Solving Problems with Unknown Solution Length at Almost No Extra Cost
Following up on previous work of Cathabard et al. (in: Proceedings of foundations of genetic algorithms (FOGA’11), ACM, 2011 ) we analyze variants of the (1 + 1) evolutionary algorithm (EA) for problems with unknown solution length. For their setting, in which the solution length is sampled from a g...
        Saved in:
      
    
          | Published in | Algorithmica Vol. 81; no. 2; pp. 703 - 748 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          Springer US
    
        15.02.2019
     Springer Nature B.V Springer Verlag  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0178-4617 1432-0541  | 
| DOI | 10.1007/s00453-018-0477-7 | 
Cover
| Abstract | Following up on previous work of Cathabard et al. (in: Proceedings of foundations of genetic algorithms (FOGA’11), ACM,
2011
) we analyze variants of the (1 + 1) evolutionary algorithm (EA) for problems with unknown solution length. For their setting, in which the solution length is sampled from a geometric distribution, we provide mutation rates that yield for both benchmark functions
OneMax
and
LeadingOnes
an expected optimization time that is of the same order as that of the (1 + 1) EA knowing the solution length. More than this, we show that almost the same run times can be achieved even if
no
a priori information on the solution length is available. We also regard the situation in which neither the number nor the positions of the bits with an influence on the fitness function are known. Solving an open problem from Cathabard et al. we show that, for arbitrary
s
∈
N
, such
OneMax
and
LeadingOnes
instances can be solved, simultaneously for all
n
∈
N
, in expected time
O
(
n
(
log
(
n
)
)
2
log
log
(
n
)
…
log
(
s
-
1
)
(
n
)
(
log
(
s
)
(
n
)
)
1
+
ε
)
and
O
(
n
2
log
(
n
)
log
log
(
n
)
…
log
(
s
-
1
)
(
n
)
(
log
(
s
)
(
n
)
)
1
+
ε
)
, respectively; that is, in almost the same time as if 
n
and the relevant bit positions were known. For the
LeadingOnes
case, we prove lower bounds of same asymptotic order of magnitude apart from the
(
log
(
s
)
(
n
)
)
ε
factor. Aiming at closing this arbitrarily small remaining gap, we realize that there is no asymptotically best performance for this problem. For any algorithm solving, for all 
n
, all instances of size 
n
in expected time at most
T
(
n
), there is an algorithm doing the same in time
T
′
(
n
)
with
T
′
=
o
(
T
)
. For
OneMax
we show results of similar flavor. | 
    
|---|---|
| AbstractList | Following up on previous work of Cathabard et al. (in: Proceedings of foundations of genetic algorithms (FOGA’11), ACM,
2011
) we analyze variants of the (1 + 1) evolutionary algorithm (EA) for problems with unknown solution length. For their setting, in which the solution length is sampled from a geometric distribution, we provide mutation rates that yield for both benchmark functions
OneMax
and
LeadingOnes
an expected optimization time that is of the same order as that of the (1 + 1) EA knowing the solution length. More than this, we show that almost the same run times can be achieved even if
no
a priori information on the solution length is available. We also regard the situation in which neither the number nor the positions of the bits with an influence on the fitness function are known. Solving an open problem from Cathabard et al. we show that, for arbitrary
s
∈
N
, such
OneMax
and
LeadingOnes
instances can be solved, simultaneously for all
n
∈
N
, in expected time
O
(
n
(
log
(
n
)
)
2
log
log
(
n
)
…
log
(
s
-
1
)
(
n
)
(
log
(
s
)
(
n
)
)
1
+
ε
)
and
O
(
n
2
log
(
n
)
log
log
(
n
)
…
log
(
s
-
1
)
(
n
)
(
log
(
s
)
(
n
)
)
1
+
ε
)
, respectively; that is, in almost the same time as if 
n
and the relevant bit positions were known. For the
LeadingOnes
case, we prove lower bounds of same asymptotic order of magnitude apart from the
(
log
(
s
)
(
n
)
)
ε
factor. Aiming at closing this arbitrarily small remaining gap, we realize that there is no asymptotically best performance for this problem. For any algorithm solving, for all 
n
, all instances of size 
n
in expected time at most
T
(
n
), there is an algorithm doing the same in time
T
′
(
n
)
with
T
′
=
o
(
T
)
. For
OneMax
we show results of similar flavor. Following up on previous work of Cathabard et al. (in: Proceedings of foundations of genetic algorithms (FOGA’11), ACM, 2011) we analyze variants of the (1 + 1) evolutionary algorithm (EA) for problems with unknown solution length. For their setting, in which the solution length is sampled from a geometric distribution, we provide mutation rates that yield for both benchmark functions OneMax and LeadingOnes an expected optimization time that is of the same order as that of the (1 + 1) EA knowing the solution length. More than this, we show that almost the same run times can be achieved even if no a priori information on the solution length is available. We also regard the situation in which neither the number nor the positions of the bits with an influence on the fitness function are known. Solving an open problem from Cathabard et al. we show that, for arbitrary s∈N, such OneMax and LeadingOnes instances can be solved, simultaneously for all n∈N, in expected time O(n(log(n))2loglog(n)…log(s-1)(n)(log(s)(n))1+ε) and O(n2log(n)loglog(n)…log(s-1)(n)(log(s)(n))1+ε), respectively; that is, in almost the same time as if n and the relevant bit positions were known. For the LeadingOnes case, we prove lower bounds of same asymptotic order of magnitude apart from the (log(s)(n))ε factor. Aiming at closing this arbitrarily small remaining gap, we realize that there is no asymptotically best performance for this problem. For any algorithm solving, for all n, all instances of size n in expected time at most T(n), there is an algorithm doing the same in time T′(n) with T′=o(T). For OneMax we show results of similar flavor.  | 
    
| Author | Kötzing, Timo Doerr, Carola Doerr, Benjamin  | 
    
| Author_xml | – sequence: 1 givenname: Benjamin surname: Doerr fullname: Doerr, Benjamin organization: École Polytechnique, CNRS, LIX - UMR 7161 – sequence: 2 givenname: Carola surname: Doerr fullname: Doerr, Carola email: Carola.Doerr@lip6.fr organization: Sorbonne Université, CNRS, LIP6 – sequence: 3 givenname: Timo surname: Kötzing fullname: Kötzing, Timo organization: Hasso-Plattner-Institut  | 
    
| BackLink | https://hal.sorbonne-universite.fr/hal-01921042$$DView record in HAL | 
    
| BookMark | eNp9kE1Lw0AQhhepYP34Ad4WPHmIzn4kkxxLqVYoKqjnZZNuazTdrbtpq__eDVEEQU_DzDzv8M57SAbWWUPIKYMLBoCXAUCmIgGWJyARE9wjQyYFTyCVbECGwDBPZMbwgByG8ALAOBbZkEweXLOt7ZLee1c2ZhXorm6f6ZN9tW5nadxu2tpZOjN2Gee6paNm5UJLbx2dvLde03Hsjsn-QjfBnHzVI_J0NXkcT5PZ3fXNeDRLKpFCmxSmmOfzCsocK44pZILnUgqNBhZSF2WZVpkRIBYmK-eaS-TCcOQZK-ccIc_EETnv7z7rRq19vdL-Qzldq-loproZsIIzkHzLInvWs2vv3jYmtOrFbbyN9hRniAUXKcdIYU9V3oXgzUJVdau7l-NvdaMYqC5f1ecb7-eqy1d1SvZL-W3oPw3vNSGydmn8j6e_RZ-KWoxq | 
    
| CitedBy_id | crossref_primary_10_1007_s00453_024_01226_3 crossref_primary_10_1145_3472304 crossref_primary_10_1007_s00453_022_00977_1 crossref_primary_10_1007_s00453_023_01098_z crossref_primary_10_1109_TEVC_2020_2985450  | 
    
| Cites_doi | 10.1007/s11047-008-9098-4 10.1007/978-3-642-17339-4 10.1017/S0963548312000600 10.1007/978-3-642-15844-5_1 10.1016/S0304-3975(01)00182-7 10.1162/106365605774666921 10.1142/7438 10.1145/2908812.2908891 10.1016/j.ins.2010.01.031 10.1145/2001576.2001856 10.1109/TEVC.2005.846356 10.1145/2739480.2754681 10.1007/s00453-017-0354-9 10.1145/3205455.3205627 10.1145/1830483.1830749 10.1109/TEVC.2012.2202241 10.1239/jap/1110381369 10.1162/evco_a_00212 10.1080/07468342.1997.11973879 10.1145/3071178.3071301 10.1017/S0963548309990599 10.1016/j.tcs.2014.03.015 10.1145/3071178.3071233 10.1007/s00453-012-9622-x 10.1145/1967654.1967670 10.1145/2463372.2463565  | 
    
| ContentType | Journal Article | 
    
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2018 Copyright Springer Nature B.V. 2019 Distributed under a Creative Commons Attribution 4.0 International License  | 
    
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018 – notice: Copyright Springer Nature B.V. 2019 – notice: Distributed under a Creative Commons Attribution 4.0 International License  | 
    
| DBID | AAYXX CITATION JQ2 1XC  | 
    
| DOI | 10.1007/s00453-018-0477-7 | 
    
| DatabaseName | CrossRef ProQuest Computer Science Collection Hyper Article en Ligne (HAL)  | 
    
| DatabaseTitle | CrossRef ProQuest Computer Science Collection  | 
    
| DatabaseTitleList | ProQuest Computer Science Collection  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1432-0541 | 
    
| EndPage | 748 | 
    
| ExternalDocumentID | oai:HAL:hal-01921042v1 10_1007_s00453_018_0477_7  | 
    
| GrantInformation_xml | – fundername: Gaspard Monge Program for Optimization and Operations Research – fundername: Fondation Mathématique Jacques Hadamard grantid: ANR-11-LABX-0056-LMH funderid: http://dx.doi.org/10.13039/501100007493 – fundername: Deutsche Forschungsgemeinschaft grantid: FR 2988 (TOSU) funderid: http://dx.doi.org/10.13039/501100001659  | 
    
| GroupedDBID | -4Z -59 -5G -BR -EM -~C -~X .86 .DC .VR 06D 0R~ 0VY 199 1N0 203 23M 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BGNMA BSONS CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P9O PF- PT4 PT5 QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S3B SAP SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7X Z83 Z88 Z8R Z8W Z92 ZMTXR ~EX -Y2 1SB 28- 2P1 2VQ 5QI AAAVM AAOBN AAPKM AARHV AAYTO AAYXX ABBRH ABDBE ABDPE ABFSG ABFSI ABQSL ABRTQ ABULA ACBXY ACSTC ADHKG AEBTG AEFIE AEKMD AEZWR AFDZB AFEXP AFGCZ AFHIU AFOHR AGGDS AGQPQ AHPBZ AHWEU AI. AIXLP AJBLW ATHPR AYFIA BBWZM CAG CITATION COF E.L H13 H~9 KOW N2Q NDZJH O9- R4E RNI RZK S1Z S26 S28 SCJ SCLPG T16 UQL VH1 ZY4 JQ2 1XC  | 
    
| ID | FETCH-LOGICAL-c350t-9e9d8dc0b87c27506328443a7e0f4a9bb5c6e303fe6bda24723e27261bd270863 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 0178-4617 | 
    
| IngestDate | Tue Oct 14 20:39:27 EDT 2025 Thu Oct 02 16:27:22 EDT 2025 Thu Apr 24 23:09:24 EDT 2025 Wed Oct 01 01:52:07 EDT 2025 Fri Feb 21 02:43:10 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Keywords | Unknown solution length Uncertainty Runtime analysis Black-box optimization Evolutionary computation  | 
    
| Language | English | 
    
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c350t-9e9d8dc0b87c27506328443a7e0f4a9bb5c6e303fe6bda24723e27261bd270863 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-4981-3227 0000-0002-9786-220X  | 
    
| PQID | 2177923527 | 
    
| PQPubID | 2043795 | 
    
| PageCount | 46 | 
    
| ParticipantIDs | hal_primary_oai_HAL_hal_01921042v1 proquest_journals_2177923527 crossref_citationtrail_10_1007_s00453_018_0477_7 crossref_primary_10_1007_s00453_018_0477_7 springer_journals_10_1007_s00453_018_0477_7  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20190215 | 
    
| PublicationDateYYYYMMDD | 2019-02-15 | 
    
| PublicationDate_xml | – month: 2 year: 2019 text: 20190215 day: 15  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationTitle | Algorithmica | 
    
| PublicationTitleAbbrev | Algorithmica | 
    
| PublicationYear | 2019 | 
    
| Publisher | Springer US Springer Nature B.V Springer Verlag  | 
    
| Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: Springer Verlag  | 
    
| References | DrosteSJansenTWegenerIOn the analysis of the (1+1) evolutionary algorithmTheor. Comput. Sci.20022765181189634710.1016/S0304-3975(01)00182-71002.68037 WittCTight bounds on the optimization time of a randomized search heuristic on linear functionsComb. Probab. Comput.201322294318302133610.1017/S09635483120006001258.68183 DoerrBKünnemannMOptimizing linear functions with the (1+λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}) evolutionary algorithm–different asymptotic runtimes for different instancesTheor. Comput. Sci.2015561323328218110.1016/j.tcs.2014.03.0151303.68120 Doerr, B., Fouz, M., Witt, C.: Quasirandom evolutionary algorithms. In: Proceedings of the 12th Annual Genetic and Evolutionary Computation Conference (GECCO’10), pp. 1457–1464. ACM (2010) JinYBrankeJEvolutionary optimization in uncertain environments—a surveyIEEE Trans. Evol. Comput.2005930331710.1109/TEVC.2005.846356 Doerr, B., Jansen, T., Witt, C., Zarges, C.: A method to derive fixed budget results from expected optimisation times. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’13), pp. 1581–1588. ACM (2013) WittCRuntime analysis of the (μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} + 1) EA on simple pseudo-Boolean functionsEvol. Comput.2006146586 HwangHPanholzerARolinNTsaiTChenWProbabilistic analysis of the (1+1)-evolutionary algorithmEvol. Comput.20182629934510.1162/evco_a_00212 AshJMNeither a worst convergent series nor a best divergent series existsColl. Math. J.199728296297146401310.1080/07468342.1997.11973879 Doerr, B., Le, H.P., Makhmara, R., Nguyen, T.D.: Fast genetic algorithms. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’17), pp. 777–784. ACM (2017) Cathabard, S., Lehre, P.K., Yao, X.: Non-uniform mutation rates for problems with unknown solution lengths. In: Proceedings of Foundations of Genetic Algorithms (FOGA’11), pp. 173–180. ACM (2011) LehrePKYaoXRuntime analysis of the (1 + 1) EA on computing unique input output sequencesInf. Sci.2014259510531313423710.1016/j.ins.2010.01.0311328.68200 SudholtDA new method for lower bounds on the running time of evolutionary algorithmsIEEE Trans. Evol. Comput.20131741843510.1109/TEVC.2012.2202241 DietzfelbingerMRoweJEWegenerIWoelfelPTight bounds for blind search on the integers and the realsComb. Probab. Comput.201019711728272607610.1017/S09635483099905991261.68069 LadretVAsymptotic hitting time for a simple evolutionary model of protein foldingJ. Appl. Probab.2005423951214409110.1239/jap/11103813691074.60076 Doerr, B.: Better runtime guarantees via stochastic domination. CoRR abs/1801.04487 (2018). http://arxiv.org/abs/1801.04487 Böttcher, S., Doerr, B., Neumann, F.: Optimal fixed and adaptive mutation rates for the LeadingOnes problem. In: Proceedings of Parallel Problem Solving from Nature (PPSN’10), pp. 1–10. Springer, Berlin (2010) HardyGHOrders of Infinity1910CambridgeCambridge University Press41.0303.01 Doerr, B.: Probabilistic tools for the analysis of randomized optimization heuristics. CoRR abs/1801.06733 (2018). http://arxiv.org/abs/1801.06733 DoerrBDoerrCOptimal static and self-adjusting parameter choices for the (1+(λ,λ))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+(\lambda,\lambda ))$$\end{document} genetic algorithmAlgorithmica20188016581709377901410.1007/s00453-017-0354-91391.68100 Antipov, D., Doerr, B., Fang, J., Hetet, T.: Runtime analysis for the (μ+λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mu +\lambda )$$\end{document} EA optimizing OneMax. In: Genetic and Evolutionary Computation Conference (GECCO’18). ACM (2018) (to appear) Doerr, B., Doerr, C., Kötzing, T.: The right mutation strength for multi-valued decision variables. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’16), pp. 1115–1122. ACM (2016) BianchiLDorigoMGambardellaLGutjahrWA survey on metaheuristics for stochastic combinatorial optimizationNat. Comput.20098239287250575110.1007/s11047-008-9098-41162.90591 Doerr, B., Fouz, M., Witt, C.: Sharp bounds by probability-generating functions and variable drift. In: Proceedings of the 13th Annual Genetic and Evolutionary Computation Conference (GECCO’11), pp. 2083–2090. ACM (2011) DoerrBJohannsenDWinzenCMultiplicative drift analysisAlgorithmica201264673697298947010.1007/s00453-012-9622-x1264.68220 AugerADoerrBTheory of Randomized Search Heuristics2011SingaporeWorld Scientific10.1142/74381233.90005 Doerr, B., Doerr, C., Kötzing, T.: Unknown solution length problems with no asymptotically optimal run time. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’17), pp. 1367–1374. ACM (2017) Doerr, B., Doerr, C., Kötzing, T.: Solving problems with unknown solution length at (almost) no extra cost. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’15), pp. 831–838. ACM (2015) JansenTAnalyzing Evolutionary Algorithms—The Computer Science Perspective2013BerlinSpringer10.1007/978-3-642-17339-41282.68008 NeumannFWittCBioinspired Computation in Combinatorial Optimization—Algorithms and Their Computational Complexity2010BerlinSpringer1223.68002 JansenTDe JongKAWegenerIOn the choice of the offspring population size in evolutionary algorithmsEvol. Comput.20051341344010.1162/106365605774666921 T Jansen (477_CR24) 2005; 13 S Droste (477_CR20) 2002; 276 A Auger (477_CR3) 2011 477_CR19 T Jansen (477_CR23) 2013 D Sudholt (477_CR29) 2013; 17 H Hwang (477_CR22) 2018; 26 C Witt (477_CR31) 2013; 22 B Doerr (477_CR10) 2018; 80 JM Ash (477_CR2) 1997; 28 477_CR1 B Doerr (477_CR18) 2015; 561 477_CR5 F Neumann (477_CR28) 2010 L Bianchi (477_CR4) 2009; 8 477_CR6 477_CR9 477_CR8 PK Lehre (477_CR27) 2014; 259 477_CR11 477_CR12 477_CR13 477_CR14 477_CR15 477_CR16 V Ladret (477_CR26) 2005; 42 GH Hardy (477_CR21) 1910 Y Jin (477_CR25) 2005; 9 C Witt (477_CR30) 2006; 14 M Dietzfelbinger (477_CR7) 2010; 19 B Doerr (477_CR17) 2012; 64  | 
    
| References_xml | – reference: Doerr, B., Fouz, M., Witt, C.: Sharp bounds by probability-generating functions and variable drift. In: Proceedings of the 13th Annual Genetic and Evolutionary Computation Conference (GECCO’11), pp. 2083–2090. ACM (2011) – reference: DoerrBKünnemannMOptimizing linear functions with the (1+λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}) evolutionary algorithm–different asymptotic runtimes for different instancesTheor. Comput. Sci.2015561323328218110.1016/j.tcs.2014.03.0151303.68120 – reference: Doerr, B., Fouz, M., Witt, C.: Quasirandom evolutionary algorithms. In: Proceedings of the 12th Annual Genetic and Evolutionary Computation Conference (GECCO’10), pp. 1457–1464. ACM (2010) – reference: JansenTDe JongKAWegenerIOn the choice of the offspring population size in evolutionary algorithmsEvol. Comput.20051341344010.1162/106365605774666921 – reference: AshJMNeither a worst convergent series nor a best divergent series existsColl. Math. J.199728296297146401310.1080/07468342.1997.11973879 – reference: DoerrBJohannsenDWinzenCMultiplicative drift analysisAlgorithmica201264673697298947010.1007/s00453-012-9622-x1264.68220 – reference: Doerr, B.: Better runtime guarantees via stochastic domination. CoRR abs/1801.04487 (2018). http://arxiv.org/abs/1801.04487 – reference: DrosteSJansenTWegenerIOn the analysis of the (1+1) evolutionary algorithmTheor. Comput. Sci.20022765181189634710.1016/S0304-3975(01)00182-71002.68037 – reference: NeumannFWittCBioinspired Computation in Combinatorial Optimization—Algorithms and Their Computational Complexity2010BerlinSpringer1223.68002 – reference: Doerr, B.: Probabilistic tools for the analysis of randomized optimization heuristics. CoRR abs/1801.06733 (2018). http://arxiv.org/abs/1801.06733 – reference: DoerrBDoerrCOptimal static and self-adjusting parameter choices for the (1+(λ,λ))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+(\lambda,\lambda ))$$\end{document} genetic algorithmAlgorithmica20188016581709377901410.1007/s00453-017-0354-91391.68100 – reference: JansenTAnalyzing Evolutionary Algorithms—The Computer Science Perspective2013BerlinSpringer10.1007/978-3-642-17339-41282.68008 – reference: Doerr, B., Doerr, C., Kötzing, T.: Unknown solution length problems with no asymptotically optimal run time. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’17), pp. 1367–1374. ACM (2017) – reference: JinYBrankeJEvolutionary optimization in uncertain environments—a surveyIEEE Trans. Evol. Comput.2005930331710.1109/TEVC.2005.846356 – reference: AugerADoerrBTheory of Randomized Search Heuristics2011SingaporeWorld Scientific10.1142/74381233.90005 – reference: HardyGHOrders of Infinity1910CambridgeCambridge University Press41.0303.01 – reference: Cathabard, S., Lehre, P.K., Yao, X.: Non-uniform mutation rates for problems with unknown solution lengths. In: Proceedings of Foundations of Genetic Algorithms (FOGA’11), pp. 173–180. ACM (2011) – reference: Doerr, B., Doerr, C., Kötzing, T.: Solving problems with unknown solution length at (almost) no extra cost. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’15), pp. 831–838. ACM (2015) – reference: LehrePKYaoXRuntime analysis of the (1 + 1) EA on computing unique input output sequencesInf. Sci.2014259510531313423710.1016/j.ins.2010.01.0311328.68200 – reference: DietzfelbingerMRoweJEWegenerIWoelfelPTight bounds for blind search on the integers and the realsComb. Probab. Comput.201019711728272607610.1017/S09635483099905991261.68069 – reference: WittCRuntime analysis of the (μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} + 1) EA on simple pseudo-Boolean functionsEvol. Comput.2006146586 – reference: HwangHPanholzerARolinNTsaiTChenWProbabilistic analysis of the (1+1)-evolutionary algorithmEvol. Comput.20182629934510.1162/evco_a_00212 – reference: Antipov, D., Doerr, B., Fang, J., Hetet, T.: Runtime analysis for the (μ+λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mu +\lambda )$$\end{document} EA optimizing OneMax. In: Genetic and Evolutionary Computation Conference (GECCO’18). ACM (2018) (to appear) – reference: Doerr, B., Le, H.P., Makhmara, R., Nguyen, T.D.: Fast genetic algorithms. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’17), pp. 777–784. ACM (2017) – reference: Doerr, B., Doerr, C., Kötzing, T.: The right mutation strength for multi-valued decision variables. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’16), pp. 1115–1122. ACM (2016) – reference: Doerr, B., Jansen, T., Witt, C., Zarges, C.: A method to derive fixed budget results from expected optimisation times. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’13), pp. 1581–1588. ACM (2013) – reference: LadretVAsymptotic hitting time for a simple evolutionary model of protein foldingJ. Appl. Probab.2005423951214409110.1239/jap/11103813691074.60076 – reference: BianchiLDorigoMGambardellaLGutjahrWA survey on metaheuristics for stochastic combinatorial optimizationNat. Comput.20098239287250575110.1007/s11047-008-9098-41162.90591 – reference: Böttcher, S., Doerr, B., Neumann, F.: Optimal fixed and adaptive mutation rates for the LeadingOnes problem. In: Proceedings of Parallel Problem Solving from Nature (PPSN’10), pp. 1–10. Springer, Berlin (2010) – reference: SudholtDA new method for lower bounds on the running time of evolutionary algorithmsIEEE Trans. Evol. Comput.20131741843510.1109/TEVC.2012.2202241 – reference: WittCTight bounds on the optimization time of a randomized search heuristic on linear functionsComb. Probab. Comput.201322294318302133610.1017/S09635483120006001258.68183 – volume: 8 start-page: 239 year: 2009 ident: 477_CR4 publication-title: Nat. Comput. doi: 10.1007/s11047-008-9098-4 – volume-title: Analyzing Evolutionary Algorithms—The Computer Science Perspective year: 2013 ident: 477_CR23 doi: 10.1007/978-3-642-17339-4 – volume: 22 start-page: 294 year: 2013 ident: 477_CR31 publication-title: Comb. Probab. Comput. doi: 10.1017/S0963548312000600 – ident: 477_CR5 doi: 10.1007/978-3-642-15844-5_1 – volume: 276 start-page: 51 year: 2002 ident: 477_CR20 publication-title: Theor. Comput. Sci. doi: 10.1016/S0304-3975(01)00182-7 – volume: 13 start-page: 413 year: 2005 ident: 477_CR24 publication-title: Evol. Comput. doi: 10.1162/106365605774666921 – ident: 477_CR9 – volume-title: Orders of Infinity year: 1910 ident: 477_CR21 – volume-title: Theory of Randomized Search Heuristics year: 2011 ident: 477_CR3 doi: 10.1142/7438 – ident: 477_CR12 doi: 10.1145/2908812.2908891 – volume: 259 start-page: 510 year: 2014 ident: 477_CR27 publication-title: Inf. Sci. doi: 10.1016/j.ins.2010.01.031 – volume-title: Bioinspired Computation in Combinatorial Optimization—Algorithms and Their Computational Complexity year: 2010 ident: 477_CR28 – ident: 477_CR15 doi: 10.1145/2001576.2001856 – volume: 9 start-page: 303 year: 2005 ident: 477_CR25 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2005.846356 – ident: 477_CR11 doi: 10.1145/2739480.2754681 – volume: 80 start-page: 1658 year: 2018 ident: 477_CR10 publication-title: Algorithmica doi: 10.1007/s00453-017-0354-9 – ident: 477_CR1 doi: 10.1145/3205455.3205627 – ident: 477_CR14 doi: 10.1145/1830483.1830749 – volume: 17 start-page: 418 year: 2013 ident: 477_CR29 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2012.2202241 – volume: 42 start-page: 39 year: 2005 ident: 477_CR26 publication-title: J. Appl. Probab. doi: 10.1239/jap/1110381369 – volume: 26 start-page: 299 year: 2018 ident: 477_CR22 publication-title: Evol. Comput. doi: 10.1162/evco_a_00212 – volume: 28 start-page: 296 year: 1997 ident: 477_CR2 publication-title: Coll. Math. J. doi: 10.1080/07468342.1997.11973879 – ident: 477_CR19 doi: 10.1145/3071178.3071301 – volume: 14 start-page: 65 year: 2006 ident: 477_CR30 publication-title: Evol. Comput. – volume: 19 start-page: 711 year: 2010 ident: 477_CR7 publication-title: Comb. Probab. Comput. doi: 10.1017/S0963548309990599 – volume: 561 start-page: 3 year: 2015 ident: 477_CR18 publication-title: Theor. Comput. Sci. doi: 10.1016/j.tcs.2014.03.015 – ident: 477_CR8 – ident: 477_CR13 doi: 10.1145/3071178.3071233 – volume: 64 start-page: 673 year: 2012 ident: 477_CR17 publication-title: Algorithmica doi: 10.1007/s00453-012-9622-x – ident: 477_CR6 doi: 10.1145/1967654.1967670 – ident: 477_CR16 doi: 10.1145/2463372.2463565  | 
    
| SSID | ssj0012796 | 
    
| Score | 2.3273764 | 
    
| Snippet | Following up on previous work of Cathabard et al. (in: Proceedings of foundations of genetic algorithms (FOGA’11), ACM,
2011
) we analyze variants of the... Following up on previous work of Cathabard et al. (in: Proceedings of foundations of genetic algorithms (FOGA’11), ACM, 2011) we analyze variants of the (1 +...  | 
    
| SourceID | hal proquest crossref springer  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 703 | 
    
| SubjectTerms | Algorithm Analysis and Problem Complexity Algorithms Asymptotic properties Computer Science Computer Systems Organization and Communication Networks Data Structures and Algorithms Data Structures and Information Theory Evolutionary algorithms Fitness Genetic algorithms Lower bounds Mathematics of Computing Neural and Evolutionary Computing Special Issue on Theory of Genetic and Evolutionary Computation Theory of Computation  | 
    
| Title | Solving Problems with Unknown Solution Length at Almost No Extra Cost | 
    
| URI | https://link.springer.com/article/10.1007/s00453-018-0477-7 https://www.proquest.com/docview/2177923527 https://hal.sorbonne-universite.fr/hal-01921042  | 
    
| Volume | 81 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1432-0541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012796 issn: 0178-4617 databaseCode: AFBBN dateStart: 19861101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1432-0541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012796 issn: 0178-4617 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1432-0541 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012796 issn: 0178-4617 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA9ue_HFb3E6RxCflECXfmR77Ebn0DkELcynkqSZPsxWtir--d51bf1ABZ9K0zSFS9K7393ld4ScziwtO9wIpjrCMIdbgkkdA1gBGObymbG1woPC1xNvFDqXU3danONeltnuZUgy_1NXh93Q-sDcny6zHCGYqJGGi2xesIhD7lehAy7yolxYdp45oJ_LUOZPQ3xRRrVHTIX8ZGd-C43mGme4RTYKU5H6q7ndJmsm2SGbZRkGWuzKXRLcpnN0C9CbVXGYJUXnKg0T9JcltHR80bFJHqBdZtSfP6XLjE5SGrxlC0kHcLdHwmFwNxixojoC07ZrZaxnenE31pbqCo0k7Z4NmsaxpTDWzJE9pVztGVBQM-OpWHJHcNtwAYBJxVwAkLH3ST1JE3NAqCc1IC9bgukHeMu1ETMhZy2M4igldZNYpZgiXVCHYwWLeVSRHueSjUCyEUo2Ek1yVr3yvOLN-KvzCci-6oeM1yN_HGEbWqCAGPlrp0la5dRExT5bRgCokADR5TDGeTldH49__eLhv3ofkXWwk3qYrN1xW6SeLV7MMdgimWqThj_s9yd4vbi_Ctr5WnwHxpnUrQ | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED5BeWAvwIBpHbBZiCcmo9Rx4vaxQoUOSoVEK8GTZTsuk9alqA0T4q_nro3DD22TeIzjOMnZyd13d_4O4GAUOdMQXnHbUJ5LESluXIZgBWFYIkY-dpY2Cl_00-5Qnl0n1-U-7lnIdg8hyfmfutrsRtYH5f40eSSV4moZViTiE1GDlfbpzXmnCh4INS_LRYXnuUQNHYKZfxvklTpa_knJkC8szTfB0bnOOVmHQXjaRarJr6P7wh65xzdEju98nQ1YK21Q1l4smo-w5PNNWA_1HVj5uW9B52oyJn8Du1xUnZkx8tqyYU6OuJwFjxrr-fwW203B2uPfk1nB-hPWeSimhh3j0TYMTzqD4y4vyy5wFydRwVu-lTUzF9mmcsT-nsaowmRslI9G0rSsTVzqUfONfGozI6QSsRcKkZjNhEKEFH-CWj7J_WdgqXEI6WKDNiUCuSQmMEZkuDiKtNa4OkRB-tqVnORUGmOsKzbluZg0ikmTmLSqw2F1yd2CkON_nfdxSqt-RKXdbfc0tZFpi1BU_GnUYTfMuC4_4JlGpEbMionAMb6HCXw-_c87fnlX72-w2h1c9HTvR_98Bz6gMdaijPBGsgu1Ynrv99DgKezXcoE_Ab0C8U4 | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA9ugvjitzg_g_ikhHVp2myPQzemzjHQwd5Ckqb6MLuxVfHP925r6wcq-Ng0TeEu4e53d_kdIWexZ3WNO8lMTTomuCeZthGAFYBhAY-dbw1eFL7rhZ2BuBkGw6zP6Syvds9Tkos7DcjSlKTVSRRXi4tv6IlgHVCdeUJKJktkWSBPAmzoAW8WaQQu5w26sAU9E2Cr87TmT0t8MUylJyyL_ORzfkuTzq1Pe4OsZW4jbS70vEmWXLJF1vOWDDQ7odukdT8eYYiA9heNYmYUA610kGDsLKF5EIx2XfII4zqlzdHzeJbS3pi23tKpppfwtEMG7dbDZYdlnRKY9QMvZQ3XiOqR9UxdWiRsD32wOsLX0nmx0A1jAhs6MFaxC02kuZDcd1wCeDIRlwBq_F1STsaJ2yM01BZQmK_BDQTsFfiIn5C_FlYRxmhbIV4uJmUzGnHsZjFSBQHyXLIKJKtQskpWyHnxyWTBofHX5FOQfTEP2a87za7CMfRGAT3y11qFHOaqUdmZmykAV0iGGHBY4yJX18frX_-4_6_ZJ2Slf9VW3eve7QFZBfepgTXcteCQlNPpizsCFyU1x_Nt-A40qdjF | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+Problems+with+Unknown+Solution+Length+at+Almost+No+Extra+Cost&rft.jtitle=Algorithmica&rft.au=Doerr%2C+Benjamin&rft.au=Doerr%2C+Carola&rft.au=K%C3%B6tzing%2C+Timo&rft.date=2019-02-15&rft.pub=Springer+Verlag&rft.issn=0178-4617&rft.eissn=1432-0541&rft.volume=81&rft.spage=703&rft.epage=748&rft_id=info:doi/10.1007%2Fs00453-018-0477-7&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-01921042v1 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon |