BAFNet: Bottleneck Attention Based Fusion Network for Sleep Apnea Detection
Sleep apnea (SA) is a common sleep-related breathing disorder that tends to induce a series of complications, such as pediatric intracranial hypertension, psoriasis, and even sudden death. Therefore, early diagnosis and treatment can effectively prevent malignant complications SA incurs. Portable mo...
Saved in:
| Published in | IEEE journal of biomedical and health informatics Vol. 28; no. 5; pp. 2473 - 2484 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.05.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2168-2194 2168-2208 2168-2208 |
| DOI | 10.1109/JBHI.2023.3278657 |
Cover
| Abstract | Sleep apnea (SA) is a common sleep-related breathing disorder that tends to induce a series of complications, such as pediatric intracranial hypertension, psoriasis, and even sudden death. Therefore, early diagnosis and treatment can effectively prevent malignant complications SA incurs. Portable monitoring (PM) is a widely used tool for people to monitor their sleep conditions outside of hospitals. In this study, we focus on SA detection based on single-lead electrocardiogram (ECG) signals which are easily collected by PM. We propose a bottleneck attention based fusion network named BAFNet, which mainly includes five parts of RRI (R-R intervals) stream network, RPA (R-peak amplitudes) stream network, global query generation, feature fusion, and classifier. To learn the feature representation of RRI/RPA segments, fully convolutional networks (FCN) with cross-learning are proposed. Meanwhile, to control the information flow between RRI and RPA networks, a global query generation with bottleneck attention is proposed. To further improve the SA detection performance, a hard sample scheme with k-means clustering is employed. Experiment results show that BAFNet can achieve competitive results, which are superior to the state-of-the-art SA detection methods. It means that BAFNet has great potential to be applied in the home sleep apnea test (HSAT) for sleep condition monitoring. |
|---|---|
| AbstractList | Sleep apnea (SA) is a common sleep-related breathing disorder that tends to induce a series of complications, such as pediatric intracranial hypertension, psoriasis, and even sudden death. Therefore, early diagnosis and treatment can effectively prevent malignant complications SA incurs. Portable monitoring (PM) is a widely used tool for people to monitor their sleep conditions outside of hospitals. In this study, we focus on SA detection based on single-lead electrocardiogram (ECG) signals which are easily collected by PM. We propose a bottleneck attention based fusion network named BAFNet, which mainly includes five parts of RRI (R-R intervals) stream network, RPA (R-peak amplitudes) stream network, global query generation, feature fusion, and classifier. To learn the feature representation of RRI/RPA segments, fully convolutional networks (FCN) with cross-learning are proposed. Meanwhile, to control the information flow between RRI and RPA networks, a global query generation with bottleneck attention is proposed. To further improve the SA detection performance, a hard sample scheme with k-means clustering is employed. Experiment results show that BAFNet can achieve competitive results, which are superior to the state-of-the-art SA detection methods. It means that BAFNet has great potential to be applied in the home sleep apnea test (HSAT) for sleep condition monitoring. Sleep apnea (SA) is a common sleep-related breathing disorder that tends to induce a series of complications, such as pediatric intracranial hypertension, psoriasis, and even sudden death. Therefore, early diagnosis and treatment can effectively prevent malignant complications SA incurs. Portable monitoring (PM) is a widely used tool for people to monitor their sleep conditions outside of hospitals. In this study, we focus on SA detection based on single-lead electrocardiogram (ECG) signals which are easily collected by PM. We propose a bottleneck attention based fusion network named BAFNet, which mainly includes five parts of RRI (R-R intervals) stream network, RPA (R-peak amplitudes) stream network, global query generation, feature fusion, and classifier. To learn the feature representation of RRI/RPA segments, fully convolutional networks (FCN) with cross-learning are proposed. Meanwhile, to control the information flow between RRI and RPA networks, a global query generation with bottleneck attention is proposed. To further improve the SA detection performance, a hard sample scheme with k-means clustering is employed. Experiment results show that BAFNet can achieve competitive results, which are superior to the state-of-the-art SA detection methods. It means that BAFNet has great potential to be applied in the home sleep apnea test (HSAT) for sleep condition monitoring.Sleep apnea (SA) is a common sleep-related breathing disorder that tends to induce a series of complications, such as pediatric intracranial hypertension, psoriasis, and even sudden death. Therefore, early diagnosis and treatment can effectively prevent malignant complications SA incurs. Portable monitoring (PM) is a widely used tool for people to monitor their sleep conditions outside of hospitals. In this study, we focus on SA detection based on single-lead electrocardiogram (ECG) signals which are easily collected by PM. We propose a bottleneck attention based fusion network named BAFNet, which mainly includes five parts of RRI (R-R intervals) stream network, RPA (R-peak amplitudes) stream network, global query generation, feature fusion, and classifier. To learn the feature representation of RRI/RPA segments, fully convolutional networks (FCN) with cross-learning are proposed. Meanwhile, to control the information flow between RRI and RPA networks, a global query generation with bottleneck attention is proposed. To further improve the SA detection performance, a hard sample scheme with k-means clustering is employed. Experiment results show that BAFNet can achieve competitive results, which are superior to the state-of-the-art SA detection methods. It means that BAFNet has great potential to be applied in the home sleep apnea test (HSAT) for sleep condition monitoring. |
| Author | Ma, Wenjun Fan, Xiaomao Gao, Weidong Chen, Xianhui |
| Author_xml | – sequence: 1 givenname: Xianhui surname: Chen fullname: Chen, Xianhui email: xhchen@nyu.edu organization: Department of Electrical and Computer Engineering, New York University, New York, NY, USA – sequence: 2 givenname: Wenjun orcidid: 0000-0003-4600-398X surname: Ma fullname: Ma, Wenjun email: mawenjun@scnu.edu.cn organization: School of Computer Science, South China Normal University, Guangzhou, China – sequence: 3 givenname: Weidong orcidid: 0000-0002-9360-4561 surname: Gao fullname: Gao, Weidong email: gaoweidong@bupt.edu.cn organization: School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing, China – sequence: 4 givenname: Xiaomao orcidid: 0000-0001-8160-1294 surname: Fan fullname: Fan, Xiaomao email: astrofan2008@gmail.com organization: College of Big Data and Internet, Shenzhen Technology University, Shenzhen, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37216250$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kV9LwzAUxYMoTuc-gCBS8MWXzfxp2tS3TZ1Ohz6ozyFNb6Fb18wkRfz2pmwD2YN5ucnN7xxuck7RYWMaQOic4BEhOLt5njzNRhRTNmI0FQlPD9AJJYkYUorF4W5PsriHBs4tcFgitLLkGPVYGm4pxyfoZTKevoK_jSbG-xoa0Mto7D00vjJNNFEOimjauu4QsG9jl1FpbPReA6yj8boBFd2DB93hZ-ioVLWDwbb20ef04ePuaTh_e5zdjedDzTj2wyzhhQCeFITnpch4LLSGHBSNeZZnAjAUJadcCGBpInIW51oRoKQkihZQ5qyPrje-a2u-WnBeriqnoa5VA6Z1kgoicLAVPKBXe-jCtLYJ00mGOSWC8ZgF6nJLtfkKCrm21UrZH7n7pgCkG0Bb45yFUurKq-7N3qqqlgTLLhPZZSK7TOQ2k6Ake8qd-X-ai42mAoA_PAkjM8J-AapTlKw |
| CODEN | IJBHA9 |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3467266 crossref_primary_10_1016_j_cmpb_2024_108558 crossref_primary_10_1088_1361_6579_ad205a crossref_primary_10_2196_56750 crossref_primary_10_1002_brb3_70206 |
| Cites_doi | 10.1161/01.CIR.101.23.e21 10.1109/ijcnn.2018.8489071 10.1016/j.neucom.2016.12.062 10.1109/ICCV.2015.123 10.1109/TIM.2019.2902809 10.7717/peerj.7731 10.1016/j.neucom.2019.11.094 10.1016/j.bspc.2019.04.005 10.1007/s10439-023-03172-7 10.1016/j.knosys.2020.106589 10.1016/j.jstrokecerebrovasdis.2017.12.048 10.1109/ACCESS.2019.2939749 10.1109/WACV48630.2021.00360 10.1109/ICCV51070.2023.01960 10.5664/jcsm.8272 10.1016/j.neucom.2018.03.011 10.1016/j.asoc.2019.105765 10.1007/978-3-030-03341-5_22 10.5664/jcsm.7486 10.1007/s11042-018-6161-8 10.1016/j.bdr.2017.06.002 10.1109/CVPR42600.2020.01095 10.1109/EMBC44109.2020.9175998 10.1016/j.sleep.2020.03.017 10.1016/j.smrv.2016.07.002 10.5664/jcsm.8436 10.1007/s10489-021-02422-2 10.1109/JIOT.2020.2980549 10.1109/ijcnn48605.2020.9206626 10.1016/j.patrec.2018.05.024 10.1016/j.bspc.2020.102005 10.1007/978-3-319-93034-3_29 10.1016/j.knosys.2021.107473 10.1109/tim.2022.3151947 10.3389/fnins.2022.972581 10.1016/j.inffus.2018.09.014 10.1109/CVPR.2016.319 10.1016/j.bspc.2018.12.015 10.1001/jama.2020.3514 10.1109/CIC.2000.898505 10.1007/s10916-018-1146-8 10.1109/TBCAS.2018.2824659 10.1109/tim.2021.3062414 10.1016/j.neucom.2020.10.031 10.1016/j.cmpb.2021.106119 10.1109/ICCV51070.2023.00371 10.1109/TBME.2015.2422378 10.1109/TMM.2020.2972125 10.1109/memea52024.2021.9478745 10.1109/CVPR.2018.00745 10.1016/j.compbiomed.2021.105124 10.1109/TBME.2015.2498199 10.23919/CCC50068.2020.9189667 10.5664/jcsm.7322 10.1109/EMBC.2019.8857934 10.5664/jcsm.7806 10.1109/ACCESS.2018.2815149 10.1109/BIBM52615.2021.9669358 10.3390/jcm10020277 10.1016/j.bspc.2021.102906 10.1109/cisp-bmei.2018.8633132 10.1016/j.renene.2021.10.025 10.1016/j.compbiomed.2016.08.012 10.5664/jcsm.5790 10.1109/ACCESS.2018.2889797 10.1109/ICCV.2017.450 10.1109/tim.2020.3017246 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 |
| DOI | 10.1109/JBHI.2023.3278657 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Materials Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2168-2208 |
| EndPage | 2484 |
| ExternalDocumentID | 37216250 10_1109_JBHI_2023_3278657 10130531 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Special Subject on Agriculture and Social Development, Key Research and Development Plan in Guangzhou grantid: 2023B03J0172 – fundername: Natural Science Foundation of Top Talent of SZTU grantid: GDRC202131 – fundername: National Natural Science Foundation of China grantid: 62176165 funderid: 10.13039/501100001809 – fundername: Basic and Applied Research Project of Guangdong Province grantid: 2022B1515130009 – fundername: Stable Support Projects for Shenzhen Higher Education Institutions grantid: SZWD2021011 |
| GroupedDBID | 0R~ 4.4 6IF 6IH 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 |
| ID | FETCH-LOGICAL-c350t-965d8e56d15bf89548ccebea2459b98e0edf52588e3768b34bca1e21f1a2defb3 |
| IEDL.DBID | RIE |
| ISSN | 2168-2194 2168-2208 |
| IngestDate | Thu Oct 02 06:35:21 EDT 2025 Mon Jun 30 03:09:57 EDT 2025 Thu Apr 03 07:02:25 EDT 2025 Thu Apr 24 23:09:32 EDT 2025 Wed Oct 01 03:40:06 EDT 2025 Wed Aug 27 01:57:02 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c350t-965d8e56d15bf89548ccebea2459b98e0edf52588e3768b34bca1e21f1a2defb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-4600-398X 0000-0002-9360-4561 0000-0001-8160-1294 |
| PMID | 37216250 |
| PQID | 3052183543 |
| PQPubID | 85417 |
| PageCount | 12 |
| ParticipantIDs | pubmed_primary_37216250 proquest_miscellaneous_2818054885 crossref_citationtrail_10_1109_JBHI_2023_3278657 proquest_journals_3052183543 crossref_primary_10_1109_JBHI_2023_3278657 ieee_primary_10130531 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-05-01 |
| PublicationDateYYYYMMDD | 2024-05-01 |
| PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE journal of biomedical and health informatics |
| PublicationTitleAbbrev | JBHI |
| PublicationTitleAlternate | IEEE J Biomed Health Inform |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref10 ref54 ref17 ref16 ref19 ref18 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 Nagrani (ref51) 2021 ref8 ref7 ref9 ref4 ref3 ref6 Vaswani (ref50) 2017 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 Kingma (ref55) 2014 ref70 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
| References_xml | – ident: ref58 doi: 10.1161/01.CIR.101.23.e21 – ident: ref44 doi: 10.1109/ijcnn.2018.8489071 – ident: ref30 doi: 10.1016/j.neucom.2016.12.062 – ident: ref56 doi: 10.1109/ICCV.2015.123 – year: 2014 ident: ref55 article-title: Adam: A method for stochastic optimization – ident: ref23 doi: 10.1109/TIM.2019.2902809 – ident: ref15 doi: 10.7717/peerj.7731 – ident: ref39 doi: 10.1016/j.neucom.2019.11.094 – ident: ref27 doi: 10.1016/j.bspc.2019.04.005 – ident: ref68 doi: 10.1007/s10439-023-03172-7 – ident: ref26 doi: 10.1016/j.knosys.2020.106589 – ident: ref8 doi: 10.1016/j.jstrokecerebrovasdis.2017.12.048 – ident: ref9 doi: 10.1109/ACCESS.2019.2939749 – ident: ref53 doi: 10.1109/WACV48630.2021.00360 – ident: ref70 doi: 10.1109/ICCV51070.2023.01960 – ident: ref11 doi: 10.5664/jcsm.8272 – ident: ref31 doi: 10.1016/j.neucom.2018.03.011 – ident: ref48 doi: 10.1016/j.asoc.2019.105765 – ident: ref42 doi: 10.1007/978-3-030-03341-5_22 – ident: ref10 doi: 10.5664/jcsm.7486 – ident: ref33 doi: 10.1007/s11042-018-6161-8 – ident: ref36 doi: 10.1016/j.bdr.2017.06.002 – ident: ref46 doi: 10.1109/CVPR42600.2020.01095 – start-page: 14200 volume-title: Proc. Adv. Neural Inf. Process. Syst. year: 2021 ident: ref51 article-title: Attention bottlenecks for multimodal fusion – ident: ref66 doi: 10.1109/EMBC44109.2020.9175998 – ident: ref6 doi: 10.1016/j.sleep.2020.03.017 – ident: ref2 doi: 10.1016/j.smrv.2016.07.002 – ident: ref3 doi: 10.5664/jcsm.8436 – ident: ref25 doi: 10.1007/s10489-021-02422-2 – ident: ref38 doi: 10.1109/JIOT.2020.2980549 – ident: ref60 doi: 10.1109/ijcnn48605.2020.9206626 – ident: ref37 doi: 10.1016/j.patrec.2018.05.024 – ident: ref32 doi: 10.1016/j.bspc.2020.102005 – ident: ref18 doi: 10.1007/978-3-319-93034-3_29 – ident: ref28 doi: 10.1016/j.knosys.2021.107473 – ident: ref17 doi: 10.1109/tim.2022.3151947 – ident: ref62 doi: 10.3389/fnins.2022.972581 – ident: ref47 doi: 10.1016/j.inffus.2018.09.014 – ident: ref59 doi: 10.1109/CVPR.2016.319 – ident: ref19 doi: 10.1016/j.bspc.2018.12.015 – ident: ref1 doi: 10.1001/jama.2020.3514 – ident: ref57 doi: 10.1109/CIC.2000.898505 – ident: ref22 doi: 10.1007/s10916-018-1146-8 – ident: ref65 doi: 10.1109/TBCAS.2018.2824659 – ident: ref16 doi: 10.1109/tim.2021.3062414 – ident: ref49 doi: 10.1016/j.neucom.2020.10.031 – start-page: 5998 volume-title: Proc. Adv. Neural Inf. Process. Syst. year: 2017 ident: ref50 article-title: Attention is all you need – ident: ref20 doi: 10.1016/j.cmpb.2021.106119 – ident: ref69 doi: 10.1109/ICCV51070.2023.00371 – ident: ref29 doi: 10.1109/TBME.2015.2422378 – ident: ref45 doi: 10.1109/TMM.2020.2972125 – ident: ref63 doi: 10.1109/memea52024.2021.9478745 – ident: ref54 doi: 10.1109/CVPR.2018.00745 – ident: ref35 doi: 10.1016/j.compbiomed.2021.105124 – ident: ref13 doi: 10.1109/TBME.2015.2498199 – ident: ref43 doi: 10.23919/CCC50068.2020.9189667 – ident: ref5 doi: 10.5664/jcsm.7322 – ident: ref24 doi: 10.1109/EMBC.2019.8857934 – ident: ref7 doi: 10.5664/jcsm.7806 – ident: ref41 doi: 10.1109/ACCESS.2018.2815149 – ident: ref14 doi: 10.1109/BIBM52615.2021.9669358 – ident: ref12 doi: 10.3390/jcm10020277 – ident: ref34 doi: 10.1016/j.bspc.2021.102906 – ident: ref21 doi: 10.1109/cisp-bmei.2018.8633132 – ident: ref61 doi: 10.1016/j.renene.2021.10.025 – ident: ref64 doi: 10.1016/j.compbiomed.2016.08.012 – ident: ref4 doi: 10.5664/jcsm.5790 – ident: ref40 doi: 10.1109/ACCESS.2018.2889797 – ident: ref52 doi: 10.1109/ICCV.2017.450 – ident: ref67 doi: 10.1109/tim.2020.3017246 |
| SSID | ssj0000816896 |
| Score | 2.470234 |
| Snippet | Sleep apnea (SA) is a common sleep-related breathing disorder that tends to induce a series of complications, such as pediatric intracranial hypertension,... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2473 |
| SubjectTerms | Algorithms Apnea Artificial neural networks Cluster analysis Clustering Condition monitoring Convolutional neural networks deep neural network ECG signals EKG Electrocardiography Electrocardiography - methods Feature extraction Hidden Markov models home sleep test Humans Hypertension Information flow Monitoring Neural Networks, Computer Pediatrics Psoriasis Rivers Signal Processing, Computer-Assisted Skin diseases Sleep Sleep apnea Sleep Apnea Syndromes - diagnosis Sleep Apnea Syndromes - physiopathology Sleep disorders Telemedicine Vector quantization |
| Title | BAFNet: Bottleneck Attention Based Fusion Network for Sleep Apnea Detection |
| URI | https://ieeexplore.ieee.org/document/10130531 https://www.ncbi.nlm.nih.gov/pubmed/37216250 https://www.proquest.com/docview/3052183543 https://www.proquest.com/docview/2818054885 |
| Volume | 28 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2168-2208 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816896 issn: 2168-2194 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB61HCouLW1pCdDKlXpCSpo4dtbhttt2taViL4DELbKd8QWUXZXkwq_HY2dXCAnUm6XYieOZscfz-gC-o6eqVVqnxrhJKpDrtJauSLn00-aWC6MoOfl8WS2uxNm1vB6T1UMuDCKG4DPMqBl8-e3KDmQq8xLud1xJWdOvJ6qKyVpbg0pAkAh4XNw3Ui-JYvRiFnn942y2-JMRVHhWcj9WEvheSYVrOGXcPzqSAsbK8-pmOHbm72C5mXCMNrnJht5k9v5JLcf__qM9eDsqoGwaOeY9vMLuA7w5H13sH-HvbDpfYn_KZisqb9yhvWHTvo9RkWzmD72WzQeysbFlDCFnXu9lF7eIazZdd6jZL-xDgFe3D1fz35c_F-mIuJDaUuZ9WleyVSirtpDGKaoFZ62nsuZC1qZWmGPrJJdKod-XlCmFsbpAXrhC8xadKT_BTrfq8ACYqDTmypmJsk5YRTcn29ai0LJ2XiURCeSbRW_sWI6cUDFum3AtyeuGSNYQyZqRZAmcbIesYy2Olzrv03I_6hhXOoHjDWmbUVzvmpJSmMkEVibwbfvYCxp5T3SHq-GuobJZXr9VSibwObLE9uUbTjp85qNHsOvnJmKg5DHs9P8G_OKVmd58DUz8AHmp6ys |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6hIgEXngUCBYzECSkhceysw20XWG0fmwut1JtlO5NLq-yKJhd-PR47u6qQirhZipPYnhl7PI9vAD6hp6pTxqTWdrNUIDdpLbsi5dIPmzsurKLk5HVTrS7EyaW8nJLVQy4MIobgM8yoGXz57caNZCrzEu53XElZ0_elEELGdK29SSXUkAgVubhvpF4WxeTHLPL6y8lidZxRsfCs5DNVSSq_VxJ0Daec-1uHUqiycrfCGQ6e5RNodkOO8SZX2TjYzP3-C83xv-f0FB5PKiibR555Bvewfw4P1pOT_QWcLubLBoevbLEhgOMe3RWbD0OMi2QLf-y1bDmSlY01MYicec2X_bxG3LL5tkfDvuMQQrz6Q7hY_jj_tkqnmgupK2U-pHUlW4WyagtpO0VocM55OhsuZG1rhTm2neRSKfQ7k7KlsM4UyIuuMLzFzpYv4aDf9PgamKgM5qqzM-U64RTdnVxbi8LIuvNKiUgg3y26dhMgOdXFuNbhYpLXmkimiWR6IlkCn_evbCMax786H9Jy3-oYVzqBox1p9SSwN7qkJGYygpUJfNw_9qJG_hPT42a80QSc5TVcpWQCryJL7D--46Q3d_z0Azxcna_P9Nlxc_oWHvlxihg2eQQHw68R33nVZrDvA0P_AfXp7ng |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BAFNet%3A+Bottleneck+Attention+Based+Fusion+Network+for+Sleep+Apnea+Detection&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Fan%2C+Xiaomao&rft.au=Chen%2C+Xianhui&rft.au=Ma%2C+Wenjun&rft.au=Gao%2C+Weidong&rft.date=2024-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2168-2194&rft.eissn=2168-2208&rft.volume=28&rft.issue=5&rft.spage=2473&rft_id=info:doi/10.1109%2FJBHI.2023.3278657&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon |