Solving Problems with Unknown Solution Length at Almost No Extra Cost

Following up on previous work of Cathabard et al. (in: Proceedings of foundations of genetic algorithms (FOGA’11), ACM, 2011 ) we analyze variants of the (1 + 1) evolutionary algorithm (EA) for problems with unknown solution length. For their setting, in which the solution length is sampled from a g...

Full description

Saved in:
Bibliographic Details
Published inAlgorithmica Vol. 81; no. 2; pp. 703 - 748
Main Authors Doerr, Benjamin, Doerr, Carola, Kötzing, Timo
Format Journal Article
LanguageEnglish
Published New York Springer US 15.02.2019
Springer Nature B.V
Springer Verlag
Subjects
Online AccessGet full text
ISSN0178-4617
1432-0541
DOI10.1007/s00453-018-0477-7

Cover

Abstract Following up on previous work of Cathabard et al. (in: Proceedings of foundations of genetic algorithms (FOGA’11), ACM, 2011 ) we analyze variants of the (1 + 1) evolutionary algorithm (EA) for problems with unknown solution length. For their setting, in which the solution length is sampled from a geometric distribution, we provide mutation rates that yield for both benchmark functions OneMax and LeadingOnes an expected optimization time that is of the same order as that of the (1 + 1) EA knowing the solution length. More than this, we show that almost the same run times can be achieved even if no a priori information on the solution length is available. We also regard the situation in which neither the number nor the positions of the bits with an influence on the fitness function are known. Solving an open problem from Cathabard et al. we show that, for arbitrary s ∈ N , such OneMax and LeadingOnes instances can be solved, simultaneously for all n ∈ N , in expected time O ( n ( log ( n ) ) 2 log log ( n ) … log ( s - 1 ) ( n ) ( log ( s ) ( n ) ) 1 + ε ) and O ( n 2 log ( n ) log log ( n ) … log ( s - 1 ) ( n ) ( log ( s ) ( n ) ) 1 + ε ) , respectively; that is, in almost the same time as if  n and the relevant bit positions were known. For the LeadingOnes case, we prove lower bounds of same asymptotic order of magnitude apart from the ( log ( s ) ( n ) ) ε factor. Aiming at closing this arbitrarily small remaining gap, we realize that there is no asymptotically best performance for this problem. For any algorithm solving, for all  n , all instances of size  n in expected time at most T ( n ), there is an algorithm doing the same in time T ′ ( n ) with T ′ = o ( T ) . For OneMax we show results of similar flavor.
AbstractList Following up on previous work of Cathabard et al. (in: Proceedings of foundations of genetic algorithms (FOGA’11), ACM, 2011 ) we analyze variants of the (1 + 1) evolutionary algorithm (EA) for problems with unknown solution length. For their setting, in which the solution length is sampled from a geometric distribution, we provide mutation rates that yield for both benchmark functions OneMax and LeadingOnes an expected optimization time that is of the same order as that of the (1 + 1) EA knowing the solution length. More than this, we show that almost the same run times can be achieved even if no a priori information on the solution length is available. We also regard the situation in which neither the number nor the positions of the bits with an influence on the fitness function are known. Solving an open problem from Cathabard et al. we show that, for arbitrary s ∈ N , such OneMax and LeadingOnes instances can be solved, simultaneously for all n ∈ N , in expected time O ( n ( log ( n ) ) 2 log log ( n ) … log ( s - 1 ) ( n ) ( log ( s ) ( n ) ) 1 + ε ) and O ( n 2 log ( n ) log log ( n ) … log ( s - 1 ) ( n ) ( log ( s ) ( n ) ) 1 + ε ) , respectively; that is, in almost the same time as if  n and the relevant bit positions were known. For the LeadingOnes case, we prove lower bounds of same asymptotic order of magnitude apart from the ( log ( s ) ( n ) ) ε factor. Aiming at closing this arbitrarily small remaining gap, we realize that there is no asymptotically best performance for this problem. For any algorithm solving, for all  n , all instances of size  n in expected time at most T ( n ), there is an algorithm doing the same in time T ′ ( n ) with T ′ = o ( T ) . For OneMax we show results of similar flavor.
Following up on previous work of Cathabard et al. (in: Proceedings of foundations of genetic algorithms (FOGA’11), ACM, 2011) we analyze variants of the (1 + 1) evolutionary algorithm (EA) for problems with unknown solution length. For their setting, in which the solution length is sampled from a geometric distribution, we provide mutation rates that yield for both benchmark functions OneMax and LeadingOnes an expected optimization time that is of the same order as that of the (1 + 1) EA knowing the solution length. More than this, we show that almost the same run times can be achieved even if no a priori information on the solution length is available. We also regard the situation in which neither the number nor the positions of the bits with an influence on the fitness function are known. Solving an open problem from Cathabard et al. we show that, for arbitrary s∈N, such OneMax and LeadingOnes instances can be solved, simultaneously for all n∈N, in expected time O(n(log(n))2loglog(n)…log(s-1)(n)(log(s)(n))1+ε) and O(n2log(n)loglog(n)…log(s-1)(n)(log(s)(n))1+ε), respectively; that is, in almost the same time as if n and the relevant bit positions were known. For the LeadingOnes case, we prove lower bounds of same asymptotic order of magnitude apart from the (log(s)(n))ε factor. Aiming at closing this arbitrarily small remaining gap, we realize that there is no asymptotically best performance for this problem. For any algorithm solving, for all n, all instances of size n in expected time at most T(n), there is an algorithm doing the same in time T′(n) with T′=o(T). For OneMax we show results of similar flavor.
Author Kötzing, Timo
Doerr, Carola
Doerr, Benjamin
Author_xml – sequence: 1
  givenname: Benjamin
  surname: Doerr
  fullname: Doerr, Benjamin
  organization: École Polytechnique, CNRS, LIX - UMR 7161
– sequence: 2
  givenname: Carola
  surname: Doerr
  fullname: Doerr, Carola
  email: Carola.Doerr@lip6.fr
  organization: Sorbonne Université, CNRS, LIP6
– sequence: 3
  givenname: Timo
  surname: Kötzing
  fullname: Kötzing, Timo
  organization: Hasso-Plattner-Institut
BackLink https://hal.sorbonne-universite.fr/hal-01921042$$DView record in HAL
BookMark eNp9kE1Lw0AQhhepYP34Ad4WPHmIzn4kkxxLqVYoKqjnZZNuazTdrbtpq__eDVEEQU_DzDzv8M57SAbWWUPIKYMLBoCXAUCmIgGWJyARE9wjQyYFTyCVbECGwDBPZMbwgByG8ALAOBbZkEweXLOt7ZLee1c2ZhXorm6f6ZN9tW5nadxu2tpZOjN2Gee6paNm5UJLbx2dvLde03Hsjsn-QjfBnHzVI_J0NXkcT5PZ3fXNeDRLKpFCmxSmmOfzCsocK44pZILnUgqNBhZSF2WZVpkRIBYmK-eaS-TCcOQZK-ccIc_EETnv7z7rRq19vdL-Qzldq-loproZsIIzkHzLInvWs2vv3jYmtOrFbbyN9hRniAUXKcdIYU9V3oXgzUJVdau7l-NvdaMYqC5f1ecb7-eqy1d1SvZL-W3oPw3vNSGydmn8j6e_RZ-KWoxq
CitedBy_id crossref_primary_10_1007_s00453_024_01226_3
crossref_primary_10_1145_3472304
crossref_primary_10_1007_s00453_022_00977_1
crossref_primary_10_1007_s00453_023_01098_z
crossref_primary_10_1109_TEVC_2020_2985450
Cites_doi 10.1007/s11047-008-9098-4
10.1007/978-3-642-17339-4
10.1017/S0963548312000600
10.1007/978-3-642-15844-5_1
10.1016/S0304-3975(01)00182-7
10.1162/106365605774666921
10.1142/7438
10.1145/2908812.2908891
10.1016/j.ins.2010.01.031
10.1145/2001576.2001856
10.1109/TEVC.2005.846356
10.1145/2739480.2754681
10.1007/s00453-017-0354-9
10.1145/3205455.3205627
10.1145/1830483.1830749
10.1109/TEVC.2012.2202241
10.1239/jap/1110381369
10.1162/evco_a_00212
10.1080/07468342.1997.11973879
10.1145/3071178.3071301
10.1017/S0963548309990599
10.1016/j.tcs.2014.03.015
10.1145/3071178.3071233
10.1007/s00453-012-9622-x
10.1145/1967654.1967670
10.1145/2463372.2463565
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2018
Copyright Springer Nature B.V. 2019
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018
– notice: Copyright Springer Nature B.V. 2019
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
JQ2
1XC
DOI 10.1007/s00453-018-0477-7
DatabaseName CrossRef
ProQuest Computer Science Collection
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1432-0541
EndPage 748
ExternalDocumentID oai:HAL:hal-01921042v1
10_1007_s00453_018_0477_7
GrantInformation_xml – fundername: Gaspard Monge Program for Optimization and Operations Research
– fundername: Fondation Mathématique Jacques Hadamard
  grantid: ANR-11-LABX-0056-LMH
  funderid: http://dx.doi.org/10.13039/501100007493
– fundername: Deutsche Forschungsgemeinschaft
  grantid: FR 2988 (TOSU)
  funderid: http://dx.doi.org/10.13039/501100001659
GroupedDBID -4Z
-59
-5G
-BR
-EM
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
203
23M
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P9O
PF-
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
~EX
-Y2
1SB
28-
2P1
2VQ
5QI
AAAVM
AAOBN
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABDPE
ABFSG
ABFSI
ABQSL
ABRTQ
ABULA
ACBXY
ACSTC
ADHKG
AEBTG
AEFIE
AEKMD
AEZWR
AFDZB
AFEXP
AFGCZ
AFHIU
AFOHR
AGGDS
AGQPQ
AHPBZ
AHWEU
AI.
AIXLP
AJBLW
ATHPR
AYFIA
BBWZM
CAG
CITATION
COF
E.L
H13
H~9
KOW
N2Q
NDZJH
O9-
R4E
RNI
RZK
S1Z
S26
S28
SCJ
SCLPG
T16
UQL
VH1
ZY4
JQ2
1XC
ID FETCH-LOGICAL-c350t-9e9d8dc0b87c27506328443a7e0f4a9bb5c6e303fe6bda24723e27261bd270863
IEDL.DBID U2A
ISSN 0178-4617
IngestDate Tue Oct 14 20:39:27 EDT 2025
Thu Oct 02 16:27:22 EDT 2025
Thu Apr 24 23:09:24 EDT 2025
Wed Oct 01 01:52:07 EDT 2025
Fri Feb 21 02:43:10 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Unknown solution length
Uncertainty
Runtime analysis
Black-box optimization
Evolutionary computation
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c350t-9e9d8dc0b87c27506328443a7e0f4a9bb5c6e303fe6bda24723e27261bd270863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4981-3227
0000-0002-9786-220X
PQID 2177923527
PQPubID 2043795
PageCount 46
ParticipantIDs hal_primary_oai_HAL_hal_01921042v1
proquest_journals_2177923527
crossref_citationtrail_10_1007_s00453_018_0477_7
crossref_primary_10_1007_s00453_018_0477_7
springer_journals_10_1007_s00453_018_0477_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190215
PublicationDateYYYYMMDD 2019-02-15
PublicationDate_xml – month: 2
  year: 2019
  text: 20190215
  day: 15
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Algorithmica
PublicationTitleAbbrev Algorithmica
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: Springer Verlag
References DrosteSJansenTWegenerIOn the analysis of the (1+1) evolutionary algorithmTheor. Comput. Sci.20022765181189634710.1016/S0304-3975(01)00182-71002.68037
WittCTight bounds on the optimization time of a randomized search heuristic on linear functionsComb. Probab. Comput.201322294318302133610.1017/S09635483120006001258.68183
DoerrBKünnemannMOptimizing linear functions with the (1+λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}) evolutionary algorithm–different asymptotic runtimes for different instancesTheor. Comput. Sci.2015561323328218110.1016/j.tcs.2014.03.0151303.68120
Doerr, B., Fouz, M., Witt, C.: Quasirandom evolutionary algorithms. In: Proceedings of the 12th Annual Genetic and Evolutionary Computation Conference (GECCO’10), pp. 1457–1464. ACM (2010)
JinYBrankeJEvolutionary optimization in uncertain environments—a surveyIEEE Trans. Evol. Comput.2005930331710.1109/TEVC.2005.846356
Doerr, B., Jansen, T., Witt, C., Zarges, C.: A method to derive fixed budget results from expected optimisation times. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’13), pp. 1581–1588. ACM (2013)
WittCRuntime analysis of the (μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} + 1) EA on simple pseudo-Boolean functionsEvol. Comput.2006146586
HwangHPanholzerARolinNTsaiTChenWProbabilistic analysis of the (1+1)-evolutionary algorithmEvol. Comput.20182629934510.1162/evco_a_00212
AshJMNeither a worst convergent series nor a best divergent series existsColl. Math. J.199728296297146401310.1080/07468342.1997.11973879
Doerr, B., Le, H.P., Makhmara, R., Nguyen, T.D.: Fast genetic algorithms. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’17), pp. 777–784. ACM (2017)
Cathabard, S., Lehre, P.K., Yao, X.: Non-uniform mutation rates for problems with unknown solution lengths. In: Proceedings of Foundations of Genetic Algorithms (FOGA’11), pp. 173–180. ACM (2011)
LehrePKYaoXRuntime analysis of the (1 + 1) EA on computing unique input output sequencesInf. Sci.2014259510531313423710.1016/j.ins.2010.01.0311328.68200
SudholtDA new method for lower bounds on the running time of evolutionary algorithmsIEEE Trans. Evol. Comput.20131741843510.1109/TEVC.2012.2202241
DietzfelbingerMRoweJEWegenerIWoelfelPTight bounds for blind search on the integers and the realsComb. Probab. Comput.201019711728272607610.1017/S09635483099905991261.68069
LadretVAsymptotic hitting time for a simple evolutionary model of protein foldingJ. Appl. Probab.2005423951214409110.1239/jap/11103813691074.60076
Doerr, B.: Better runtime guarantees via stochastic domination. CoRR abs/1801.04487 (2018). http://arxiv.org/abs/1801.04487
Böttcher, S., Doerr, B., Neumann, F.: Optimal fixed and adaptive mutation rates for the LeadingOnes problem. In: Proceedings of Parallel Problem Solving from Nature (PPSN’10), pp. 1–10. Springer, Berlin (2010)
HardyGHOrders of Infinity1910CambridgeCambridge University Press41.0303.01
Doerr, B.: Probabilistic tools for the analysis of randomized optimization heuristics. CoRR abs/1801.06733 (2018). http://arxiv.org/abs/1801.06733
DoerrBDoerrCOptimal static and self-adjusting parameter choices for the (1+(λ,λ))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+(\lambda,\lambda ))$$\end{document} genetic algorithmAlgorithmica20188016581709377901410.1007/s00453-017-0354-91391.68100
Antipov, D., Doerr, B., Fang, J., Hetet, T.: Runtime analysis for the (μ+λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mu +\lambda )$$\end{document} EA optimizing OneMax. In: Genetic and Evolutionary Computation Conference (GECCO’18). ACM (2018) (to appear)
Doerr, B., Doerr, C., Kötzing, T.: The right mutation strength for multi-valued decision variables. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’16), pp. 1115–1122. ACM (2016)
BianchiLDorigoMGambardellaLGutjahrWA survey on metaheuristics for stochastic combinatorial optimizationNat. Comput.20098239287250575110.1007/s11047-008-9098-41162.90591
Doerr, B., Fouz, M., Witt, C.: Sharp bounds by probability-generating functions and variable drift. In: Proceedings of the 13th Annual Genetic and Evolutionary Computation Conference (GECCO’11), pp. 2083–2090. ACM (2011)
DoerrBJohannsenDWinzenCMultiplicative drift analysisAlgorithmica201264673697298947010.1007/s00453-012-9622-x1264.68220
AugerADoerrBTheory of Randomized Search Heuristics2011SingaporeWorld Scientific10.1142/74381233.90005
Doerr, B., Doerr, C., Kötzing, T.: Unknown solution length problems with no asymptotically optimal run time. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’17), pp. 1367–1374. ACM (2017)
Doerr, B., Doerr, C., Kötzing, T.: Solving problems with unknown solution length at (almost) no extra cost. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’15), pp. 831–838. ACM (2015)
JansenTAnalyzing Evolutionary Algorithms—The Computer Science Perspective2013BerlinSpringer10.1007/978-3-642-17339-41282.68008
NeumannFWittCBioinspired Computation in Combinatorial Optimization—Algorithms and Their Computational Complexity2010BerlinSpringer1223.68002
JansenTDe JongKAWegenerIOn the choice of the offspring population size in evolutionary algorithmsEvol. Comput.20051341344010.1162/106365605774666921
T Jansen (477_CR24) 2005; 13
S Droste (477_CR20) 2002; 276
A Auger (477_CR3) 2011
477_CR19
T Jansen (477_CR23) 2013
D Sudholt (477_CR29) 2013; 17
H Hwang (477_CR22) 2018; 26
C Witt (477_CR31) 2013; 22
B Doerr (477_CR10) 2018; 80
JM Ash (477_CR2) 1997; 28
477_CR1
B Doerr (477_CR18) 2015; 561
477_CR5
F Neumann (477_CR28) 2010
L Bianchi (477_CR4) 2009; 8
477_CR6
477_CR9
477_CR8
PK Lehre (477_CR27) 2014; 259
477_CR11
477_CR12
477_CR13
477_CR14
477_CR15
477_CR16
V Ladret (477_CR26) 2005; 42
GH Hardy (477_CR21) 1910
Y Jin (477_CR25) 2005; 9
C Witt (477_CR30) 2006; 14
M Dietzfelbinger (477_CR7) 2010; 19
B Doerr (477_CR17) 2012; 64
References_xml – reference: Doerr, B., Fouz, M., Witt, C.: Sharp bounds by probability-generating functions and variable drift. In: Proceedings of the 13th Annual Genetic and Evolutionary Computation Conference (GECCO’11), pp. 2083–2090. ACM (2011)
– reference: DoerrBKünnemannMOptimizing linear functions with the (1+λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}) evolutionary algorithm–different asymptotic runtimes for different instancesTheor. Comput. Sci.2015561323328218110.1016/j.tcs.2014.03.0151303.68120
– reference: Doerr, B., Fouz, M., Witt, C.: Quasirandom evolutionary algorithms. In: Proceedings of the 12th Annual Genetic and Evolutionary Computation Conference (GECCO’10), pp. 1457–1464. ACM (2010)
– reference: JansenTDe JongKAWegenerIOn the choice of the offspring population size in evolutionary algorithmsEvol. Comput.20051341344010.1162/106365605774666921
– reference: AshJMNeither a worst convergent series nor a best divergent series existsColl. Math. J.199728296297146401310.1080/07468342.1997.11973879
– reference: DoerrBJohannsenDWinzenCMultiplicative drift analysisAlgorithmica201264673697298947010.1007/s00453-012-9622-x1264.68220
– reference: Doerr, B.: Better runtime guarantees via stochastic domination. CoRR abs/1801.04487 (2018). http://arxiv.org/abs/1801.04487
– reference: DrosteSJansenTWegenerIOn the analysis of the (1+1) evolutionary algorithmTheor. Comput. Sci.20022765181189634710.1016/S0304-3975(01)00182-71002.68037
– reference: NeumannFWittCBioinspired Computation in Combinatorial Optimization—Algorithms and Their Computational Complexity2010BerlinSpringer1223.68002
– reference: Doerr, B.: Probabilistic tools for the analysis of randomized optimization heuristics. CoRR abs/1801.06733 (2018). http://arxiv.org/abs/1801.06733
– reference: DoerrBDoerrCOptimal static and self-adjusting parameter choices for the (1+(λ,λ))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+(\lambda,\lambda ))$$\end{document} genetic algorithmAlgorithmica20188016581709377901410.1007/s00453-017-0354-91391.68100
– reference: JansenTAnalyzing Evolutionary Algorithms—The Computer Science Perspective2013BerlinSpringer10.1007/978-3-642-17339-41282.68008
– reference: Doerr, B., Doerr, C., Kötzing, T.: Unknown solution length problems with no asymptotically optimal run time. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’17), pp. 1367–1374. ACM (2017)
– reference: JinYBrankeJEvolutionary optimization in uncertain environments—a surveyIEEE Trans. Evol. Comput.2005930331710.1109/TEVC.2005.846356
– reference: AugerADoerrBTheory of Randomized Search Heuristics2011SingaporeWorld Scientific10.1142/74381233.90005
– reference: HardyGHOrders of Infinity1910CambridgeCambridge University Press41.0303.01
– reference: Cathabard, S., Lehre, P.K., Yao, X.: Non-uniform mutation rates for problems with unknown solution lengths. In: Proceedings of Foundations of Genetic Algorithms (FOGA’11), pp. 173–180. ACM (2011)
– reference: Doerr, B., Doerr, C., Kötzing, T.: Solving problems with unknown solution length at (almost) no extra cost. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’15), pp. 831–838. ACM (2015)
– reference: LehrePKYaoXRuntime analysis of the (1 + 1) EA on computing unique input output sequencesInf. Sci.2014259510531313423710.1016/j.ins.2010.01.0311328.68200
– reference: DietzfelbingerMRoweJEWegenerIWoelfelPTight bounds for blind search on the integers and the realsComb. Probab. Comput.201019711728272607610.1017/S09635483099905991261.68069
– reference: WittCRuntime analysis of the (μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} + 1) EA on simple pseudo-Boolean functionsEvol. Comput.2006146586
– reference: HwangHPanholzerARolinNTsaiTChenWProbabilistic analysis of the (1+1)-evolutionary algorithmEvol. Comput.20182629934510.1162/evco_a_00212
– reference: Antipov, D., Doerr, B., Fang, J., Hetet, T.: Runtime analysis for the (μ+λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mu +\lambda )$$\end{document} EA optimizing OneMax. In: Genetic and Evolutionary Computation Conference (GECCO’18). ACM (2018) (to appear)
– reference: Doerr, B., Le, H.P., Makhmara, R., Nguyen, T.D.: Fast genetic algorithms. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’17), pp. 777–784. ACM (2017)
– reference: Doerr, B., Doerr, C., Kötzing, T.: The right mutation strength for multi-valued decision variables. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’16), pp. 1115–1122. ACM (2016)
– reference: Doerr, B., Jansen, T., Witt, C., Zarges, C.: A method to derive fixed budget results from expected optimisation times. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’13), pp. 1581–1588. ACM (2013)
– reference: LadretVAsymptotic hitting time for a simple evolutionary model of protein foldingJ. Appl. Probab.2005423951214409110.1239/jap/11103813691074.60076
– reference: BianchiLDorigoMGambardellaLGutjahrWA survey on metaheuristics for stochastic combinatorial optimizationNat. Comput.20098239287250575110.1007/s11047-008-9098-41162.90591
– reference: Böttcher, S., Doerr, B., Neumann, F.: Optimal fixed and adaptive mutation rates for the LeadingOnes problem. In: Proceedings of Parallel Problem Solving from Nature (PPSN’10), pp. 1–10. Springer, Berlin (2010)
– reference: SudholtDA new method for lower bounds on the running time of evolutionary algorithmsIEEE Trans. Evol. Comput.20131741843510.1109/TEVC.2012.2202241
– reference: WittCTight bounds on the optimization time of a randomized search heuristic on linear functionsComb. Probab. Comput.201322294318302133610.1017/S09635483120006001258.68183
– volume: 8
  start-page: 239
  year: 2009
  ident: 477_CR4
  publication-title: Nat. Comput.
  doi: 10.1007/s11047-008-9098-4
– volume-title: Analyzing Evolutionary Algorithms—The Computer Science Perspective
  year: 2013
  ident: 477_CR23
  doi: 10.1007/978-3-642-17339-4
– volume: 22
  start-page: 294
  year: 2013
  ident: 477_CR31
  publication-title: Comb. Probab. Comput.
  doi: 10.1017/S0963548312000600
– ident: 477_CR5
  doi: 10.1007/978-3-642-15844-5_1
– volume: 276
  start-page: 51
  year: 2002
  ident: 477_CR20
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/S0304-3975(01)00182-7
– volume: 13
  start-page: 413
  year: 2005
  ident: 477_CR24
  publication-title: Evol. Comput.
  doi: 10.1162/106365605774666921
– ident: 477_CR9
– volume-title: Orders of Infinity
  year: 1910
  ident: 477_CR21
– volume-title: Theory of Randomized Search Heuristics
  year: 2011
  ident: 477_CR3
  doi: 10.1142/7438
– ident: 477_CR12
  doi: 10.1145/2908812.2908891
– volume: 259
  start-page: 510
  year: 2014
  ident: 477_CR27
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2010.01.031
– volume-title: Bioinspired Computation in Combinatorial Optimization—Algorithms and Their Computational Complexity
  year: 2010
  ident: 477_CR28
– ident: 477_CR15
  doi: 10.1145/2001576.2001856
– volume: 9
  start-page: 303
  year: 2005
  ident: 477_CR25
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2005.846356
– ident: 477_CR11
  doi: 10.1145/2739480.2754681
– volume: 80
  start-page: 1658
  year: 2018
  ident: 477_CR10
  publication-title: Algorithmica
  doi: 10.1007/s00453-017-0354-9
– ident: 477_CR1
  doi: 10.1145/3205455.3205627
– ident: 477_CR14
  doi: 10.1145/1830483.1830749
– volume: 17
  start-page: 418
  year: 2013
  ident: 477_CR29
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2012.2202241
– volume: 42
  start-page: 39
  year: 2005
  ident: 477_CR26
  publication-title: J. Appl. Probab.
  doi: 10.1239/jap/1110381369
– volume: 26
  start-page: 299
  year: 2018
  ident: 477_CR22
  publication-title: Evol. Comput.
  doi: 10.1162/evco_a_00212
– volume: 28
  start-page: 296
  year: 1997
  ident: 477_CR2
  publication-title: Coll. Math. J.
  doi: 10.1080/07468342.1997.11973879
– ident: 477_CR19
  doi: 10.1145/3071178.3071301
– volume: 14
  start-page: 65
  year: 2006
  ident: 477_CR30
  publication-title: Evol. Comput.
– volume: 19
  start-page: 711
  year: 2010
  ident: 477_CR7
  publication-title: Comb. Probab. Comput.
  doi: 10.1017/S0963548309990599
– volume: 561
  start-page: 3
  year: 2015
  ident: 477_CR18
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2014.03.015
– ident: 477_CR8
– ident: 477_CR13
  doi: 10.1145/3071178.3071233
– volume: 64
  start-page: 673
  year: 2012
  ident: 477_CR17
  publication-title: Algorithmica
  doi: 10.1007/s00453-012-9622-x
– ident: 477_CR6
  doi: 10.1145/1967654.1967670
– ident: 477_CR16
  doi: 10.1145/2463372.2463565
SSID ssj0012796
Score 2.3273764
Snippet Following up on previous work of Cathabard et al. (in: Proceedings of foundations of genetic algorithms (FOGA’11), ACM, 2011 ) we analyze variants of the...
Following up on previous work of Cathabard et al. (in: Proceedings of foundations of genetic algorithms (FOGA’11), ACM, 2011) we analyze variants of the (1 +...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 703
SubjectTerms Algorithm Analysis and Problem Complexity
Algorithms
Asymptotic properties
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Algorithms
Data Structures and Information Theory
Evolutionary algorithms
Fitness
Genetic algorithms
Lower bounds
Mathematics of Computing
Neural and Evolutionary Computing
Special Issue on Theory of Genetic and Evolutionary Computation
Theory of Computation
Title Solving Problems with Unknown Solution Length at Almost No Extra Cost
URI https://link.springer.com/article/10.1007/s00453-018-0477-7
https://www.proquest.com/docview/2177923527
https://hal.sorbonne-universite.fr/hal-01921042
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1432-0541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012796
  issn: 0178-4617
  databaseCode: AFBBN
  dateStart: 19861101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1432-0541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012796
  issn: 0178-4617
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1432-0541
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012796
  issn: 0178-4617
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA9ue_HFb3E6RxCflECXfmR77Ebn0DkELcynkqSZPsxWtir--d51bf1ABZ9K0zSFS9K7393ld4ScziwtO9wIpjrCMIdbgkkdA1gBGObymbG1woPC1xNvFDqXU3danONeltnuZUgy_1NXh93Q-sDcny6zHCGYqJGGi2xesIhD7lehAy7yolxYdp45oJ_LUOZPQ3xRRrVHTIX8ZGd-C43mGme4RTYKU5H6q7ndJmsm2SGbZRkGWuzKXRLcpnN0C9CbVXGYJUXnKg0T9JcltHR80bFJHqBdZtSfP6XLjE5SGrxlC0kHcLdHwmFwNxixojoC07ZrZaxnenE31pbqCo0k7Z4NmsaxpTDWzJE9pVztGVBQM-OpWHJHcNtwAYBJxVwAkLH3ST1JE3NAqCc1IC9bgukHeMu1ETMhZy2M4igldZNYpZgiXVCHYwWLeVSRHueSjUCyEUo2Ek1yVr3yvOLN-KvzCci-6oeM1yN_HGEbWqCAGPlrp0la5dRExT5bRgCokADR5TDGeTldH49__eLhv3ofkXWwk3qYrN1xW6SeLV7MMdgimWqThj_s9yd4vbi_Ctr5WnwHxpnUrQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED5BeWAvwIBpHbBZiCcmo9Rx4vaxQoUOSoVEK8GTZTsuk9alqA0T4q_nro3DD22TeIzjOMnZyd13d_4O4GAUOdMQXnHbUJ5LESluXIZgBWFYIkY-dpY2Cl_00-5Qnl0n1-U-7lnIdg8hyfmfutrsRtYH5f40eSSV4moZViTiE1GDlfbpzXmnCh4INS_LRYXnuUQNHYKZfxvklTpa_knJkC8szTfB0bnOOVmHQXjaRarJr6P7wh65xzdEju98nQ1YK21Q1l4smo-w5PNNWA_1HVj5uW9B52oyJn8Du1xUnZkx8tqyYU6OuJwFjxrr-fwW203B2uPfk1nB-hPWeSimhh3j0TYMTzqD4y4vyy5wFydRwVu-lTUzF9mmcsT-nsaowmRslI9G0rSsTVzqUfONfGozI6QSsRcKkZjNhEKEFH-CWj7J_WdgqXEI6WKDNiUCuSQmMEZkuDiKtNa4OkRB-tqVnORUGmOsKzbluZg0ikmTmLSqw2F1yd2CkON_nfdxSqt-RKXdbfc0tZFpi1BU_GnUYTfMuC4_4JlGpEbMionAMb6HCXw-_c87fnlX72-w2h1c9HTvR_98Bz6gMdaijPBGsgu1Ynrv99DgKezXcoE_Ab0C8U4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA9ugvjitzg_g_ikhHVp2myPQzemzjHQwd5Ckqb6MLuxVfHP925r6wcq-Ng0TeEu4e53d_kdIWexZ3WNO8lMTTomuCeZthGAFYBhAY-dbw1eFL7rhZ2BuBkGw6zP6Syvds9Tkos7DcjSlKTVSRRXi4tv6IlgHVCdeUJKJktkWSBPAmzoAW8WaQQu5w26sAU9E2Cr87TmT0t8MUylJyyL_ORzfkuTzq1Pe4OsZW4jbS70vEmWXLJF1vOWDDQ7odukdT8eYYiA9heNYmYUA610kGDsLKF5EIx2XfII4zqlzdHzeJbS3pi23tKpppfwtEMG7dbDZYdlnRKY9QMvZQ3XiOqR9UxdWiRsD32wOsLX0nmx0A1jAhs6MFaxC02kuZDcd1wCeDIRlwBq_F1STsaJ2yM01BZQmK_BDQTsFfiIn5C_FlYRxmhbIV4uJmUzGnHsZjFSBQHyXLIKJKtQskpWyHnxyWTBofHX5FOQfTEP2a87za7CMfRGAT3y11qFHOaqUdmZmykAV0iGGHBY4yJX18frX_-4_6_ZJ2Slf9VW3eve7QFZBfepgTXcteCQlNPpizsCFyU1x_Nt-A40qdjF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+Problems+with+Unknown+Solution+Length+at+Almost+No+Extra+Cost&rft.jtitle=Algorithmica&rft.au=Doerr%2C+Benjamin&rft.au=Doerr%2C+Carola&rft.au=K%C3%B6tzing%2C+Timo&rft.date=2019-02-15&rft.pub=Springer+Verlag&rft.issn=0178-4617&rft.eissn=1432-0541&rft.volume=81&rft.spage=703&rft.epage=748&rft_id=info:doi/10.1007%2Fs00453-018-0477-7&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-01921042v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon