BAFNet: Bottleneck Attention Based Fusion Network for Sleep Apnea Detection

Sleep apnea (SA) is a common sleep-related breathing disorder that tends to induce a series of complications, such as pediatric intracranial hypertension, psoriasis, and even sudden death. Therefore, early diagnosis and treatment can effectively prevent malignant complications SA incurs. Portable mo...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 28; no. 5; pp. 2473 - 2484
Main Authors Chen, Xianhui, Ma, Wenjun, Gao, Weidong, Fan, Xiaomao
Format Journal Article
LanguageEnglish
Published United States IEEE 01.05.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2194
2168-2208
2168-2208
DOI10.1109/JBHI.2023.3278657

Cover

Abstract Sleep apnea (SA) is a common sleep-related breathing disorder that tends to induce a series of complications, such as pediatric intracranial hypertension, psoriasis, and even sudden death. Therefore, early diagnosis and treatment can effectively prevent malignant complications SA incurs. Portable monitoring (PM) is a widely used tool for people to monitor their sleep conditions outside of hospitals. In this study, we focus on SA detection based on single-lead electrocardiogram (ECG) signals which are easily collected by PM. We propose a bottleneck attention based fusion network named BAFNet, which mainly includes five parts of RRI (R-R intervals) stream network, RPA (R-peak amplitudes) stream network, global query generation, feature fusion, and classifier. To learn the feature representation of RRI/RPA segments, fully convolutional networks (FCN) with cross-learning are proposed. Meanwhile, to control the information flow between RRI and RPA networks, a global query generation with bottleneck attention is proposed. To further improve the SA detection performance, a hard sample scheme with k-means clustering is employed. Experiment results show that BAFNet can achieve competitive results, which are superior to the state-of-the-art SA detection methods. It means that BAFNet has great potential to be applied in the home sleep apnea test (HSAT) for sleep condition monitoring.
AbstractList Sleep apnea (SA) is a common sleep-related breathing disorder that tends to induce a series of complications, such as pediatric intracranial hypertension, psoriasis, and even sudden death. Therefore, early diagnosis and treatment can effectively prevent malignant complications SA incurs. Portable monitoring (PM) is a widely used tool for people to monitor their sleep conditions outside of hospitals. In this study, we focus on SA detection based on single-lead electrocardiogram (ECG) signals which are easily collected by PM. We propose a bottleneck attention based fusion network named BAFNet, which mainly includes five parts of RRI (R-R intervals) stream network, RPA (R-peak amplitudes) stream network, global query generation, feature fusion, and classifier. To learn the feature representation of RRI/RPA segments, fully convolutional networks (FCN) with cross-learning are proposed. Meanwhile, to control the information flow between RRI and RPA networks, a global query generation with bottleneck attention is proposed. To further improve the SA detection performance, a hard sample scheme with k-means clustering is employed. Experiment results show that BAFNet can achieve competitive results, which are superior to the state-of-the-art SA detection methods. It means that BAFNet has great potential to be applied in the home sleep apnea test (HSAT) for sleep condition monitoring.
Sleep apnea (SA) is a common sleep-related breathing disorder that tends to induce a series of complications, such as pediatric intracranial hypertension, psoriasis, and even sudden death. Therefore, early diagnosis and treatment can effectively prevent malignant complications SA incurs. Portable monitoring (PM) is a widely used tool for people to monitor their sleep conditions outside of hospitals. In this study, we focus on SA detection based on single-lead electrocardiogram (ECG) signals which are easily collected by PM. We propose a bottleneck attention based fusion network named BAFNet, which mainly includes five parts of RRI (R-R intervals) stream network, RPA (R-peak amplitudes) stream network, global query generation, feature fusion, and classifier. To learn the feature representation of RRI/RPA segments, fully convolutional networks (FCN) with cross-learning are proposed. Meanwhile, to control the information flow between RRI and RPA networks, a global query generation with bottleneck attention is proposed. To further improve the SA detection performance, a hard sample scheme with k-means clustering is employed. Experiment results show that BAFNet can achieve competitive results, which are superior to the state-of-the-art SA detection methods. It means that BAFNet has great potential to be applied in the home sleep apnea test (HSAT) for sleep condition monitoring.Sleep apnea (SA) is a common sleep-related breathing disorder that tends to induce a series of complications, such as pediatric intracranial hypertension, psoriasis, and even sudden death. Therefore, early diagnosis and treatment can effectively prevent malignant complications SA incurs. Portable monitoring (PM) is a widely used tool for people to monitor their sleep conditions outside of hospitals. In this study, we focus on SA detection based on single-lead electrocardiogram (ECG) signals which are easily collected by PM. We propose a bottleneck attention based fusion network named BAFNet, which mainly includes five parts of RRI (R-R intervals) stream network, RPA (R-peak amplitudes) stream network, global query generation, feature fusion, and classifier. To learn the feature representation of RRI/RPA segments, fully convolutional networks (FCN) with cross-learning are proposed. Meanwhile, to control the information flow between RRI and RPA networks, a global query generation with bottleneck attention is proposed. To further improve the SA detection performance, a hard sample scheme with k-means clustering is employed. Experiment results show that BAFNet can achieve competitive results, which are superior to the state-of-the-art SA detection methods. It means that BAFNet has great potential to be applied in the home sleep apnea test (HSAT) for sleep condition monitoring.
Author Ma, Wenjun
Fan, Xiaomao
Gao, Weidong
Chen, Xianhui
Author_xml – sequence: 1
  givenname: Xianhui
  surname: Chen
  fullname: Chen, Xianhui
  email: xhchen@nyu.edu
  organization: Department of Electrical and Computer Engineering, New York University, New York, NY, USA
– sequence: 2
  givenname: Wenjun
  orcidid: 0000-0003-4600-398X
  surname: Ma
  fullname: Ma, Wenjun
  email: mawenjun@scnu.edu.cn
  organization: School of Computer Science, South China Normal University, Guangzhou, China
– sequence: 3
  givenname: Weidong
  orcidid: 0000-0002-9360-4561
  surname: Gao
  fullname: Gao, Weidong
  email: gaoweidong@bupt.edu.cn
  organization: School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 4
  givenname: Xiaomao
  orcidid: 0000-0001-8160-1294
  surname: Fan
  fullname: Fan, Xiaomao
  email: astrofan2008@gmail.com
  organization: College of Big Data and Internet, Shenzhen Technology University, Shenzhen, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37216250$$D View this record in MEDLINE/PubMed
BookMark eNp9kV9LwzAUxYMoTuc-gCBS8MWXzfxp2tS3TZ1Ohz6ozyFNb6Fb18wkRfz2pmwD2YN5ucnN7xxuck7RYWMaQOic4BEhOLt5njzNRhRTNmI0FQlPD9AJJYkYUorF4W5PsriHBs4tcFgitLLkGPVYGm4pxyfoZTKevoK_jSbG-xoa0Mto7D00vjJNNFEOimjauu4QsG9jl1FpbPReA6yj8boBFd2DB93hZ-ioVLWDwbb20ef04ePuaTh_e5zdjedDzTj2wyzhhQCeFITnpch4LLSGHBSNeZZnAjAUJadcCGBpInIW51oRoKQkihZQ5qyPrje-a2u-WnBeriqnoa5VA6Z1kgoicLAVPKBXe-jCtLYJ00mGOSWC8ZgF6nJLtfkKCrm21UrZH7n7pgCkG0Bb45yFUurKq-7N3qqqlgTLLhPZZSK7TOQ2k6Ake8qd-X-ai42mAoA_PAkjM8J-AapTlKw
CODEN IJBHA9
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3467266
crossref_primary_10_1016_j_cmpb_2024_108558
crossref_primary_10_1088_1361_6579_ad205a
crossref_primary_10_2196_56750
crossref_primary_10_1002_brb3_70206
Cites_doi 10.1161/01.CIR.101.23.e21
10.1109/ijcnn.2018.8489071
10.1016/j.neucom.2016.12.062
10.1109/ICCV.2015.123
10.1109/TIM.2019.2902809
10.7717/peerj.7731
10.1016/j.neucom.2019.11.094
10.1016/j.bspc.2019.04.005
10.1007/s10439-023-03172-7
10.1016/j.knosys.2020.106589
10.1016/j.jstrokecerebrovasdis.2017.12.048
10.1109/ACCESS.2019.2939749
10.1109/WACV48630.2021.00360
10.1109/ICCV51070.2023.01960
10.5664/jcsm.8272
10.1016/j.neucom.2018.03.011
10.1016/j.asoc.2019.105765
10.1007/978-3-030-03341-5_22
10.5664/jcsm.7486
10.1007/s11042-018-6161-8
10.1016/j.bdr.2017.06.002
10.1109/CVPR42600.2020.01095
10.1109/EMBC44109.2020.9175998
10.1016/j.sleep.2020.03.017
10.1016/j.smrv.2016.07.002
10.5664/jcsm.8436
10.1007/s10489-021-02422-2
10.1109/JIOT.2020.2980549
10.1109/ijcnn48605.2020.9206626
10.1016/j.patrec.2018.05.024
10.1016/j.bspc.2020.102005
10.1007/978-3-319-93034-3_29
10.1016/j.knosys.2021.107473
10.1109/tim.2022.3151947
10.3389/fnins.2022.972581
10.1016/j.inffus.2018.09.014
10.1109/CVPR.2016.319
10.1016/j.bspc.2018.12.015
10.1001/jama.2020.3514
10.1109/CIC.2000.898505
10.1007/s10916-018-1146-8
10.1109/TBCAS.2018.2824659
10.1109/tim.2021.3062414
10.1016/j.neucom.2020.10.031
10.1016/j.cmpb.2021.106119
10.1109/ICCV51070.2023.00371
10.1109/TBME.2015.2422378
10.1109/TMM.2020.2972125
10.1109/memea52024.2021.9478745
10.1109/CVPR.2018.00745
10.1016/j.compbiomed.2021.105124
10.1109/TBME.2015.2498199
10.23919/CCC50068.2020.9189667
10.5664/jcsm.7322
10.1109/EMBC.2019.8857934
10.5664/jcsm.7806
10.1109/ACCESS.2018.2815149
10.1109/BIBM52615.2021.9669358
10.3390/jcm10020277
10.1016/j.bspc.2021.102906
10.1109/cisp-bmei.2018.8633132
10.1016/j.renene.2021.10.025
10.1016/j.compbiomed.2016.08.012
10.5664/jcsm.5790
10.1109/ACCESS.2018.2889797
10.1109/ICCV.2017.450
10.1109/tim.2020.3017246
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/JBHI.2023.3278657
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE
Materials Research Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2168-2208
EndPage 2484
ExternalDocumentID 37216250
10_1109_JBHI_2023_3278657
10130531
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Special Subject on Agriculture and Social Development, Key Research and Development Plan in Guangzhou
  grantid: 2023B03J0172
– fundername: Natural Science Foundation of Top Talent of SZTU
  grantid: GDRC202131
– fundername: National Natural Science Foundation of China
  grantid: 62176165
  funderid: 10.13039/501100001809
– fundername: Basic and Applied Research Project of Guangdong Province
  grantid: 2022B1515130009
– fundername: Stable Support Projects for Shenzhen Higher Education Institutions
  grantid: SZWD2021011
GroupedDBID 0R~
4.4
6IF
6IH
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c350t-965d8e56d15bf89548ccebea2459b98e0edf52588e3768b34bca1e21f1a2defb3
IEDL.DBID RIE
ISSN 2168-2194
2168-2208
IngestDate Thu Oct 02 06:35:21 EDT 2025
Mon Jun 30 03:09:57 EDT 2025
Thu Apr 03 07:02:25 EDT 2025
Thu Apr 24 23:09:32 EDT 2025
Wed Oct 01 03:40:06 EDT 2025
Wed Aug 27 01:57:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c350t-965d8e56d15bf89548ccebea2459b98e0edf52588e3768b34bca1e21f1a2defb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4600-398X
0000-0002-9360-4561
0000-0001-8160-1294
PMID 37216250
PQID 3052183543
PQPubID 85417
PageCount 12
ParticipantIDs pubmed_primary_37216250
proquest_miscellaneous_2818054885
crossref_citationtrail_10_1109_JBHI_2023_3278657
proquest_journals_3052183543
crossref_primary_10_1109_JBHI_2023_3278657
ieee_primary_10130531
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE journal of biomedical and health informatics
PublicationTitleAbbrev JBHI
PublicationTitleAlternate IEEE J Biomed Health Inform
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref10
ref54
ref17
ref16
ref19
ref18
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
Nagrani (ref51) 2021
ref8
ref7
ref9
ref4
ref3
ref6
Vaswani (ref50) 2017
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Kingma (ref55) 2014
ref70
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref58
  doi: 10.1161/01.CIR.101.23.e21
– ident: ref44
  doi: 10.1109/ijcnn.2018.8489071
– ident: ref30
  doi: 10.1016/j.neucom.2016.12.062
– ident: ref56
  doi: 10.1109/ICCV.2015.123
– year: 2014
  ident: ref55
  article-title: Adam: A method for stochastic optimization
– ident: ref23
  doi: 10.1109/TIM.2019.2902809
– ident: ref15
  doi: 10.7717/peerj.7731
– ident: ref39
  doi: 10.1016/j.neucom.2019.11.094
– ident: ref27
  doi: 10.1016/j.bspc.2019.04.005
– ident: ref68
  doi: 10.1007/s10439-023-03172-7
– ident: ref26
  doi: 10.1016/j.knosys.2020.106589
– ident: ref8
  doi: 10.1016/j.jstrokecerebrovasdis.2017.12.048
– ident: ref9
  doi: 10.1109/ACCESS.2019.2939749
– ident: ref53
  doi: 10.1109/WACV48630.2021.00360
– ident: ref70
  doi: 10.1109/ICCV51070.2023.01960
– ident: ref11
  doi: 10.5664/jcsm.8272
– ident: ref31
  doi: 10.1016/j.neucom.2018.03.011
– ident: ref48
  doi: 10.1016/j.asoc.2019.105765
– ident: ref42
  doi: 10.1007/978-3-030-03341-5_22
– ident: ref10
  doi: 10.5664/jcsm.7486
– ident: ref33
  doi: 10.1007/s11042-018-6161-8
– ident: ref36
  doi: 10.1016/j.bdr.2017.06.002
– ident: ref46
  doi: 10.1109/CVPR42600.2020.01095
– start-page: 14200
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2021
  ident: ref51
  article-title: Attention bottlenecks for multimodal fusion
– ident: ref66
  doi: 10.1109/EMBC44109.2020.9175998
– ident: ref6
  doi: 10.1016/j.sleep.2020.03.017
– ident: ref2
  doi: 10.1016/j.smrv.2016.07.002
– ident: ref3
  doi: 10.5664/jcsm.8436
– ident: ref25
  doi: 10.1007/s10489-021-02422-2
– ident: ref38
  doi: 10.1109/JIOT.2020.2980549
– ident: ref60
  doi: 10.1109/ijcnn48605.2020.9206626
– ident: ref37
  doi: 10.1016/j.patrec.2018.05.024
– ident: ref32
  doi: 10.1016/j.bspc.2020.102005
– ident: ref18
  doi: 10.1007/978-3-319-93034-3_29
– ident: ref28
  doi: 10.1016/j.knosys.2021.107473
– ident: ref17
  doi: 10.1109/tim.2022.3151947
– ident: ref62
  doi: 10.3389/fnins.2022.972581
– ident: ref47
  doi: 10.1016/j.inffus.2018.09.014
– ident: ref59
  doi: 10.1109/CVPR.2016.319
– ident: ref19
  doi: 10.1016/j.bspc.2018.12.015
– ident: ref1
  doi: 10.1001/jama.2020.3514
– ident: ref57
  doi: 10.1109/CIC.2000.898505
– ident: ref22
  doi: 10.1007/s10916-018-1146-8
– ident: ref65
  doi: 10.1109/TBCAS.2018.2824659
– ident: ref16
  doi: 10.1109/tim.2021.3062414
– ident: ref49
  doi: 10.1016/j.neucom.2020.10.031
– start-page: 5998
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2017
  ident: ref50
  article-title: Attention is all you need
– ident: ref20
  doi: 10.1016/j.cmpb.2021.106119
– ident: ref69
  doi: 10.1109/ICCV51070.2023.00371
– ident: ref29
  doi: 10.1109/TBME.2015.2422378
– ident: ref45
  doi: 10.1109/TMM.2020.2972125
– ident: ref63
  doi: 10.1109/memea52024.2021.9478745
– ident: ref54
  doi: 10.1109/CVPR.2018.00745
– ident: ref35
  doi: 10.1016/j.compbiomed.2021.105124
– ident: ref13
  doi: 10.1109/TBME.2015.2498199
– ident: ref43
  doi: 10.23919/CCC50068.2020.9189667
– ident: ref5
  doi: 10.5664/jcsm.7322
– ident: ref24
  doi: 10.1109/EMBC.2019.8857934
– ident: ref7
  doi: 10.5664/jcsm.7806
– ident: ref41
  doi: 10.1109/ACCESS.2018.2815149
– ident: ref14
  doi: 10.1109/BIBM52615.2021.9669358
– ident: ref12
  doi: 10.3390/jcm10020277
– ident: ref34
  doi: 10.1016/j.bspc.2021.102906
– ident: ref21
  doi: 10.1109/cisp-bmei.2018.8633132
– ident: ref61
  doi: 10.1016/j.renene.2021.10.025
– ident: ref64
  doi: 10.1016/j.compbiomed.2016.08.012
– ident: ref4
  doi: 10.5664/jcsm.5790
– ident: ref40
  doi: 10.1109/ACCESS.2018.2889797
– ident: ref52
  doi: 10.1109/ICCV.2017.450
– ident: ref67
  doi: 10.1109/tim.2020.3017246
SSID ssj0000816896
Score 2.470234
Snippet Sleep apnea (SA) is a common sleep-related breathing disorder that tends to induce a series of complications, such as pediatric intracranial hypertension,...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2473
SubjectTerms Algorithms
Apnea
Artificial neural networks
Cluster analysis
Clustering
Condition monitoring
Convolutional neural networks
deep neural network
ECG signals
EKG
Electrocardiography
Electrocardiography - methods
Feature extraction
Hidden Markov models
home sleep test
Humans
Hypertension
Information flow
Monitoring
Neural Networks, Computer
Pediatrics
Psoriasis
Rivers
Signal Processing, Computer-Assisted
Skin diseases
Sleep
Sleep apnea
Sleep Apnea Syndromes - diagnosis
Sleep Apnea Syndromes - physiopathology
Sleep disorders
Telemedicine
Vector quantization
Title BAFNet: Bottleneck Attention Based Fusion Network for Sleep Apnea Detection
URI https://ieeexplore.ieee.org/document/10130531
https://www.ncbi.nlm.nih.gov/pubmed/37216250
https://www.proquest.com/docview/3052183543
https://www.proquest.com/docview/2818054885
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2208
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816896
  issn: 2168-2194
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB61HCouLW1pCdDKlXpCSpo4dtbhttt2taViL4DELbKd8QWUXZXkwq_HY2dXCAnUm6XYieOZscfz-gC-o6eqVVqnxrhJKpDrtJauSLn00-aWC6MoOfl8WS2uxNm1vB6T1UMuDCKG4DPMqBl8-e3KDmQq8xLud1xJWdOvJ6qKyVpbg0pAkAh4XNw3Ui-JYvRiFnn942y2-JMRVHhWcj9WEvheSYVrOGXcPzqSAsbK8-pmOHbm72C5mXCMNrnJht5k9v5JLcf__qM9eDsqoGwaOeY9vMLuA7w5H13sH-HvbDpfYn_KZisqb9yhvWHTvo9RkWzmD72WzQeysbFlDCFnXu9lF7eIazZdd6jZL-xDgFe3D1fz35c_F-mIuJDaUuZ9WleyVSirtpDGKaoFZ62nsuZC1qZWmGPrJJdKod-XlCmFsbpAXrhC8xadKT_BTrfq8ACYqDTmypmJsk5YRTcn29ai0LJ2XiURCeSbRW_sWI6cUDFum3AtyeuGSNYQyZqRZAmcbIesYy2Olzrv03I_6hhXOoHjDWmbUVzvmpJSmMkEVibwbfvYCxp5T3SHq-GuobJZXr9VSibwObLE9uUbTjp85qNHsOvnJmKg5DHs9P8G_OKVmd58DUz8AHmp6ys
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6hIgEXngUCBYzECSkhceysw20XWG0fmwut1JtlO5NLq-yKJhd-PR47u6qQirhZipPYnhl7PI9vAD6hp6pTxqTWdrNUIDdpLbsi5dIPmzsurKLk5HVTrS7EyaW8nJLVQy4MIobgM8yoGXz57caNZCrzEu53XElZ0_elEELGdK29SSXUkAgVubhvpF4WxeTHLPL6y8lidZxRsfCs5DNVSSq_VxJ0Daec-1uHUqiycrfCGQ6e5RNodkOO8SZX2TjYzP3-C83xv-f0FB5PKiibR555Bvewfw4P1pOT_QWcLubLBoevbLEhgOMe3RWbD0OMi2QLf-y1bDmSlY01MYicec2X_bxG3LL5tkfDvuMQQrz6Q7hY_jj_tkqnmgupK2U-pHUlW4WyagtpO0VocM55OhsuZG1rhTm2neRSKfQ7k7KlsM4UyIuuMLzFzpYv4aDf9PgamKgM5qqzM-U64RTdnVxbi8LIuvNKiUgg3y26dhMgOdXFuNbhYpLXmkimiWR6IlkCn_evbCMax786H9Jy3-oYVzqBox1p9SSwN7qkJGYygpUJfNw_9qJG_hPT42a80QSc5TVcpWQCryJL7D--46Q3d_z0Azxcna_P9Nlxc_oWHvlxihg2eQQHw68R33nVZrDvA0P_AfXp7ng
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BAFNet%3A+Bottleneck+Attention+Based+Fusion+Network+for+Sleep+Apnea+Detection&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Fan%2C+Xiaomao&rft.au=Chen%2C+Xianhui&rft.au=Ma%2C+Wenjun&rft.au=Gao%2C+Weidong&rft.date=2024-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2168-2194&rft.eissn=2168-2208&rft.volume=28&rft.issue=5&rft.spage=2473&rft_id=info:doi/10.1109%2FJBHI.2023.3278657&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon