Deep Learning in Breast Cancer Imaging: A Decade of Progress and Future Directions
Breast cancer has reached the highest incidence rate worldwide among all malignancies since 2020. Breast imaging plays a significant role in early diagnosis and intervention to improve the outcome of breast cancer patients. In the past decade, deep learning has shown remarkable progress in breast ca...
Saved in:
Published in | IEEE reviews in biomedical engineering Vol. 18; pp. 130 - 151 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1937-3333 1941-1189 1941-1189 |
DOI | 10.1109/RBME.2024.3357877 |
Cover
Abstract | Breast cancer has reached the highest incidence rate worldwide among all malignancies since 2020. Breast imaging plays a significant role in early diagnosis and intervention to improve the outcome of breast cancer patients. In the past decade, deep learning has shown remarkable progress in breast cancer imaging analysis, holding great promise in interpreting the rich information and complex context of breast imaging modalities. Considering the rapid improvement in deep learning technology and the increasing severity of breast cancer, it is critical to summarize past progress and identify future challenges to be addressed. This paper provides an extensive review of deep learning-based breast cancer imaging research, covering studies on mammograms, ultrasound, magnetic resonance imaging, and digital pathology images over the past decade. The major deep learning methods and applications on imaging-based screening, diagnosis, treatment response prediction, and prognosis are elaborated and discussed. Drawn from the findings of this survey, we present a comprehensive discussion of the challenges and potential avenues for future research in deep learning-based breast cancer imaging. |
---|---|
AbstractList | Breast cancer has reached the highest incidence rate worldwide among all malignancies since 2020. Breast imaging plays a significant role in early diagnosis and intervention to improve the outcome of breast cancer patients. In the past decade, deep learning has shown remarkable progress in breast cancer imaging analysis, holding great promise in interpreting the rich information and complex context of breast imaging modalities. Considering the rapid improvement in deep learning technology and the increasing severity of breast cancer, it is critical to summarize past progress and identify future challenges to be addressed. This paper provides an extensive review of deep learning-based breast cancer imaging research, covering studies on mammograms, ultrasound, magnetic resonance imaging, and digital pathology images over the past decade. The major deep learning methods and applications on imaging-based screening, diagnosis, treatment response prediction, and prognosis are elaborated and discussed. Drawn from the findings of this survey, we present a comprehensive discussion of the challenges and potential avenues for future research in deep learning-based breast cancer imaging.Breast cancer has reached the highest incidence rate worldwide among all malignancies since 2020. Breast imaging plays a significant role in early diagnosis and intervention to improve the outcome of breast cancer patients. In the past decade, deep learning has shown remarkable progress in breast cancer imaging analysis, holding great promise in interpreting the rich information and complex context of breast imaging modalities. Considering the rapid improvement in deep learning technology and the increasing severity of breast cancer, it is critical to summarize past progress and identify future challenges to be addressed. This paper provides an extensive review of deep learning-based breast cancer imaging research, covering studies on mammograms, ultrasound, magnetic resonance imaging, and digital pathology images over the past decade. The major deep learning methods and applications on imaging-based screening, diagnosis, treatment response prediction, and prognosis are elaborated and discussed. Drawn from the findings of this survey, we present a comprehensive discussion of the challenges and potential avenues for future research in deep learning-based breast cancer imaging. Breast cancer has reached the highest incidence rate worldwide among all malignancies since 2020. Breast imaging plays a significant role in early diagnosis and intervention to improve the outcome of breast cancer patients. In the past decade, deep learning has shown remarkable progress in breast cancer imaging analysis, holding great promise in interpreting the rich information and complex context of breast imaging modalities. Considering the rapid improvement in deep learning technology and the increasing severity of breast cancer, it is critical to summarize past progress and identify future challenges to be addressed. This paper provides an extensive review of deep learning-based breast cancer imaging research, covering studies on mammograms, ultrasound, magnetic resonance imaging, and digital pathology images over the past decade. The major deep learning methods and applications on imaging-based screening, diagnosis, treatment response prediction, and prognosis are elaborated and discussed. Drawn from the findings of this survey, we present a comprehensive discussion of the challenges and potential avenues for future research in deep learning-based breast cancer imaging. |
Author | Luo, Luyang Vardhanabhuti, Varut Chan, Ronald Cheng, Kwang-Ting Chu, Winnie CW Lin, Yi Chen, Hao Wang, Xi Ma, Xiaoqi Tan, Andong |
Author_xml | – sequence: 1 givenname: Luyang orcidid: 0000-0002-7485-4151 surname: Luo fullname: Luo, Luyang email: cseluyang@ust.hk organization: Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong Kong, SAR, China – sequence: 2 givenname: Xi orcidid: 0000-0002-5218-2761 surname: Wang fullname: Wang, Xi email: xiwang@cse.cuhk.edu.hk organization: Zhejiang Lab, Hangzhou, China – sequence: 3 givenname: Yi orcidid: 0000-0002-7635-2518 surname: Lin fullname: Lin, Yi email: yi.lin@connect.ust.hk organization: Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong Kong, SAR, China – sequence: 4 givenname: Xiaoqi orcidid: 0009-0003-8890-1857 surname: Ma fullname: Ma, Xiaoqi email: xma2325@gmail.com organization: Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong Kong, SAR, China – sequence: 5 givenname: Andong orcidid: 0009-0008-4419-1837 surname: Tan fullname: Tan, Andong email: atanac@connect.ust.hk organization: Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong Kong, SAR, China – sequence: 6 givenname: Ronald orcidid: 0000-0001-9267-0076 surname: Chan fullname: Chan, Ronald email: ronaldckchan@cuhk.edu.hk organization: Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong – sequence: 7 givenname: Varut orcidid: 0000-0001-6677-3194 surname: Vardhanabhuti fullname: Vardhanabhuti, Varut email: varv@hku.hk organization: Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong – sequence: 8 givenname: Winnie CW orcidid: 0000-0003-4962-4132 surname: Chu fullname: Chu, Winnie CW email: winniechu@cuhk.edu.hk organization: Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong – sequence: 9 givenname: Kwang-Ting orcidid: 0000-0002-3885-4912 surname: Cheng fullname: Cheng, Kwang-Ting email: timcheng@ust.hk organization: Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong Kong, SAR, China – sequence: 10 givenname: Hao orcidid: 0000-0002-8400-3780 surname: Chen fullname: Chen, Hao email: jhc@cse.ust.hk organization: Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong Kong, SAR, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38265911$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kVFrFDEUhYNUbK39AYJIwBdfZs2dJJPEt3a3tYUtlaLPIZO5s6TsZtZk5sF_b4ZdRfrQ85JAvpN7OectOYlDRELeA1sAMPPl8er-elGzWiw4l0or9YqcgRFQAWhzMt-5qnjRKbnI-YkVSaFAszfklOu6kQbgjDyuEPd0jS7FEDc0RHqV0OWRLl30mOjdzm3Kw1d6SVfoXYd06On3NGwS5kxd7OjNNE4J6Sok9GMYYn5HXvdum_HieJ6TnzfXP5a31frh293ycl15LtlYGaalxobVregd9l0jFHdGtKLRDg16wbgRvfbgpJedlL5BVDXX2LaoCsHPyefDv_s0_Jowj3YXssft1kUcpmxrA1oC1I0o6Kdn6NMwpVi2sxwa4A0v6RTq45Ga2h12dp_CzqXf9m9aBYAD4NOQc8L-HwLMzqXYuRQ7l2KPpRSPeubxYXRzUGNyYfui88PBGRDxv0kCuOTA_wBXY5ah |
CODEN | IRBECO |
CitedBy_id | crossref_primary_10_1108_IJICC_02_2024_0091 crossref_primary_10_1007_s13721_025_00509_1 crossref_primary_10_22399_ijcesen_812 crossref_primary_10_1038_s41598_025_86014_x crossref_primary_10_1007_s42979_024_03004_y crossref_primary_10_3390_jimaging10040081 crossref_primary_10_1002_jmri_29687 crossref_primary_10_1134_S2070048224700716 crossref_primary_10_1007_s12652_024_04803_0 crossref_primary_10_1038_s41598_024_69725_5 crossref_primary_10_1016_j_csbr_2024_100019 crossref_primary_10_3390_bioengineering11050453 crossref_primary_10_54287_gujsa_1529857 crossref_primary_10_1109_TIM_2024_3502883 crossref_primary_10_3390_diagnostics14080848 crossref_primary_10_1007_s11042_025_20606_7 crossref_primary_10_1186_s12885_024_13049_0 crossref_primary_10_3390_math12040616 crossref_primary_10_1007_s10462_024_10984_z crossref_primary_10_3389_fmed_2024_1450103 |
Cites_doi | 10.1038/s41698-023-00472-y 10.1158/1078-0432.CCR-21-0325 10.1109/EMBC44109.2020.9176617 10.1038/s41467-021-27577-x 10.1109/TMI.2021.3102622 10.1148/radiol.13121606 10.1117/1.JMI.5.1.014502 10.1007/s10278-020-00369-3 10.1109/JBHI.2020.3008040 10.1038/s41591-020-01174-9 10.1002/mp.15598 10.1002/mp.15156 10.1109/TPAMI.2021.3085783 10.1007/s00330-020-07274-x 10.1186/bcr2607 10.1109/TMI.2019.2936500 10.1001/jama.2018.19323 10.1038/srep46450 10.5858/arpa.2014-0094-RA 10.1145/3422622 10.1002/mp.13849 10.4324/9781410605337-29 10.1038/nature14236 10.1016/j.media.2022.102478 10.1016/j.media.2019.101563 10.1038/s41591-023-02625-9 10.1109/ICABME47164.2019.8940291 10.1007/s10916-010-9448-5 10.1038/s41598-021-93592-z 10.1136/bmjqs-2018-008370 10.1016/j.cmpb.2022.106884 10.1007/978-3-030-20351-1_53 10.1109/JBHI.2019.2960821 10.1038/s42256-021-00425-9 10.1148/radiol.2019180760 10.1007/978-3-030-20301-6_3 10.1016/j.neucom.2022.04.021 10.3389/fonc.2022.812463 10.1016/S2589-7500(22)00088-7 10.1117/12.2255316 10.1016/j.cmpb.2020.105361 10.1016/j.patcog.2017.08.004 10.1007/s10278-020-00407-0 10.3389/fonc.2022.984626 10.1007/978-3-030-97281-3_12 10.1148/radiol.2021204432 10.1002/mp.13945 10.1109/TMI.2021.3116087 10.1117/1.JMI.8.3.034501 10.1038/s41467-020-15027-z 10.1016/j.cmpb.2021.106018 10.1109/TMI.2021.3129068 10.1016/j.media.2017.07.005 10.1109/ICCV.2015.169 10.1109/CVPR52729.2023.01113 10.1038/s41379-021-00911-w 10.1002/jmri.26244 10.1109/TPAMI.2015.2437384 10.1016/j.media.2021.102121 10.1038/s41598-022-16141-2 10.1016/j.acra.2021.03.032 10.1109/EMBC.2017.8036918 10.1007/978-3-030-32239-7_81 10.1186/s12885-018-4448-9 10.1200/JCO.21.01337 10.1038/s41598-020-67441-4 10.1038/s41591-019-0508-1 10.1148/ryai.210299 10.1007/s10278-018-0144-1 10.1148/radiol.239004 10.1002/mp.13966 10.1016/j.media.2022.102464 10.1002/mp.15631 10.1007/978-3-030-32226-7_54 10.48550/arXiv.2010.11929 10.1007/s11517-020-02175-z 10.1002/bjs.4840 10.1109/TMI.2018.2865671 10.1109/JBHI.2022.3216031 10.1148/radiol.2021203960 10.1109/TMI.2018.2872031 10.1038/s41598-021-98408-8 10.1016/S0140-6736(02)08020-0 10.1109/ICCV.2017.322 10.1109/ICCV.2019.01076 10.1038/s41598-022-06100-2 10.1126/scitranslmed.abo4802 10.1007/978-3-319-59050-9_19 10.1109/EMBC48229.2022.9871452 10.1007/s11547-017-0782-2 10.3390/bioengineering9040161 10.1016/j.mri.2020.03.001 10.3389/fonc.2022.943415 10.1007/978-3-031-16434-7_14 10.1001/jamainternmed.2022.4969 10.1148/radiol.2018181371 10.1007/978-3-031-16434-7_22 10.3389/fonc.2022.846775 10.1016/j.compbiomed.2022.105812 10.1007/978-3-030-59713-9_24 10.1002/mp.16188 10.1007/s00330-019-06186-9 10.1007/978-3-031-19803-8_23 10.1200/JCO.2011.38.8595 10.3322/caac.21660 10.1016/j.ejca.2021.01.028 10.1038/s41598-020-75167-6 10.1109/TMI.2021.3078370 10.1007/s10278-017-9993-2 10.1148/radiol.2019182947 10.1016/j.cmpb.2021.106327 10.1117/1.JMI.4.4.044504 10.1001/jamanetworkopen.2022.42343 10.1002/jmri.10380 10.1016/j.jbi.2014.01.010 10.1007/s10549-022-06521-7 10.1038/s41591-018-0300-7 10.1016/j.annonc.2021.09.007 10.1109/TPAMI.2020.2992393 10.1016/j.ebiom.2020.103018 10.1016/j.ejrad.2021.110095 10.1109/CVPR.2018.00474 10.1109/ISBI.2018.8363704 10.1007/978-3-319-66179-7_76 10.1002/mp.14671 10.1109/ISBI.2015.7163815 10.1162/neco.1989.1.4.541 10.1186/s12880-019-0349-x 10.1016/j.media.2022.102486 10.1038/s41374-019-0275-0 10.3390/cancers15092569 10.1037/h0042519 10.1088/1361-6560/ab7e7d 10.1109/TMI.2020.3002244 10.1109/tpami.2024.3435571 10.1148/ryai.2020200103 10.3322/caac.21754 10.1118/1.4933198 10.1038/modpathol.2013.230 10.1038/323533a0 10.1109/TMI.2017.2677499 10.1038/s41467-020-20030-5 10.1016/S0140-6736(51)92403-8 10.1186/s13058-022-01580-6 10.1016/j.clbc.2021.07.002 10.1007/978-3-319-24574-4_78 10.1016/j.compbiomed.2018.04.004 10.1109/TCBB.2022.3163277 10.1088/1361-6560/aa82ec 10.1109/TMI.2018.2865709 10.1007/978-3-030-33128-3_1 10.1016/j.mri.2020.10.003 10.1109/JBHI.2021.3136568 10.5555/2999134.2999257 10.1109/TMI.2020.2968397 10.1109/TMI.2019.2945514 10.1002/jmri.26721 10.1016/j.media.2018.03.006 10.1016/j.jacr.2020.01.006 10.1007/978-3-030-87196-3_50 10.1007/978-3-319-46723-8_28 10.1007/978-3-031-16437-8_6 10.1007/s10278-021-00449-y 10.1016/j.neucom.2018.05.083 10.1016/j.breast.2021.02.007 10.1148/ryai.220185 10.1007/978-3-030-60548-3_18 10.1148/radiol.2019190372 10.1007/978-3-030-32239-7_40 10.1016/j.semcancer.2020.08.006 10.1016/j.patcog.2017.10.009 10.1016/j.neucom.2019.08.103 10.1016/j.acra.2020.02.006 10.1016/j.media.2022.102685 10.1007/978-3-031-16452-1_59 10.1016/j.compbiomed.2020.104206 10.1126/scitranslmed.aba4373 10.3389/fphys.2020.511071 10.1109/ICCV.2017.324 10.3389/fonc.2022.946580 10.1038/s41591-023-02643-7 10.1109/3DV.2016.79 10.1109/IPTA.2014.7001976 10.1007/BF02478259 10.48550/ARXIV.1706.03762 10.1007/978-3-319-24574-4_28 10.1016/j.media.2021.102049 10.1016/S0140-6736(16)31891-8 10.1007/978-3-030-32251-9_55 10.1109/ISBI.2018.8363518 10.1111/j.1365-2559.1991.tb00229.x 10.1109/ICCV51070.2023.01949 10.3390/cancers14163848 10.1038/s41597-023-02125-y 10.1016/j.media.2021.101989 10.1016/S0140-6736(13)62422-8 10.1001/jamanetworkopen.2021.19100 10.1109/TMI.2018.2870343 10.1093/annonc/mdv221 10.47102/annals-acadmedsg.V41N10p432 10.1001/jama.299.18.2151 10.1038/s41586-019-1799-6 10.1038/s41571-019-0299-9 10.1109/tpami.2016.2577031 10.1109/CVPR.2016.91 10.1007/s00330-020-07165-1 10.1109/TMI.2021.3071544 10.1148/radiol.2019192515 10.1038/bjc.2013.177 10.1109/TMI.2018.2860257 10.1088/1361-6560/ab5093 10.1148/radiol.2019182627 10.3322/caac.21388 10.1117/1.JMI.5.1.014503 10.1016/j.media.2023.102933 10.7863/jum.2000.19.7.427 10.1148/ryai.2021200159 10.1038/modpathol.2013.103 10.1016/j.media.2020.101918 10.1007/978-3-319-46723-8_13 10.1038/s41374-018-0095-7 10.1016/j.bbe.2018.04.008 10.1038/s41591-021-01595-0 10.1007/s00330-021-08293-y 10.1118/1.4967345 10.1016/j.breast.2022.10.004 10.1109/TCBB.2020.2978470 10.1109/CVPR.2016.319 10.1007/s00330-022-08863-8 10.3390/cancers12123687 10.1038/srep24454 10.1038/s41591-018-0177-5 10.1038/s41523-022-00491-1 10.1016/j.ejrad.2022.110247 10.1001/jamaoncol.2017.0473 10.1093/annonc/mds324 10.1016/j.semcancer.2020.06.002 10.1016/b978-0-12-092861-3.x5000-6 10.1109/TMI.2019.2927182 10.1038/s41597-023-02327-4 10.1016/j.media.2021.102204 10.1016/j.media.2021.102010 10.1016/j.media.2017.12.002 10.1007/978-3-031-43987-2_45 10.1109/CVPR.2015.7298965 10.1016/j.media.2022.102466 10.1109/JPROC.2019.2950187 10.5555/3298023.3298188 10.1109/TMI.2022.3202759 10.1109/CVPR46437.2021.01216 10.1038/s41598-021-03806-7 10.1007/978-3-030-59722-1_33 10.1002/jmri.27955 10.3389/fonc.2021.596364 10.1148/rg.2020200006 10.1109/JBHI.2020.3034804 10.1093/jnci/djac142 10.1109/CVPR.2019.00075 10.1038/s42256-020-00257-z 10.1038/s41551-019-0362-y 10.1002/jbio.201960235 10.1007/s00330-019-06457-5 10.1007/978-3-319-67558-9_10 10.1109/TMI.2017.2751523 10.1007/978-3-319-66179-7_69 10.1038/s41551-021-00711-2 10.1093/jnci/djy222 10.1109/CVPR.2009.5206848 10.1007/978-3-030-00934-2_95 10.1016/j.media.2021.101999 10.1097/RLI.0000000000000976 10.1088/1361-6560/ac195a 10.1007/s10911-006-9018-0 10.1007/978-3-031-16437-8_2 10.1007/978-3-030-59710-8_2 10.1002/mp.12683 10.1093/bioinformatics/btac381 10.1007/978-3-030-59725-2_24 10.1038/nature14539 10.3390/jimaging7120276 10.1109/TMI.2018.2820199 10.1177/153303460400300402 10.1038/s41467-021-25221-2 10.1109/ISBI45749.2020.9098732 10.1016/j.mri.2020.08.021 10.1016/j.media.2020.101816 10.1109/JBHI.2021.3081111 10.1038/s41551-022-00923-0 10.1007/978-3-031-16437-8_23 10.1016/j.eclinm.2022.101562 10.1109/CVPR.2017.243 10.1109/EMBC48229.2022.9871091 10.1109/ICCV51070.2023.01942 10.1016/j.csbj.2021.12.028 10.1093/bioinformatics/btab185 10.1109/ICCV51070.2023.01964 10.1001/jama.2017.14585 10.1109/TPAMI.2021.3130759 10.1016/j.neucom.2018.09.043 10.1186/s12967-021-03020-z 10.1109/JBHI.2017.2731873 10.1038/s41598-020-77875-5 10.4103/jpi.jpi_61_17 10.1016/j.compbiomed.2020.104036 10.1109/TPAMI.2022.3195549 10.1007/978-3-030-87234-2_10 10.1109/TPAMI.2018.2858821 10.1109/CVPR46437.2021.01409 10.1109/CVPR.2016.90 10.1109/JBHI.2020.3027566 10.1038/s41467-022-31771-w 10.1002/mp.13886 10.1088/1361-6560/ac8c82 10.1109/ISBI.2019.8759458 10.1016/j.media.2021.102137 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/RBME.2024.3357877 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1941-1189 |
EndPage | 151 |
ExternalDocumentID | 38265911 10_1109_RBME_2024_3357877 10413531 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62202403 funderid: 10.13039/501100001809 – fundername: Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone grantid: HZQB-KCZYB-2020083 – fundername: Innovation and Technology Commission; Hong Kong Innovation and Technology Fund grantid: PRP/034/22FX funderid: 10.13039/501100007156 – fundername: Science, Technology and Innovation Commission of Shenzhen Municipality; Shenzhen Science and Technology Innovation Committee grantid: SGDX20210823103201011 funderid: 10.13039/501100010877 |
GroupedDBID | --- 0R~ 23N 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK ACPRK AETIX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV AZLTO BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD F5P HZ~ IFIPE IPLJI JAVBF M43 O9- OCL RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c350t-90858e602b4faefd6473a94b468ae9ec40394f8c1a5c5d55c6ee7238ebbe7ae93 |
IEDL.DBID | RIE |
ISSN | 1937-3333 1941-1189 |
IngestDate | Sun Sep 28 06:31:25 EDT 2025 Mon Jun 30 12:59:05 EDT 2025 Mon Jul 21 05:55:31 EDT 2025 Tue Jul 01 00:53:42 EDT 2025 Thu Apr 24 22:58:12 EDT 2025 Wed Aug 27 01:53:09 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c350t-90858e602b4faefd6473a94b468ae9ec40394f8c1a5c5d55c6ee7238ebbe7ae93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-8400-3780 0009-0008-4419-1837 0000-0002-5218-2761 0000-0003-4962-4132 0000-0002-3885-4912 0000-0002-7485-4151 0000-0001-9267-0076 0000-0001-6677-3194 0009-0003-8890-1857 0000-0002-7635-2518 |
PMID | 38265911 |
PQID | 3161363000 |
PQPubID | 85512 |
PageCount | 22 |
ParticipantIDs | ieee_primary_10413531 pubmed_primary_38265911 proquest_miscellaneous_2918511264 crossref_primary_10_1109_RBME_2024_3357877 proquest_journals_3161363000 crossref_citationtrail_10_1109_RBME_2024_3357877 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250000 2025-00-00 20250101 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 20250000 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE reviews in biomedical engineering |
PublicationTitleAbbrev | RBME |
PublicationTitleAlternate | IEEE Rev Biomed Eng |
PublicationYear | 2025 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref328 ref56 ref208 ref329 ref59 ref205 ref326 ref58 ref206 ref327 ref53 ref203 ref324 ref52 ref204 ref325 ref201 ref54 ref202 ref323 ref209 ref210 ref331 ref211 ref332 ref51 ref50 ref330 ref46 ref218 ref45 ref219 ref48 ref216 ref47 ref217 ref214 ref41 ref215 ref44 ref212 ref333 ref43 ref213 ref49 ref8 ref7 ref9 Faryna (ref235) 2021 ref4 ref3 ref5 ref100 ref221 ref101 ref222 ref40 ref220 ref34 ref37 ref36 ref305 ref31 ref302 ref30 ref303 ref33 ref300 ref32 ref301 ref39 ref38 ref308 ref309 ref310 Tarvainen (ref140) 2017; 30 ref24 ref317 ref23 Wang (ref193) 2016 ref318 ref315 ref25 ref316 ref20 ref313 ref314 ref22 ref21 ref312 ref28 ref27 ref319 ref29 Magny (ref26) 2022 ref320 ref200 ref321 ref128 ref249 ref129 ref97 ref126 ref247 ref96 ref127 ref248 ref99 ref124 ref245 Bochkovskiy (ref55) 2020 ref125 ref246 Vidal (ref180) 2022; 140 ref93 ref133 ref254 ref92 ref134 ref255 ref95 ref131 ref252 ref94 ref132 ref253 ref250 ref130 ref251 ref91 ref90 Ilse (ref197) 2018 ref89 ref139 ref86 ref137 ref258 ref85 ref138 ref259 ref88 ref135 ref256 ref87 ref136 ref257 Qi (ref304) 2020 ref82 ref144 ref265 ref81 ref145 ref266 ref84 ref142 ref263 ref83 ref143 ref264 ref261 ref141 ref262 ref80 ref260 ref79 ref108 ref229 ref78 ref109 ref106 ref227 ref107 ref228 ref75 ref104 ref225 ref74 ref105 ref226 ref77 ref102 ref223 ref76 ref103 ref224 Wang (ref207) 2023 ref71 ref111 ref232 ref70 ref112 ref233 ref73 ref230 ref72 ref110 ref231 ref68 ref119 ref67 ref117 ref238 ref69 ref118 ref239 ref64 ref115 ref236 ref63 ref116 ref237 ref66 ref113 ref234 ref65 ref114 ref60 ref122 ref243 ref123 ref244 ref62 ref120 ref241 ref61 ref121 ref242 ref240 ref168 ref289 ref169 ref290 ref170 ref291 Goodfellow (ref35) 2016 ref177 ref298 ref178 ref299 ref175 ref296 ref176 ref297 ref173 ref294 ref174 ref295 ref171 ref292 ref172 ref293 ref179 ref181 ref188 ref189 ref186 ref187 ref184 ref185 ref182 ref183 ref148 ref269 ref149 ref146 ref267 ref147 ref268 ref155 ref276 ref156 ref277 ref153 ref274 ref154 ref275 ref151 ref272 ref152 ref270 ref150 ref271 ref159 ref157 ref278 ref158 ref279 ref280 ref166 ref287 ref167 ref288 ref164 ref285 ref165 ref286 ref162 ref283 ref163 ref284 ref160 ref281 ref161 ref282 ref13 Mirza (ref98) 2014 ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref19 ref18 You (ref307) 2023 Xu (ref322) 2022 ref2 ref1 Simonyan (ref42) 2015 ref191 ref192 ref190 ref199 ref198 ref195 ref196 ref194 (ref6) 2014 Jin (ref306) 2023 Wang (ref311) 2023 Chen (ref273) 2016 |
References_xml | – ident: ref295 doi: 10.1038/s41698-023-00472-y – ident: ref281 doi: 10.1158/1078-0432.CCR-21-0325 – ident: ref96 doi: 10.1109/EMBC44109.2020.9176617 – ident: ref119 doi: 10.1038/s41467-021-27577-x – ident: ref107 doi: 10.1109/TMI.2021.3102622 – ident: ref11 doi: 10.1148/radiol.13121606 – ident: ref175 doi: 10.1117/1.JMI.5.1.014502 – ident: ref75 doi: 10.1007/s10278-020-00369-3 – ident: ref262 doi: 10.1109/JBHI.2020.3008040 – ident: ref80 doi: 10.1038/s41591-020-01174-9 – ident: ref84 doi: 10.1002/mp.15598 – ident: ref178 doi: 10.1002/mp.15156 – ident: ref93 doi: 10.1109/TPAMI.2021.3085783 – ident: ref163 doi: 10.1007/s00330-020-07274-x – ident: ref216 doi: 10.1186/bcr2607 – ident: ref144 doi: 10.1109/TMI.2019.2936500 – ident: ref241 doi: 10.1001/jama.2018.19323 – ident: ref196 doi: 10.1038/srep46450 – ident: ref23 doi: 10.5858/arpa.2014-0094-RA – ident: ref63 doi: 10.1145/3422622 – ident: ref184 doi: 10.1002/mp.13849 – ident: ref45 doi: 10.4324/9781410605337-29 – ident: ref177 doi: 10.1038/nature14236 – ident: ref151 doi: 10.1016/j.media.2022.102478 – ident: ref229 doi: 10.1016/j.media.2019.101563 – ident: ref290 doi: 10.1038/s41591-023-02625-9 – ident: ref136 doi: 10.1109/ICABME47164.2019.8940291 – ident: ref88 doi: 10.1007/s10916-010-9448-5 – ident: ref252 doi: 10.1038/s41598-021-93592-z – ident: ref234 doi: 10.1136/bmjqs-2018-008370 – year: 2014 ident: ref6 article-title: WHO position paper on mammography screening – ident: ref85 doi: 10.1016/j.cmpb.2022.106884 – ident: ref227 doi: 10.1007/978-3-030-20351-1_53 – ident: ref154 doi: 10.1109/JBHI.2019.2960821 – ident: ref314 doi: 10.1038/s42256-021-00425-9 – ident: ref8 doi: 10.1148/radiol.2019180760 – ident: ref319 doi: 10.1007/978-3-030-20301-6_3 – ident: ref153 doi: 10.1016/j.neucom.2022.04.021 – ident: ref259 doi: 10.3389/fonc.2022.812463 – ident: ref330 doi: 10.1016/S2589-7500(22)00088-7 – ident: ref265 doi: 10.1117/12.2255316 – ident: ref125 doi: 10.1016/j.cmpb.2020.105361 – ident: ref172 doi: 10.1016/j.patcog.2017.08.004 – ident: ref102 doi: 10.1007/s10278-020-00407-0 – ident: ref179 doi: 10.3389/fonc.2022.984626 – ident: ref212 doi: 10.1007/978-3-030-97281-3_12 – ident: ref111 doi: 10.1148/radiol.2021204432 – ident: ref89 doi: 10.1002/mp.13945 – ident: ref149 doi: 10.1109/TMI.2021.3116087 – ident: ref198 doi: 10.1117/1.JMI.8.3.034501 – ident: ref126 doi: 10.1038/s41467-020-15027-z – ident: ref137 doi: 10.1016/j.cmpb.2021.106018 – ident: ref87 doi: 10.1109/TMI.2021.3129068 – ident: ref28 doi: 10.1016/j.media.2017.07.005 – ident: ref52 doi: 10.1109/ICCV.2015.169 – ident: ref326 doi: 10.1109/CVPR52729.2023.01113 – ident: ref251 doi: 10.1038/s41379-021-00911-w – ident: ref274 doi: 10.1002/jmri.26244 – ident: ref49 doi: 10.1109/TPAMI.2015.2437384 – ident: ref211 doi: 10.1016/j.media.2021.102121 – ident: ref100 doi: 10.1038/s41598-022-16141-2 – ident: ref173 doi: 10.1016/j.acra.2021.03.032 – ident: ref76 doi: 10.1109/EMBC.2017.8036918 – ident: ref233 doi: 10.1007/978-3-030-32239-7_81 – ident: ref280 doi: 10.1186/s12885-018-4448-9 – ident: ref289 doi: 10.1200/JCO.21.01337 – ident: ref167 doi: 10.1038/s41598-020-67441-4 – ident: ref199 doi: 10.1038/s41591-019-0508-1 – ident: ref303 doi: 10.1148/ryai.210299 – volume-title: Proc. Med. Imag. With Deep Learn. year: 2021 ident: ref235 article-title: Tailoring automated data augmentation to h&e-stained histopathology – ident: ref250 doi: 10.1007/s10278-018-0144-1 – year: 2016 ident: ref193 article-title: Deep learning for identifying metastatic breast cancer – ident: ref190 doi: 10.1148/radiol.239004 – ident: ref160 doi: 10.1002/mp.13966 – ident: ref313 doi: 10.1016/j.media.2022.102464 – year: 2023 ident: ref306 article-title: Label-efficient deep learning in medical image analysis: Challenges and future directions – ident: ref91 doi: 10.1002/mp.15631 – ident: ref77 doi: 10.1007/978-3-030-32226-7_54 – ident: ref47 doi: 10.48550/arXiv.2010.11929 – ident: ref209 doi: 10.1007/s11517-020-02175-z – ident: ref242 doi: 10.1002/bjs.4840 – ident: ref182 doi: 10.1109/TMI.2018.2865671 – ident: ref260 doi: 10.1109/JBHI.2022.3216031 – ident: ref292 doi: 10.1148/radiol.2021203960 – ident: ref146 doi: 10.1109/TMI.2018.2872031 – ident: ref256 doi: 10.1038/s41598-021-98408-8 – ident: ref5 doi: 10.1016/S0140-6736(02)08020-0 – ident: ref60 doi: 10.1109/ICCV.2017.322 – volume: 30 year: 2017 ident: ref140 article-title: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results publication-title: Adv. Neural Inf. Process. Syst. – ident: ref218 doi: 10.1109/ICCV.2019.01076 – volume-title: Proc. Adv. Neural Inf. Process. Syst. year: 2023 ident: ref307 article-title: Rethinking semi-supervised medical image segmentation: A variance-reduction perspective – ident: ref255 doi: 10.1038/s41598-022-06100-2 – ident: ref286 doi: 10.1126/scitranslmed.abo4802 – ident: ref195 doi: 10.1007/978-3-319-59050-9_19 – ident: ref101 doi: 10.1109/EMBC48229.2022.9871452 – volume-title: Proc. Neural Inf. Process. Syst., Workshop Mach. Learn. Syst. year: 2016 ident: ref273 article-title: Mxnet: A flexible and efficient machine learning library for heterogeneous distributed systems – ident: ref17 doi: 10.1007/s11547-017-0782-2 – ident: ref72 doi: 10.3390/bioengineering9040161 – ident: ref162 doi: 10.1016/j.mri.2020.03.001 – ident: ref187 doi: 10.3389/fonc.2022.943415 – ident: ref226 doi: 10.1007/978-3-031-16434-7_14 – volume-title: Deep Learning year: 2016 ident: ref35 – ident: ref321 doi: 10.1001/jamainternmed.2022.4969 – ident: ref110 doi: 10.1148/radiol.2018181371 – ident: ref285 doi: 10.1007/978-3-031-16434-7_22 – ident: ref258 doi: 10.3389/fonc.2022.846775 – ident: ref132 doi: 10.1016/j.compbiomed.2022.105812 – ident: ref291 doi: 10.1007/978-3-030-59713-9_24 – ident: ref331 doi: 10.1002/mp.16188 – ident: ref115 doi: 10.1007/s00330-019-06186-9 – ident: ref94 doi: 10.1007/978-3-031-19803-8_23 – ident: ref246 doi: 10.1200/JCO.2011.38.8595 – ident: ref3 doi: 10.3322/caac.21660 – ident: ref254 doi: 10.1016/j.ejca.2021.01.028 – ident: ref188 doi: 10.1038/s41598-020-75167-6 – ident: ref157 doi: 10.1109/TMI.2021.3078370 – ident: ref70 doi: 10.1007/s10278-017-9993-2 – ident: ref16 doi: 10.1148/radiol.2019182947 – ident: ref161 doi: 10.1016/j.cmpb.2021.106327 – ident: ref194 doi: 10.1117/1.JMI.4.4.044504 – ident: ref117 doi: 10.1001/jamanetworkopen.2022.42343 – ident: ref19 doi: 10.1002/jmri.10380 – ident: ref67 doi: 10.1016/j.jbi.2014.01.010 – ident: ref245 doi: 10.1007/s10549-022-06521-7 – ident: ref29 doi: 10.1038/s41591-018-0300-7 – ident: ref294 doi: 10.1016/j.annonc.2021.09.007 – ident: ref64 doi: 10.1109/TPAMI.2020.2992393 – ident: ref128 doi: 10.1016/j.ebiom.2020.103018 – ident: ref275 doi: 10.1016/j.ejrad.2021.110095 – ident: ref269 doi: 10.1109/CVPR.2018.00474 – ident: ref97 doi: 10.1109/ISBI.2018.8363704 – ident: ref176 doi: 10.1007/978-3-319-66179-7_76 – ident: ref99 doi: 10.1002/mp.14671 – ident: ref217 doi: 10.1109/ISBI.2015.7163815 – ident: ref39 doi: 10.1162/neco.1989.1.4.541 – ident: ref145 doi: 10.1186/s12880-019-0349-x – ident: ref205 doi: 10.1016/j.media.2022.102486 – ident: ref208 doi: 10.1038/s41374-019-0275-0 – ident: ref297 doi: 10.3390/cancers15092569 – ident: ref37 doi: 10.1037/h0042519 – ident: ref138 doi: 10.1088/1361-6560/ab7e7d – ident: ref231 doi: 10.1109/TMI.2020.3002244 – ident: ref59 doi: 10.1109/tpami.2024.3435571 – ident: ref299 doi: 10.1148/ryai.2020200103 – ident: ref2 doi: 10.3322/caac.21754 – ident: ref257 doi: 10.1118/1.4933198 – ident: ref21 doi: 10.1038/modpathol.2013.230 – ident: ref38 doi: 10.1038/323533a0 – ident: ref224 doi: 10.1109/TMI.2017.2677499 – ident: ref240 doi: 10.1038/s41467-020-20030-5 – ident: ref9 doi: 10.1016/S0140-6736(51)92403-8 – ident: ref266 doi: 10.1186/s13058-022-01580-6 – ident: ref168 doi: 10.1016/j.clbc.2021.07.002 – ident: ref82 doi: 10.1007/978-3-319-24574-4_78 – ident: ref81 doi: 10.1016/j.compbiomed.2018.04.004 – ident: ref201 doi: 10.1109/TCBB.2022.3163277 – ident: ref135 doi: 10.1088/1361-6560/aa82ec – ident: ref228 doi: 10.1109/TMI.2018.2865709 – ident: ref68 doi: 10.1007/978-3-030-33128-3_1 – ident: ref165 doi: 10.1016/j.mri.2020.10.003 – ident: ref220 doi: 10.1109/JBHI.2021.3136568 – ident: ref40 doi: 10.5555/2999134.2999257 – ident: ref79 doi: 10.1109/TMI.2020.2968397 – ident: ref109 doi: 10.1109/TMI.2019.2945514 – ident: ref185 doi: 10.1002/jmri.26721 – ident: ref32 doi: 10.1016/j.media.2018.03.006 – ident: ref116 doi: 10.1016/j.jacr.2020.01.006 – ident: ref308 doi: 10.1007/978-3-030-87196-3_50 – ident: ref104 doi: 10.1007/978-3-319-46723-8_28 – ident: ref312 doi: 10.1007/978-3-031-16437-8_6 – ident: ref271 doi: 10.1007/s10278-021-00449-y – ident: ref65 doi: 10.1016/j.neucom.2018.05.083 – ident: ref282 doi: 10.1016/j.breast.2021.02.007 – ident: ref332 doi: 10.1148/ryai.220185 – volume: 140 year: 2022 ident: ref180 article-title: A u-Net ensemble for breast lesion segmentation in DCE MRI publication-title: Comput. Biol. Med. – ident: ref121 doi: 10.1007/978-3-030-60548-3_18 – ident: ref127 doi: 10.1148/radiol.2019190372 – ident: ref302 doi: 10.1007/978-3-030-32239-7_40 – ident: ref31 doi: 10.1016/j.semcancer.2020.08.006 – ident: ref62 doi: 10.1016/j.patcog.2017.10.009 – ident: ref222 doi: 10.1016/j.neucom.2019.08.103 – ident: ref189 doi: 10.1016/j.acra.2020.02.006 – year: 2023 ident: ref207 article-title: When an image is worth 1,024 x 1,024 words: A case study in computational pathology – ident: ref221 doi: 10.1016/j.media.2022.102685 – ident: ref324 doi: 10.1007/978-3-031-16452-1_59 – start-page: 2127 volume-title: Proc. Int. Conf. Mach. Learn. year: 2018 ident: ref197 article-title: Attention-based deep multiple instance learning – ident: ref129 doi: 10.1016/j.compbiomed.2020.104206 – ident: ref288 doi: 10.1126/scitranslmed.aba4373 – ident: ref272 doi: 10.3389/fphys.2020.511071 – ident: ref50 doi: 10.1109/ICCV.2017.324 – year: 2020 ident: ref55 article-title: Yolov4: Optimal speed and accuracy of object detection – ident: ref183 doi: 10.3389/fonc.2022.946580 – ident: ref296 doi: 10.1038/s41591-023-02643-7 – volume-title: Proc. Int. Conf. Learn. Representations year: 2020 ident: ref304 article-title: Stabilized medical image attacks – ident: ref56 doi: 10.1109/3DV.2016.79 – ident: ref191 doi: 10.1109/IPTA.2014.7001976 – ident: ref36 doi: 10.1007/BF02478259 – ident: ref48 doi: 10.48550/ARXIV.1706.03762 – ident: ref58 doi: 10.1007/978-3-319-24574-4_28 – ident: ref30 doi: 10.1016/j.media.2021.102049 – ident: ref1 doi: 10.1016/S0140-6736(16)31891-8 – ident: ref186 doi: 10.1007/978-3-030-32251-9_55 – ident: ref118 doi: 10.1109/ISBI.2018.8363518 – ident: ref215 doi: 10.1111/j.1365-2559.1991.tb00229.x – ident: ref318 doi: 10.1109/ICCV51070.2023.01949 – ident: ref278 doi: 10.3390/cancers14163848 – ident: ref300 doi: 10.1038/s41597-023-02125-y – ident: ref150 doi: 10.1016/j.media.2021.101989 – ident: ref247 doi: 10.1016/S0140-6736(13)62422-8 – ident: ref90 doi: 10.1001/jamanetworkopen.2021.19100 – year: 2022 ident: ref322 article-title: A survey of fairness in medical image analysis: Concepts, algorithms, evaluations, and challenges – ident: ref74 doi: 10.1109/TMI.2018.2870343 – ident: ref25 doi: 10.1093/annonc/mdv221 – year: 2014 ident: ref98 article-title: Conditional generative adversarial nets – ident: ref14 doi: 10.47102/annals-acadmedsg.V41N10p432 – ident: ref13 doi: 10.1001/jama.299.18.2151 – ident: ref114 doi: 10.1038/s41586-019-1799-6 – ident: ref327 doi: 10.1038/s41571-019-0299-9 – ident: ref53 doi: 10.1109/tpami.2016.2577031 – ident: ref54 doi: 10.1109/CVPR.2016.91 – ident: ref113 doi: 10.1007/s00330-020-07165-1 – ident: ref123 doi: 10.1109/TMI.2021.3071544 – ident: ref329 doi: 10.1148/radiol.2019192515 – ident: ref7 doi: 10.1038/bjc.2013.177 – ident: ref143 doi: 10.1109/TMI.2018.2860257 – ident: ref134 doi: 10.1088/1361-6560/ab5093 – ident: ref33 doi: 10.1148/radiol.2019182627 – ident: ref4 doi: 10.3322/caac.21388 – ident: ref164 doi: 10.1117/1.JMI.5.1.014503 – ident: ref232 doi: 10.1016/j.media.2023.102933 – ident: ref15 doi: 10.7863/jum.2000.19.7.427 – ident: ref166 doi: 10.1148/ryai.2021200159 – ident: ref24 doi: 10.1038/modpathol.2013.103 – ident: ref155 doi: 10.1016/j.media.2020.101918 – ident: ref69 doi: 10.1007/978-3-319-46723-8_13 – ident: ref219 doi: 10.1038/s41374-018-0095-7 – ident: ref237 doi: 10.1016/j.bbe.2018.04.008 – ident: ref320 doi: 10.1038/s41591-021-01595-0 – ident: ref264 doi: 10.1007/s00330-021-08293-y – ident: ref305 doi: 10.1118/1.4967345 – ident: ref253 doi: 10.1016/j.breast.2022.10.004 – ident: ref147 doi: 10.1109/TCBB.2020.2978470 – year: 2023 ident: ref311 article-title: Learning robust medical image segmentation from multi-source annotations – ident: ref61 doi: 10.1109/CVPR.2016.319 – ident: ref170 doi: 10.1007/s00330-022-08863-8 – ident: ref200 doi: 10.3390/cancers12123687 – ident: ref124 doi: 10.1038/srep24454 – ident: ref317 doi: 10.1038/s41591-018-0177-5 – ident: ref267 doi: 10.1038/s41523-022-00491-1 – ident: ref248 doi: 10.1016/j.ejrad.2022.110247 – ident: ref298 doi: 10.1001/jamaoncol.2017.0473 – ident: ref243 doi: 10.1093/annonc/mds324 – ident: ref34 doi: 10.1016/j.semcancer.2020.06.002 – ident: ref18 doi: 10.1016/b978-0-12-092861-3.x5000-6 – ident: ref223 doi: 10.1109/TMI.2019.2927182 – ident: ref333 doi: 10.1038/s41597-023-02327-4 – ident: ref95 doi: 10.1016/j.media.2021.102204 – ident: ref139 doi: 10.1016/j.media.2021.102010 – ident: ref210 doi: 10.1016/j.media.2017.12.002 – ident: ref206 doi: 10.1007/978-3-031-43987-2_45 – ident: ref57 doi: 10.1109/CVPR.2015.7298965 – ident: ref202 doi: 10.1016/j.media.2022.102466 – ident: ref169 doi: 10.1109/JPROC.2019.2950187 – ident: ref46 doi: 10.5555/3298023.3298188 – ident: ref203 doi: 10.1109/TMI.2022.3202759 – ident: ref310 doi: 10.1109/CVPR46437.2021.01216 – ident: ref156 doi: 10.1038/s41598-021-03806-7 – ident: ref225 doi: 10.1007/978-3-030-59722-1_33 – ident: ref174 doi: 10.1002/jmri.27955 – ident: ref276 doi: 10.3389/fonc.2021.596364 – ident: ref20 doi: 10.1148/rg.2020200006 – ident: ref130 doi: 10.1109/JBHI.2020.3034804 – ident: ref112 doi: 10.1093/jnci/djac142 – ident: ref51 doi: 10.1109/CVPR.2019.00075 – ident: ref323 doi: 10.1038/s42256-020-00257-z – ident: ref239 doi: 10.1038/s41551-019-0362-y – ident: ref279 doi: 10.1002/jbio.201960235 – ident: ref73 doi: 10.1007/s00330-019-06457-5 – ident: ref238 doi: 10.1007/978-3-319-67558-9_10 – ident: ref83 doi: 10.1109/TMI.2017.2751523 – ident: ref78 doi: 10.1007/978-3-319-66179-7_69 – ident: ref133 doi: 10.1038/s41551-021-00711-2 – ident: ref108 doi: 10.1093/jnci/djy222 – ident: ref41 doi: 10.1109/CVPR.2009.5206848 – ident: ref86 doi: 10.1007/978-3-030-00934-2_95 – ident: ref92 doi: 10.1016/j.media.2021.101999 – ident: ref293 doi: 10.1097/RLI.0000000000000976 – ident: ref171 doi: 10.1088/1361-6560/ac195a – ident: ref10 doi: 10.1007/s10911-006-9018-0 – ident: ref122 doi: 10.1007/978-3-031-16437-8_2 – ident: ref230 doi: 10.1007/978-3-030-59710-8_2 – ident: ref71 doi: 10.1002/mp.12683 – ident: ref268 doi: 10.1093/bioinformatics/btac381 – volume-title: StatPearls [Internet] year: 2022 ident: ref26 article-title: Breast imaging reporting and data system – ident: ref106 doi: 10.1007/978-3-030-59725-2_24 – ident: ref27 doi: 10.1038/nature14539 – ident: ref181 doi: 10.3390/jimaging7120276 – ident: ref214 doi: 10.1109/TMI.2018.2820199 – ident: ref12 doi: 10.1177/153303460400300402 – ident: ref236 doi: 10.1038/s41467-021-25221-2 – ident: ref103 doi: 10.1109/ISBI45749.2020.9098732 – ident: ref249 doi: 10.1016/j.mri.2020.08.021 – ident: ref301 doi: 10.1016/j.media.2020.101816 – ident: ref159 doi: 10.1109/JBHI.2021.3081111 – ident: ref284 doi: 10.1038/s41551-022-00923-0 – ident: ref309 doi: 10.1007/978-3-031-16437-8_23 – ident: ref261 doi: 10.1016/j.eclinm.2022.101562 – ident: ref44 doi: 10.1109/CVPR.2017.243 – ident: ref152 doi: 10.1109/EMBC48229.2022.9871091 – start-page: 1 volume-title: Proc. 3rd Int. Conf. Learn. Representations, Comput. Biol. Learn. Soc. year: 2015 ident: ref42 article-title: Very deep convolutional networks for large-scale image recognition – ident: ref315 doi: 10.1109/ICCV51070.2023.01942 – ident: ref277 doi: 10.1016/j.csbj.2021.12.028 – ident: ref270 doi: 10.1093/bioinformatics/btab185 – ident: ref316 doi: 10.1109/ICCV51070.2023.01964 – ident: ref192 doi: 10.1001/jama.2017.14585 – ident: ref325 doi: 10.1109/TPAMI.2021.3130759 – ident: ref158 doi: 10.1016/j.neucom.2018.09.043 – ident: ref328 doi: 10.1186/s12967-021-03020-z – ident: ref142 doi: 10.1109/JBHI.2017.2731873 – ident: ref244 doi: 10.1038/s41598-020-77875-5 – ident: ref22 doi: 10.4103/jpi.jpi_61_17 – ident: ref148 doi: 10.1016/j.compbiomed.2020.104036 – ident: ref66 doi: 10.1109/TPAMI.2022.3195549 – ident: ref120 doi: 10.1007/978-3-030-87234-2_10 – ident: ref141 doi: 10.1109/TPAMI.2018.2858821 – ident: ref204 doi: 10.1109/CVPR46437.2021.01409 – ident: ref43 doi: 10.1109/CVPR.2016.90 – ident: ref213 doi: 10.1109/JBHI.2020.3027566 – ident: ref283 doi: 10.1038/s41467-022-31771-w – ident: ref287 doi: 10.1002/mp.13886 – ident: ref263 doi: 10.1088/1361-6560/ac8c82 – ident: ref105 doi: 10.1109/ISBI.2019.8759458 – ident: ref131 doi: 10.1016/j.media.2021.102137 |
SSID | ssj0000547180 |
Score | 2.536269 |
SecondaryResourceType | review_article |
Snippet | Breast cancer has reached the highest incidence rate worldwide among all malignancies since 2020. Breast imaging plays a significant role in early diagnosis... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 130 |
SubjectTerms | Breast Breast - diagnostic imaging Breast cancer Breast Neoplasms - diagnostic imaging Deep Learning Diagnosis Digital imaging Female Humans Image Interpretation, Computer-Assisted - methods Magnetic Resonance Imaging Malignancy Mammography medical image analysis Medical imaging Pathology Prognostics and health management Ultrasonic imaging |
Title | Deep Learning in Breast Cancer Imaging: A Decade of Progress and Future Directions |
URI | https://ieeexplore.ieee.org/document/10413531 https://www.ncbi.nlm.nih.gov/pubmed/38265911 https://www.proquest.com/docview/3161363000 https://www.proquest.com/docview/2918511264 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BDwgOPEqBQEFG4oSUxYkdJ-bW16ogbYUqKvUW2c6kQkC2arMXfj0zjndVkIrIKVKc58w4n-fxDcA73yi0qJs8mL5kb5XLG4IdeSc7ZbxRynRcO7w4Mcdn-vN5dZ6K1WMtDCLG5DOc8W6M5XfLsGJXGVm45jYNtNi5S3o2FWttHCqEPWielVMUmQyHthTFLKT9cLq_OKLVYKlnivldam6-pwhaV7Yo_vglxR4rt8PN-NuZP4KT9QNP2SbfZ6vRz8Kvv7gc__uNHsPDBEDF3qQxT-AODtvw4AYt4TbcW6SA-1M4PUS8FImE9UJ8G8Q-Z7GP4oC15Up8-hm7HH0Ue-IQOdVeLHvxhXO-aAYVbujEPJKWiDS1ko7vwNn86OvBcZ7aMORBVXLMLaGyBo0sve4d9p3RtXJWe20aR3IOWiqr-yYUrgpVV1XBIHIrM_QeaxqhnsHWsBzwBQjE0ktVh86EXhe-diqgcVJ6bX3ngslAriXRhsRRzq0yfrRxrSJty3JsWY5tkmMG7zenXE4EHf8avMMyuDFw-vwZ7K7l3SYbvm4VgWHFjGQyg7ebw2R9HFJxAy5X121piwhZjc7g-aQnm4uv1evlLTd9BfdLbiYc_Tm7sDVerfA1IZzRv4ma_RvhtPHO |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6hIvE4UCilhBYwEiekLE7sOAm3vlZb6K5Q1Uq9RX5MECpkqzZ74dfjcbyrtlIROUWK85yx883rG4CPphJYo6xSq9qcvFU6rTzsSB13QhklhHJUOzydqcmZ_HpenMdi9VALg4gh-QxHtBti-W5uF-Qq8zNcUpsGb-w8LLxZUQ3lWiuXikcffqXlQxzZTx2_xThmxuvPJ3vTQ28P5nIkiOGlpPZ7woPros6yWz-l0GXlfsAZfjzjdZgtH3nIN7kYLXozsn_usDn-9zs9h2cRgrLdQWdewAPsNuDpDWLCDXg0jSH3l3BygHjJIg3rD_azY3uUx96zfdKXK3b0O_Q5-sJ22QFSsj2bt-w7ZX35NZTpzrFxoC1hcXH1Wr4JZ-PD0_1JGhsxpFYUvE9rj8sqVDw3stXYOiVLoWtppKq0l7SVXNSyrWymC1u4orAKkZqZoTFY-hHiFax18w5fA0PMDReldcq2MjOlFhaV5tzI2jhtVQJ8KYnGRpZyapbxqwnWCq8bkmNDcmyiHBP4tDrlcqDo-NfgTZLBjYHD509gZynvJs7i60Z4OCyIk4wn8GF12M8_CqroDueL6yavswBalUxga9CT1cWX6vXmnpu-h8eT0-lxc3w0-7YNT3JqLRy8Ozuw1l8t8K3HO715F7T8L8XA9SE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+in+Breast+Cancer+Imaging%3A+A+Decade+of+Progress+and+Future+Directions&rft.jtitle=IEEE+reviews+in+biomedical+engineering&rft.au=Luo%2C+Luyang&rft.au=Wang%2C+Xi&rft.au=Lin%2C+Yi&rft.au=Ma%2C+Xiaoqi&rft.date=2025&rft.pub=IEEE&rft.issn=1937-3333&rft.volume=18&rft.spage=130&rft.epage=151&rft_id=info:doi/10.1109%2FRBME.2024.3357877&rft_id=info%3Apmid%2F38265911&rft.externalDocID=10413531 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1937-3333&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1937-3333&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1937-3333&client=summon |