Deep Source Semi-Supervised Transfer Learning (DS3TL) for Cross-Subject EEG Classification
Objective: An electroencephalogram (EEG) based brain-computer interface (BCI) maps the user's EEG signals into commands for external device control. Usually a large amount of labeled EEG trials are required to train a reliable EEG recognition model. However, acquiring labeled EEG data is time-c...
        Saved in:
      
    
          | Published in | IEEE transactions on biomedical engineering Vol. 71; no. 4; pp. 1308 - 1318 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          IEEE
    
        01.04.2024
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0018-9294 1558-2531 1558-2531  | 
| DOI | 10.1109/TBME.2023.3333327 | 
Cover
| Abstract | Objective: An electroencephalogram (EEG) based brain-computer interface (BCI) maps the user's EEG signals into commands for external device control. Usually a large amount of labeled EEG trials are required to train a reliable EEG recognition model. However, acquiring labeled EEG data is time-consuming and user-unfriendly. Semi-supervised learning (SSL) and transfer learning can be used to exploit the unlabeled data and the auxiliary data, respectively, to reduce the amount of labeled data for a new subject. Methods: This paper proposes deep source semi-supervised transfer learning (DS3TL) for EEG-based BCIs, which assumes the source subject has a small number of labeled EEG trials and a large number of unlabeled ones, whereas all EEG trials from the target subject are unlabeled. DS3TL mainly includes a hybrid SSL module, a weakly-supervised contrastive module, and a domain adaptation module. The hybrid SSL module integrates pseudo-labeling and consistency regularization for SSL. The weakly-supervised contrastive module performs contrastive learning by using the true labels of the labeled data and the pseudo-labels of the unlabeled data. The domain adaptation module reduces the individual differences by uncertainty reduction. Results: Experiments on three EEG datasets from different tasks demonstrated that DS3TL outperformed a supervised learning baseline with many more labeled training data, and multiple state-of-the-art SSL approaches with the same number of labeled data. Significance: To our knowledge, this is the first approach in EEG-based BCIs that exploits the unlabeled source data for more accurate target classifier training. | 
    
|---|---|
| AbstractList | An electroencephalogram (EEG) based brain-computer interface (BCI) maps the user's EEG signals into commands for external device control. Usually a large amount of labeled EEG trials are required to train a reliable EEG recognition model. However, acquiring labeled EEG data is time-consuming and user-unfriendly. Semi-supervised learning (SSL) and transfer learning can be used to exploit the unlabeled data and the auxiliary data, respectively, to reduce the amount of labeled data for a new subject.OBJECTIVEAn electroencephalogram (EEG) based brain-computer interface (BCI) maps the user's EEG signals into commands for external device control. Usually a large amount of labeled EEG trials are required to train a reliable EEG recognition model. However, acquiring labeled EEG data is time-consuming and user-unfriendly. Semi-supervised learning (SSL) and transfer learning can be used to exploit the unlabeled data and the auxiliary data, respectively, to reduce the amount of labeled data for a new subject.This paper proposes deep source semi-supervised transfer learning (DS3TL) for EEG-based BCIs, which assumes the source subject has a small number of labeled EEG trials and a large number of unlabeled ones, whereas all EEG trials from the target subject are unlabeled. DS3TL mainly includes a hybrid SSL module, a weakly-supervised contrastive module, and a domain adaptation module. The hybrid SSL module integrates pseudo-labeling and consistency regularization for SSL. The weakly-supervised contrastive module performs contrastive learning by using the true labels of the labeled data and the pseudo-labels of the unlabeled data. The domain adaptation module reduces the individual differences by uncertainty reduction.METHODSThis paper proposes deep source semi-supervised transfer learning (DS3TL) for EEG-based BCIs, which assumes the source subject has a small number of labeled EEG trials and a large number of unlabeled ones, whereas all EEG trials from the target subject are unlabeled. DS3TL mainly includes a hybrid SSL module, a weakly-supervised contrastive module, and a domain adaptation module. The hybrid SSL module integrates pseudo-labeling and consistency regularization for SSL. The weakly-supervised contrastive module performs contrastive learning by using the true labels of the labeled data and the pseudo-labels of the unlabeled data. The domain adaptation module reduces the individual differences by uncertainty reduction.Experiments on three EEG datasets from different tasks demonstrated that DS3TL outperformed a supervised learning baseline with many more labeled training data, and multiple state-of-the-art SSL approaches with the same number of labeled data.RESULTSExperiments on three EEG datasets from different tasks demonstrated that DS3TL outperformed a supervised learning baseline with many more labeled training data, and multiple state-of-the-art SSL approaches with the same number of labeled data.To our knowledge, this is the first approach in EEG-based BCIs that exploits the unlabeled source data for more accurate target classifier training.SIGNIFICANCETo our knowledge, this is the first approach in EEG-based BCIs that exploits the unlabeled source data for more accurate target classifier training. Objective: An electroencephalogram (EEG) based brain-computer interface (BCI) maps the user's EEG signals into commands for external device control. Usually a large amount of labeled EEG trials are required to train a reliable EEG recognition model. However, acquiring labeled EEG data is time-consuming and user-unfriendly. Semi-supervised learning (SSL) and transfer learning can be used to exploit the unlabeled data and the auxiliary data, respectively, to reduce the amount of labeled data for a new subject. Methods: This paper proposes deep source semi-supervised transfer learning (DS3TL) for EEG-based BCIs, which assumes the source subject has a small number of labeled EEG trials and a large number of unlabeled ones, whereas all EEG trials from the target subject are unlabeled. DS3TL mainly includes a hybrid SSL module, a weakly-supervised contrastive module, and a domain adaptation module. The hybrid SSL module integrates pseudo-labeling and consistency regularization for SSL. The weakly-supervised contrastive module performs contrastive learning by using the true labels of the labeled data and the pseudo-labels of the unlabeled data. The domain adaptation module reduces the individual differences by uncertainty reduction. Results: Experiments on three EEG datasets from different tasks demonstrated that DS3TL outperformed a supervised learning baseline with many more labeled training data, and multiple state-of-the-art SSL approaches with the same number of labeled data. Significance: To our knowledge, this is the first approach in EEG-based BCIs that exploits the unlabeled source data for more accurate target classifier training. An electroencephalogram (EEG) based brain-computer interface (BCI) maps the user's EEG signals into commands for external device control. Usually a large amount of labeled EEG trials are required to train a reliable EEG recognition model. However, acquiring labeled EEG data is time-consuming and user-unfriendly. Semi-supervised learning (SSL) and transfer learning can be used to exploit the unlabeled data and the auxiliary data, respectively, to reduce the amount of labeled data for a new subject. This paper proposes deep source semi-supervised transfer learning (DS3TL) for EEG-based BCIs, which assumes the source subject has a small number of labeled EEG trials and a large number of unlabeled ones, whereas all EEG trials from the target subject are unlabeled. DS3TL mainly includes a hybrid SSL module, a weakly-supervised contrastive module, and a domain adaptation module. The hybrid SSL module integrates pseudo-labeling and consistency regularization for SSL. The weakly-supervised contrastive module performs contrastive learning by using the true labels of the labeled data and the pseudo-labels of the unlabeled data. The domain adaptation module reduces the individual differences by uncertainty reduction. Experiments on three EEG datasets from different tasks demonstrated that DS3TL outperformed a supervised learning baseline with many more labeled training data, and multiple state-of-the-art SSL approaches with the same number of labeled data. To our knowledge, this is the first approach in EEG-based BCIs that exploits the unlabeled source data for more accurate target classifier training.  | 
    
| Author | Wu, Dongrui Jiang, Xue Wang, Ziwei Meng, Lubin  | 
    
| Author_xml | – sequence: 1 givenname: Xue orcidid: 0000-0002-1378-1315 surname: Jiang fullname: Jiang, Xue organization: Key Laboratory of the Ministry of Education for Image Processing and Intelligent Control, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, China – sequence: 2 givenname: Lubin orcidid: 0000-0001-8179-4292 surname: Meng fullname: Meng, Lubin organization: Key Laboratory of the Ministry of Education for Image Processing and Intelligent Control, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, China – sequence: 3 givenname: Ziwei orcidid: 0000-0003-1324-2298 surname: Wang fullname: Wang, Ziwei organization: Key Laboratory of the Ministry of Education for Image Processing and Intelligent Control, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, China – sequence: 4 givenname: Dongrui orcidid: 0000-0002-7153-9703 surname: Wu fullname: Wu, Dongrui email: drwu09@gmail.com organization: Key Laboratory of the Ministry of Education for Image Processing and Intelligent Control, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37971908$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp9kU9vEzEQxS1URNPCB0BCyFIv7WGD_6y9niOkoVRKxSHhwsVyvLPI0WY32LuV-PZ4SahQD_gysvV7M-P3LshZ13dIyFvO5pwz-LD59LCcCybkXE5HVC_IjCtlCqEkPyMzxrgpQEB5Ti5S2uVraUr9ipzLCioOzMzI91vEA133Y_RI17gPxXo8YHwMCWu6ia5LDUa6Qhe70P2g17druVnd0KaPdBH7lDK-3aEf6HJ5RxetSyk0wbsh9N1r8rJxbcI3p3pJvn1ebhZfitXXu_vFx1XhpWJDYWrtAbhRoKCumTOsLk2jmFOa6W0pjZF1A0K7_MLA-EpXjZZCVUoByMbLS3J97HuI_c8R02D3IXlsW9dhPyYrDPAMa6kzevUM3eWfd3k7K0ADU4LBRL0_UeN2j7U9xLB38Zf961oG-BHwkwURmyeEMzslY6dk7JSMPSWTNdUzjQ_DH5-G6EL7X-W7ozIg4j-TJIcqb_sb5JGXRg | 
    
| CODEN | IEBEAX | 
    
| CitedBy_id | crossref_primary_10_1016_j_inffus_2025_102982 crossref_primary_10_1038_s41598_024_77609_x crossref_primary_10_1109_JBHI_2024_3384816 crossref_primary_10_1109_TIM_2024_3451593  | 
    
| Cites_doi | 10.1109/TNSRE.2021.3059166 10.1088/1741-2552/aadea0 10.1109/TAMD.2015.2431497 10.7551/mitpress/9780262033589.001.0001 10.1016/j.eswa.2013.09.037 10.3390/e22010096 10.5555/3045118.3045167 10.1109/IJCNN48605.2020.9207304 10.1109/TNSRE.2016.2627016 10.1109/TBME.2022.3168570 10.5555/3524938.3525087 10.1007/978-3-642-02091-9_1 10.5555/3294996.3295163 10.1093/bioinformatics/btl242 10.1109/CVPR42600.2020.01070 10.1109/TPAMI.2018.2858821 10.1007/978-3-030-36708-4_3 10.1109/JPROC.2012.2185009 10.24963/ijcai.2019/504 10.1109/CVPR52688.2022.01407 10.1007/978-3-030-58589-1_28 10.1109/TNSRE.2017.2748388 10.1109/5.939829 10.1038/sdata.2019.39 10.1109/CVPR42600.2020.00975 10.1109/JPROC.2023.3277471 10.1088/1741-2552/abca18 10.1109/CVPR.2018.00393 10.1088/1741-2552/aab2f2 10.2200/s00196ed1v01y200906aim006 10.1007/978-3-030-04221-9_36 10.3389/fnins.2012.00055 10.1002/hbm.23730 10.1088/1741-2552/aace8c 10.1109/taffc.2022.3179717 10.1109/TPAMI.2019.2945942 10.3390/s120201211 10.1109/TNSRE.2017.2778178 10.1109/CVPR52688.2022.01402  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 | 
    
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8  | 
    
| DOI | 10.1109/TBME.2023.3333327 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic Materials Research Database MEDLINE  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine Engineering  | 
    
| EISSN | 1558-2531 | 
    
| EndPage | 1318 | 
    
| ExternalDocumentID | 37971908 10_1109_TBME_2023_3333327 10319796  | 
    
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article  | 
    
| GrantInformation_xml | – fundername: Beijing Fenghuo Wanjia Technology Company Ltd. – fundername: Shenzhen Science and Technology Program grantid: JCYJ20220818103602004  | 
    
| GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8  | 
    
| ID | FETCH-LOGICAL-c350t-8d6c99185959dd0a80d48f50a5606b43883df926a0a5098c767f6325755993fc3 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 0018-9294 1558-2531  | 
    
| IngestDate | Sat Sep 27 18:32:57 EDT 2025 Mon Jun 30 07:56:23 EDT 2025 Sun Apr 06 01:21:19 EDT 2025 Wed Oct 01 04:08:57 EDT 2025 Thu Apr 24 23:01:43 EDT 2025 Wed Aug 27 02:29:29 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c350t-8d6c99185959dd0a80d48f50a5606b43883df926a0a5098c767f6325755993fc3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0003-1324-2298 0000-0002-1378-1315 0000-0001-8179-4292 0000-0002-7153-9703  | 
    
| PMID | 37971908 | 
    
| PQID | 2969052096 | 
    
| PQPubID | 85474 | 
    
| PageCount | 11 | 
    
| ParticipantIDs | crossref_primary_10_1109_TBME_2023_3333327 proquest_miscellaneous_2891755636 ieee_primary_10319796 pubmed_primary_37971908 crossref_citationtrail_10_1109_TBME_2023_3333327 proquest_journals_2969052096  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-04-01 | 
    
| PublicationDateYYYYMMDD | 2024-04-01 | 
    
| PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: New York  | 
    
| PublicationTitle | IEEE transactions on biomedical engineering | 
    
| PublicationTitleAbbrev | TBME | 
    
| PublicationTitleAlternate | IEEE Trans Biomed Eng | 
    
| PublicationYear | 2024 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 ref12 ref15 ref14 ref11 Salimans (ref51) 2016 ref10 ref16 ref18 Tarvainen (ref20) 2017 ref50 ref46 ref48 ref47 ref42 ref41 ref44 Khosla (ref45) 2020 ref8 ref7 Berthelot (ref22) 2019 ref9 ref4 ref3 ref6 ref5 ref40 Oliver (ref21) 2018 ref35 ref34 ref37 ref36 Lee (ref17) 2013 ref31 ref30 ref33 ref32 ref2 ref1 ref39 Laine (ref19) 2017 ref38 Szegedy (ref27) 2014 Clevert (ref49) 2016 ref24 ref26 ref25 ref29 Oord (ref43) 2018 Zhang (ref28) 2018 Sohn (ref23) 2020  | 
    
| References_xml | – ident: ref35 doi: 10.1109/TNSRE.2021.3059166 – ident: ref47 doi: 10.1088/1741-2552/aadea0 – ident: ref11 doi: 10.1109/TAMD.2015.2431497 – ident: ref15 doi: 10.7551/mitpress/9780262033589.001.0001 – ident: ref4 doi: 10.1016/j.eswa.2013.09.037 – start-page: 18661 volume-title: Proc. Adv. Neural Inf. Process. Syst. year: 2020 ident: ref45 article-title: Supervised contrastive learning – ident: ref38 doi: 10.3390/e22010096 – ident: ref50 doi: 10.5555/3045118.3045167 – ident: ref24 doi: 10.1109/IJCNN48605.2020.9207304 – ident: ref7 doi: 10.1109/TNSRE.2016.2627016 – year: 2018 ident: ref43 article-title: Representation learning with contrastive predictive coding – ident: ref12 doi: 10.1109/TBME.2022.3168570 – ident: ref32 doi: 10.5555/3524938.3525087 – volume-title: Proc. Int. Conf. Learn. Representations year: 2016 ident: ref49 article-title: Fast and accurate deep network learning by exponential linear units (ELUs) – start-page: 901 volume-title: Proc. Adv. Neural Inf. Process. Syst. year: 2016 ident: ref51 article-title: Weight normalization: A simple reparameterization to accelerate training of deep neural networks – ident: ref1 doi: 10.1007/978-3-642-02091-9_1 – ident: ref42 doi: 10.5555/3294996.3295163 – ident: ref40 doi: 10.1093/bioinformatics/btl242 – ident: ref18 doi: 10.1109/CVPR42600.2020.01070 – volume-title: Proc. Int. Conf. Learn. Representations year: 2014 ident: ref27 article-title: Intriguing properties of neural networks – start-page: 5050 volume-title: Proc. Adv. Neural Inf. Process. Syst. year: 2019 ident: ref22 article-title: MixMatch: A holistic approach to semi-supervised learning – ident: ref25 doi: 10.1109/TPAMI.2018.2858821 – ident: ref37 doi: 10.1007/978-3-030-36708-4_3 – ident: ref6 doi: 10.1109/JPROC.2012.2185009 – ident: ref26 doi: 10.24963/ijcai.2019/504 – ident: ref29 doi: 10.1109/CVPR52688.2022.01407 – volume-title: Proc. ICML Workshop Challenges Representation Learn. year: 2013 ident: ref17 article-title: Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks – ident: ref41 doi: 10.1007/978-3-030-58589-1_28 – ident: ref13 doi: 10.1109/TNSRE.2017.2748388 – ident: ref3 doi: 10.1109/5.939829 – ident: ref48 doi: 10.1038/sdata.2019.39 – ident: ref31 doi: 10.1109/CVPR42600.2020.00975 – ident: ref5 doi: 10.1109/JPROC.2023.3277471 – start-page: 596 volume-title: Proc. Adv. Neural Inf. Process. Syst. year: 2020 ident: ref23 article-title: FixMatch: Simplifying semi-supervised learning with consistency and confidence – ident: ref14 doi: 10.1088/1741-2552/abca18 – ident: ref30 doi: 10.1109/CVPR.2018.00393 – ident: ref8 doi: 10.1088/1741-2552/aab2f2 – ident: ref16 doi: 10.2200/s00196ed1v01y200906aim006 – ident: ref36 doi: 10.1007/978-3-030-04221-9_36 – ident: ref46 doi: 10.3389/fnins.2012.00055 – ident: ref9 doi: 10.1002/hbm.23730 – start-page: 1195 volume-title: Proc. Adv. Neural Inf. Process. Syst. year: 2017 ident: ref20 article-title: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results – ident: ref10 doi: 10.1088/1741-2552/aace8c – start-page: 3235 volume-title: Proc. Adv. Neural Inf. Process. Syst. year: 2018 ident: ref21 article-title: Realistic evaluation of deep semi-supervised learning algorithms – ident: ref39 doi: 10.1109/taffc.2022.3179717 – volume-title: Proc. Int. Conf. Learn. Representations year: 2017 ident: ref19 article-title: Temporal ensembling for semi-supervised learning – ident: ref34 doi: 10.1109/TPAMI.2019.2945942 – ident: ref2 doi: 10.3390/s120201211 – ident: ref33 doi: 10.1109/TNSRE.2017.2778178 – ident: ref44 doi: 10.1109/CVPR52688.2022.01402 – volume-title: Proc. Int. Conf. Learn. Representations year: 2018 ident: ref28 article-title: mixup: Beyond empirical risk minimization  | 
    
| SSID | ssj0014846 | 
    
| Score | 2.4654794 | 
    
| Snippet | Objective: An electroencephalogram (EEG) based brain-computer interface (BCI) maps the user's EEG signals into commands for external device control. Usually a... An electroencephalogram (EEG) based brain-computer interface (BCI) maps the user's EEG signals into commands for external device control. Usually a large...  | 
    
| SourceID | proquest pubmed crossref ieee  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 1308 | 
    
| SubjectTerms | Adaptation Adaptation models Brain Brain mapping Brain modeling Brain-computer interface Brain-Computer Interfaces classification Classification algorithms Computer applications Cyclohexylamines Data acquisition EEG electroencephalogram Electroencephalography Human-computer interface Implants Indenes Labels Machine learning Modules Predictive models Regularization Semi-supervised learning Semisupervised learning Supervised Machine Learning Training Transfer learning  | 
    
| Title | Deep Source Semi-Supervised Transfer Learning (DS3TL) for Cross-Subject EEG Classification | 
    
| URI | https://ieeexplore.ieee.org/document/10319796 https://www.ncbi.nlm.nih.gov/pubmed/37971908 https://www.proquest.com/docview/2969052096 https://www.proquest.com/docview/2891755636  | 
    
| Volume | 71 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1558-2531 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014846 issn: 0018-9294 databaseCode: RIE dateStart: 19640101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLfYDggOfIwBZQMZiQMgJXNrx7GPY-uYEN2lnTRxiWL7GU2DttqaC3897zluNZCGyCmKXxJb79nvZ78vxt4pcLqKwRfSWVEoUL5wJsYi1LFWyqkhaApwnpzp03P15aK6yMHqKRYGAJLzGZR0m2z5YeE7Oio7oJIEtrZ6i23VRvfBWhuTgTJ9VI4Y4gweWZVNmENhD2afJuOS6oSXkq4RVd6Tta1RGZo_9FEqsHI31kw65-QxO1v3tnc1uSq7lSv9r78SOf73cJ6wRxl98sNeXJ6yezDfYQ9v5STcYfcn2dr-jH07BljyaTre51P4eVlMuyWtLTcQeFJyEa55ztD6nb8_nsrZ1w8cYTA_osEiuaNjHj4ef-ap-ib5JSVR2GXnJ-PZ0WmRazEUXlZiVZigPUJJyoZmQxCtEUGZWIkWEZN2ShojQ7Qj3eITYY2vdR21xPWAMprJ6OVztj1fzOEl4w4RBRl2lDdRITwwFehayha0kQ4BzYCJNUcanxOVU72MH03asAjbED8b4meT-TlgHzevLPssHf8i3iVe3CLs2TBg-2u-N3ki3zQjq21yFcLmt5tmnIJkV2nnsOiQxuCelxKtIc2LXl42H1-L2as7frrHHmDfsi_QPtteXXfwGmHOyr1J4v0bnZvx3g | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_BkPh44GMMKAwwEg-AlMytHcd-hK2jQNuXdtK0lyh2bISAttqaF_567hy3GkhD5CmKL4mtO_t-9n0BvJbeqiI0LhPW8Ex66TKrQ8iaMpRSWtn3igKcJ1M1OpGfT4vTFKweY2G899H5zOd0G235zdK1dFR2QCUJTGnUdbhRSCmLLlxrazSQuovL4X2cwwMjkxGzz83B_MNkmFOl8FzQNaDae6I0JapD_YdGiiVWrkabUesc34Pppr-ds8n3vF3b3P36K5Xjfw_oPtxN-JO97wTmAVzzi124cykr4S7cnCR7-0M4O_J-xWbxgJ_N_M9v2axd0epy4RsW1Vzw5yzlaP3K3hzNxHz8liEQZoc0WCS3dNDDhsOPLNbfJM-kKAx7cHI8nB-OslSNIXOi4OtMN8ohmKR8aKZpeK15I3UoeI2YSVkptBZNMANV4xNutCtVGZTAFYFymongxCPYWSwX_gkwi5iCTDvS6SARIOjCq1KI2istLEKaHvANRyqXUpVTxYwfVdyycFMRPyviZ5X42YN321dWXZ6OfxHvES8uEXZs6MH-hu9VmsoX1cAoE52FsPnVthknIVlW6oVftkijcddLqdaQ5nEnL9uPb8Ts6RU_fQm3RvPJuBp_mn55Brexn8kzaB921uetf46gZ21fRFH_DXS49Ss | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Source+Semi-Supervised+Transfer+Learning+%28DS3TL%29+for+Cross-Subject+EEG+Classification&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Jiang%2C+Xue&rft.au=Meng%2C+Lubin&rft.au=Wang%2C+Ziwei&rft.au=Wu%2C+Dongrui&rft.date=2024-04-01&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=71&rft.issue=4&rft.spage=1308&rft.epage=1318&rft_id=info:doi/10.1109%2FTBME.2023.3333327&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TBME_2023_3333327 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |