Experimental assessment of convective heat transfer and pressure drop correlation of R1234ze(E) for a supercritical heat exchanger in the organic Rankine cycle

In the supercritical organic Rankine cycle, the process of absorbing heat from a heat source occurs in the supercritical region. The supercritical heat exchanger, which is responsible for heat exchange between the heat source and working fluid in the supercritical region, is a crucial component of t...

Full description

Saved in:
Bibliographic Details
Published inJournal of mechanical science and technology Vol. 34; no. 11; pp. 4809 - 4818
Main Authors Lee, Cheonkyu, Ko, Ji-Woon, Ji, Hyung Yong, Kim, Seon-Chang
Format Journal Article
LanguageEnglish
Published Seoul Korean Society of Mechanical Engineers 01.11.2020
Springer Nature B.V
대한기계학회
Subjects
Online AccessGet full text
ISSN1738-494X
1976-3824
DOI10.1007/s12206-020-1037-z

Cover

More Information
Summary:In the supercritical organic Rankine cycle, the process of absorbing heat from a heat source occurs in the supercritical region. The supercritical heat exchanger, which is responsible for heat exchange between the heat source and working fluid in the supercritical region, is a crucial component of this cycle. In this study, the correlation of the Nusselt number and Darcy’s friction factor was proposed, according to the experimental result of the heat transfer and pressure drop of the supercritical R1234ze(E) for the temperature ranges below and above the pseudo-critical temperature. Correlations of the Nusselt number and Darcy’s friction factor agree with the experimental results within ±20 %. Supercritical heat exchangers were designed and tested using the proposed correlations. The developed supercritical heat exchanger satisfied the condition within a -0.5 % margin of error, based on the heat exchange rate between the design and experimental results.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1738-494X
1976-3824
DOI:10.1007/s12206-020-1037-z