlandKluwer Academic Publishers676810.1007/978-1-4615-0015-5 ZhanZ HZhangJLiYShiY HOrthogonal learning particle swarm optimization [J]IEEE Transaction on Evolutionary Computation201115683284710.1109/TEVC.2010.2052054 SunJFangWPaladeVWuX JXuW BQuantum-behaved particle swarm optimization with Gaussian distributed local attractor point [J]Applied Mathematics and Computation201121873763376510.1016/j.amc.2011.09.021 SuganthanP NParticle swarm optimizer with neighborhood operator [C]IEEE international conference on evolutionary computation1999Washington DC, USIEEE Press19581962 ShiX HLiY WLiH JGuanR CWangL PLiangY CAn integrated algorithm based on artificial bee colony and particle swarm optimization [C]6th international conference on neural computation2010Changchun, ChinaIEEE Press25862590 WangFHeX SLuoL GWangYHybrid optimization algorithm of PSO and Cuckoo Search [C]International conference on artificial intelligence. management science and electronic2011Xi’an, ChinaIEEE Press11721175 ParsopoulosK EVrahatisM NUPSO-A unified particle swarm optimization scheme [C]Proceedings of the International Conference of Computational Methods in Sciences and Engineering2004AtticaVSP Science Publishers868873 ShiYEberhartRA Modified Particle Swarm Optimizer [C]IEEE international conference on evolutionary computation1999Washington DC, USIEEE Press6973 KennedyJEberhartRParticle swarm optimization [C]IEEE international conference on neural networks1995AustraliaIEEE Press19421948 WangYLiBWeiseTWangJ YYuanBTianQ JSelf-adaptive learning based particle swarm optimization [J]Information Sciences20111812045144538 KennedyJMendesRPopulation structure and particle swarm performance [C]IEEE international conference on evolutionary computation2002Hawaii, USIEEE Press16711676 ShiYLiuH CGaoLZhangG HCellular particle swarm optimization [J]Information Sciences2011181204460449310.1016/j.ins.2010.05.0252823242 R Horst (2133_CR2) 2000 Y Shi (2133_CR12) 2011; 18 F Wang (2133_CR15) 2011 J J Ling (2133_CR5) 2006; 10 Y Wang (2133_CR7) 2011; 18 X H Shi (2133_CR14) 2010 K E Parsopoulos (2133_CR22) 2004 J Sun (2133_CR13) 2011; 21 K E Parsopoulos (2133_CR18) 2004; 8 S Janson (2133_CR11) 2004 C Maurice (2133_CR21) 2002; 6 R Mendes (2133_CR4) 2004; 8 M A MONTES De Oca (2133_CR17) 2009; 13 Z H Zhan (2133_CR6) 2011; 15 J Kennedy (2133_CR8) 2002 P N Suganthan (2133_CR9) 1999 F Bergh van Den (2133_CR19) 2004; 8 Y Shi (2133_CR20) 1999 J Kennedy (2133_CR3) 1995 X Hu (2133_CR10) 2002 D Corne (2133_CR1) 1999 X-c Zhou (2133_CR16) 2012; 19 |
| References_xml | – reference: ShiYEberhartRA Modified Particle Swarm Optimizer [C]IEEE international conference on evolutionary computation1999Washington DC, USIEEE Press6973 – reference: SuganthanP NParticle swarm optimizer with neighborhood operator [C]IEEE international conference on evolutionary computation1999Washington DC, USIEEE Press19581962 – reference: WangYLiBWeiseTWangJ YYuanBTianQ JSelf-adaptive learning based particle swarm optimization [J]Information Sciences20111812045144538 – reference: HuXEberhartR CMultiobjective optimization using dynamic neighborhood operator [C]IEEE international conference on evolutionary computation2002Hawaii, USIEEE Press16771681 – reference: SunJFangWPaladeVWuX JXuW BQuantum-behaved particle swarm optimization with Gaussian distributed local attractor point [J]Applied Mathematics and Computation201121873763376510.1016/j.amc.2011.09.021 – reference: van Den BerghFEngelbrechtA PA cooperative approach to particle swarm optimization [J]IEEE Transaction on Evolutionary Computation20048322523910.1109/TEVC.2004.826069 – reference: CorneDDorigoMGloverFNew ideas in optimization [M]1999USAMcGraw-Hill3436 – reference: ParsopoulosK EVrahatisM NUPSO-A unified particle swarm optimization scheme [C]Proceedings of the International Conference of Computational Methods in Sciences and Engineering2004AtticaVSP Science Publishers868873 – reference: LingJ JQinA KSuganthanP NBaskarSComprehensive learning particle swarm optimizer for global optimization of multimodal functions [J]IEEE Transaction on Evolutionary Computation200610328129510.1109/TEVC.2005.857610 – reference: MendesRKennedyJNevesJThe fully informed particle swarm: Simpler, maybe better [J]IEEE Transaction on Evolutionary Computation20048320421010.1109/TEVC.2004.826074 – reference: ShiYLiuH CGaoLZhangG HCellular particle swarm optimization [J]Information Sciences2011181204460449310.1016/j.ins.2010.05.0252823242 – reference: JansonSMiddendorfMA hierarchical particle swarm optimizer for dynamic optimization problems [J]Applications of Evolutionary Computing200451352310.1007/978-3-540-24653-4_52 – reference: MONTES De OcaM AStutzleTBirattariMDorigoMFrankenstein’s PSO: A composite particle swarm optimization algorithm [J]IEEE Transaction on Evolutionary Computation20091351120113210.1109/TEVC.2009.2021465 – reference: MauriceCKennedyJThe particle swarm-explosion, stability, and convergence in a multidimensional complex space [J]IEEE Transaction on Evolutionary Computation200261587310.1109/4235.985692 – reference: ZhouX-cZhaoZ-xZhouK-jHeC-hongRemanufacturing closed-loop supply chain network design based on genetic particle swarm optimization algorithm [J]Journal of Central South University: Science and Technology20121948248710.1007/s11771-012-1029-y – reference: ZhanZ HZhangJLiYShiY HOrthogonal learning particle swarm optimization [J]IEEE Transaction on Evolutionary Computation201115683284710.1109/TEVC.2010.2052054 – reference: ShiX HLiY WLiH JGuanR CWangL PLiangY CAn integrated algorithm based on artificial bee colony and particle swarm optimization [C]6th international conference on neural computation2010Changchun, ChinaIEEE Press25862590 – reference: ParsopoulosK EVrahatisM NOn the computation of all global minimizers through particle swarm optimization [J]IEEE Transaction on Evolutionary Computation20048321122410.1109/TEVC.2004.8260762158192 – reference: WangFHeX SLuoL GWangYHybrid optimization algorithm of PSO and Cuckoo Search [C]International conference on artificial intelligence. management science and electronic2011Xi’an, ChinaIEEE Press11721175 – reference: HorstRPardalosP MThoaiN VIntroduction to global optimization. Dordrecht [M]2000NetherlandKluwer Academic Publishers676810.1007/978-1-4615-0015-5 – reference: KennedyJMendesRPopulation structure and particle swarm performance [C]IEEE international conference on evolutionary computation2002Hawaii, USIEEE Press16711676 – reference: KennedyJEberhartRParticle swarm optimization [C]IEEE international conference on neural networks1995AustraliaIEEE Press19421948 – volume: 8 start-page: 204 issue: 3 year: 2004 ident: 2133_CR4 publication-title: IEEE Transaction on Evolutionary Computation doi: 10.1109/TEVC.2004.826074 – start-page: 513 volume-title: Applications of Evolutionary Computing year: 2004 ident: 2133_CR11 doi: 10.1007/978-3-540-24653-4_52 – start-page: 1958 volume-title: IEEE international conference on evolutionary computation year: 1999 ident: 2133_CR9 – volume: 18 start-page: 4514 issue: 120 year: 2011 ident: 2133_CR7 publication-title: Information Sciences – start-page: 1942 volume-title: IEEE international conference on neural networks year: 1995 ident: 2133_CR3 doi: 10.1109/ICNN.1995.488968 – volume: 21 start-page: 3763 issue: 87 year: 2011 ident: 2133_CR13 publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2011.09.021 – start-page: 868 volume-title: Proceedings of the International Conference of Computational Methods in Sciences and Engineering year: 2004 ident: 2133_CR22 – start-page: 2586 volume-title: 6th international conference on neural computation year: 2010 ident: 2133_CR14 – start-page: 1172 volume-title: International conference on artificial intelligence. management science and electronic year: 2011 ident: 2133_CR15 – start-page: 1677 volume-title: IEEE international conference on evolutionary computation year: 2002 ident: 2133_CR10 – volume: 10 start-page: 281 issue: 3 year: 2006 ident: 2133_CR5 publication-title: IEEE Transaction on Evolutionary Computation doi: 10.1109/TEVC.2005.857610 – start-page: 69 volume-title: IEEE international conference on evolutionary computation year: 1999 ident: 2133_CR20 – start-page: 67 volume-title: Introduction to global optimization. Dordrecht [M] year: 2000 ident: 2133_CR2 doi: 10.1007/978-1-4615-0015-5 – start-page: 1671 volume-title: IEEE international conference on evolutionary computation year: 2002 ident: 2133_CR8 – volume: 18 start-page: 4460 issue: 120 year: 2011 ident: 2133_CR12 publication-title: Information Sciences doi: 10.1016/j.ins.2010.05.025 – volume: 8 start-page: 225 issue: 3 year: 2004 ident: 2133_CR19 publication-title: IEEE Transaction on Evolutionary Computation doi: 10.1109/TEVC.2004.826069 – volume: 6 start-page: 58 issue: 1 year: 2002 ident: 2133_CR21 publication-title: IEEE Transaction on Evolutionary Computation doi: 10.1109/4235.985692 – start-page: 34 volume-title: New ideas in optimization [M] year: 1999 ident: 2133_CR1 – volume: 19 start-page: 482 year: 2012 ident: 2133_CR16 publication-title: Journal of Central South University: Science and Technology doi: 10.1007/s11771-012-1029-y – volume: 13 start-page: 1120 issue: 5 year: 2009 ident: 2133_CR17 publication-title: IEEE Transaction on Evolutionary Computation doi: 10.1109/TEVC.2009.2021465 – volume: 15 start-page: 832 issue: 6 year: 2011 ident: 2133_CR6 publication-title: IEEE Transaction on Evolutionary Computation doi: 10.1109/TEVC.2010.2052054 – volume: 8 start-page: 211 issue: 3 year: 2004 ident: 2133_CR18 publication-title: IEEE Transaction on Evolutionary Computation doi: 10.1109/TEVC.2004.826076 |
| SSID | ssib031263696 ssib051367662 ssib026412149 ssib016993150 ssib024508231 ssj0001192107 ssib009883398 ssib016971650 |
| Score | 1.9750311 |
| Snippet | During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, but... |
| SourceID | crossref springer |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 1871 |
| SubjectTerms | Engineering Metallic Materials |
| Title | A composite particle swarm algorithm for global optimization of multimodal functions |
| URI | https://link.springer.com/article/10.1007/s11771-014-2133-y |
| Volume | 21 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2227-5223 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001192107 issn: 2095-2899 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 2227-5223 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001192107 issn: 2095-2899 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 2227-5223 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001192107 issn: 2095-2899 databaseCode: U2A dateStart: 20120101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7BcmkPPEor3vKhpyKj-LVJjivEQyA47Ur0FNmO01ZlN2g3CMGvx-N1NlAVJG4ZZaJE48l4xjPzDcB362xinEmpzqWl0voAxTCmaSXKVJaKl3mJjcJX1_3zkby4UTexj3vWVru3KclgqbtmN5amGPpKyn1gRR-XYSXAbfVgZXD28_JkoUY5DtDtogjWR5ikLnnn6VywjuZSJS-TYd5FYJx1UYlgvL-YeudpFVDOIspeOMpBTLHQmM29w0IxhGnzp__77tc74Ov0a9jVTtdg2MpjXszy9-i-MUf26R-oyA8KbB1Wo5dLBnO13IAlN_kCn19gH27CcECwnB1rxhy5iwpMZg96Oib69lc9_dP8HhPvUpM5ZgmpvXEbx65RUlcklEKO69Lfws05_D9fYXR6Mjw-p3HEA7VCJQ3VmZZJWQlVaTQupUJoKp5Y4UxW-iuRalG5SjueSzz7NIK7TFaGK8Ezm_XFN-hN6onbAiIyqxPHDEfQtVRKI5XLtLXG8oprm25D0oq9sBH_HMdw3BYdcjMKrPDvKVBgxeM2_Fg8cjcH_3iP-bBdhiLagdnb3Dsf4t6FTxzXMRRa7kGvmd67fe8MNeYgKv8BLI_44BnBe_a- |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3dS8MwEMCDzgf1QfzEb_PgkxJovtb2cYhj6ranDXwrSZqqsK6yTWT_vbmsXSeo4FtDU1qu1-Sud_c7hK6NNYG2OiQqFoYI4xwUTakiGU9DkUqWxikUCvf6zc5QPD7L57KOe1plu1chSb9S18VuNAzB9RWEOceKzNfRBvCrAJg_ZK2lEsXQPrf2IWgTIEl16M6NY07rMRMyWA2FOQOBMlr7JJyy5rLnnRtLzzgrGXv-Rw4QxXxZNnPmCgEHpoqe_vTU3_e_78FXv6e1d9FOaYzi1kJ79tCaHe-j7RVE4QEatDBknUNql8XvpZ7h6aea5FiNXorJ2-w1x87yxQu0CC7cGpSXxZ24yLDPWMyL1J2CPdSr-SEatu8Hdx1SdmIghstgRlSkRJBmXGYK1oBUAkGKBYZbHaXuiIeKZzZTlsUCflFqzmwkMs0kZ5GJmvwINcbF2B4jzCOjAks1AzZaKIQW0kbKGG1YxpQJT1BQyScxJaYcumWMkhqwDCJN3H0SEGkyP0E3y0veF4yOvybfVkJPys91-vvs03_NvkKbnUGvm3Qf-k9naIvBW_e5keeoMZt82Atnv8z0pdfXL3-427U |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8NAEF48QPRBPPF2H3xSliZ7NMljUUs98cFC38KeKrRNaSPiv3cnTRoLKviWIZODyWRnZmfmG4TOtNWBsioiMuGacO0DFBWGkjhmIm4ENYmBRuGHx2any297olfOOZ1U1e5VSnLa0wAoTcO8MTKuUTe-hVEEYTAn1AdZ5HMRLXPASfAK3aWtmUIlMEq3jifCJgAm1Wk8TycsrGnKRfA9LeadBX_TOj5hIW3O5t95WhR4ZyXeXrGpA-hiRYs29a4LgWCmyqT-9NbztnA-EVvYt_YGWi8dU9yaatImWrDDLbT2Da5wGz23MFSgQ5mXxaNS5_DkQ44HWPZfsvFb_jrA3gvGU5gRnPn1aFA2euLM4aJ6cZAZfwrsaaHyO6jbvn6-7JByKgPRTAQ5kbHkgXFMOAnrgRGAJkUDzayKjT9ikWTOOmlpwmG7UjFqY-4UFYzGOm6yXbQ0zIZ2D2EWaxnYUFHASYs4V1zYWGqtNHVU6mgfBZV8Ul1ClsPkjH5agy2DSFP_nBREmn7uo_PZJaMpXsdfzBeV0NPy1538zn3wL-5TtPJ01U7vbx7vDtEqhY9elEkeoaV8_G6PvSuTq5NCXb8A3yPf8Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+composite+particle+swarm+algorithm+for+global+optimization+of+multimodal+functions&rft.jtitle=Journal+of+Central+South+University&rft.au=Tan%2C+Guan-zheng&rft.au=Bao%2C+Kun&rft.au=Rimiru%2C+Richard+Maina&rft.date=2014-05-01&rft.pub=Central+South+University&rft.issn=2095-2899&rft.eissn=2227-5223&rft.volume=21&rft.issue=5&rft.spage=1871&rft.epage=1880&rft_id=info:doi/10.1007%2Fs11771-014-2133-y&rft.externalDocID=10_1007_s11771_014_2133_y |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-2899&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-2899&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-2899&client=summon |