Application of recurrent neural network to mechanical fault diagnosis: a review
With the development of intelligent manufacturing and automation, the precision and complexity of mechanical equipment are increasing, which leads to a higher requirement for fault diagnosis. Fault diagnosis has gradually transformed from traditional diagnosis algorithm to deep feature mining and ex...
Saved in:
Published in | Journal of mechanical science and technology Vol. 36; no. 2; pp. 527 - 542 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Seoul
Korean Society of Mechanical Engineers
01.02.2022
Springer Nature B.V 대한기계학회 |
Subjects | |
Online Access | Get full text |
ISSN | 1738-494X 1976-3824 |
DOI | 10.1007/s12206-022-0102-1 |
Cover
Abstract | With the development of intelligent manufacturing and automation, the precision and complexity of mechanical equipment are increasing, which leads to a higher requirement for fault diagnosis. Fault diagnosis has gradually transformed from traditional diagnosis algorithm to deep feature mining and expression of highly nonlinear, complex and multidimensional systems. At present, the mechanical fault signals of various equipment are mostly time series. In addition, recurrent neural network (RNN) has strong nonlinear feature learning and processing ability of time sequence information, which has achieved promising results in mechanical fault diagnosis and big data processing. Therefore, this study reviews state-of-the-art RNN method in mechanical fault diagnosis and introduces applications from two aspects: RNN and the combined neural networks which include RNN. Then, this paper discusses the challenges and future development of RNN based fault diagnosis. |
---|---|
AbstractList | With the development of intelligent manufacturing and automation, the precision and complexity of mechanical equipment are increasing, which leads to a higher requirement for fault diagnosis. Fault diagnosis has gradually transformed from traditional diagnosis algorithm to deep feature mining and expression of highly nonlinear, complex and multidimensional systems. At present, the mechanical fault signals of various equipment are mostly time series. In addition, recurrent neural network (RNN) has strong nonlinear feature learning and processing ability of time sequence information, which has achieved promising results in mechanical fault diagnosis and big data processing. Therefore, this study reviews state-of-the-art RNN method in mechanical fault diagnosis and introduces applications from two aspects: RNN and the combined neural networks which include RNN. Then, this paper discusses the challenges and future development of RNN based fault diagnosis. KCI Citation Count: 0 With the development of intelligent manufacturing and automation, the precision and complexity of mechanical equipment are increasing, which leads to a higher requirement for fault diagnosis. Fault diagnosis has gradually transformed from traditional diagnosis algorithm to deep feature mining and expression of highly nonlinear, complex and multidimensional systems. At present, the mechanical fault signals of various equipment are mostly time series. In addition, recurrent neural network (RNN) has strong nonlinear feature learning and processing ability of time sequence information, which has achieved promising results in mechanical fault diagnosis and big data processing. Therefore, this study reviews state-of-the-art RNN method in mechanical fault diagnosis and introduces applications from two aspects: RNN and the combined neural networks which include RNN. Then, this paper discusses the challenges and future development of RNN based fault diagnosis. |
Author | Shen, Yehu Qian, Chenhui Zhu, Junjun Xu, Fengyu Jiang, Quansheng Zhu, Qixin |
Author_xml | – sequence: 1 givenname: Junjun surname: Zhu fullname: Zhu, Junjun organization: School of Mechanical Engineering, Suzhou University of Science and Technology – sequence: 2 givenname: Quansheng surname: Jiang fullname: Jiang, Quansheng email: qschiang@163.com organization: School of Mechanical Engineering, Suzhou University of Science and Technology – sequence: 3 givenname: Yehu surname: Shen fullname: Shen, Yehu organization: School of Mechanical Engineering, Suzhou University of Science and Technology – sequence: 4 givenname: Chenhui surname: Qian fullname: Qian, Chenhui organization: School of Mechanical Engineering, Suzhou University of Science and Technology – sequence: 5 givenname: Fengyu surname: Xu fullname: Xu, Fengyu organization: College of Automation, Nanjing University of Posts and Telecommunications – sequence: 6 givenname: Qixin surname: Zhu fullname: Zhu, Qixin organization: School of Mechanical Engineering, Suzhou University of Science and Technology |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002810259$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kE1LJDEQhsOisH79gL017MlDa1LdnUz2Noi7CoIgCt5CdTqZjdMms0l6h_33ZuwFQdDTW4fnqSreQ7LngzeEfGP0jFEqzhMDoLymADVlFGr2hRwwKXjdLKDdK7NoFnUr28ev5DClJ0o5tIwdkNvlZjM6jdkFXwVbRaOnGI3PlTdTxLFE3oa4rnKono3-jb7AY2VxGnM1OFz5kFz6UWEx_zqzPSb7FsdkTv7nEXn4eXl_cVXf3P66vlje1LrpaK4l5Zppxu2AaIzAoYFF24kBhRxEj9wCxVZibztujYWOdkL2CzCm532PAM0ROZ33-mjVWjsV0L3mKqh1VMu7-2slJciuZYX9PrObGP5MJmX1FKboy3sKOAgpaTlQKDZTOoaUorFqE90zxn-KUbXrWM0dq9Kx2nWsdpvFO0e7_NpljujGT02YzVSu-JWJbz99LL0AKqGSeg |
CitedBy_id | crossref_primary_10_1016_j_apmrv_2023_09_001 crossref_primary_10_3390_machines11070746 crossref_primary_10_3390_e26121113 crossref_primary_10_3390_electronics12244925 crossref_primary_10_3390_wevj13100186 crossref_primary_10_4018_JOEUC_369157 crossref_primary_10_3390_pr11071875 crossref_primary_10_1039_D3NH00524K crossref_primary_10_1088_1361_6501_ad19c2 crossref_primary_10_1177_14759217221132114 crossref_primary_10_1063_5_0113030 crossref_primary_10_1016_j_neucom_2025_129914 crossref_primary_10_3390_electronics11172746 crossref_primary_10_1007_s00521_024_10756_4 crossref_primary_10_1016_j_applthermaleng_2024_124352 crossref_primary_10_1088_1674_4527_acfd02 crossref_primary_10_1109_ACCESS_2024_3362236 crossref_primary_10_1007_s43236_024_00906_1 crossref_primary_10_1109_TIM_2024_3400344 crossref_primary_10_3390_electronics12163430 crossref_primary_10_3390_pr12122845 crossref_primary_10_7717_peerj_cs_1872 crossref_primary_10_1109_JSEN_2024_3496776 crossref_primary_10_1155_2022_2906955 crossref_primary_10_1007_s40789_024_00730_9 crossref_primary_10_3390_math12243982 crossref_primary_10_1016_j_engappai_2023_106491 crossref_primary_10_1109_TIM_2023_3244255 crossref_primary_10_1088_1361_6501_ad8cf6 crossref_primary_10_3390_bioengineering10070850 crossref_primary_10_1016_j_cja_2023_09_024 crossref_primary_10_3390_app132312914 crossref_primary_10_3390_su15097087 crossref_primary_10_1109_ACCESS_2024_3426279 crossref_primary_10_1016_j_aei_2024_102963 crossref_primary_10_3390_fi14120356 crossref_primary_10_1007_s12530_024_09626_0 crossref_primary_10_1038_s41598_024_79151_2 crossref_primary_10_3390_electronics12081816 crossref_primary_10_1016_j_ress_2023_109850 crossref_primary_10_1177_09544062241305515 crossref_primary_10_3390_electronics11091504 crossref_primary_10_20935_AcadEng7391 crossref_primary_10_1063_5_0206608 crossref_primary_10_1007_s40430_023_04426_0 crossref_primary_10_1088_1361_6501_acfba0 crossref_primary_10_1007_s10845_024_02402_6 crossref_primary_10_1109_TGRS_2024_3353288 crossref_primary_10_1109_TVT_2024_3390997 crossref_primary_10_3390_s22176570 crossref_primary_10_1088_1361_6501_ac8be9 crossref_primary_10_1007_s12206_023_1106_1 crossref_primary_10_1002_qre_3713 crossref_primary_10_1016_j_ress_2024_110181 crossref_primary_10_1063_5_0194579 crossref_primary_10_1016_j_cie_2024_110094 crossref_primary_10_1016_j_measurement_2023_112945 crossref_primary_10_1177_14727978251314556 crossref_primary_10_3390_s23031305 crossref_primary_10_1007_s42243_024_01197_3 crossref_primary_10_1007_s11356_023_30354_6 crossref_primary_10_1007_s11071_023_08411_z crossref_primary_10_1016_j_ast_2024_109064 crossref_primary_10_3390_s23031144 crossref_primary_10_1109_JSEN_2023_3321725 crossref_primary_10_1515_phys_2024_0110 crossref_primary_10_2478_amns_2024_3418 crossref_primary_10_1108_ILT_04_2023_0086 crossref_primary_10_1016_j_mtcomm_2024_108471 crossref_primary_10_1016_j_engappai_2024_109380 crossref_primary_10_1088_1361_6501_ad53f1 crossref_primary_10_1088_1361_6501_ad7a97 crossref_primary_10_1007_s12206_024_0919_x crossref_primary_10_1007_s12206_024_0104_2 crossref_primary_10_1016_j_aei_2024_103060 crossref_primary_10_1088_1742_6596_2902_1_012019 crossref_primary_10_1177_09596518241237080 crossref_primary_10_1016_j_resourpol_2023_104291 crossref_primary_10_1007_s12206_023_0814_x crossref_primary_10_1109_JSTARS_2025_3528650 crossref_primary_10_3390_s23104921 crossref_primary_10_1088_1361_6501_ad8f56 crossref_primary_10_1016_j_heliyon_2024_e36611 crossref_primary_10_1088_1361_6501_ad71e8 crossref_primary_10_1109_JSEN_2024_3394032 crossref_primary_10_3390_fi16110394 crossref_primary_10_1109_JSEN_2023_3307729 crossref_primary_10_1007_s00477_025_02940_2 crossref_primary_10_3390_app14135493 |
Cites_doi | 10.1016/j.measurement.2019.01.022 10.1016/j.neunet.2014.09.003 10.1109/TIE.2008.2007527 10.1016/j.ress.2020.107396 10.3390/s20010166 10.1016/j.neucom.2019.08.010 10.3390/s17020273 10.1016/j.measurement.2019.06.038 10.1016/j.renene.2010.05.012 10.1109/JSEN.2019.2912934 10.1016/j.ymssp.2020.106962 10.1016/j.neucom.2019.11.006 10.3901/JME.2020.11.132 10.1016/j.eswa.2013.12.026 10.1016/j.ress.2017.10.019 10.1109/TII.2017.2717079 10.1109/TII.2020.2964817 10.1109/TIE.2016.2519325 10.3901/JME.2019.07.081 10.1109/TII.2019.2909142 10.1109/JSEN.2020.2965988 10.1109/TIE.2019.2942548 10.3390/s19214612 10.1016/j.jhydrol.2020.124631 10.1016/j.ymssp.2015.11.014 10.1109/JSEN.2019.2926095 10.1016/j.ymssp.2015.10.025 10.1109/JSEN.2019.2925845 10.1088/1361-6501/ab230b 10.1016/j.compind.2019.103182 10.1016/j.jmsy.2019.11.008 10.1016/j.measurement.2019.06.029 10.1016/j.neucom.2020.05.021 10.1016/j.compind.2019.02.004 10.1016/j.engappai.2020.103587 10.3390/e21101025 10.1109/TII.2018.2881543 10.1002/cem.3033 10.1016/j.aei.2020.101150 10.1016/j.neucom.2020.04.074 10.1088/1361-6501/ab8d5a 10.1155/2020/7293454 10.1016/j.ress.2020.107050 10.1016/j.ymssp.2017.06.022 10.3390/e21040409 10.1016/j.neucom.2017.05.063 10.1002/aic.16251 10.1109/TNNLS.2014.2387439 10.1109/PHM-Qingdao46334.2019.8942949 10.1016/j.jsv.2016.10.043 10.1016/j.anucene.2020.107501 10.1016/j.ymssp.2019.05.005 10.1016/j.measurement.2020.108753 10.1109/TII.2020.2967822 10.1016/j.neucom.2017.02.045 10.1016/j.ymssp.2018.02.016 10.1016/j.ymssp.2019.106611 10.1016/j.future.2018.04.070 10.1016/j.renene.2018.10.031 10.3390/s20092458 10.3390/s19245488 10.1016/j.ymssp.2020.106861 10.3390/e22080851 10.1109/TII.2019.2955540 10.1109/TIM.2017.2674738 10.1016/j.neucom.2020.04.045 10.1038/nature14539 10.1016/j.measurement.2019.02.075 10.1109/TIE.2019.2956366 10.1109/JESTPE.2019.2908981 10.3390/pr8040391 10.1016/j.ress.2020.106926 10.1109/78.650093 10.1109/TII.2018.2866549 10.1109/TIE.2019.2905830 10.1016/j.jsv.2021.116079 10.1016/j.isatra.2019.11.010 10.1016/j.measurement.2019.107461 10.1016/j.ymssp.2018.12.051 10.1016/j.neucom.2019.10.064 10.1016/j.renene.2012.04.019 10.3233/JIFS-190642 10.1016/j.jmsy.2018.05.011 10.3390/s20082339 10.1109/TII.2020.2966326 10.1016/j.measurement.2019.107320 10.3390/app8122416 10.1109/TASLP.2016.2520371 10.1162/neco.1997.9.8.1735 10.1109/TIE.2019.2952807 10.1016/j.measurement.2018.11.040 10.1109/TKDE.2016.2554549 10.1109/TIP.2018.2868426 10.1016/j.measurement.2020.107802 10.1016/j.compind.2019.06.001 10.1016/j.promfg.2020.06.014 10.1016/j.measurement.2020.108277 10.1016/j.ymssp.2020.107322 10.1109/TIE.2019.2891463 10.1016/j.isatra.2019.08.012 10.1016/j.neucom.2020.04.075 10.1016/j.ymssp.2017.11.024 10.1007/s11075-015-0088-1 10.1016/j.ymssp.2019.106587 10.3390/app9040768 10.1109/72.279181 10.1016/j.isatra.2019.07.004 10.1016/j.ymssp.2019.106330 |
ContentType | Journal Article |
Copyright | The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2022 The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2022. |
Copyright_xml | – notice: The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2022 – notice: The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2022. |
DBID | AAYXX CITATION 7TB 8FD FR3 ACYCR |
DOI | 10.1007/s12206-022-0102-1 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Korean Citation Index |
DatabaseTitle | CrossRef Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1976-3824 |
EndPage | 542 |
ExternalDocumentID | oai_kci_go_kr_ARTI_9929541 10_1007_s12206_022_0102_1 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .UV .VR 06D 0R~ 0VY 1N0 2.D 203 29L 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VS 6NX 8FE 8FG 8UJ 95- 95. 95~ 96X 9ZL AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ CAG CCPQU COF CS3 CSCUP DBRKI DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GW5 H13 HCIFZ HF~ HG6 HMJXF HRMNR HVGLF HZ~ I-F IJ- IKXTQ IWAJR IXC IXD I~X I~Z J-C J0Z JBSCW JZLTJ KOV KVFHK L6V LLZTM M7S MA- MK~ ML~ MZR NDZJH NF0 NPVJJ NQJWS O9- P9P PF0 PT4 PTHSS Q2X QOS R89 R9I RHV ROL RPX RSV S0W S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TDB TSG TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8R Z8T Z8W ZMTXR ZZE ~A9 AAPKM AAYXX ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR CITATION PHGZM PHGZT 7TB 8FD ABRTQ FR3 AABYN AAFGU AAYFA ABFGW ABKAS ACBMV ACBRV ACBYP ACIGE ACIPQ ACTTH ACVWB ACWMK ACYCR ADMDM ADMVV ADOXG AEEQQ AEFTE AEKVL AESTI AEVTX AFNRJ AGGBP AIMYW AJDOV AKQUC SCV UNUBA |
ID | FETCH-LOGICAL-c350t-906c1c16fdaaee7ad328457da79d7ba6f20a49abf56fef250579b82eeb6bba223 |
IEDL.DBID | U2A |
ISSN | 1738-494X |
IngestDate | Tue Nov 21 21:42:15 EST 2023 Wed Sep 17 23:57:17 EDT 2025 Tue Jul 01 04:23:35 EDT 2025 Thu Apr 24 23:00:08 EDT 2025 Fri Feb 21 02:47:26 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Fult diagnosis Time series characteristics Recurrent neural network Structure optimization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c350t-906c1c16fdaaee7ad328457da79d7ba6f20a49abf56fef250579b82eeb6bba223 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2627990250 |
PQPubID | 326249 |
PageCount | 16 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_9929541 proquest_journals_2627990250 crossref_primary_10_1007_s12206_022_0102_1 crossref_citationtrail_10_1007_s12206_022_0102_1 springer_journals_10_1007_s12206_022_0102_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Seoul |
PublicationPlace_xml | – name: Seoul – name: Heidelberg |
PublicationTitle | Journal of mechanical science and technology |
PublicationTitleAbbrev | J Mech Sci Technol |
PublicationYear | 2022 |
Publisher | Korean Society of Mechanical Engineers Springer Nature B.V 대한기계학회 |
Publisher_xml | – name: Korean Society of Mechanical Engineers – name: Springer Nature B.V – name: 대한기계학회 |
References | Yang, Lei, Jia, Xing (CR126) 2019; 122 Jiang, Lai, Zhang, Zhao, Mao (CR105) 2019; 19 Wang, Shen, Xia, Wang, Zhu, Zhu (CR120) 2020; 202 Wang, Guo (CR102) 2020; 39 Cheng, Zhu, Wu, Shao (CR98) 2018; 15 Jiao, Zhao, Lin, Liang (CR130) 2020; 145 Palangi, Deng, Shen, Gao, He, Chen, Song, Ward (CR22) 2016; 24 Huang, Huang, Li (CR83) 2019; 66 Park, Di Marco, Shin, Bang (CR114) 2019; 19 Wei, Li, Xu, Huang (CR13) 2019; 21 Schmidhuber (CR10) 2015; 61 Schuster, Paliwal (CR63) 1997; 45 Zhong, Fu, Lin (CR121) 2019; 137 He, Shao, Zhong, Yang, Cheng (CR123) 2020; 46 Wu, Hu, Cheng, Zhu, Shao, Wang (CR58) 2019; 97 Han, Liu, Yang (CR129) 2020; 97 Long, Wang, Cao, Sun, Philip (CR125) 2016; 28 Zhong, Huang (CR2) 2002 Chen, Xu, Zhang, Yan, Wu (CR109) 2020; 54 Wang, Chen, Wang, Zhang (CR73) 2019; 146 Shen, Tang, Jiang, Shi, Wang, Zhu (CR46) 2019; 55 Han, Shang, Liu, Vong, Liu, Zwicker, Han, Chen (CR88) 2019; 28 Liu, Song, Chen, Hou, Chai, Ning (CR92) 2021; 170 Tran, AlThobiani, Ball (CR49) 2014; 41 Liu, Yang, Zio, Chen (CR3) 2018; 108 Xue, Xiahou, Li, Ji, Wu (CR67) 2020; 8 Zhang, Wang, Li, Cui, Liu, Yang, Hu (CR119) 2018; 8 Chao, Tao, Wei, Liu (CR44) 2020; 31 Wang, Yan, Li, Gao, Zhao (CR72) 2019; 111 Du, Chen, Xu, Zhang (CR113) 2019; 36 Yu, Zhou (CR28) 2020; 16 Ding, He (CR36) 2017; 66 Chen, Liu, Xu, Chen, Xiao, Zhao (CR50) 2019; 30 Wang, Lei, Li, Yan (CR115) 2019; 134 Chen, Mao, Zhang, Jiang (CR23) 2020; 56 Xu, Yang, Fei, Huang, Tsui (CR33) 2021; 208 She, Jia (CR37) 2019; 135 Sun, Yang, Yang, Qiao, Chen, Gryllias (CR96) 2020; 138 Li, Shan, Zeng (CR48) 2016; 29 Li, Li, Qu, He (CR107) 2019; 9 Wang, Liu, Peng, Qin (CR38) 2020; 16 Zou, Li, Xu (CR43) 2020; 407 Kao, Zhou, Chang, Chang (CR87) 2020; 583 Tiwari, Upadhyaya (CR21) 2021; 502 Chang (CR9) 2015; 26 Hao, Hu, Cui, Han, Xu (CR71) 2020; 41 Zhang, Xiang, Tang (CR32) 2018; 52 Khan, Yairi (CR14) 2018; 107 Ouyang, Zeng, Li, Luo (CR65) 2020; 8 Peng, Zhang, Zhang, Xu, Wang, Zhang (CR80) 2020; 407 Zhou, Shen, Zhao, Liu (CR53) 2019; 47 Xiang, Qin, Zhu, Wang, Chen (CR56) 2020; 91 CR69 Lei, Yang, Jiang, Jia, Li, Nandi (CR7) 2020; 138 Jin, Zhang (CR17) 2016; 73 Li, Huang, Li (CR131) 2020; 49 Lu, Jin, Luo, Liao, Guo, Xiao (CR16) 2019; 15 Cabrera, Guaman, Zhang, Cerrada, Sanchez, Cevallos, Long, Li (CR52) 2019; 380 Bengio, Simard, Frasconi (CR60) 1994; 5 Xia, Song, Zheng, Pan, Xi (CR81) 2020; 115 Park, Di Marco, Shin, Bang (CR94) 2019; 19 Li, Cheng, Chen, Pang (CR95) 2019; 21 CR79 Wang, Zhang (CR93) 2018; 170 Guo, Zhang, Yang, Lyu, Gao (CR39) 2020; 67 Tang, Liu, Song (CR20) 2010; 35 Yu, Kim, Mechefske (CR90) 2020; 199 CR70 Jiang, Lee, Zeng (CR104) 2019; 20 Li, Zeng, Qing, Huang (CR24) 2020; 409 Li, Lekamalage, Liu, Chen, Huang (CR26) 2020; 67 Wang, Wang, Wang, Qiao, Xu (CR77) 2020; 53 Zhao, Jia, Lin (CR29) 2020; 152 Zhang, Wang, Yang, Li (CR25) 2020; 20 CR5 Qiao, Hashimoto, Eriguchi, Wang, Wang, Tsuruoka, Taura (CR85) 2020; 108 Yang, Su (CR108) 2019; 34 Miao, Li, Zhu, An (CR54) 2020; 20 Wang, Lei, Yan, Li, Guo (CR112) 2020; 379 Hasan, Islam, Kim (CR124) 2019; 138 Liu, Li, Sun, Liu, Shen (CR34) 2018; 69 Liang, Qian, Meng, Xie (CR78) 2020; 38 Jiao, Zhao, Lin (CR42) 2020; 67 Chi, Yang, Jiao (CR100) 2020; 40 Hao, Ge, Li, Jiang (CR103) 2020; 159 Al-Dulaimi, Zabihi, Asif, Mohammadi (CR111) 2019; 108 CR127 An, Tao, Xu, El Mansori, Chen (CR116) 2020; 154 Yu, Kim, Mechefske (CR91) 2021; 149 Li, Zhang, Qin, Estupinan (CR117) 2020; 407 CR82 An, Li, Wang, Jiang (CR97) 2020; 100 Yu, He, Liu, Chen (CR118) 2019; 40 Sun, Wang, Liu, Huang, Fan (CR122) 2019; 146 Jia, Lei, Lin, Zhou, Lu (CR30) 2016; 72 Li, Huang, Yang, Luo, Zhang, Pang (CR41) 2020; 22 Chae, Kim, Kim, Kim, Seong (CR66) 2020; 143 Zhao, Yan, Chen, Mao, Wang, Gao (CR12) 2018; 115 Wu, Yuan, Dong, Lin, Liu (CR74) 2018; 275 LeCun, Bengio, Hinton (CR8) 2015; 521 Jin, Li, Hu (CR15) 2018; 14 Azamfar, Singh, Bravo-Imaz, Lee (CR45) 2020; 144 Abdeljaber, Avci, Kiranyaz, Gabbouj, Inman (CR40) 2017; 388 Guo, Li, Jia, Lei, Lin (CR59) 2017; 240 Zeng, Guo (CR75) 2019; 20 She, Jia (CR84) 2020; 167 Zhang, Wang, Yan, Gao (CR57) 2018; 48 Feng, Liang, Zhang, Hou (CR19) 2012; 47 Saufi, Bin Ahmad, Leong, H Lim (CR27) 2020; 16 Lei, Jia, Lin, Xing, Ding (CR4) 2016; 63 Zhao, Yan, Wang, Mao (CR76) 2017; 17 Zhuang, Li, Yang, Chen, Shen (CR64) 2019; 39 Bellini, Filippetti, Tassoni, Capolino (CR1) 2008; 55 Zhao, Jia (CR51) 2019; 366 Wang, Dong, Liu, Ma (CR106) 2020; 20 Zhang, Li, Peng, Chen, Zhang (CR35) 2018; 100 Yin, Yan, Zhang, Li, Sanchez (CR99) 2020; 20 Xing, Lv (CR6) 2020; 67 Wen, Lv (CR11) 2020; 42 Yang, Wu, Wang, Liu (CR61) 2018; 38 Yu, Kim, Mechefske (CR89) 2019; 129 Gan, Wang, Zhu (CR47) 2016; 72 Zhang, Yang, Wang, Huang, Gidlund (CR110) 2019; 19 Lv, Wen, Liu, Bao (CR31) 2018; 32 CR101 Qing, Jin, Niu, Zhao (CR86) 2020; 66 Sun, Ma, Zhao (CR128) 2019; 15 Jin, Yan, Du, Xiao, Fu (CR18) 2020; 16 Hochreiter, Schmidhuber (CR62) 1997; 9 Liao, Gao, Yang, Guo (CR55) 2019; 19 Lei, Liu, Jiang (CR68) 2019; 133 R Zhao (102_CR12) 2018; 115 L Zou (102_CR43) 2020; 407 P Tiwari (102_CR21) 2021; 502 H Ouyang (102_CR65) 2020; 8 D Cabrera (102_CR52) 2019; 380 Y Li (102_CR24) 2020; 409 M Gan (102_CR47) 2016; 72 S Zhong (102_CR121) 2019; 137 Y Li (102_CR95) 2019; 21 Y Lei (102_CR4) 2016; 63 Y Lei (102_CR7) 2020; 138 Y Xing (102_CR6) 2020; 67 L Jin (102_CR17) 2016; 73 X Zhao (102_CR51) 2019; 366 C Sun (102_CR128) 2019; 15 Z Feng (102_CR19) 2012; 47 102_CR127 D She (102_CR84) 2020; 167 S Guo (102_CR39) 2020; 67 S Zhang (102_CR25) 2020; 20 J Wang (102_CR72) 2019; 111 X Liu (102_CR34) 2018; 69 P Peng (102_CR80) 2020; 407 B Zhong (102_CR2) 2002 Y Wang (102_CR102) 2020; 39 S R Saufi (102_CR27) 2020; 16 Y Chi (102_CR100) 2020; 40 J Lei (102_CR68) 2019; 133 I Kao (102_CR87) 2020; 583 J Yu (102_CR28) 2020; 16 T Wang (102_CR77) 2020; 53 H Li (102_CR41) 2020; 22 X Du (102_CR113) 2019; 36 B Yang (102_CR126) 2019; 122 P Yang (102_CR108) 2019; 34 L Chen (102_CR109) 2020; 54 B Wang (102_CR112) 2020; 379 C Li (102_CR117) 2020; 407 G Liao (102_CR55) 2019; 19 A Yin (102_CR99) 2020; 20 S Khan (102_CR14) 2018; 107 Z Xue (102_CR67) 2020; 8 Y Wei (102_CR13) 2019; 21 Y Yu (102_CR118) 2019; 40 H Wang (102_CR38) 2020; 16 T Liang (102_CR78) 2020; 38 Q Chao (102_CR44) 2020; 31 Y Wu (102_CR74) 2018; 275 Y LeCun (102_CR8) 2015; 521 X Zhao (102_CR29) 2020; 152 S Wang (102_CR73) 2019; 146 A Al-Dulaimi (102_CR111) 2019; 108 T Han (102_CR129) 2020; 97 P Park (102_CR114) 2019; 19 L Guo (102_CR59) 2017; 240 V T Tran (102_CR49) 2014; 41 W Yu (102_CR91) 2021; 149 J Hao (102_CR71) 2020; 41 Z Han (102_CR88) 2019; 28 B Wang (102_CR115) 2019; 134 X Miao (102_CR54) 2020; 20 M Sun (102_CR122) 2019; 146 A Bellini (102_CR1) 2008; 55 M Long (102_CR125) 2016; 28 M Schuster (102_CR63) 1997; 45 Y Bengio (102_CR60) 1994; 5 Y Qiao (102_CR85) 2020; 108 X Wang (102_CR120) 2020; 202 102_CR82 J Jiao (102_CR42) 2020; 67 Y Zhuang (102_CR64) 2019; 39 X Li (102_CR107) 2019; 9 M Hasan (102_CR124) 2019; 138 Y Li (102_CR26) 2020; 67 R Zhao (102_CR76) 2017; 17 A Zhang (102_CR119) 2018; 8 H Lu (102_CR16) 2019; 15 L Jin (102_CR18) 2020; 16 Q Zhou (102_CR53) 2019; 47 F Lv (102_CR31) 2018; 32 O Abdeljaber (102_CR40) 2017; 388 T Xia (102_CR81) 2020; 115 X Qing (102_CR86) 2020; 66 R Liu (102_CR3) 2018; 108 H Palangi (102_CR22) 2016; 24 Z Jiang (102_CR105) 2019; 19 W Zhang (102_CR110) 2019; 19 102_CR70 R Sun (102_CR96) 2020; 138 B Chen (102_CR50) 2019; 30 102_CR79 L Yang (102_CR61) 2018; 38 W Yu (102_CR89) 2019; 129 D She (102_CR37) 2019; 135 W Yu (102_CR90) 2020; 199 L Jin (102_CR15) 2018; 14 K Chen (102_CR23) 2020; 56 Z Wang (102_CR106) 2020; 20 P Park (102_CR94) 2019; 19 102_CR5 Q An (102_CR116) 2020; 154 Z He (102_CR123) 2020; 46 C Shen (102_CR46) 2019; 55 F Jia (102_CR30) 2016; 72 M Azamfar (102_CR45) 2020; 144 Y H Chae (102_CR66) 2020; 143 J Jiao (102_CR130) 2020; 145 102_CR69 J Wang (102_CR93) 2018; 170 S Hao (102_CR103) 2020; 159 J Li (102_CR131) 2020; 49 B Tang (102_CR20) 2010; 35 C Wen (102_CR11) 2020; 42 X Zhang (102_CR32) 2018; 52 H Zeng (102_CR75) 2019; 20 L Liu (102_CR92) 2021; 170 F Xu (102_CR33) 2021; 208 J Jiang (102_CR104) 2019; 20 J Zhang (102_CR57) 2018; 48 Y Cheng (102_CR98) 2018; 15 H C Chang (102_CR9) 2015; 26 S Xiang (102_CR56) 2020; 91 W Zhang (102_CR35) 2018; 100 X Ding (102_CR36) 2017; 66 102_CR101 S Hochreiter (102_CR62) 1997; 9 J Schmidhuber (102_CR10) 2015; 61 W Li (102_CR48) 2016; 29 Z An (102_CR97) 2020; 100 J Wu (102_CR58) 2019; 97 C Huang (102_CR83) 2019; 66 |
References_xml | – volume: 583 start-page: 124631 year: 2020 ident: CR87 article-title: Exploring a long short-term memory based encoder-decoder framework for multi-step-ahead flood forecasting publication-title: J. of Hydrology – volume: 170 start-page: 108753 year: 2021 ident: CR92 article-title: An enhanced encoder-decoder framework for bearing remaining useful life prediction publication-title: Measurement – volume: 16 start-page: 6359 issue: 10 year: 2020 end-page: 6369 ident: CR18 article-title: RNN for solving time-variant generalized sylvester equation with applications to robots and acoustic source localization publication-title: IEEE Transactions on Industrial Informatics – volume: 115 start-page: 103182 year: 2020 ident: CR81 article-title: An ensemble framework based on convolutional bi-directional LSTM with multiple time windows for remaining useful life estimation publication-title: Computers in Industry – volume: 19 start-page: 5488 issue: 24 year: 2019 ident: CR105 article-title: Multi-factor operating condition recognition using 1D convolutional long short-term network publication-title: Sensors – volume: 19 start-page: 4612 issue: 21 year: 2019 ident: CR114 article-title: Fault detection and diagnosis using combined autoencoder and long short-term memory network publication-title: Sensors – volume: 388 start-page: 154 year: 2017 end-page: 170 ident: CR40 article-title: Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks publication-title: J. of Sound and Vibration – volume: 32 start-page: e3033 issue: 8 year: 2018 ident: CR31 article-title: Higher-order correlation-based multivariate statistical process monitoring publication-title: J. of Chemometrics – volume: 97 start-page: 269 year: 2020 end-page: 281 ident: CR129 article-title: Deep transfer network with joint distribution adaptation: a new intelligent fault diagnosis framework for industry application publication-title: ISA Transactions – volume: 67 start-page: 2360 issue: 3 year: 2020 end-page: 2370 ident: CR26 article-title: Learning representations with local and global geometries preserved for machine fault diagnosis publication-title: IEEE Transactions on Industrial Electronics – volume: 67 start-page: 8005 issue: 9 year: 2020 end-page: 8015 ident: CR39 article-title: Multitask convolutional neural network with information fusion for bearing fault diagnosis and localization publication-title: IEEE Transactions on Industrial Electronics – volume: 20 start-page: 26 issue: 4 year: 2019 end-page: 32 ident: CR75 article-title: Fault prognostic of aeroengine using bidirectional LSTM neural network publication-title: J. of Air Force Engineering University (Natural Science Edition) – volume: 137 start-page: 435 year: 2019 end-page: 453 ident: CR121 article-title: A novel gas turbine fault diagnosis method based on transfer learning with CNN publication-title: Measurement – volume: 146 start-page: 305 year: 2019 end-page: 314 ident: CR122 article-title: A sparse stacked denoising autoencoder with optimized transfer learning applied to the fault diagnosis of rolling bearings publication-title: Measurement – volume: 15 start-page: 987 issue: 2 year: 2018 end-page: 997 ident: CR98 article-title: Machine health monitoring using adaptive kernel spectral clustering and deep long short-term memory RNNs publication-title: IEEE Transactions on Industrial Informatics – volume: 199 start-page: 106926 year: 2020 ident: CR90 article-title: An improved similarity-based prognostic algorithm for RUL estimation using an RNN autoencoder scheme publication-title: Reliability Engineering & System Safety – volume: 108 start-page: 33 year: 2018 end-page: 47 ident: CR3 article-title: Artificial intelligence for fault diagnosis of rotating machinery: a review publication-title: Mechanical Systems and Signal Processing – ident: CR101 – volume: 34 start-page: 2432 issue: 11 year: 2019 end-page: 2439 ident: CR108 article-title: Fault diagnosis of rolling bearing based on convolution gated recurrent network publication-title: J. of Aerospace Power – volume: 19 start-page: 9352 issue: 20 year: 2019 end-page: 9363 ident: CR55 article-title: Hydroelectric generating unit fault diagnosis using 1-D convolutional neural network and gated recurrent unit in small hydro publication-title: IEEE Sensors J. – volume: 20 start-page: 8403 issue: 15 year: 2020 end-page: 8412 ident: CR54 article-title: A novel real-time fault diagnosis method for planetary gearbox using transferable hidden layer publication-title: IEEE Sensors J. – volume: 38 start-page: 1 issue: S2 year: 2018 end-page: 6 ident: CR61 article-title: Research on RNN publication-title: J. of Computer Applications – volume: 8 start-page: 2416 issue: 12 year: 2018 ident: CR119 article-title: Transfer learning with deep recurrent neural networks for remaining useful life estimation publication-title: Applied Sciences-Basel – volume: 108 start-page: 1206 year: 2020 end-page: 1213 ident: CR85 article-title: Parallelizing and optimizing neural encoder-decoder models without padding on multi-core architecture publication-title: Future Generation Computer Systems-The International J. of eScience – volume: 20 start-page: 2458 issue: 9 year: 2020 ident: CR106 article-title: A novel fault diagnosis approach for chillers based on 1-D convolutional neural network and gated recurrent unit publication-title: Sensors – volume: 39 start-page: 187 issue: 6 year: 2019 end-page: 193 ident: CR64 article-title: An end-to-end approach for bearing fault diagnosis based on LSTM publication-title: Noise and Vibration Control – volume: 63 start-page: 3137 issue: 5 year: 2016 end-page: 3147 ident: CR4 article-title: An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data publication-title: IEEE Transactions on Industrial Electronics – volume: 407 start-page: 121 year: 2020 end-page: 135 ident: CR117 article-title: A systematic review of deep transfer learning for machinery fault diagnosis publication-title: Neurocomputing – volume: 26 start-page: 2477 issue: 10 year: 2015 end-page: 2486 ident: CR9 article-title: Deep and shallow architecture of multilayer neural networks publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 154 start-page: 107461 year: 2020 ident: CR116 article-title: A data-driven model for milling tool remaining useful life prediction with convolutional and stacked LSTM network publication-title: Measurement – volume: 111 start-page: 1 year: 2019 end-page: 14 ident: CR72 article-title: Deep heterogeneous GRU model for predictive analytics in smart manufacturing: application to tool wear prediction publication-title: Computers in Industry – volume: 91 start-page: 103587 year: 2020 ident: CR56 article-title: Long short-term memory neural network with weight amplification and its application into gear remaining useful life prediction publication-title: Engineering Applications of Artificial Intelligence – ident: CR5 – volume: 56 start-page: 132 issue: 11 year: 2020 end-page: 140 ident: CR23 article-title: Diesel engine fault diagnosis based on stack autoencoder optimized by harmony search publication-title: J. of Mechanical Engineering – volume: 73 start-page: 115 issue: 1 year: 2016 end-page: 140 ident: CR17 article-title: Continuous and discrete Zhang dynamics for real time varying nonlinear optimization publication-title: Numerical Algorithms – volume: 67 start-page: 9904 issue: 11 year: 2020 end-page: 9913 ident: CR42 article-title: Unsupervised adversarial adaptation network for intelligent fault diagnosis publication-title: IEEE Transactions on Industrial Electronics – volume: 21 start-page: 409 issue: 4 year: 2019 ident: CR13 article-title: A review of early fault diagnosis approaches and their applications in rotating machinery publication-title: Entropy – volume: 61 start-page: 85 year: 2015 end-page: 117 ident: CR10 article-title: Deep learning in neural networks: an overview publication-title: Neural Networks – volume: 8 start-page: 2600 issue: 3 year: 2020 end-page: 2610 ident: CR67 article-title: Diagnosis of multiple open-circuit switch faults based on long short-term memory network for DFIG-based wind turbine systems publication-title: IEEE J. of Emerging and Selected Topics in Power Electronics – volume: 146 start-page: 385 year: 2019 end-page: 395 ident: CR73 article-title: Degradation evaluation of slewing bearing using HMM and improved GRU publication-title: Measurement – volume: 67 start-page: 9536 issue: 11 year: 2020 end-page: 9547 ident: CR6 article-title: Dynamic state estimation for the advanced brake system of electric vehicles by using deep recurrent neural networks publication-title: IEEE Transactions on Industrial Electronics – volume: 69 start-page: 5155 issue: 12 year: 2018 end-page: 5163 ident: CR34 article-title: Fault diagnosis of chillers using sparsely local embedding deep convolutional neural network publication-title: CIESC J. – volume: 38 start-page: 3389 issue: 3 year: 2020 end-page: 3401 ident: CR78 article-title: Early fault warning of wind turbine based on BRNN and large sliding window publication-title: J. of Intelligent & Fuzzy Systems – volume: 15 start-page: 2416 issue: 4 year: 2019 end-page: 2425 ident: CR128 article-title: Deep transfer learning based on sparse auto-encoder for remaining useful life prediction of tool in manufacturing publication-title: IEEE Transactions on Industrial Informatics – volume: 97 start-page: 241 year: 2019 end-page: 250 ident: CR58 article-title: Data-driven remaining useful life prediction via multiple sensor signals and deep long short-term memory neural network publication-title: ISA Transactions – volume: 135 start-page: 368 year: 2019 end-page: 375 ident: CR37 article-title: Wear indicator construction of rolling bearings based on multi-channel deep convolutional neural network with exponentially decaying learning rate publication-title: Measurement – volume: 366 start-page: 215 year: 2019 end-page: 233 ident: CR51 article-title: A new local-global deep neural network and its application in rotating machinery fault diagnosis publication-title: Neurocomputing – ident: CR69 – volume: 24 start-page: 694 issue: 4 year: 2016 end-page: 707 ident: CR22 article-title: Deep sentence embedding using long short-term memory networks: analysis and application to information retrieval publication-title: IEEE/ACM Transactions on Audio, Speech and Language Processing – volume: 100 start-page: 439 year: 2018 end-page: 453 ident: CR35 article-title: A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load publication-title: Mechanical Systems and Signal Processing – volume: 19 start-page: 4612 issue: 21 year: 2019 ident: CR94 article-title: Fault detection and diagnosis using combined autoencoder and long short-term memory network publication-title: Sensors – volume: 240 start-page: 98 year: 2017 end-page: 109 ident: CR59 article-title: A recurrent neural network based health indicator for remaining useful life prediction of bearings publication-title: Neurocomputing – volume: 20 start-page: 166 issue: 1 year: 2019 ident: CR104 article-title: Time series multiple channel convolutional neural network with attention-based long short-term memory for predicting bearing remaining useful life publication-title: Sensors – volume: 122 start-page: 692 year: 2019 end-page: 706 ident: CR126 article-title: An intelligent fault diagnosis approach based on transfer learning from laboratory bearings to locomotive bearings publication-title: Mechanical Systems and Signal Processing – volume: 502 start-page: 116079 year: 2021 ident: CR21 article-title: Novel self-adaptive vibration signal analysis: concealed component decomposition and its application in bearing fault diagnosis publication-title: J. of Sound and Vibration – volume: 129 start-page: 764 year: 2019 end-page: 780 ident: CR89 article-title: Remaining useful life estimation using a bidirectional recurrent neural network based autoencoder scheme publication-title: Mechanical Systems and Signal Processing – volume: 55 start-page: 81 issue: 7 year: 2019 end-page: 88 ident: CR46 article-title: Bearings fault diagnosis based on improved deep belief network by self-individual adaptive learning rate publication-title: J. of Mechanical Engineering – volume: 16 start-page: 5735 issue: 9 year: 2020 end-page: 5745 ident: CR38 article-title: Understanding and learning discriminant features based on multiattention 1D CNN for wheelset bearing fault diagnosis publication-title: IEEE Transactions on Industrial Informatics – volume: 41 start-page: 637 issue: 3 year: 2020 end-page: 642 ident: CR71 article-title: Research on GRU-BP for life prediction of key components in digital workshop publication-title: J. of Chinese Computer Systems – volume: 407 start-page: 105 year: 2020 end-page: 120 ident: CR43 article-title: An adversarial denoising convolutional neural network for fault diagnosis of rotating machinery under noisy environment and limited sample size case publication-title: Neurocomputing – volume: 5 start-page: 157 issue: 2 year: 1994 end-page: 166 ident: CR60 article-title: Learning long-term dependencies with gradient descent is difficult publication-title: IEEE Trans Neural Networks – volume: 40 start-page: 51 issue: 5 year: 2019 end-page: 59 ident: CR118 article-title: Research on acoustic emission signal recognition of bearing fault based on TL-LSTM publication-title: Chinese Journal of Scientific Instrument – volume: 521 start-page: 436 issue: 7553 year: 2015 end-page: 444 ident: CR8 article-title: Deep learning publication-title: Nature – ident: CR70 – volume: 144 start-page: 106861 year: 2020 ident: CR45 article-title: Multisensor data fusion for gearbox fault diagnosis using 2-D convolutional neural network and motor current signature analysis publication-title: Mechanical Systems and Signal Processing – volume: 9 start-page: 768 issue: 4 year: 2019 ident: CR107 article-title: Gear pitting fault diagnosis using integrated CNN and GRU network with both vibration and acoustic emission signals publication-title: Applied Sciences – volume: 49 start-page: 75 year: 2020 end-page: 80 ident: CR131 article-title: Intelligent fault diagnosis for bearing dataset using adversarial transfer learning based on stacked auto-encoder publication-title: Procedia Manufacturing – volume: 152 start-page: 107320 year: 2020 ident: CR29 article-title: Deep laplacian auto-encoder and its application into imbalanced fault diagnosis of rotating machinery publication-title: Measurement – volume: 145 start-page: 106962 year: 2020 ident: CR130 article-title: Residual joint adaptation adversarial network for intelligent transfer fault diagnosis publication-title: Mechanical Systems and Signal Processing – volume: 16 start-page: 6347 issue: 10 year: 2020 end-page: 6358 ident: CR28 article-title: One-dimensional residual convolutional autoencoder based feature learning for gearbox fault diagnosis publication-title: IEEE Transactions on Industrial Informatics – volume: 47 start-page: 112 year: 2012 end-page: 126 ident: CR19 article-title: Fault diagnosis for wind turbine planetary gearboxes via demodulation analysis based on ensemble empirical mode decomposition and energy separation publication-title: Renewable Energy – volume: 8 start-page: 391 issue: 4 year: 2020 ident: CR65 article-title: Fault detection and identification of blast furnace ironmaking process using the gated recurrent unit network publication-title: Processes – volume: 138 start-page: 106611 year: 2020 ident: CR96 article-title: Planetary gearbox spectral modeling based on the hybrid method of dynamics and LSTM publication-title: Mechanical Systems and Signal Processing – volume: 9 start-page: 1735 issue: 8 year: 1997 end-page: 1780 ident: CR62 article-title: Long short-term memory publication-title: Neural Computation – volume: 66 start-page: 1926 issue: 8 year: 2017 end-page: 1935 ident: CR36 article-title: Energy-fluctuated multiscale feature learning with deep convnet for intelligent spindle bearing fault diagnosis publication-title: IEEE Transactions on Instrumentation and Measurement – year: 2002 ident: CR2 publication-title: Mechanical Fault Diagnosis – volume: 28 start-page: 2027 issue: 8 year: 2016 end-page: 2040 ident: CR125 article-title: Deep learning of transferable representation for scalable domain adaptation publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 55 start-page: 4109 issue: 12 year: 2008 end-page: 4126 ident: CR1 article-title: Advances in diagnostic techniques for induction machines publication-title: IEEE Transactions on Industrial Electronics – volume: 41 start-page: 4113 issue: 9 year: 2014 end-page: 4122 ident: CR49 article-title: An approach to fault diagnosis of reciprocating compressor valves using Teager-Kaiser energy operator and deep belief networks publication-title: Expert Systems with Applications – volume: 66 start-page: e16251 issue: 8 year: 2020 ident: CR86 article-title: Time-space coupled learning method for model reduction of distributed parameter systems with encoder-decoder and RNN publication-title: AIChE J. – volume: 22 start-page: 851 issue: 8 year: 2020 ident: CR41 article-title: Fault diagnosis for rotating machinery using multiscale permutation entropy and convolutional neural networks publication-title: Entropy – volume: 138 start-page: 620 year: 2019 end-page: 631 ident: CR124 article-title: Acoustic spectral imaging and transfer learning for reliable bearing fault diagnosis under variable speed conditions publication-title: Measurement – volume: 108 start-page: 186 year: 2019 end-page: 196 ident: CR111 article-title: A multimodal and hybrid deep neural network model for remaining useful life estimation publication-title: Computers in Industry – volume: 35 start-page: 2862 issue: 12 year: 2010 end-page: 2866 ident: CR20 article-title: Wind turbine fault diagnosis based on Morlet wavelet transformation and Wigner-Ville distribution publication-title: Renewable Energy – volume: 202 start-page: 107050 year: 2020 ident: CR120 article-title: Multi-scale deep intra-class transfer learning for bearing fault diagnosis publication-title: Reliability Engineering & System Safety – volume: 36 start-page: 663 issue: 7 year: 2019 end-page: 668 ident: CR113 article-title: Fault diagnosis of bearing based on wavelet convolutional auto-encoder and LSTM network publication-title: J. of Mechanical & Electrical Engineering – volume: 14 start-page: 189 issue: 1 year: 2018 end-page: 199 ident: CR15 article-title: RNN models for dynamic matrix inversion: a control-theoretical perspective publication-title: IEEE Transactions on Industrial Informatics – volume: 134 start-page: 106330 year: 2019 ident: CR115 article-title: Deep separable convolutional network for remaining useful life prediction of machinery publication-title: Mech. Syst. Signal Process. – volume: 53 start-page: 601 issue: 6 year: 2020 end-page: 608 ident: CR77 article-title: An intelligent fault diagnosis method based on attention-based bidirectional LSTM network publication-title: J. of Tianjin University (Science and Technology) – volume: 138 start-page: 106587 year: 2020 ident: CR7 article-title: Applications of machine learning to machine fault diagnosis: a review and roadmap publication-title: Mechanical Systems and Signal Processing – volume: 107 start-page: 241 year: 2018 end-page: 265 ident: CR14 article-title: A review on the application of deep learning in system health management publication-title: Mechanical Systems and Signal Processing – volume: 47 start-page: 1500 issue: 10 year: 2019 end-page: 1507 ident: CR53 article-title: Bearing fault diagnosis based on improved stacked RNN publication-title: J. of Tongji University (Natural Science) – volume: 40 start-page: 563 issue: 3 year: 2020 end-page: 571+629 ident: CR100 article-title: A multi-label fault classification method for rolling bearing based on LSTM-RNN publication-title: J. of Vibration, Measurement & Diagnosis – volume: 19 start-page: 7095 issue: 16 year: 2019 end-page: 7106 ident: CR110 article-title: CarNet: a dual correlation method for health perception of rotating machinery publication-title: IEEE Sensors J. – volume: 52 start-page: 1 issue: 7 year: 2018 end-page: 8 ident: CR32 article-title: A deep convolutional auto-encoding neural network and its application in bearing fault diagnosis publication-title: J. of Xi’an Jiaotong University – volume: 72 start-page: 92 issue: 73 year: 2016 end-page: 104 ident: CR47 article-title: Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings publication-title: Mechanical Systems and Signal Processing – volume: 21 start-page: 1025 issue: 10 year: 2019 ident: CR95 article-title: Research on bearing fault diagnosis method based on filter features of MOMLMEDA and LSTM publication-title: Entropy – volume: 143 start-page: 107501 year: 2020 ident: CR66 article-title: A methodology for diagnosing FAC induced pipe thinning using accelerometers and deep learning models publication-title: Annals of Nuclear Energy – volume: 66 start-page: 8792 year: 2019 end-page: 8802 ident: CR83 article-title: A bidirectional LSTM prognostics method under multiple operational conditions publication-title: IEEE Transactions on Industrial Electronics – volume: 16 start-page: 6263 issue: 10 year: 2020 end-page: 6271 ident: CR27 article-title: Gearbox fault diagnosis using a deep learning model with limited data sample publication-title: IEEE Transactions on Industrial Informatics – volume: 149 start-page: 107322 year: 2021 ident: CR91 article-title: Analysis of different RNN autoencoder variants for time series classification and machine prognostics publication-title: Mechanical Systems and Signal Processing – volume: 42 start-page: 234 issue: 1 year: 2020 end-page: 248 ident: CR11 article-title: Review on deep learning based fault diagnosis publication-title: J. of Electronics & Information Technology – volume: 379 start-page: 117 year: 2020 end-page: 129 ident: CR112 article-title: Recurrent convolutional neural network: a new framework for remaining useful life prediction of machinery publication-title: Neurocomputing – volume: 167 start-page: 108277 year: 2020 ident: CR84 article-title: A bi-GRU method for remaining useful life prediction of machinery publication-title: Measurement – volume: 115 start-page: 213 issue: 2019 year: 2018 end-page: 237 ident: CR12 article-title: Deep learning and its applications to machine health monitoring publication-title: Mechanical Systems and Signal Processing – ident: CR82 – volume: 46 start-page: 101150 year: 2020 ident: CR123 article-title: An intelligent fault diagnosis method for rotor-bearing system using small labeled infrared thermal images and enhanced CNN transferred from CAE publication-title: Advanced Engineering Informatics – volume: 407 start-page: 232 year: 2020 end-page: 245 ident: CR80 article-title: Cost sensitive active learning using bidirectional gated RNNs for imbalanced fault diagnosis publication-title: Neurocomputing – volume: 170 start-page: 73 year: 2018 end-page: 82 ident: CR93 article-title: Software reliability prediction using a deep learning model based on the RNN encoder-decoder publication-title: Reliability Engineering & System Safety – volume: 275 start-page: 167 year: 2018 end-page: 179 ident: CR74 article-title: Remaining useful life estimation of engineered systems using vanilla LSTM neural networks publication-title: Neurocomputing – ident: CR79 – volume: 100 start-page: 155 year: 2020 end-page: 170 ident: CR97 article-title: A novel bearing intelligent fault diagnosis framework under time-varying working conditions using recurrent neural network publication-title: ISA Transactions – volume: 15 start-page: 5931 issue: 11 year: 2019 end-page: 5942 ident: CR16 article-title: RNN for solving perturbed time-varying underdetermined linear system with double bound limits on residual errors and state variables publication-title: IEEE Transactions on Industrial Informatics – volume: 72 start-page: 303 issue: 73 year: 2016 end-page: 315 ident: CR30 article-title: Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data publication-title: Mechanical Systems and Signal Processing – ident: CR127 – volume: 409 start-page: 275 year: 2020 end-page: 285 ident: CR24 article-title: Learning local discriminative representations via extreme learning machine for machine fault diagnosis publication-title: Neurocomputing – volume: 45 start-page: 2673 issue: 11 year: 1997 end-page: 2681 ident: CR63 article-title: Bidirectional RNNs publication-title: IEEE Transactions on Signal Processing – volume: 17 start-page: 273 issue: 2 year: 2017 ident: CR76 article-title: Learning to monitor machine health with convolutional bi-directional LSTM networks publication-title: Sensors – volume: 20 start-page: 2339 issue: 8 year: 2020 ident: CR99 article-title: Fault diagnosis of wind turbine gearbox based on the optimized LSTM neural network with cosine loss publication-title: Sensors – volume: 159 start-page: 107802 year: 2020 ident: CR103 article-title: Multisensor bearing fault diagnosis based on one-dimensional convolutional long short-term memory networks publication-title: Measurement – volume: 54 start-page: 1 year: 2020 end-page: 11 ident: CR109 article-title: Health indicator construction of machinery based on end-to-end trainable convolution RNNs publication-title: J. of Manufacturing Systems – volume: 30 start-page: 205 issue: 2 year: 2019 end-page: 211 ident: CR50 article-title: Gear fault diagnosis based on DBNS publication-title: China Mechanical Engineering – volume: 48 start-page: 78 year: 2018 end-page: 86 ident: CR57 article-title: Long short-term memory for machine remaining life prediction publication-title: J. of Manufacturing Systems – volume: 380 start-page: 51 year: 2019 end-page: 66 ident: CR52 article-title: Bayesian approach and time series dimensionality reduction to LSTM-based modelbuilding for fault diagnosis of a reciprocating compressor publication-title: Neurocomputing – volume: 39 start-page: 258 issue: 2 year: 2020 end-page: 266 ident: CR102 article-title: A new type of DSCNN-GRU structure for bearing fault diagnosis of reducer publication-title: Mechanical Science and Technology for Aerospace Engineering – volume: 29 start-page: 340 issue: 2 year: 2016 end-page: 347 ident: CR48 article-title: Bearing fault identification based on deep belief network publication-title: J. of Vibration Engineering – volume: 133 start-page: 422 year: 2019 end-page: 432 ident: CR68 article-title: Fault diagnosis of wind turbine based on long short-term memory networks publication-title: Renewable Energy – volume: 20 start-page: 8328 issue: 15 year: 2020 end-page: 8335 ident: CR25 article-title: Manifold sparse autoencoder for machine fault diagnosis publication-title: IEEE Sensors J. – volume: 31 start-page: 105102 issue: 10 year: 2020 ident: CR44 article-title: Identification of cavitation intensity for high-speed aviation hydraulic pumps using 2D convolutional neural networks with an input of RGB-based vibration data publication-title: Measurement Science and Technology – volume: 208 start-page: 107396 year: 2021 ident: CR33 article-title: Life prediction of lithium-ion batteries based on stacked denoising autoencoders publication-title: Reliability Engineering and System Safety – volume: 28 start-page: 658 issue: 2 year: 2019 end-page: 672 ident: CR88 article-title: SeqViews2SeqLabels: learning 3D global features via aggregating sequential views by RNN with attention publication-title: IEEE Transactions on Image Processing – volume: 137 start-page: 435 year: 2019 ident: 102_CR121 publication-title: Measurement doi: 10.1016/j.measurement.2019.01.022 – volume: 61 start-page: 85 year: 2015 ident: 102_CR10 publication-title: Neural Networks doi: 10.1016/j.neunet.2014.09.003 – volume: 30 start-page: 205 issue: 2 year: 2019 ident: 102_CR50 publication-title: China Mechanical Engineering – ident: 102_CR82 – volume: 55 start-page: 4109 issue: 12 year: 2008 ident: 102_CR1 publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2008.2007527 – volume: 208 start-page: 107396 year: 2021 ident: 102_CR33 publication-title: Reliability Engineering and System Safety doi: 10.1016/j.ress.2020.107396 – volume: 20 start-page: 166 issue: 1 year: 2019 ident: 102_CR104 publication-title: Sensors doi: 10.3390/s20010166 – volume: 366 start-page: 215 year: 2019 ident: 102_CR51 publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.08.010 – volume: 17 start-page: 273 issue: 2 year: 2017 ident: 102_CR76 publication-title: Sensors doi: 10.3390/s17020273 – volume: 40 start-page: 563 issue: 3 year: 2020 ident: 102_CR100 publication-title: J. of Vibration, Measurement & Diagnosis – volume: 146 start-page: 385 year: 2019 ident: 102_CR73 publication-title: Measurement doi: 10.1016/j.measurement.2019.06.038 – volume: 35 start-page: 2862 issue: 12 year: 2010 ident: 102_CR20 publication-title: Renewable Energy doi: 10.1016/j.renene.2010.05.012 – volume: 19 start-page: 7095 issue: 16 year: 2019 ident: 102_CR110 publication-title: IEEE Sensors J. doi: 10.1109/JSEN.2019.2912934 – volume: 145 start-page: 106962 year: 2020 ident: 102_CR130 publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2020.106962 – ident: 102_CR101 – volume: 380 start-page: 51 year: 2019 ident: 102_CR52 publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.11.006 – volume: 56 start-page: 132 issue: 11 year: 2020 ident: 102_CR23 publication-title: J. of Mechanical Engineering doi: 10.3901/JME.2020.11.132 – volume: 41 start-page: 4113 issue: 9 year: 2014 ident: 102_CR49 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2013.12.026 – volume: 170 start-page: 73 year: 2018 ident: 102_CR93 publication-title: Reliability Engineering & System Safety doi: 10.1016/j.ress.2017.10.019 – volume: 14 start-page: 189 issue: 1 year: 2018 ident: 102_CR15 publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2017.2717079 – volume: 52 start-page: 1 issue: 7 year: 2018 ident: 102_CR32 publication-title: J. of Xi’an Jiaotong University – volume: 16 start-page: 6359 issue: 10 year: 2020 ident: 102_CR18 publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2020.2964817 – volume: 63 start-page: 3137 issue: 5 year: 2016 ident: 102_CR4 publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2016.2519325 – volume: 55 start-page: 81 issue: 7 year: 2019 ident: 102_CR46 publication-title: J. of Mechanical Engineering doi: 10.3901/JME.2019.07.081 – volume: 15 start-page: 5931 issue: 11 year: 2019 ident: 102_CR16 publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2019.2909142 – volume: 20 start-page: 8403 issue: 15 year: 2020 ident: 102_CR54 publication-title: IEEE Sensors J. doi: 10.1109/JSEN.2020.2965988 – volume: 67 start-page: 8005 issue: 9 year: 2020 ident: 102_CR39 publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2019.2942548 – volume: 19 start-page: 4612 issue: 21 year: 2019 ident: 102_CR114 publication-title: Sensors doi: 10.3390/s19214612 – volume: 42 start-page: 234 issue: 1 year: 2020 ident: 102_CR11 publication-title: J. of Electronics & Information Technology – volume: 583 start-page: 124631 year: 2020 ident: 102_CR87 publication-title: J. of Hydrology doi: 10.1016/j.jhydrol.2020.124631 – volume: 72 start-page: 92 issue: 73 year: 2016 ident: 102_CR47 publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2015.11.014 – volume: 19 start-page: 9352 issue: 20 year: 2019 ident: 102_CR55 publication-title: IEEE Sensors J. doi: 10.1109/JSEN.2019.2926095 – volume: 72 start-page: 303 issue: 73 year: 2016 ident: 102_CR30 publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2015.10.025 – volume: 20 start-page: 8328 issue: 15 year: 2020 ident: 102_CR25 publication-title: IEEE Sensors J. doi: 10.1109/JSEN.2019.2925845 – ident: 102_CR127 doi: 10.1088/1361-6501/ab230b – volume: 115 start-page: 103182 year: 2020 ident: 102_CR81 publication-title: Computers in Industry doi: 10.1016/j.compind.2019.103182 – volume: 54 start-page: 1 year: 2020 ident: 102_CR109 publication-title: J. of Manufacturing Systems doi: 10.1016/j.jmsy.2019.11.008 – volume: 40 start-page: 51 issue: 5 year: 2019 ident: 102_CR118 publication-title: Chinese Journal of Scientific Instrument – volume: 146 start-page: 305 year: 2019 ident: 102_CR122 publication-title: Measurement doi: 10.1016/j.measurement.2019.06.029 – volume: 39 start-page: 187 issue: 6 year: 2019 ident: 102_CR64 publication-title: Noise and Vibration Control – volume: 409 start-page: 275 year: 2020 ident: 102_CR24 publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.05.021 – volume: 108 start-page: 186 year: 2019 ident: 102_CR111 publication-title: Computers in Industry doi: 10.1016/j.compind.2019.02.004 – volume: 91 start-page: 103587 year: 2020 ident: 102_CR56 publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2020.103587 – volume: 21 start-page: 1025 issue: 10 year: 2019 ident: 102_CR95 publication-title: Entropy doi: 10.3390/e21101025 – volume: 15 start-page: 2416 issue: 4 year: 2019 ident: 102_CR128 publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2018.2881543 – volume: 32 start-page: e3033 issue: 8 year: 2018 ident: 102_CR31 publication-title: J. of Chemometrics doi: 10.1002/cem.3033 – volume: 46 start-page: 101150 year: 2020 ident: 102_CR123 publication-title: Advanced Engineering Informatics doi: 10.1016/j.aei.2020.101150 – volume: 407 start-page: 105 year: 2020 ident: 102_CR43 publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.04.074 – volume: 31 start-page: 105102 issue: 10 year: 2020 ident: 102_CR44 publication-title: Measurement Science and Technology doi: 10.1088/1361-6501/ab8d5a – ident: 102_CR69 doi: 10.1155/2020/7293454 – volume: 202 start-page: 107050 year: 2020 ident: 102_CR120 publication-title: Reliability Engineering & System Safety doi: 10.1016/j.ress.2020.107050 – volume: 100 start-page: 439 year: 2018 ident: 102_CR35 publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2017.06.022 – volume: 21 start-page: 409 issue: 4 year: 2019 ident: 102_CR13 publication-title: Entropy doi: 10.3390/e21040409 – volume: 275 start-page: 167 year: 2018 ident: 102_CR74 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.05.063 – volume: 66 start-page: e16251 issue: 8 year: 2020 ident: 102_CR86 publication-title: AIChE J. doi: 10.1002/aic.16251 – volume: 26 start-page: 2477 issue: 10 year: 2015 ident: 102_CR9 publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2014.2387439 – volume: 20 start-page: 26 issue: 4 year: 2019 ident: 102_CR75 publication-title: J. of Air Force Engineering University (Natural Science Edition) – ident: 102_CR79 doi: 10.1109/PHM-Qingdao46334.2019.8942949 – volume: 388 start-page: 154 year: 2017 ident: 102_CR40 publication-title: J. of Sound and Vibration doi: 10.1016/j.jsv.2016.10.043 – volume: 143 start-page: 107501 year: 2020 ident: 102_CR66 publication-title: Annals of Nuclear Energy doi: 10.1016/j.anucene.2020.107501 – volume: 129 start-page: 764 year: 2019 ident: 102_CR89 publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2019.05.005 – volume: 170 start-page: 108753 year: 2021 ident: 102_CR92 publication-title: Measurement doi: 10.1016/j.measurement.2020.108753 – volume: 53 start-page: 601 issue: 6 year: 2020 ident: 102_CR77 publication-title: J. of Tianjin University (Science and Technology) – volume: 16 start-page: 6263 issue: 10 year: 2020 ident: 102_CR27 publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2020.2967822 – volume: 240 start-page: 98 year: 2017 ident: 102_CR59 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.02.045 – volume: 38 start-page: 1 issue: S2 year: 2018 ident: 102_CR61 publication-title: J. of Computer Applications – volume: 115 start-page: 213 issue: 2019 year: 2018 ident: 102_CR12 publication-title: Mechanical Systems and Signal Processing – volume: 108 start-page: 33 year: 2018 ident: 102_CR3 publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2018.02.016 – volume: 47 start-page: 1500 issue: 10 year: 2019 ident: 102_CR53 publication-title: J. of Tongji University (Natural Science) – volume: 138 start-page: 106611 year: 2020 ident: 102_CR96 publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2019.106611 – volume: 108 start-page: 1206 year: 2020 ident: 102_CR85 publication-title: Future Generation Computer Systems-The International J. of eScience doi: 10.1016/j.future.2018.04.070 – volume: 133 start-page: 422 year: 2019 ident: 102_CR68 publication-title: Renewable Energy doi: 10.1016/j.renene.2018.10.031 – volume: 20 start-page: 2458 issue: 9 year: 2020 ident: 102_CR106 publication-title: Sensors doi: 10.3390/s20092458 – volume: 19 start-page: 5488 issue: 24 year: 2019 ident: 102_CR105 publication-title: Sensors doi: 10.3390/s19245488 – volume: 34 start-page: 2432 issue: 11 year: 2019 ident: 102_CR108 publication-title: J. of Aerospace Power – volume: 144 start-page: 106861 year: 2020 ident: 102_CR45 publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2020.106861 – volume: 22 start-page: 851 issue: 8 year: 2020 ident: 102_CR41 publication-title: Entropy doi: 10.3390/e22080851 – volume: 16 start-page: 5735 issue: 9 year: 2020 ident: 102_CR38 publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2019.2955540 – volume: 19 start-page: 4612 issue: 21 year: 2019 ident: 102_CR94 publication-title: Sensors doi: 10.3390/s19214612 – volume: 69 start-page: 5155 issue: 12 year: 2018 ident: 102_CR34 publication-title: CIESC J. – volume: 66 start-page: 1926 issue: 8 year: 2017 ident: 102_CR36 publication-title: IEEE Transactions on Instrumentation and Measurement doi: 10.1109/TIM.2017.2674738 – volume: 407 start-page: 121 year: 2020 ident: 102_CR117 publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.04.045 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 102_CR8 publication-title: Nature doi: 10.1038/nature14539 – volume: 138 start-page: 620 year: 2019 ident: 102_CR124 publication-title: Measurement doi: 10.1016/j.measurement.2019.02.075 – volume: 67 start-page: 9904 issue: 11 year: 2020 ident: 102_CR42 publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2019.2956366 – volume: 8 start-page: 2600 issue: 3 year: 2020 ident: 102_CR67 publication-title: IEEE J. of Emerging and Selected Topics in Power Electronics doi: 10.1109/JESTPE.2019.2908981 – volume: 8 start-page: 391 issue: 4 year: 2020 ident: 102_CR65 publication-title: Processes doi: 10.3390/pr8040391 – volume: 199 start-page: 106926 year: 2020 ident: 102_CR90 publication-title: Reliability Engineering & System Safety doi: 10.1016/j.ress.2020.106926 – volume: 45 start-page: 2673 issue: 11 year: 1997 ident: 102_CR63 publication-title: IEEE Transactions on Signal Processing doi: 10.1109/78.650093 – volume: 15 start-page: 987 issue: 2 year: 2018 ident: 102_CR98 publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2018.2866549 – volume: 67 start-page: 2360 issue: 3 year: 2020 ident: 102_CR26 publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2019.2905830 – volume: 502 start-page: 116079 year: 2021 ident: 102_CR21 publication-title: J. of Sound and Vibration doi: 10.1016/j.jsv.2021.116079 – volume: 100 start-page: 155 year: 2020 ident: 102_CR97 publication-title: ISA Transactions doi: 10.1016/j.isatra.2019.11.010 – volume: 39 start-page: 258 issue: 2 year: 2020 ident: 102_CR102 publication-title: Mechanical Science and Technology for Aerospace Engineering – volume: 154 start-page: 107461 year: 2020 ident: 102_CR116 publication-title: Measurement doi: 10.1016/j.measurement.2019.107461 – volume: 122 start-page: 692 year: 2019 ident: 102_CR126 publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2018.12.051 – volume: 379 start-page: 117 year: 2020 ident: 102_CR112 publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.10.064 – volume: 47 start-page: 112 year: 2012 ident: 102_CR19 publication-title: Renewable Energy doi: 10.1016/j.renene.2012.04.019 – volume: 38 start-page: 3389 issue: 3 year: 2020 ident: 102_CR78 publication-title: J. of Intelligent & Fuzzy Systems doi: 10.3233/JIFS-190642 – volume: 29 start-page: 340 issue: 2 year: 2016 ident: 102_CR48 publication-title: J. of Vibration Engineering – volume: 48 start-page: 78 year: 2018 ident: 102_CR57 publication-title: J. of Manufacturing Systems doi: 10.1016/j.jmsy.2018.05.011 – volume: 20 start-page: 2339 issue: 8 year: 2020 ident: 102_CR99 publication-title: Sensors doi: 10.3390/s20082339 – volume: 16 start-page: 6347 issue: 10 year: 2020 ident: 102_CR28 publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2020.2966326 – volume: 152 start-page: 107320 year: 2020 ident: 102_CR29 publication-title: Measurement doi: 10.1016/j.measurement.2019.107320 – volume: 8 start-page: 2416 issue: 12 year: 2018 ident: 102_CR119 publication-title: Applied Sciences-Basel doi: 10.3390/app8122416 – volume: 24 start-page: 694 issue: 4 year: 2016 ident: 102_CR22 publication-title: IEEE/ACM Transactions on Audio, Speech and Language Processing doi: 10.1109/TASLP.2016.2520371 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 102_CR62 publication-title: Neural Computation doi: 10.1162/neco.1997.9.8.1735 – volume: 67 start-page: 9536 issue: 11 year: 2020 ident: 102_CR6 publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2019.2952807 – volume: 36 start-page: 663 issue: 7 year: 2019 ident: 102_CR113 publication-title: J. of Mechanical & Electrical Engineering – volume: 135 start-page: 368 year: 2019 ident: 102_CR37 publication-title: Measurement doi: 10.1016/j.measurement.2018.11.040 – volume: 28 start-page: 2027 issue: 8 year: 2016 ident: 102_CR125 publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2016.2554549 – volume: 28 start-page: 658 issue: 2 year: 2019 ident: 102_CR88 publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2018.2868426 – volume: 159 start-page: 107802 year: 2020 ident: 102_CR103 publication-title: Measurement doi: 10.1016/j.measurement.2020.107802 – volume: 111 start-page: 1 year: 2019 ident: 102_CR72 publication-title: Computers in Industry doi: 10.1016/j.compind.2019.06.001 – volume: 49 start-page: 75 year: 2020 ident: 102_CR131 publication-title: Procedia Manufacturing doi: 10.1016/j.promfg.2020.06.014 – ident: 102_CR70 – volume: 167 start-page: 108277 year: 2020 ident: 102_CR84 publication-title: Measurement doi: 10.1016/j.measurement.2020.108277 – volume: 149 start-page: 107322 year: 2021 ident: 102_CR91 publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2020.107322 – volume-title: Mechanical Fault Diagnosis year: 2002 ident: 102_CR2 – volume: 66 start-page: 8792 year: 2019 ident: 102_CR83 publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2019.2891463 – volume: 97 start-page: 269 year: 2020 ident: 102_CR129 publication-title: ISA Transactions doi: 10.1016/j.isatra.2019.08.012 – volume: 407 start-page: 232 year: 2020 ident: 102_CR80 publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.04.075 – volume: 107 start-page: 241 year: 2018 ident: 102_CR14 publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2017.11.024 – volume: 73 start-page: 115 issue: 1 year: 2016 ident: 102_CR17 publication-title: Numerical Algorithms doi: 10.1007/s11075-015-0088-1 – volume: 138 start-page: 106587 year: 2020 ident: 102_CR7 publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2019.106587 – volume: 9 start-page: 768 issue: 4 year: 2019 ident: 102_CR107 publication-title: Applied Sciences doi: 10.3390/app9040768 – volume: 5 start-page: 157 issue: 2 year: 1994 ident: 102_CR60 publication-title: IEEE Trans Neural Networks doi: 10.1109/72.279181 – volume: 41 start-page: 637 issue: 3 year: 2020 ident: 102_CR71 publication-title: J. of Chinese Computer Systems – volume: 97 start-page: 241 year: 2019 ident: 102_CR58 publication-title: ISA Transactions doi: 10.1016/j.isatra.2019.07.004 – volume: 134 start-page: 106330 year: 2019 ident: 102_CR115 publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2019.106330 – ident: 102_CR5 |
SSID | ssj0062411 |
Score | 2.5939796 |
Snippet | With the development of intelligent manufacturing and automation, the precision and complexity of mechanical equipment are increasing, which leads to a higher... |
SourceID | nrf proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 527 |
SubjectTerms | Algorithms Complexity Control Data processing Dynamical Systems Engineering Fault diagnosis Industrial and Production Engineering Intelligent manufacturing systems Machine learning Mechanical Engineering Neural networks Original Article Recurrent neural networks State-of-the-art reviews Vibration 기계공학 |
Title | Application of recurrent neural network to mechanical fault diagnosis: a review |
URI | https://link.springer.com/article/10.1007/s12206-022-0102-1 https://www.proquest.com/docview/2627990250 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002810259 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Mechanical Science and Technology, 2022, 36(2), , pp.527-542 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI7YdoED4ikGY4oQJ1ClLm0Twq1DGwPEuDBpnKK0TdC00aKu-__EfVCGAIlTDk2aynZsp7Y_I3SujMYDJDtLSh5ZrnZ6loyIsrTHDcNJRHje6_BxTEcT937qTcs67mWV7V6FJHNNXRe7EQK3XwKpBNCRo4FaHsBJGSGeEL9Sv9SYpPyWxcxJdrk7rUKZP71izRg14lSv-ZnfQqO5xRnuoO3SVcR-wdtdtKHiPbT1BUBwHz35dfwZJxqn8Pcc8JYw4FSaxXGR5Y2zBL8pKPIFnmAtV4sMR0WW3Wx5jSUuSlgO0GQ4eL4ZWWWLBCt0PDuzuE3DXtijOpJSKSYjx5gbj0WS8YgFkmpiS5fLQHtUKw3uDuPBFVEqoEEgjWtwiJpxEqsjhI1fwm0nVG4AkHhUScnMHo5UbpjH0trIrmglwhI_HNpYLESNfAzkFYa8Asgrem108bnkvQDP-GvymWGAmIczAZDXML4mYp4K49jfCc4hIGkmdSr-iPKwLQWhhHEIl5pvvKx4Vj_-dcfjf80-QZsklxwQng5qZulKnRqHJAu6qOUP-_0xjLcvD4NuLpAf1uDYVw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoGYAB8RSFAhZiAkVKnMTBbBWiaqEtSyt1s5zYRlVLgtL0_-PLg1AESEwZYsfRne07-7v7DqFrZXY8YLKzhGDS8rTrWEISZWmfGYUTSVhe63A4or2J9zT1p2Ue97KKdq8gyXynrpPdCIHTL4FQAqjI0UCbgDLCiWtCOtX2S41Jyk9ZgVnJHvOmFZT50yfWjFEjTvWan_kNGs0tTncP7ZauIu4Uut1HGyo-QDtfCAQP0Uunxp9xonEKt-fAt4SBp9J0josob5wl-E1Bki_oBGuxWmRYFlF2s-U9FrhIYTlCk-7j-KFnlSUSrMj17cxiNo2cyKFaCqFUIKRrzI0fSBEwGYSCamILj4lQ-1QrDe5OwMI7olRIw1AY1-AYNeMkVicIG7-E2W6kvBAo8agSIjBjuEJ5UY6ltZBdyYpHJX84lLFY8Jr5GMTLjXg5iJc7LXTz2eW9IM_4q_GVUQCfRzMOlNfwfE34POXGse9zxgCQNI3alX54udiWnFASMIBLzT_eVjqrX_864um_Wl-ird54OOCD_uj5DG2TfBbBRGqjZpau1LlxTrLwIp-MH3eI2Co |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED7RTkLjgQ0YotANa-IJlC51Egfvrdpa2m0MHpjUPRk7tlHVklZp-sJfjy8_1rUCpImnPMSOE9_Zd8539x3AO-N2PGSy86Tk2gtt0PWkpsazEXcCp5ryotbh52s2vAkvxtG4qnO6rKPda0iyzGlAlqY0P1loe7JOfKMUT8IUwwqwOkcDdkIsIdGEnd6n28t-vRkzZ6CKM1fs1nXIw3ENbP7pIRumqZFmdsPr3AJKC_sz2IPv9ZuXYSfTzipXneTXFqnjf3zaPjytfFPSK5XpGTwy6XN4co-x8AV86a0BbzK3JMPf9UjwRJAY03VOy7Byks_JT4NZxagExMrVLCe6DOubLE-JJGXOzAHcDPrfzoZeVZPBS4LIzz3us6SbdJnVUhoTSx04-xbFWsZcx0oyS30ZcqlsxKyx6F_FXH2kxiimlHS-yEtopvPUvALiHCHuB4kJFXLwMSNl7MYIpAmTArxrgV-LQyQVYTnWzZiJNdUyzpVwcyVwrkS3Be_vuixKto5_NT52MhbTZCKQYxuvP-Zimgl3khgJzhEBdY3atQqIanUvBWU05ojPunf8UEt0ffuvI75-UOu38Pjr-UBcja4v38AuLTQClaINzTxbmUPnDOXqqFL4305f_bg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+recurrent+neural+network+to+mechanical+fault+diagnosis%3A+a+review&rft.jtitle=Journal+of+mechanical+science+and+technology&rft.au=Zhu%2C+Junjun&rft.au=Jiang+Quansheng&rft.au=Shen+Yehu&rft.au=Qian+Chenhui&rft.date=2022-02-01&rft.pub=Springer+Nature+B.V&rft.issn=1738-494X&rft.eissn=1976-3824&rft.volume=36&rft.issue=2&rft.spage=527&rft.epage=542&rft_id=info:doi/10.1007%2Fs12206-022-0102-1&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1738-494X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1738-494X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1738-494X&client=summon |