Deep Source Semi-Supervised Transfer Learning (DS3TL) for Cross-Subject EEG Classification

Objective: An electroencephalogram (EEG) based brain-computer interface (BCI) maps the user's EEG signals into commands for external device control. Usually a large amount of labeled EEG trials are required to train a reliable EEG recognition model. However, acquiring labeled EEG data is time-c...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 71; no. 4; pp. 1308 - 1318
Main Authors Jiang, Xue, Meng, Lubin, Wang, Ziwei, Wu, Dongrui
Format Journal Article
LanguageEnglish
Published United States IEEE 01.04.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9294
1558-2531
1558-2531
DOI10.1109/TBME.2023.3333327

Cover

Abstract Objective: An electroencephalogram (EEG) based brain-computer interface (BCI) maps the user's EEG signals into commands for external device control. Usually a large amount of labeled EEG trials are required to train a reliable EEG recognition model. However, acquiring labeled EEG data is time-consuming and user-unfriendly. Semi-supervised learning (SSL) and transfer learning can be used to exploit the unlabeled data and the auxiliary data, respectively, to reduce the amount of labeled data for a new subject. Methods: This paper proposes deep source semi-supervised transfer learning (DS3TL) for EEG-based BCIs, which assumes the source subject has a small number of labeled EEG trials and a large number of unlabeled ones, whereas all EEG trials from the target subject are unlabeled. DS3TL mainly includes a hybrid SSL module, a weakly-supervised contrastive module, and a domain adaptation module. The hybrid SSL module integrates pseudo-labeling and consistency regularization for SSL. The weakly-supervised contrastive module performs contrastive learning by using the true labels of the labeled data and the pseudo-labels of the unlabeled data. The domain adaptation module reduces the individual differences by uncertainty reduction. Results: Experiments on three EEG datasets from different tasks demonstrated that DS3TL outperformed a supervised learning baseline with many more labeled training data, and multiple state-of-the-art SSL approaches with the same number of labeled data. Significance: To our knowledge, this is the first approach in EEG-based BCIs that exploits the unlabeled source data for more accurate target classifier training.
AbstractList An electroencephalogram (EEG) based brain-computer interface (BCI) maps the user's EEG signals into commands for external device control. Usually a large amount of labeled EEG trials are required to train a reliable EEG recognition model. However, acquiring labeled EEG data is time-consuming and user-unfriendly. Semi-supervised learning (SSL) and transfer learning can be used to exploit the unlabeled data and the auxiliary data, respectively, to reduce the amount of labeled data for a new subject.OBJECTIVEAn electroencephalogram (EEG) based brain-computer interface (BCI) maps the user's EEG signals into commands for external device control. Usually a large amount of labeled EEG trials are required to train a reliable EEG recognition model. However, acquiring labeled EEG data is time-consuming and user-unfriendly. Semi-supervised learning (SSL) and transfer learning can be used to exploit the unlabeled data and the auxiliary data, respectively, to reduce the amount of labeled data for a new subject.This paper proposes deep source semi-supervised transfer learning (DS3TL) for EEG-based BCIs, which assumes the source subject has a small number of labeled EEG trials and a large number of unlabeled ones, whereas all EEG trials from the target subject are unlabeled. DS3TL mainly includes a hybrid SSL module, a weakly-supervised contrastive module, and a domain adaptation module. The hybrid SSL module integrates pseudo-labeling and consistency regularization for SSL. The weakly-supervised contrastive module performs contrastive learning by using the true labels of the labeled data and the pseudo-labels of the unlabeled data. The domain adaptation module reduces the individual differences by uncertainty reduction.METHODSThis paper proposes deep source semi-supervised transfer learning (DS3TL) for EEG-based BCIs, which assumes the source subject has a small number of labeled EEG trials and a large number of unlabeled ones, whereas all EEG trials from the target subject are unlabeled. DS3TL mainly includes a hybrid SSL module, a weakly-supervised contrastive module, and a domain adaptation module. The hybrid SSL module integrates pseudo-labeling and consistency regularization for SSL. The weakly-supervised contrastive module performs contrastive learning by using the true labels of the labeled data and the pseudo-labels of the unlabeled data. The domain adaptation module reduces the individual differences by uncertainty reduction.Experiments on three EEG datasets from different tasks demonstrated that DS3TL outperformed a supervised learning baseline with many more labeled training data, and multiple state-of-the-art SSL approaches with the same number of labeled data.RESULTSExperiments on three EEG datasets from different tasks demonstrated that DS3TL outperformed a supervised learning baseline with many more labeled training data, and multiple state-of-the-art SSL approaches with the same number of labeled data.To our knowledge, this is the first approach in EEG-based BCIs that exploits the unlabeled source data for more accurate target classifier training.SIGNIFICANCETo our knowledge, this is the first approach in EEG-based BCIs that exploits the unlabeled source data for more accurate target classifier training.
Objective: An electroencephalogram (EEG) based brain-computer interface (BCI) maps the user's EEG signals into commands for external device control. Usually a large amount of labeled EEG trials are required to train a reliable EEG recognition model. However, acquiring labeled EEG data is time-consuming and user-unfriendly. Semi-supervised learning (SSL) and transfer learning can be used to exploit the unlabeled data and the auxiliary data, respectively, to reduce the amount of labeled data for a new subject. Methods: This paper proposes deep source semi-supervised transfer learning (DS3TL) for EEG-based BCIs, which assumes the source subject has a small number of labeled EEG trials and a large number of unlabeled ones, whereas all EEG trials from the target subject are unlabeled. DS3TL mainly includes a hybrid SSL module, a weakly-supervised contrastive module, and a domain adaptation module. The hybrid SSL module integrates pseudo-labeling and consistency regularization for SSL. The weakly-supervised contrastive module performs contrastive learning by using the true labels of the labeled data and the pseudo-labels of the unlabeled data. The domain adaptation module reduces the individual differences by uncertainty reduction. Results: Experiments on three EEG datasets from different tasks demonstrated that DS3TL outperformed a supervised learning baseline with many more labeled training data, and multiple state-of-the-art SSL approaches with the same number of labeled data. Significance: To our knowledge, this is the first approach in EEG-based BCIs that exploits the unlabeled source data for more accurate target classifier training.
An electroencephalogram (EEG) based brain-computer interface (BCI) maps the user's EEG signals into commands for external device control. Usually a large amount of labeled EEG trials are required to train a reliable EEG recognition model. However, acquiring labeled EEG data is time-consuming and user-unfriendly. Semi-supervised learning (SSL) and transfer learning can be used to exploit the unlabeled data and the auxiliary data, respectively, to reduce the amount of labeled data for a new subject. This paper proposes deep source semi-supervised transfer learning (DS3TL) for EEG-based BCIs, which assumes the source subject has a small number of labeled EEG trials and a large number of unlabeled ones, whereas all EEG trials from the target subject are unlabeled. DS3TL mainly includes a hybrid SSL module, a weakly-supervised contrastive module, and a domain adaptation module. The hybrid SSL module integrates pseudo-labeling and consistency regularization for SSL. The weakly-supervised contrastive module performs contrastive learning by using the true labels of the labeled data and the pseudo-labels of the unlabeled data. The domain adaptation module reduces the individual differences by uncertainty reduction. Experiments on three EEG datasets from different tasks demonstrated that DS3TL outperformed a supervised learning baseline with many more labeled training data, and multiple state-of-the-art SSL approaches with the same number of labeled data. To our knowledge, this is the first approach in EEG-based BCIs that exploits the unlabeled source data for more accurate target classifier training.
