Deep Learning in Breast Cancer Imaging: A Decade of Progress and Future Directions

Breast cancer has reached the highest incidence rate worldwide among all malignancies since 2020. Breast imaging plays a significant role in early diagnosis and intervention to improve the outcome of breast cancer patients. In the past decade, deep learning has shown remarkable progress in breast ca...

Full description

Saved in:
Bibliographic Details
Published inIEEE reviews in biomedical engineering Vol. 18; pp. 130 - 151
Main Authors Luo, Luyang, Wang, Xi, Lin, Yi, Ma, Xiaoqi, Tan, Andong, Chan, Ronald, Vardhanabhuti, Varut, Chu, Winnie CW, Cheng, Kwang-Ting, Chen, Hao
Format Journal Article
LanguageEnglish
Published United States IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1937-3333
1941-1189
1941-1189
DOI10.1109/RBME.2024.3357877

Cover

Abstract Breast cancer has reached the highest incidence rate worldwide among all malignancies since 2020. Breast imaging plays a significant role in early diagnosis and intervention to improve the outcome of breast cancer patients. In the past decade, deep learning has shown remarkable progress in breast cancer imaging analysis, holding great promise in interpreting the rich information and complex context of breast imaging modalities. Considering the rapid improvement in deep learning technology and the increasing severity of breast cancer, it is critical to summarize past progress and identify future challenges to be addressed. This paper provides an extensive review of deep learning-based breast cancer imaging research, covering studies on mammograms, ultrasound, magnetic resonance imaging, and digital pathology images over the past decade. The major deep learning methods and applications on imaging-based screening, diagnosis, treatment response prediction, and prognosis are elaborated and discussed. Drawn from the findings of this survey, we present a comprehensive discussion of the challenges and potential avenues for future research in deep learning-based breast cancer imaging.
AbstractList Breast cancer has reached the highest incidence rate worldwide among all malignancies since 2020. Breast imaging plays a significant role in early diagnosis and intervention to improve the outcome of breast cancer patients. In the past decade, deep learning has shown remarkable progress in breast cancer imaging analysis, holding great promise in interpreting the rich information and complex context of breast imaging modalities. Considering the rapid improvement in deep learning technology and the increasing severity of breast cancer, it is critical to summarize past progress and identify future challenges to be addressed. This paper provides an extensive review of deep learning-based breast cancer imaging research, covering studies on mammograms, ultrasound, magnetic resonance imaging, and digital pathology images over the past decade. The major deep learning methods and applications on imaging-based screening, diagnosis, treatment response prediction, and prognosis are elaborated and discussed. Drawn from the findings of this survey, we present a comprehensive discussion of the challenges and potential avenues for future research in deep learning-based breast cancer imaging.Breast cancer has reached the highest incidence rate worldwide among all malignancies since 2020. Breast imaging plays a significant role in early diagnosis and intervention to improve the outcome of breast cancer patients. In the past decade, deep learning has shown remarkable progress in breast cancer imaging analysis, holding great promise in interpreting the rich information and complex context of breast imaging modalities. Considering the rapid improvement in deep learning technology and the increasing severity of breast cancer, it is critical to summarize past progress and identify future challenges to be addressed. This paper provides an extensive review of deep learning-based breast cancer imaging research, covering studies on mammograms, ultrasound, magnetic resonance imaging, and digital pathology images over the past decade. The major deep learning methods and applications on imaging-based screening, diagnosis, treatment response prediction, and prognosis are elaborated and discussed. Drawn from the findings of this survey, we present a comprehensive discussion of the challenges and potential avenues for future research in deep learning-based breast cancer imaging.
Breast cancer has reached the highest incidence rate worldwide among all malignancies since 2020. Breast imaging plays a significant role in early diagnosis and intervention to improve the outcome of breast cancer patients. In the past decade, deep learning has shown remarkable progress in breast cancer imaging analysis, holding great promise in interpreting the rich information and complex context of breast imaging modalities. Considering the rapid improvement in deep learning technology and the increasing severity of breast cancer, it is critical to summarize past progress and identify future challenges to be addressed. This paper provides an extensive review of deep learning-based breast cancer imaging research, covering studies on mammograms, ultrasound, magnetic resonance imaging, and digital pathology images over the past decade. The major deep learning methods and applications on imaging-based screening, diagnosis, treatment response prediction, and prognosis are elaborated and discussed. Drawn from the findings of this survey, we present a comprehensive discussion of the challenges and potential avenues for future research in deep learning-based breast cancer imaging.
Author Luo, Luyang
Vardhanabhuti, Varut
Chan, Ronald
Cheng, Kwang-Ting
Chu, Winnie CW
Lin, Yi
Chen, Hao
Wang, Xi
Ma, Xiaoqi
Tan, Andong
Author_xml – sequence: 1
  givenname: Luyang
  orcidid: 0000-0002-7485-4151
  surname: Luo
  fullname: Luo, Luyang
  email: cseluyang@ust.hk
  organization: Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong Kong, SAR, China
– sequence: 2
  givenname: Xi
  orcidid: 0000-0002-5218-2761
  surname: Wang
  fullname: Wang, Xi
  email: xiwang@cse.cuhk.edu.hk
  organization: Zhejiang Lab, Hangzhou, China
– sequence: 3
  givenname: Yi
  orcidid: 0000-0002-7635-2518
  surname: Lin
  fullname: Lin, Yi
  email: yi.lin@connect.ust.hk
  organization: Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong Kong, SAR, China
– sequence: 4
  givenname: Xiaoqi
  orcidid: 0009-0003-8890-1857
  surname: Ma
  fullname: Ma, Xiaoqi
  email: xma2325@gmail.com
  organization: Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong Kong, SAR, China
– sequence: 5
  givenname: Andong
  orcidid: 0009-0008-4419-1837
  surname: Tan
  fullname: Tan, Andong
  email: atanac@connect.ust.hk
  organization: Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong Kong, SAR, China
– sequence: 6
  givenname: Ronald
  orcidid: 0000-0001-9267-0076
  surname: Chan
  fullname: Chan, Ronald
  email: ronaldckchan@cuhk.edu.hk
  organization: Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong
– sequence: 7
  givenname: Varut
  orcidid: 0000-0001-6677-3194
  surname: Vardhanabhuti
  fullname: Vardhanabhuti, Varut
  email: varv@hku.hk
  organization: Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
– sequence: 8
  givenname: Winnie CW
  orcidid: 0000-0003-4962-4132
  surname: Chu
  fullname: Chu, Winnie CW
  email: winniechu@cuhk.edu.hk
  organization: Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong
– sequence: 9
  givenname: Kwang-Ting
  orcidid: 0000-0002-3885-4912
  surname: Cheng
  fullname: Cheng, Kwang-Ting
  email: timcheng@ust.hk
  organization: Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong Kong, SAR, China
– sequence: 10
  givenname: Hao
  orcidid: 0000-0002-8400-3780
  surname: Chen
  fullname: Chen, Hao
  email: jhc@cse.ust.hk
  organization: Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong Kong, SAR, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38265911$$D View this record in MEDLINE/PubMed
BookMark eNp9kVFrFDEUhYNUbK39AYJIwBdfZs2dJJPEt3a3tYUtlaLPIZO5s6TsZtZk5sF_b4ZdRfrQ85JAvpN7OectOYlDRELeA1sAMPPl8er-elGzWiw4l0or9YqcgRFQAWhzMt-5qnjRKbnI-YkVSaFAszfklOu6kQbgjDyuEPd0jS7FEDc0RHqV0OWRLl30mOjdzm3Kw1d6SVfoXYd06On3NGwS5kxd7OjNNE4J6Sok9GMYYn5HXvdum_HieJ6TnzfXP5a31frh293ycl15LtlYGaalxobVregd9l0jFHdGtKLRDg16wbgRvfbgpJedlL5BVDXX2LaoCsHPyefDv_s0_Jowj3YXssft1kUcpmxrA1oC1I0o6Kdn6NMwpVi2sxwa4A0v6RTq45Ga2h12dp_CzqXf9m9aBYAD4NOQc8L-HwLMzqXYuRQ7l2KPpRSPeubxYXRzUGNyYfui88PBGRDxv0kCuOTA_wBXY5ah
CODEN IRBECO
CitedBy_id crossref_primary_10_1108_IJICC_02_2024_0091
crossref_primary_10_1007_s13721_025_00509_1
crossref_primary_10_22399_ijcesen_812
crossref_primary_10_1038_s41598_025_86014_x
crossref_primary_10_1007_s42979_024_03004_y
crossref_primary_10_3390_jimaging10040081
crossref_primary_10_1002_jmri_29687
crossref_primary_10_1134_S2070048224700716
crossref_primary_10_1007_s12652_024_04803_0
crossref_primary_10_1038_s41598_024_69725_5
crossref_primary_10_1016_j_csbr_2024_100019
crossref_primary_10_3390_bioengineering11050453
crossref_primary_10_54287_gujsa_1529857
crossref_primary_10_1109_TIM_2024_3502883
crossref_primary_10_3390_diagnostics14080848
crossref_primary_10_1007_s11042_025_20606_7
crossref_primary_10_1186_s12885_024_13049_0
crossref_primary_10_3390_math12040616
crossref_primary_10_1007_s10462_024_10984_z
crossref_primary_10_3389_fmed_2024_1450103
Cites_doi 10.1038/s41698-023-00472-y
10.1158/1078-0432.CCR-21-0325
10.1109/EMBC44109.2020.9176617
10.1038/s41467-021-27577-x
10.1109/TMI.2021.3102622
10.1148/radiol.13121606
10.1117/1.JMI.5.1.014502
10.1007/s10278-020-00369-3
10.1109/JBHI.2020.3008040
10.1038/s41591-020-01174-9
10.1002/mp.15598
10.1002/mp.15156
10.1109/TPAMI.2021.3085783
10.1007/s00330-020-07274-x
10.1186/bcr2607
10.1109/TMI.2019.2936500
10.1001/jama.2018.19323
10.1038/srep46450
10.5858/arpa.2014-0094-RA
10.1145/3422622
10.1002/mp.13849
10.4324/9781410605337-29
10.1038/nature14236
10.1016/j.media.2022.102478
10.1016/j.media.2019.101563
10.1038/s41591-023-02625-9
10.1109/ICABME47164.2019.8940291
10.1007/s10916-010-9448-5
10.1038/s41598-021-93592-z
10.1136/bmjqs-2018-008370
10.1016/j.cmpb.2022.106884
10.1007/978-3-030-20351-1_53
10.1109/JBHI.2019.2960821
10.1038/s42256-021-00425-9
10.1148/radiol.2019180760
10.1007/978-3-030-20301-6_3
10.1016/j.neucom.2022.04.021
10.3389/fonc.2022.812463
10.1016/S2589-7500(22)00088-7
10.1117/12.2255316
10.1016/j.cmpb.2020.105361
10.1016/j.patcog.2017.08.004
10.1007/s10278-020-00407-0
10.3389/fonc.2022.984626
10.1007/978-3-030-97281-3_12
10.1148/radiol.2021204432
10.1002/mp.13945
10.1109/TMI.2021.3116087
10.1117/1.JMI.8.3.034501
10.1038/s41467-020-15027-z
10.1016/j.cmpb.2021.106018
10.1109/TMI.2021.3129068
10.1016/j.media.2017.07.005
10.1109/ICCV.2015.169
10.1109/CVPR52729.2023.01113
10.1038/s41379-021-00911-w
10.1002/jmri.26244
10.1109/TPAMI.2015.2437384
10.1016/j.media.2021.102121
10.1038/s41598-022-16141-2
10.1016/j.acra.2021.03.032
10.1109/EMBC.2017.8036918
10.1007/978-3-030-32239-7_81
10.1186/s12885-018-4448-9
10.1200/JCO.21.01337
10.1038/s41598-020-67441-4
10.1038/s41591-019-0508-1
10.1148/ryai.210299
10.1007/s10278-018-0144-1
10.1148/radiol.239004
10.1002/mp.13966
10.1016/j.media.2022.102464
10.1002/mp.15631
10.1007/978-3-030-32226-7_54
10.48550/arXiv.2010.11929
10.1007/s11517-020-02175-z
10.1002/bjs.4840
10.1109/TMI.2018.2865671
10.1109/JBHI.2022.3216031
10.1148/radiol.2021203960
10.1109/TMI.2018.2872031
10.1038/s41598-021-98408-8
10.1016/S0140-6736(02)08020-0
10.1109/ICCV.2017.322
10.1109/ICCV.2019.01076
10.1038/s41598-022-06100-2
10.1126/scitranslmed.abo4802
10.1007/978-3-319-59050-9_19
10.1109/EMBC48229.2022.9871452
10.1007/s11547-017-0782-2
10.3390/bioengineering9040161
10.1016/j.mri.2020.03.001
10.3389/fonc.2022.943415
10.1007/978-3-031-16434-7_14
10.1001/jamainternmed.2022.4969
10.1148/radiol.2018181371
10.1007/978-3-031-16434-7_22
10.3389/fonc.2022.846775
10.1016/j.compbiomed.2022.105812
10.1007/978-3-030-59713-9_24
10.1002/mp.16188
10.1007/s00330-019-06186-9
10.1007/978-3-031-19803-8_23
10.1200/JCO.2011.38.8595
10.3322/caac.21660
10.1016/j.ejca.2021.01.028
10.1038/s41598-020-75167-6
10.1109/TMI.2021.3078370
10.1007/s10278-017-9993-2
10.1148/radiol.2019182947
10.1016/j.cmpb.2021.106327
10.1117/1.JMI.4.4.044504
10.1001/jamanetworkopen.2022.42343
10.1002/jmri.10380
10.1016/j.jbi.2014.01.010
10.1007/s10549-022-06521-7
10.1038/s41591-018-0300-7
10.1016/j.annonc.2021.09.007
10.1109/TPAMI.2020.2992393
10.1016/j.ebiom.2020.103018
10.1016/j.ejrad.2021.110095
10.1109/CVPR.2018.00474
10.1109/ISBI.2018.8363704
10.1007/978-3-319-66179-7_76
10.1002/mp.14671
10.1109/ISBI.2015.7163815
10.1162/neco.1989.1.4.541
10.1186/s12880-019-0349-x
10.1016/j.media.2022.102486
10.1038/s41374-019-0275-0
10.3390/cancers15092569
10.1037/h0042519
10.1088/1361-6560/ab7e7d
10.1109/TMI.2020.3002244
10.1109/tpami.2024.3435571
10.1148/ryai.2020200103
10.3322/caac.21754
10.1118/1.4933198
10.1038/modpathol.2013.230
10.1038/323533a0
10.1109/TMI.2017.2677499
10.1038/s41467-020-20030-5
10.1016/S0140-6736(51)92403-8
10.1186/s13058-022-01580-6
10.1016/j.clbc.2021.07.002
10.1007/978-3-319-24574-4_78
10.1016/j.compbiomed.2018.04.004
10.1109/TCBB.2022.3163277
10.1088/1361-6560/aa82ec
10.1109/TMI.2018.2865709
10.1007/978-3-030-33128-3_1
10.1016/j.mri.2020.10.003
10.1109/JBHI.2021.3136568
10.5555/2999134.2999257
10.1109/TMI.2020.2968397
10.1109/TMI.2019.2945514
10.1002/jmri.26721
10.1016/j.media.2018.03.006
10.1016/j.jacr.2020.01.006
10.1007/978-3-030-87196-3_50
10.1007/978-3-319-46723-8_28
10.1007/978-3-031-16437-8_6
10.1007/s10278-021-00449-y
10.1016/j.neucom.2018.05.083
10.1016/j.breast.2021.02.007
10.1148/ryai.220185
10.1007/978-3-030-60548-3_18
10.1148/radiol.2019190372
10.1007/978-3-030-32239-7_40
10.1016/j.semcancer.2020.08.006
10.1016/j.patcog.2017.10.009
10.1016/j.neucom.2019.08.103
10.1016/j.acra.2020.02.006
10.1016/j.media.2022.102685
10.1007/978-3-031-16452-1_59
10.1016/j.compbiomed.2020.104206
10.1126/scitranslmed.aba4373
10.3389/fphys.2020.511071
10.1109/ICCV.2017.324
10.3389/fonc.2022.946580
10.1038/s41591-023-02643-7
10.1109/3DV.2016.79
10.1109/IPTA.2014.7001976
10.1007/BF02478259
10.48550/ARXIV.1706.03762
10.1007/978-3-319-24574-4_28
10.1016/j.media.2021.102049
10.1016/S0140-6736(16)31891-8
10.1007/978-3-030-32251-9_55
10.1109/ISBI.2018.8363518
10.1111/j.1365-2559.1991.tb00229.x
10.1109/ICCV51070.2023.01949
10.3390/cancers14163848
10.1038/s41597-023-02125-y
10.1016/j.media.2021.101989
10.1016/S0140-6736(13)62422-8
10.1001/jamanetworkopen.2021.19100
10.1109/TMI.2018.2870343
10.1093/annonc/mdv221
10.47102/annals-acadmedsg.V41N10p432
10.1001/jama.299.18.2151
10.1038/s41586-019-1799-6
10.1038/s41571-019-0299-9
10.1109/tpami.2016.2577031
10.1109/CVPR.2016.91
10.1007/s00330-020-07165-1
10.1109/TMI.2021.3071544
10.1148/radiol.2019192515
10.1038/bjc.2013.177
10.1109/TMI.2018.2860257
10.1088/1361-6560/ab5093
10.1148/radiol.2019182627
10.3322/caac.21388
10.1117/1.JMI.5.1.014503
10.1016/j.media.2023.102933
10.7863/jum.2000.19.7.427
10.1148/ryai.2021200159
10.1038/modpathol.2013.103
10.1016/j.media.2020.101918
10.1007/978-3-319-46723-8_13
10.1038/s41374-018-0095-7
10.1016/j.bbe.2018.04.008
10.1038/s41591-021-01595-0
10.1007/s00330-021-08293-y
10.1118/1.4967345
10.1016/j.breast.2022.10.004
10.1109/TCBB.2020.2978470
10.1109/CVPR.2016.319
10.1007/s00330-022-08863-8
10.3390/cancers12123687
10.1038/srep24454
10.1038/s41591-018-0177-5
10.1038/s41523-022-00491-1
10.1016/j.ejrad.2022.110247
10.1001/jamaoncol.2017.0473
10.1093/annonc/mds324
10.1016/j.semcancer.2020.06.002
10.1016/b978-0-12-092861-3.x5000-6
10.1109/TMI.2019.2927182
10.1038/s41597-023-02327-4
10.1016/j.media.2021.102204
10.1016/j.media.2021.102010
10.1016/j.media.2017.12.002
10.1007/978-3-031-43987-2_45
10.1109/CVPR.2015.7298965
10.1016/j.media.2022.102466
10.1109/JPROC.2019.2950187
10.5555/3298023.3298188
10.1109/TMI.2022.3202759
10.1109/CVPR46437.2021.01216
10.1038/s41598-021-03806-7
10.1007/978-3-030-59722-1_33
10.1002/jmri.27955
10.3389/fonc.2021.596364
10.1148/rg.2020200006
10.1109/JBHI.2020.3034804
10.1093/jnci/djac142
10.1109/CVPR.2019.00075
10.1038/s42256-020-00257-z
10.1038/s41551-019-0362-y
10.1002/jbio.201960235
10.1007/s00330-019-06457-5
10.1007/978-3-319-67558-9_10
10.1109/TMI.2017.2751523
10.1007/978-3-319-66179-7_69
10.1038/s41551-021-00711-2
10.1093/jnci/djy222
10.1109/CVPR.2009.5206848
10.1007/978-3-030-00934-2_95
10.1016/j.media.2021.101999
10.1097/RLI.0000000000000976
10.1088/1361-6560/ac195a
10.1007/s10911-006-9018-0
10.1007/978-3-031-16437-8_2
10.1007/978-3-030-59710-8_2
10.1002/mp.12683
10.1093/bioinformatics/btac381
10.1007/978-3-030-59725-2_24
10.1038/nature14539
10.3390/jimaging7120276
10.1109/TMI.2018.2820199
10.1177/153303460400300402
10.1038/s41467-021-25221-2
10.1109/ISBI45749.2020.9098732
10.1016/j.mri.2020.08.021
10.1016/j.media.2020.101816
10.1109/JBHI.2021.3081111
10.1038/s41551-022-00923-0
10.1007/978-3-031-16437-8_23
10.1016/j.eclinm.2022.101562
10.1109/CVPR.2017.243
10.1109/EMBC48229.2022.9871091
10.1109/ICCV51070.2023.01942
10.1016/j.csbj.2021.12.028
10.1093/bioinformatics/btab185
10.1109/ICCV51070.2023.01964
10.1001/jama.2017.14585
10.1109/TPAMI.2021.3130759
10.1016/j.neucom.2018.09.043
10.1186/s12967-021-03020-z
10.1109/JBHI.2017.2731873
10.1038/s41598-020-77875-5
10.4103/jpi.jpi_61_17
10.1016/j.compbiomed.2020.104036
10.1109/TPAMI.2022.3195549
10.1007/978-3-030-87234-2_10
10.1109/TPAMI.2018.2858821
10.1109/CVPR46437.2021.01409
10.1109/CVPR.2016.90
10.1109/JBHI.2020.3027566
10.1038/s41467-022-31771-w
10.1002/mp.13886
10.1088/1361-6560/ac8c82
10.1109/ISBI.2019.8759458
10.1016/j.media.2021.102137
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/RBME.2024.3357877
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Materials Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1941-1189
EndPage 151
ExternalDocumentID 38265911
10_1109_RBME_2024_3357877
10413531
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62202403
  funderid: 10.13039/501100001809
– fundername: Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone
  grantid: HZQB-KCZYB-2020083
– fundername: Innovation and Technology Commission; Hong Kong Innovation and Technology Fund
  grantid: PRP/034/22FX
  funderid: 10.13039/501100007156
– fundername: Science, Technology and Innovation Commission of Shenzhen Municipality; Shenzhen Science and Technology Innovation Committee
  grantid: SGDX20210823103201011
  funderid: 10.13039/501100010877
GroupedDBID ---
0R~
23N
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
ACPRK
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
AZLTO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c350t-90858e602b4faefd6473a94b468ae9ec40394f8c1a5c5d55c6ee7238ebbe7ae93
IEDL.DBID RIE
ISSN 1937-3333
1941-1189
IngestDate Sun Sep 28 06:31:25 EDT 2025
Mon Jun 30 12:59:05 EDT 2025
Mon Jul 21 05:55:31 EDT 2025
Tue Jul 01 00:53:42 EDT 2025
Thu Apr 24 22:58:12 EDT 2025
Wed Aug 27 01:53:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c350t-90858e602b4faefd6473a94b468ae9ec40394f8c1a5c5d55c6ee7238ebbe7ae93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-8400-3780
0009-0008-4419-1837
0000-0002-5218-2761
0000-0003-4962-4132
0000-0002-3885-4912
0000-0002-7485-4151
0000-0001-9267-0076
0000-0001-6677-3194
0009-0003-8890-1857
0000-0002-7635-2518
PMID 38265911
PQID 3161363000
PQPubID 85512
PageCount 22
ParticipantIDs ieee_primary_10413531
pubmed_primary_38265911
proquest_miscellaneous_2918511264
crossref_primary_10_1109_RBME_2024_3357877
proquest_journals_3161363000
crossref_citationtrail_10_1109_RBME_2024_3357877
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE reviews in biomedical engineering
PublicationTitleAbbrev RBME
PublicationTitleAlternate IEEE Rev Biomed Eng
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref328
ref56
ref208
ref329
ref59
ref205
ref326
ref58
ref206
ref327
ref53
ref203
ref324
ref52
ref204
ref325
ref201
ref54
ref202
ref323
ref209
ref210
ref331
ref211
ref332
ref51
ref50
ref330
ref46
ref218
ref45
ref219
ref48
ref216
ref47
ref217
ref214
ref41
ref215
ref44
ref212
ref333
ref43
ref213
ref49
ref8
ref7
ref9
Faryna (ref235) 2021
ref4
ref3
ref5
ref100
ref221
ref101
ref222
ref40
ref220
ref34
ref37
ref36
ref305
ref31
ref302
ref30
ref303
ref33
ref300
ref32
ref301
ref39
ref38
ref308
ref309
ref310
Tarvainen (ref140) 2017; 30
ref24
ref317
ref23
Wang (ref193) 2016
ref318
ref315
ref25
ref316
ref20
ref313
ref314
ref22
ref21
ref312
ref28
ref27
ref319
ref29
Magny (ref26) 2022
ref320
ref200
ref321
ref128
ref249
ref129
ref97
ref126
ref247
ref96
ref127
ref248
ref99
ref124
ref245
Bochkovskiy (ref55) 2020
ref125
ref246
Vidal (ref180) 2022; 140
ref93
ref133
ref254
ref92
ref134
ref255
ref95
ref131
ref252
ref94
ref132
ref253
ref250
ref130
ref251
ref91
ref90
Ilse (ref197) 2018
ref89
ref139
ref86
ref137
ref258
ref85
ref138
ref259
ref88
ref135
ref256
ref87
ref136
ref257
Qi (ref304) 2020
ref82
ref144
ref265
ref81
ref145
ref266
ref84
ref142
ref263
ref83
ref143
ref264
ref261
ref141
ref262
ref80
ref260
ref79
ref108
ref229
ref78
ref109
ref106
ref227
ref107
ref228
ref75
ref104
ref225
ref74
ref105
ref226
ref77
ref102
ref223
ref76
ref103
ref224
Wang (ref207) 2023
ref71
ref111
ref232
ref70
ref112
ref233
ref73
ref230
ref72
ref110
ref231
ref68
ref119
ref67
ref117
ref238
ref69
ref118
ref239
ref64
ref115
ref236
ref63
ref116
ref237
ref66
ref113
ref234
ref65
ref114
ref60
ref122
ref243
ref123
ref244
ref62
ref120
ref241
ref61
ref121
ref242
ref240
ref168
ref289
ref169
ref290
ref170
ref291
Goodfellow (ref35) 2016
ref177
ref298
ref178
ref299
ref175
ref296
ref176
ref297
ref173
ref294
ref174
ref295
ref171
ref292
ref172
ref293
ref179
ref181
ref188
ref189
ref186
ref187
ref184
ref185
ref182
ref183
ref148
ref269
ref149
ref146
ref267
ref147
ref268
ref155
ref276
ref156
ref277
ref153
ref274
ref154
ref275
ref151
ref272
ref152
ref270
ref150
ref271
ref159
ref157
ref278
ref158
ref279
ref280
ref166
ref287
ref167
ref288
ref164
ref285
ref165
ref286
ref162
ref283
ref163
ref284
ref160
ref281
ref161
ref282
ref13
Mirza (ref98) 2014
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
You (ref307) 2023
Xu (ref322) 2022
ref2
ref1
Simonyan (ref42) 2015
ref191
ref192
ref190
ref199
ref198
ref195
ref196
ref194
(ref6) 2014
Jin (ref306) 2023
Wang (ref311) 2023
Chen (ref273) 2016
References_xml – ident: ref295
  doi: 10.1038/s41698-023-00472-y
– ident: ref281
  doi: 10.1158/1078-0432.CCR-21-0325
– ident: ref96
  doi: 10.1109/EMBC44109.2020.9176617
– ident: ref119
  doi: 10.1038/s41467-021-27577-x
– ident: ref107
  doi: 10.1109/TMI.2021.3102622
– ident: ref11
  doi: 10.1148/radiol.13121606
– ident: ref175
  doi: 10.1117/1.JMI.5.1.014502
– ident: ref75
  doi: 10.1007/s10278-020-00369-3
– ident: ref262
  doi: 10.1109/JBHI.2020.3008040
– ident: ref80
  doi: 10.1038/s41591-020-01174-9
– ident: ref84
  doi: 10.1002/mp.15598
– ident: ref178
  doi: 10.1002/mp.15156
– ident: ref93
  doi: 10.1109/TPAMI.2021.3085783
– ident: ref163
  doi: 10.1007/s00330-020-07274-x
– ident: ref216
  doi: 10.1186/bcr2607
– ident: ref144
  doi: 10.1109/TMI.2019.2936500
– ident: ref241
  doi: 10.1001/jama.2018.19323
– ident: ref196
  doi: 10.1038/srep46450
– ident: ref23
  doi: 10.5858/arpa.2014-0094-RA
– ident: ref63
  doi: 10.1145/3422622
– ident: ref184
  doi: 10.1002/mp.13849
– ident: ref45
  doi: 10.4324/9781410605337-29
– ident: ref177
  doi: 10.1038/nature14236
– ident: ref151
  doi: 10.1016/j.media.2022.102478
– ident: ref229
  doi: 10.1016/j.media.2019.101563
– ident: ref290
  doi: 10.1038/s41591-023-02625-9
– ident: ref136
  doi: 10.1109/ICABME47164.2019.8940291
– ident: ref88
  doi: 10.1007/s10916-010-9448-5
– ident: ref252
  doi: 10.1038/s41598-021-93592-z
– ident: ref234
  doi: 10.1136/bmjqs-2018-008370
– year: 2014
  ident: ref6
  article-title: WHO position paper on mammography screening
– ident: ref85
  doi: 10.1016/j.cmpb.2022.106884
– ident: ref227
  doi: 10.1007/978-3-030-20351-1_53
– ident: ref154
  doi: 10.1109/JBHI.2019.2960821
– ident: ref314
  doi: 10.1038/s42256-021-00425-9
– ident: ref8
  doi: 10.1148/radiol.2019180760
– ident: ref319
  doi: 10.1007/978-3-030-20301-6_3
– ident: ref153
  doi: 10.1016/j.neucom.2022.04.021
– ident: ref259
  doi: 10.3389/fonc.2022.812463
– ident: ref330
  doi: 10.1016/S2589-7500(22)00088-7
– ident: ref265
  doi: 10.1117/12.2255316
– ident: ref125
  doi: 10.1016/j.cmpb.2020.105361
– ident: ref172
  doi: 10.1016/j.patcog.2017.08.004
– ident: ref102
  doi: 10.1007/s10278-020-00407-0
– ident: ref179
  doi: 10.3389/fonc.2022.984626
– ident: ref212
  doi: 10.1007/978-3-030-97281-3_12
– ident: ref111
  doi: 10.1148/radiol.2021204432
– ident: ref89
  doi: 10.1002/mp.13945
– ident: ref149
  doi: 10.1109/TMI.2021.3116087
– ident: ref198
  doi: 10.1117/1.JMI.8.3.034501
– ident: ref126
  doi: 10.1038/s41467-020-15027-z
– ident: ref137
  doi: 10.1016/j.cmpb.2021.106018
– ident: ref87
  doi: 10.1109/TMI.2021.3129068
– ident: ref28
  doi: 10.1016/j.media.2017.07.005
– ident: ref52
  doi: 10.1109/ICCV.2015.169
– ident: ref326
  doi: 10.1109/CVPR52729.2023.01113
– ident: ref251
  doi: 10.1038/s41379-021-00911-w
– ident: ref274
  doi: 10.1002/jmri.26244
– ident: ref49
  doi: 10.1109/TPAMI.2015.2437384
– ident: ref211
  doi: 10.1016/j.media.2021.102121
– ident: ref100
  doi: 10.1038/s41598-022-16141-2
– ident: ref173
  doi: 10.1016/j.acra.2021.03.032
– ident: ref76
  doi: 10.1109/EMBC.2017.8036918
– ident: ref233
  doi: 10.1007/978-3-030-32239-7_81
– ident: ref280
  doi: 10.1186/s12885-018-4448-9
– ident: ref289
  doi: 10.1200/JCO.21.01337
– ident: ref167
  doi: 10.1038/s41598-020-67441-4
– ident: ref199
  doi: 10.1038/s41591-019-0508-1
– ident: ref303
  doi: 10.1148/ryai.210299
– volume-title: Proc. Med. Imag. With Deep Learn.
  year: 2021
  ident: ref235
  article-title: Tailoring automated data augmentation to h&e-stained histopathology
– ident: ref250
  doi: 10.1007/s10278-018-0144-1
– year: 2016
  ident: ref193
  article-title: Deep learning for identifying metastatic breast cancer
– ident: ref190
  doi: 10.1148/radiol.239004
– ident: ref160
  doi: 10.1002/mp.13966
– ident: ref313
  doi: 10.1016/j.media.2022.102464
– year: 2023
  ident: ref306
  article-title: Label-efficient deep learning in medical image analysis: Challenges and future directions
– ident: ref91
  doi: 10.1002/mp.15631
– ident: ref77
  doi: 10.1007/978-3-030-32226-7_54
– ident: ref47
  doi: 10.48550/arXiv.2010.11929
– ident: ref209
  doi: 10.1007/s11517-020-02175-z
– ident: ref242
  doi: 10.1002/bjs.4840
– ident: ref182
  doi: 10.1109/TMI.2018.2865671
– ident: ref260
  doi: 10.1109/JBHI.2022.3216031
– ident: ref292
  doi: 10.1148/radiol.2021203960
– ident: ref146
  doi: 10.1109/TMI.2018.2872031
– ident: ref256
  doi: 10.1038/s41598-021-98408-8
– ident: ref5
  doi: 10.1016/S0140-6736(02)08020-0
– ident: ref60
  doi: 10.1109/ICCV.2017.322
– volume: 30
  year: 2017
  ident: ref140
  article-title: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref218
  doi: 10.1109/ICCV.2019.01076
– volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2023
  ident: ref307
  article-title: Rethinking semi-supervised medical image segmentation: A variance-reduction perspective
– ident: ref255
  doi: 10.1038/s41598-022-06100-2
– ident: ref286
  doi: 10.1126/scitranslmed.abo4802
– ident: ref195
  doi: 10.1007/978-3-319-59050-9_19
– ident: ref101
  doi: 10.1109/EMBC48229.2022.9871452
– volume-title: Proc. Neural Inf. Process. Syst., Workshop Mach. Learn. Syst.
  year: 2016
  ident: ref273
  article-title: Mxnet: A flexible and efficient machine learning library for heterogeneous distributed systems
– ident: ref17
  doi: 10.1007/s11547-017-0782-2
– ident: ref72
  doi: 10.3390/bioengineering9040161
– ident: ref162
  doi: 10.1016/j.mri.2020.03.001
– ident: ref187
  doi: 10.3389/fonc.2022.943415
– ident: ref226
  doi: 10.1007/978-3-031-16434-7_14
– volume-title: Deep Learning
  year: 2016
  ident: ref35
– ident: ref321
  doi: 10.1001/jamainternmed.2022.4969
– ident: ref110
  doi: 10.1148/radiol.2018181371
– ident: ref285
  doi: 10.1007/978-3-031-16434-7_22
– ident: ref258
  doi: 10.3389/fonc.2022.846775
– ident: ref132
  doi: 10.1016/j.compbiomed.2022.105812
– ident: ref291
  doi: 10.1007/978-3-030-59713-9_24
– ident: ref331
  doi: 10.1002/mp.16188
– ident: ref115
  doi: 10.1007/s00330-019-06186-9
– ident: ref94
  doi: 10.1007/978-3-031-19803-8_23
– ident: ref246
  doi: 10.1200/JCO.2011.38.8595
– ident: ref3
  doi: 10.3322/caac.21660
– ident: ref254
  doi: 10.1016/j.ejca.2021.01.028
– ident: ref188
  doi: 10.1038/s41598-020-75167-6
– ident: ref157
  doi: 10.1109/TMI.2021.3078370
– ident: ref70
  doi: 10.1007/s10278-017-9993-2
– ident: ref16
  doi: 10.1148/radiol.2019182947
– ident: ref161
  doi: 10.1016/j.cmpb.2021.106327
– ident: ref194
  doi: 10.1117/1.JMI.4.4.044504
– ident: ref117
  doi: 10.1001/jamanetworkopen.2022.42343
– ident: ref19
  doi: 10.1002/jmri.10380
– ident: ref67
  doi: 10.1016/j.jbi.2014.01.010
– ident: ref245
  doi: 10.1007/s10549-022-06521-7
– ident: ref29
  doi: 10.1038/s41591-018-0300-7
– ident: ref294
  doi: 10.1016/j.annonc.2021.09.007
– ident: ref64
  doi: 10.1109/TPAMI.2020.2992393
– ident: ref128
  doi: 10.1016/j.ebiom.2020.103018
– ident: ref275
  doi: 10.1016/j.ejrad.2021.110095
– ident: ref269
  doi: 10.1109/CVPR.2018.00474
– ident: ref97
  doi: 10.1109/ISBI.2018.8363704
– ident: ref176
  doi: 10.1007/978-3-319-66179-7_76
– ident: ref99
  doi: 10.1002/mp.14671
– ident: ref217
  doi: 10.1109/ISBI.2015.7163815
– ident: ref39
  doi: 10.1162/neco.1989.1.4.541
– ident: ref145
  doi: 10.1186/s12880-019-0349-x
– ident: ref205
  doi: 10.1016/j.media.2022.102486
– ident: ref208
  doi: 10.1038/s41374-019-0275-0
– ident: ref297
  doi: 10.3390/cancers15092569
– ident: ref37
  doi: 10.1037/h0042519
– ident: ref138
  doi: 10.1088/1361-6560/ab7e7d
– ident: ref231
  doi: 10.1109/TMI.2020.3002244
– ident: ref59
  doi: 10.1109/tpami.2024.3435571
– ident: ref299
  doi: 10.1148/ryai.2020200103
– ident: ref2
  doi: 10.3322/caac.21754
– ident: ref257
  doi: 10.1118/1.4933198
– ident: ref21
  doi: 10.1038/modpathol.2013.230
– ident: ref38
  doi: 10.1038/323533a0
– ident: ref224
  doi: 10.1109/TMI.2017.2677499
– ident: ref240
  doi: 10.1038/s41467-020-20030-5
– ident: ref9
  doi: 10.1016/S0140-6736(51)92403-8
– ident: ref266
  doi: 10.1186/s13058-022-01580-6
– ident: ref168
  doi: 10.1016/j.clbc.2021.07.002
– ident: ref82
  doi: 10.1007/978-3-319-24574-4_78
– ident: ref81
  doi: 10.1016/j.compbiomed.2018.04.004
– ident: ref201
  doi: 10.1109/TCBB.2022.3163277
– ident: ref135
  doi: 10.1088/1361-6560/aa82ec
– ident: ref228
  doi: 10.1109/TMI.2018.2865709
– ident: ref68
  doi: 10.1007/978-3-030-33128-3_1
– ident: ref165
  doi: 10.1016/j.mri.2020.10.003
– ident: ref220
  doi: 10.1109/JBHI.2021.3136568
– ident: ref40
  doi: 10.5555/2999134.2999257
– ident: ref79
  doi: 10.1109/TMI.2020.2968397
– ident: ref109
  doi: 10.1109/TMI.2019.2945514
– ident: ref185
  doi: 10.1002/jmri.26721
– ident: ref32
  doi: 10.1016/j.media.2018.03.006
– ident: ref116
  doi: 10.1016/j.jacr.2020.01.006
– ident: ref308
  doi: 10.1007/978-3-030-87196-3_50
– ident: ref104
  doi: 10.1007/978-3-319-46723-8_28
– ident: ref312
  doi: 10.1007/978-3-031-16437-8_6
– ident: ref271
  doi: 10.1007/s10278-021-00449-y
– ident: ref65
  doi: 10.1016/j.neucom.2018.05.083
– ident: ref282
  doi: 10.1016/j.breast.2021.02.007
– ident: ref332
  doi: 10.1148/ryai.220185
– volume: 140
  year: 2022
  ident: ref180
  article-title: A u-Net ensemble for breast lesion segmentation in DCE MRI
  publication-title: Comput. Biol. Med.
– ident: ref121
  doi: 10.1007/978-3-030-60548-3_18
– ident: ref127
  doi: 10.1148/radiol.2019190372
– ident: ref302
  doi: 10.1007/978-3-030-32239-7_40
– ident: ref31
  doi: 10.1016/j.semcancer.2020.08.006
– ident: ref62
  doi: 10.1016/j.patcog.2017.10.009
– ident: ref222
  doi: 10.1016/j.neucom.2019.08.103
– ident: ref189
  doi: 10.1016/j.acra.2020.02.006
– year: 2023
  ident: ref207
  article-title: When an image is worth 1,024 x 1,024 words: A case study in computational pathology
– ident: ref221
  doi: 10.1016/j.media.2022.102685
– ident: ref324
  doi: 10.1007/978-3-031-16452-1_59
– start-page: 2127
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2018
  ident: ref197
  article-title: Attention-based deep multiple instance learning
– ident: ref129
  doi: 10.1016/j.compbiomed.2020.104206
– ident: ref288
  doi: 10.1126/scitranslmed.aba4373
– ident: ref272
  doi: 10.3389/fphys.2020.511071
– ident: ref50
  doi: 10.1109/ICCV.2017.324
– year: 2020
  ident: ref55
  article-title: Yolov4: Optimal speed and accuracy of object detection
– ident: ref183
  doi: 10.3389/fonc.2022.946580
– ident: ref296
  doi: 10.1038/s41591-023-02643-7
– volume-title: Proc. Int. Conf. Learn. Representations
  year: 2020
  ident: ref304
  article-title: Stabilized medical image attacks
– ident: ref56
  doi: 10.1109/3DV.2016.79
– ident: ref191
  doi: 10.1109/IPTA.2014.7001976
– ident: ref36
  doi: 10.1007/BF02478259
– ident: ref48
  doi: 10.48550/ARXIV.1706.03762
– ident: ref58
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref30
  doi: 10.1016/j.media.2021.102049
– ident: ref1
  doi: 10.1016/S0140-6736(16)31891-8
– ident: ref186
  doi: 10.1007/978-3-030-32251-9_55
– ident: ref118
  doi: 10.1109/ISBI.2018.8363518
– ident: ref215
  doi: 10.1111/j.1365-2559.1991.tb00229.x
– ident: ref318
  doi: 10.1109/ICCV51070.2023.01949
– ident: ref278
  doi: 10.3390/cancers14163848
– ident: ref300
  doi: 10.1038/s41597-023-02125-y
– ident: ref150
  doi: 10.1016/j.media.2021.101989
– ident: ref247
  doi: 10.1016/S0140-6736(13)62422-8
– ident: ref90
  doi: 10.1001/jamanetworkopen.2021.19100
– year: 2022
  ident: ref322
  article-title: A survey of fairness in medical image analysis: Concepts, algorithms, evaluations, and challenges
– ident: ref74
  doi: 10.1109/TMI.2018.2870343
– ident: ref25
  doi: 10.1093/annonc/mdv221
– year: 2014
  ident: ref98
  article-title: Conditional generative adversarial nets
– ident: ref14
  doi: 10.47102/annals-acadmedsg.V41N10p432
– ident: ref13
  doi: 10.1001/jama.299.18.2151
– ident: ref114
  doi: 10.1038/s41586-019-1799-6
– ident: ref327
  doi: 10.1038/s41571-019-0299-9
– ident: ref53
  doi: 10.1109/tpami.2016.2577031
– ident: ref54
  doi: 10.1109/CVPR.2016.91
– ident: ref113
  doi: 10.1007/s00330-020-07165-1
– ident: ref123
  doi: 10.1109/TMI.2021.3071544
– ident: ref329
  doi: 10.1148/radiol.2019192515
– ident: ref7
  doi: 10.1038/bjc.2013.177
– ident: ref143
  doi: 10.1109/TMI.2018.2860257
– ident: ref134
  doi: 10.1088/1361-6560/ab5093
– ident: ref33
  doi: 10.1148/radiol.2019182627
– ident: ref4
  doi: 10.3322/caac.21388
– ident: ref164
  doi: 10.1117/1.JMI.5.1.014503
– ident: ref232
  doi: 10.1016/j.media.2023.102933
– ident: ref15
  doi: 10.7863/jum.2000.19.7.427
– ident: ref166
  doi: 10.1148/ryai.2021200159
– ident: ref24
  doi: 10.1038/modpathol.2013.103
– ident: ref155
  doi: 10.1016/j.media.2020.101918
– ident: ref69
  doi: 10.1007/978-3-319-46723-8_13
– ident: ref219
  doi: 10.1038/s41374-018-0095-7
– ident: ref237
  doi: 10.1016/j.bbe.2018.04.008
– ident: ref320
  doi: 10.1038/s41591-021-01595-0
– ident: ref264
  doi: 10.1007/s00330-021-08293-y
– ident: ref305
  doi: 10.1118/1.4967345
– ident: ref253
  doi: 10.1016/j.breast.2022.10.004
– ident: ref147
  doi: 10.1109/TCBB.2020.2978470
– year: 2023
  ident: ref311
  article-title: Learning robust medical image segmentation from multi-source annotations
– ident: ref61
  doi: 10.1109/CVPR.2016.319
– ident: ref170
  doi: 10.1007/s00330-022-08863-8
– ident: ref200
  doi: 10.3390/cancers12123687
– ident: ref124
  doi: 10.1038/srep24454
– ident: ref317
  doi: 10.1038/s41591-018-0177-5
– ident: ref267
  doi: 10.1038/s41523-022-00491-1
– ident: ref248
  doi: 10.1016/j.ejrad.2022.110247
– ident: ref298
  doi: 10.1001/jamaoncol.2017.0473
– ident: ref243
  doi: 10.1093/annonc/mds324
– ident: ref34
  doi: 10.1016/j.semcancer.2020.06.002
– ident: ref18
  doi: 10.1016/b978-0-12-092861-3.x5000-6
– ident: ref223
  doi: 10.1109/TMI.2019.2927182
– ident: ref333
  doi: 10.1038/s41597-023-02327-4
– ident: ref95
  doi: 10.1016/j.media.2021.102204
– ident: ref139
  doi: 10.1016/j.media.2021.102010
– ident: ref210
  doi: 10.1016/j.media.2017.12.002
– ident: ref206
  doi: 10.1007/978-3-031-43987-2_45
– ident: ref57
  doi: 10.1109/CVPR.2015.7298965
– ident: ref202
  doi: 10.1016/j.media.2022.102466
– ident: ref169
  doi: 10.1109/JPROC.2019.2950187
– ident: ref46
  doi: 10.5555/3298023.3298188
– ident: ref203
  doi: 10.1109/TMI.2022.3202759
– ident: ref310
  doi: 10.1109/CVPR46437.2021.01216
– ident: ref156
  doi: 10.1038/s41598-021-03806-7
– ident: ref225
  doi: 10.1007/978-3-030-59722-1_33
– ident: ref174
  doi: 10.1002/jmri.27955
– ident: ref276
  doi: 10.3389/fonc.2021.596364
– ident: ref20
  doi: 10.1148/rg.2020200006
– ident: ref130
  doi: 10.1109/JBHI.2020.3034804
– ident: ref112
  doi: 10.1093/jnci/djac142
– ident: ref51
  doi: 10.1109/CVPR.2019.00075
– ident: ref323
  doi: 10.1038/s42256-020-00257-z
– ident: ref239
  doi: 10.1038/s41551-019-0362-y
– ident: ref279
  doi: 10.1002/jbio.201960235
– ident: ref73
  doi: 10.1007/s00330-019-06457-5
– ident: ref238
  doi: 10.1007/978-3-319-67558-9_10
– ident: ref83
  doi: 10.1109/TMI.2017.2751523
– ident: ref78
  doi: 10.1007/978-3-319-66179-7_69
– ident: ref133
  doi: 10.1038/s41551-021-00711-2
– ident: ref108
  doi: 10.1093/jnci/djy222
– ident: ref41
  doi: 10.1109/CVPR.2009.5206848
– ident: ref86
  doi: 10.1007/978-3-030-00934-2_95
– ident: ref92
  doi: 10.1016/j.media.2021.101999
– ident: ref293
  doi: 10.1097/RLI.0000000000000976
– ident: ref171
  doi: 10.1088/1361-6560/ac195a
– ident: ref10
  doi: 10.1007/s10911-006-9018-0
– ident: ref122
  doi: 10.1007/978-3-031-16437-8_2
– ident: ref230
  doi: 10.1007/978-3-030-59710-8_2
– ident: ref71
  doi: 10.1002/mp.12683
– ident: ref268
  doi: 10.1093/bioinformatics/btac381
– volume-title: StatPearls [Internet]
  year: 2022
  ident: ref26
  article-title: Breast imaging reporting and data system
– ident: ref106
  doi: 10.1007/978-3-030-59725-2_24
– ident: ref27
  doi: 10.1038/nature14539
– ident: ref181
  doi: 10.3390/jimaging7120276
– ident: ref214
  doi: 10.1109/TMI.2018.2820199
– ident: ref12
  doi: 10.1177/153303460400300402
– ident: ref236
  doi: 10.1038/s41467-021-25221-2
– ident: ref103
  doi: 10.1109/ISBI45749.2020.9098732
– ident: ref249
  doi: 10.1016/j.mri.2020.08.021
– ident: ref301
  doi: 10.1016/j.media.2020.101816
– ident: ref159
  doi: 10.1109/JBHI.2021.3081111
– ident: ref284
  doi: 10.1038/s41551-022-00923-0
– ident: ref309
  doi: 10.1007/978-3-031-16437-8_23
– ident: ref261
  doi: 10.1016/j.eclinm.2022.101562
– ident: ref44
  doi: 10.1109/CVPR.2017.243
– ident: ref152
  doi: 10.1109/EMBC48229.2022.9871091
– start-page: 1
  volume-title: Proc. 3rd Int. Conf. Learn. Representations, Comput. Biol. Learn. Soc.
  year: 2015
  ident: ref42
  article-title: Very deep convolutional networks for large-scale image recognition
– ident: ref315
  doi: 10.1109/ICCV51070.2023.01942
– ident: ref277
  doi: 10.1016/j.csbj.2021.12.028
– ident: ref270
  doi: 10.1093/bioinformatics/btab185
– ident: ref316
  doi: 10.1109/ICCV51070.2023.01964
– ident: ref192
  doi: 10.1001/jama.2017.14585
– ident: ref325
  doi: 10.1109/TPAMI.2021.3130759
– ident: ref158
  doi: 10.1016/j.neucom.2018.09.043
– ident: ref328
  doi: 10.1186/s12967-021-03020-z
– ident: ref142
  doi: 10.1109/JBHI.2017.2731873
– ident: ref244
  doi: 10.1038/s41598-020-77875-5
– ident: ref22
  doi: 10.4103/jpi.jpi_61_17
– ident: ref148
  doi: 10.1016/j.compbiomed.2020.104036
– ident: ref66
  doi: 10.1109/TPAMI.2022.3195549
– ident: ref120
  doi: 10.1007/978-3-030-87234-2_10
– ident: ref141
  doi: 10.1109/TPAMI.2018.2858821
– ident: ref204
  doi: 10.1109/CVPR46437.2021.01409
– ident: ref43
  doi: 10.1109/CVPR.2016.90
– ident: ref213
  doi: 10.1109/JBHI.2020.3027566
– ident: ref283
  doi: 10.1038/s41467-022-31771-w
– ident: ref287
  doi: 10.1002/mp.13886
– ident: ref263
  doi: 10.1088/1361-6560/ac8c82
– ident: ref105
  doi: 10.1109/ISBI.2019.8759458
– ident: ref131
  doi: 10.1016/j.media.2021.102137
SSID ssj0000547180
Score 2.536269
SecondaryResourceType review_article
Snippet Breast cancer has reached the highest incidence rate worldwide among all malignancies since 2020. Breast imaging plays a significant role in early diagnosis...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 130
SubjectTerms Breast
Breast - diagnostic imaging
Breast cancer
Breast Neoplasms - diagnostic imaging
Deep Learning
Diagnosis
Digital imaging
Female
Humans
Image Interpretation, Computer-Assisted - methods
Magnetic Resonance Imaging
Malignancy
Mammography
medical image analysis
Medical imaging
Pathology
Prognostics and health management
Ultrasonic imaging
Title Deep Learning in Breast Cancer Imaging: A Decade of Progress and Future Directions
URI https://ieeexplore.ieee.org/document/10413531
https://www.ncbi.nlm.nih.gov/pubmed/38265911
https://www.proquest.com/docview/3161363000
https://www.proquest.com/docview/2918511264
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BDwgOPEqBQEFG4oSUxYkdJ-bW16ogbYUqKvUW2c6kQkC2arMXfj0zjndVkIrIKVKc58w4n-fxDcA73yi0qJs8mL5kb5XLG4IdeSc7ZbxRynRcO7w4Mcdn-vN5dZ6K1WMtDCLG5DOc8W6M5XfLsGJXGVm45jYNtNi5S3o2FWttHCqEPWielVMUmQyHthTFLKT9cLq_OKLVYKlnivldam6-pwhaV7Yo_vglxR4rt8PN-NuZP4KT9QNP2SbfZ6vRz8Kvv7gc__uNHsPDBEDF3qQxT-AODtvw4AYt4TbcW6SA-1M4PUS8FImE9UJ8G8Q-Z7GP4oC15Up8-hm7HH0Ue-IQOdVeLHvxhXO-aAYVbujEPJKWiDS1ko7vwNn86OvBcZ7aMORBVXLMLaGyBo0sve4d9p3RtXJWe20aR3IOWiqr-yYUrgpVV1XBIHIrM_QeaxqhnsHWsBzwBQjE0ktVh86EXhe-diqgcVJ6bX3ngslAriXRhsRRzq0yfrRxrSJty3JsWY5tkmMG7zenXE4EHf8avMMyuDFw-vwZ7K7l3SYbvm4VgWHFjGQyg7ebw2R9HFJxAy5X121piwhZjc7g-aQnm4uv1evlLTd9BfdLbiYc_Tm7sDVerfA1IZzRv4ma_RvhtPHO
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6hIvE4UCilhBYwEiekLE7sOAm3vlZb6K5Q1Uq9RX5MECpkqzZ74dfjcbyrtlIROUWK85yx883rG4CPphJYo6xSq9qcvFU6rTzsSB13QhklhHJUOzydqcmZ_HpenMdi9VALg4gh-QxHtBti-W5uF-Qq8zNcUpsGb-w8LLxZUQ3lWiuXikcffqXlQxzZTx2_xThmxuvPJ3vTQ28P5nIkiOGlpPZ7woPros6yWz-l0GXlfsAZfjzjdZgtH3nIN7kYLXozsn_usDn-9zs9h2cRgrLdQWdewAPsNuDpDWLCDXg0jSH3l3BygHjJIg3rD_azY3uUx96zfdKXK3b0O_Q5-sJ22QFSsj2bt-w7ZX35NZTpzrFxoC1hcXH1Wr4JZ-PD0_1JGhsxpFYUvE9rj8sqVDw3stXYOiVLoWtppKq0l7SVXNSyrWymC1u4orAKkZqZoTFY-hHiFax18w5fA0PMDReldcq2MjOlFhaV5tzI2jhtVQJ8KYnGRpZyapbxqwnWCq8bkmNDcmyiHBP4tDrlcqDo-NfgTZLBjYHD509gZynvJs7i60Z4OCyIk4wn8GF12M8_CqroDueL6yavswBalUxga9CT1cWX6vXmnpu-h8eT0-lxc3w0-7YNT3JqLRy8Ozuw1l8t8K3HO715F7T8L8XA9SE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+in+Breast+Cancer+Imaging%3A+A+Decade+of+Progress+and+Future+Directions&rft.jtitle=IEEE+reviews+in+biomedical+engineering&rft.au=Luo%2C+Luyang&rft.au=Wang%2C+Xi&rft.au=Lin%2C+Yi&rft.au=Ma%2C+Xiaoqi&rft.date=2025&rft.pub=IEEE&rft.issn=1937-3333&rft.volume=18&rft.spage=130&rft.epage=151&rft_id=info:doi/10.1109%2FRBME.2024.3357877&rft_id=info%3Apmid%2F38265911&rft.externalDocID=10413531
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1937-3333&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1937-3333&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1937-3333&client=summon