Author Wu, Dongrui
Jiang, Xue
Wang, Ziwei
Meng, Lubin
Author_xml – sequence: 1
  givenname: Xue
  orcidid: 0000-0002-1378-1315
  surname: Jiang
  fullname: Jiang, Xue
  organization: Key Laboratory of the Ministry of Education for Image Processing and Intelligent Control, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, China
– sequence: 2
  givenname: Lubin
  orcidid: 0000-0001-8179-4292
  surname: Meng
  fullname: Meng, Lubin
  organization: Key Laboratory of the Ministry of Education for Image Processing and Intelligent Control, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, China
– sequence: 3
  givenname: Ziwei
  orcidid: 0000-0003-1324-2298
  surname: Wang
  fullname: Wang, Ziwei
  organization: Key Laboratory of the Ministry of Education for Image Processing and Intelligent Control, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, China
– sequence: 4
  givenname: Dongrui
  orcidid: 0000-0002-7153-9703
  surname: Wu
  fullname: Wu, Dongrui
  email: drwu09@gmail.com
  organization: Key Laboratory of the Ministry of Education for Image Processing and Intelligent Control, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37971908$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9vEzEQxS1URNPCB0BCyFIv7WGD_6y9niOkoVRKxSHhwsVyvLPI0WY32LuV-PZ4SahQD_gysvV7M-P3LshZ13dIyFvO5pwz-LD59LCcCybkXE5HVC_IjCtlCqEkPyMzxrgpQEB5Ti5S2uVraUr9ipzLCioOzMzI91vEA133Y_RI17gPxXo8YHwMCWu6ia5LDUa6Qhe70P2g17druVnd0KaPdBH7lDK-3aEf6HJ5RxetSyk0wbsh9N1r8rJxbcI3p3pJvn1ebhZfitXXu_vFx1XhpWJDYWrtAbhRoKCumTOsLk2jmFOa6W0pjZF1A0K7_MLA-EpXjZZCVUoByMbLS3J97HuI_c8R02D3IXlsW9dhPyYrDPAMa6kzevUM3eWfd3k7K0ADU4LBRL0_UeN2j7U9xLB38Zf961oG-BHwkwURmyeEMzslY6dk7JSMPSWTNdUzjQ_DH5-G6EL7X-W7ozIg4j-TJIcqb_sb5JGXRg
CODEN IEBEAX
CitedBy_id crossref_primary_10_1016_j_inffus_2025_102982
crossref_primary_10_1038_s41598_024_77609_x
crossref_primary_10_1109_JBHI_2024_3384816
crossref_primary_10_1109_TIM_2024_3451593
Cites_doi 10.1109/TNSRE.2021.3059166
10.1088/1741-2552/aadea0
10.1109/TAMD.2015.2431497
10.7551/mitpress/9780262033589.001.0001
10.1016/j.eswa.2013.09.037
10.3390/e22010096
10.5555/3045118.3045167
10.1109/IJCNN48605.2020.9207304
10.1109/TNSRE.2016.2627016
10.1109/TBME.2022.3168570
10.5555/3524938.3525087
10.1007/978-3-642-02091-9_1
10.5555/3294996.3295163
10.1093/bioinformatics/btl242
10.1109/CVPR42600.2020.01070
10.1109/TPAMI.2018.2858821
10.1007/978-3-030-36708-4_3
10.1109/JPROC.2012.2185009
10.24963/ijcai.2019/504
10.1109/CVPR52688.2022.01407
10.1007/978-3-030-58589-1_28
10.1109/TNSRE.2017.2748388
10.1109/5.939829
10.1038/sdata.2019.39
10.1109/CVPR42600.2020.00975
10.1109/JPROC.2023.3277471
10.1088/1741-2552/abca18
10.1109/CVPR.2018.00393
10.1088/1741-2552/aab2f2
10.2200/s00196ed1v01y200906aim006
10.1007/978-3-030-04221-9_36
10.3389/fnins.2012.00055
10.1002/hbm.23730
10.1088/1741-2552/aace8c
10.1109/taffc.2022.3179717
10.1109/TPAMI.2019.2945942
10.3390/s120201211
10.1109/TNSRE.2017.2778178
10.1109/CVPR52688.2022.01402
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TBME.2023.3333327
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 1318
ExternalDocumentID 37971908
10_1109_TBME_2023_3333327
10319796
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Beijing Fenghuo Wanjia Technology Company Ltd.
– fundername: Shenzhen Science and Technology Program
  grantid: JCYJ20220818103602004
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c350t-8d6c99185959dd0a80d48f50a5606b43883df926a0a5098c767f6325755993fc3
IEDL.DBID RIE
ISSN 0018-9294
1558-2531
IngestDate Sat Sep 27 18:32:57 EDT 2025
Mon Jun 30 07:56:23 EDT 2025
Sun Apr 06 01:21:19 EDT 2025
Wed Oct 01 04:08:57 EDT 2025
Thu Apr 24 23:01:43 EDT 2025
Wed Aug 27 02:29:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c350t-8d6c99185959dd0a80d48f50a5606b43883df926a0a5098c767f6325755993fc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1324-2298
0000-0002-1378-1315
0000-0001-8179-4292
0000-0002-7153-9703
PMID 37971908
PQID 2969052096
PQPubID 85474
PageCount 11
ParticipantIDs crossref_primary_10_1109_TBME_2023_3333327
proquest_miscellaneous_2891755636
ieee_primary_10319796
pubmed_primary_37971908
crossref_citationtrail_10_1109_TBME_2023_3333327
proquest_journals_2969052096
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
Salimans (ref51) 2016
ref10
ref16
ref18
Tarvainen (ref20) 2017
ref50
ref46
ref48
ref47
ref42
ref41
ref44
Khosla (ref45) 2020
ref8
ref7
Berthelot (ref22) 2019
ref9
ref4
ref3
ref6
ref5
ref40
Oliver (ref21) 2018
ref35
ref34
ref37
ref36
Lee (ref17) 2013
ref31
ref30
ref33
ref32
ref2
ref1
ref39
Laine (ref19) 2017
ref38
Szegedy (ref27) 2014
Clevert (ref49) 2016
ref24
ref26
ref25
ref29
Oord (ref43) 2018
Zhang (ref28) 2018
Sohn (ref23) 2020
References_xml – ident: ref35
  doi: 10.1109/TNSRE.2021.3059166
– ident: ref47
  doi: 10.1088/1741-2552/aadea0
– ident: ref11
  doi: 10.1109/TAMD.2015.2431497
– ident: ref15
  doi: 10.7551/mitpress/9780262033589.001.0001
– ident: ref4
  doi: 10.1016/j.eswa.2013.09.037
– start-page: 18661
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2020
  ident: ref45
  article-title: Supervised contrastive learning
– ident: ref38
  doi: 10.3390/e22010096
– ident: ref50
  doi: 10.5555/3045118.3045167
– ident: ref24
  doi: 10.1109/IJCNN48605.2020.9207304
– ident: ref7
  doi: 10.1109/TNSRE.2016.2627016
– year: 2018
  ident: ref43
  article-title: Representation learning with contrastive predictive coding
– ident: ref12
  doi: 10.1109/TBME.2022.3168570
– ident: ref32
  doi: 10.5555/3524938.3525087
– volume-title: Proc. Int. Conf. Learn. Representations
  year: 2016
  ident: ref49
  article-title: Fast and accurate deep network learning by exponential linear units (ELUs)
– start-page: 901
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2016
  ident: ref51
  article-title: Weight normalization: A simple reparameterization to accelerate training of deep neural networks
– ident: ref1
  doi: 10.1007/978-3-642-02091-9_1
– ident: ref42
  doi: 10.5555/3294996.3295163
– ident: ref40
  doi: 10.1093/bioinformatics/btl242
– ident: ref18
  doi: 10.1109/CVPR42600.2020.01070
– volume-title: Proc. Int. Conf. Learn. Representations
  year: 2014
  ident: ref27
  article-title: Intriguing properties of neural networks
– start-page: 5050
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2019
  ident: ref22
  article-title: MixMatch: A holistic approach to semi-supervised learning
– ident: ref25
  doi: 10.1109/TPAMI.2018.2858821
– ident: ref37
  doi: 10.1007/978-3-030-36708-4_3
– ident: ref6
  doi: 10.1109/JPROC.2012.2185009
– ident: ref26
  doi: 10.24963/ijcai.2019/504
– ident: ref29
  doi: 10.1109/CVPR52688.2022.01407
– volume-title: Proc. ICML Workshop Challenges Representation Learn.
  year: 2013
  ident: ref17
  article-title: Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks
– ident: ref41
  doi: 10.1007/978-3-030-58589-1_28
– ident: ref13
  doi: 10.1109/TNSRE.2017.2748388
– ident: ref3
  doi: 10.1109/5.939829
– ident: ref48
  doi: 10.1038/sdata.2019.39
– ident: ref31
  doi: 10.1109/CVPR42600.2020.00975
– ident: ref5
  doi: 10.1109/JPROC.2023.3277471
– start-page: 596
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2020
  ident: ref23
  article-title: FixMatch: Simplifying semi-supervised learning with consistency and confidence
– ident: ref14
  doi: 10.1088/1741-2552/abca18
– ident: ref30
  doi: 10.1109/CVPR.2018.00393
– ident: ref8
  doi: 10.1088/1741-2552/aab2f2
– ident: ref16
  doi: 10.2200/s00196ed1v01y200906aim006
– ident: ref36
  doi: 10.1007/978-3-030-04221-9_36
– ident: ref46
  doi: 10.3389/fnins.2012.00055
– ident: ref9
  doi: 10.1002/hbm.23730
– start-page: 1195
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2017
  ident: ref20
  article-title: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results
– ident: ref10
  doi: 10.1088/1741-2552/aace8c
– start-page: 3235
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2018
  ident: ref21
  article-title: Realistic evaluation of deep semi-supervised learning algorithms
– ident: ref39
  doi: 10.1109/taffc.2022.3179717
– volume-title: Proc. Int. Conf. Learn. Representations
  year: 2017
  ident: ref19
  article-title: Temporal ensembling for semi-supervised learning
– ident: ref34
  doi: 10.1109/TPAMI.2019.2945942
– ident: ref2
  doi: 10.3390/s120201211
– ident: ref33
  doi: 10.1109/TNSRE.2017.2778178
– ident: ref44
  doi: 10.1109/CVPR52688.2022.01402
– volume-title: Proc. Int. Conf. Learn. Representations
  year: 2018
  ident: ref28
  article-title: mixup: Beyond empirical risk minimization
SSID ssj0014846
Score 2.4654794
Snippet Objective: An electroencephalogram (EEG) based brain-computer interface (BCI) maps the user's EEG signals into commands for external device control. Usually a...
An electroencephalogram (EEG) based brain-computer interface (BCI) maps the user's EEG signals into commands for external device control. Usually a large...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1308
SubjectTerms Adaptation
Adaptation models
Brain
Brain mapping
Brain modeling
Brain-computer interface
Brain-Computer Interfaces
classification
Classification algorithms
Computer applications
Cyclohexylamines
Data acquisition
EEG
electroencephalogram
Electroencephalography
Human-computer interface
Implants
Indenes
Labels
Machine learning
Modules
Predictive models
Regularization
Semi-supervised learning
Semisupervised learning
Supervised Machine Learning
Training
Transfer learning
Title Deep Source Semi-Supervised Transfer Learning (DS3TL) for Cross-Subject EEG Classification
URI https://ieeexplore.ieee.org/document/10319796
https://www.ncbi.nlm.nih.gov/pubmed/37971908
https://www.proquest.com/docview/2969052096
https://www.proquest.com/docview/2891755636
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1558-2531
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014846
  issn: 0018-9294
  databaseCode: RIE
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLfYDggOfIwBZQMZiQMgJXNrx7GPY-uYEN2lnTRxiWL7GU2DttqaC3897zluNZCGyCmKXxJb79nvZ78vxt4pcLqKwRfSWVEoUL5wJsYi1LFWyqkhaApwnpzp03P15aK6yMHqKRYGAJLzGZR0m2z5YeE7Oio7oJIEtrZ6i23VRvfBWhuTgTJ9VI4Y4gweWZVNmENhD2afJuOS6oSXkq4RVd6Tta1RGZo_9FEqsHI31kw65-QxO1v3tnc1uSq7lSv9r78SOf73cJ6wRxl98sNeXJ6yezDfYQ9v5STcYfcn2dr-jH07BljyaTre51P4eVlMuyWtLTcQeFJyEa55ztD6nb8_nsrZ1w8cYTA_osEiuaNjHj4ef-ap-ib5JSVR2GXnJ-PZ0WmRazEUXlZiVZigPUJJyoZmQxCtEUGZWIkWEZN2ShojQ7Qj3eITYY2vdR21xPWAMprJ6OVztj1fzOEl4w4RBRl2lDdRITwwFehayha0kQ4BzYCJNUcanxOVU72MH03asAjbED8b4meT-TlgHzevLPssHf8i3iVe3CLs2TBg-2u-N3ki3zQjq21yFcLmt5tmnIJkV2nnsOiQxuCelxKtIc2LXl42H1-L2as7frrHHmDfsi_QPtteXXfwGmHOyr1J4v0bnZvx3g
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_BkPh44GMMKAwwEg-AlMytHcd-hK2jQNuXdtK0lyh2bISAttqaF_567hy3GkhD5CmKL4mtO_t-9n0BvJbeqiI0LhPW8Ex66TKrQ8iaMpRSWtn3igKcJ1M1OpGfT4vTFKweY2G899H5zOd0G235zdK1dFR2QCUJTGnUdbhRSCmLLlxrazSQuovL4X2cwwMjkxGzz83B_MNkmFOl8FzQNaDae6I0JapD_YdGiiVWrkabUesc34Pppr-ds8n3vF3b3P36K5Xjfw_oPtxN-JO97wTmAVzzi124cykr4S7cnCR7-0M4O_J-xWbxgJ_N_M9v2axd0epy4RsW1Vzw5yzlaP3K3hzNxHz8liEQZoc0WCS3dNDDhsOPLNbfJM-kKAx7cHI8nB-OslSNIXOi4OtMN8ohmKR8aKZpeK15I3UoeI2YSVkptBZNMANV4xNutCtVGZTAFYFymongxCPYWSwX_gkwi5iCTDvS6SARIOjCq1KI2istLEKaHvANRyqXUpVTxYwfVdyycFMRPyviZ5X42YN321dWXZ6OfxHvES8uEXZs6MH-hu9VmsoX1cAoE52FsPnVthknIVlW6oVftkijcddLqdaQ5nEnL9uPb8Ts6RU_fQm3RvPJuBp_mn55Brexn8kzaB921uetf46gZ21fRFH_DXS49Ss
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Source+Semi-Supervised+Transfer+Learning+%28DS3TL%29+for+Cross-Subject+EEG+Classification&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Jiang%2C+Xue&rft.au=Meng%2C+Lubin&rft.au=Wang%2C+Ziwei&rft.au=Wu%2C+Dongrui&rft.date=2024-04-01&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=71&rft.issue=4&rft.spage=1308&rft.epage=1318&rft_id=info:doi/10.1109%2FTBME.2023.3333327&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TBME_2023_3333327
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon