Large Deviations and Ratio Limit Theorems for Pattern-Avoiding Permutations

For a fixed permutation τ, let $\mathcal{S}_N(\tau)$ be the set of permutations on N elements that avoid the pattern τ. Madras and Liu (2010) conjectured that $\lim_{N\rightarrow\infty}\frac{|\mathcal{S}_{N+1}(\tau)|}{ |\mathcal{S}_N(\tau)|}$ exists; if it does, it must equal the Stanley–Wilf limit....

Full description

Saved in:
Bibliographic Details
Published inCombinatorics, probability & computing Vol. 23; no. 2; pp. 161 - 200
Main Authors ATAPOUR, MAHSHID, MADRAS, NEAL
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.03.2014
Subjects
Online AccessGet full text
ISSN0963-5483
1469-2163
DOI10.1017/S0963548313000576

Cover

Abstract For a fixed permutation τ, let $\mathcal{S}_N(\tau)$ be the set of permutations on N elements that avoid the pattern τ. Madras and Liu (2010) conjectured that $\lim_{N\rightarrow\infty}\frac{|\mathcal{S}_{N+1}(\tau)|}{ |\mathcal{S}_N(\tau)|}$ exists; if it does, it must equal the Stanley–Wilf limit. We prove the conjecture for every permutation τ of length 5 or less, as well as for some longer cases (including 704 of the 720 permutations of length 6). We also consider permutations drawn at random from $\mathcal{S}_N(\tau)$, and we investigate properties of their graphs (viewing permutations as functions on {1,. . .,N}) scaled down to the unit square [0,1]2. We prove exact large deviation results for these graphs when τ has length 3; it follows, for example, that it is exponentially unlikely for a random 312-avoiding permutation to have points above the diagonal strip |y−x| < ε, but not unlikely to have points below the strip. For general τ, we show that some neighbourhood of the upper left corner of [0,1]2 is exponentially unlikely to contain a point of the graph if and only if τ starts with its largest element. For patterns such as τ=4231 we establish that this neighbourhood can be extended along the sides of [0,1]2 to come arbitrarily close to the corner points (0,0) and (1,1), as simulations had suggested.
AbstractList For a fixed permutation τ, let $\mathcal{S}_N(\tau)$ be the set of permutations on N elements that avoid the pattern τ. Madras and Liu (2010) conjectured that $\lim_{N\rightarrow\infty}\frac{|\mathcal{S}_{N+1}(\tau)|}{ |\mathcal{S}_N(\tau)|}$ exists; if it does, it must equal the Stanley–Wilf limit. We prove the conjecture for every permutation τ of length 5 or less, as well as for some longer cases (including 704 of the 720 permutations of length 6). We also consider permutations drawn at random from $\mathcal{S}_N(\tau)$ , and we investigate properties of their graphs (viewing permutations as functions on {1,. . ., N }) scaled down to the unit square [0,1] 2 . We prove exact large deviation results for these graphs when τ has length 3; it follows, for example, that it is exponentially unlikely for a random 312-avoiding permutation to have points above the diagonal strip | y−x | < ε, but not unlikely to have points below the strip. For general τ, we show that some neighbourhood of the upper left corner of [0,1] 2 is exponentially unlikely to contain a point of the graph if and only if τ starts with its largest element. For patterns such as τ=4231 we establish that this neighbourhood can be extended along the sides of [0,1] 2 to come arbitrarily close to the corner points (0,0) and (1,1), as simulations had suggested.
For a fixed permutation [tau], let [formula omitted, refer to PDF] be the set of permutations on N elements that avoid the pattern [tau]. Madras and Liu (2010) conjectured that [formula omitted, refer to PDF] exists; if it does, it must equal the Stanley-Wilf limit. We prove the conjecture for every permutation [tau] of length 5 or less, as well as for some longer cases (including 704 of the 720 permutations of length 6). We also consider permutations drawn at random from [formula omitted, refer to PDF], and we investigate properties of their graphs (viewing permutations as functions on {1,. . .,N}) scaled down to the unit square [0,1]2. We prove exact large deviation results for these graphs when [tau] has length 3; it follows, for example, that it is exponentially unlikely for a random 312-avoiding permutation to have points above the diagonal strip |y-x| < [straight epsilon], but not unlikely to have points below the strip. For general [tau], we show that some neighbourhood of the upper left corner of [0,1]2 is exponentially unlikely to contain a point of the graph if and only if [tau] starts with its largest element. For patterns such as [tau]=4231 we establish that this neighbourhood can be extended along the sides of [0,1]2 to come arbitrarily close to the corner points (0,0) and (1,1), as simulations had suggested. [PUBLICATION ABSTRACT]
For a fixed permutation τ, let $\mathcal{S}_N(\tau)$ be the set of permutations on N elements that avoid the pattern τ. Madras and Liu (2010) conjectured that $\lim_{N\rightarrow\infty}\frac{|\mathcal{S}_{N+1}(\tau)|}{ |\mathcal{S}_N(\tau)|}$ exists; if it does, it must equal the Stanley–Wilf limit. We prove the conjecture for every permutation τ of length 5 or less, as well as for some longer cases (including 704 of the 720 permutations of length 6). We also consider permutations drawn at random from $\mathcal{S}_N(\tau)$, and we investigate properties of their graphs (viewing permutations as functions on {1,. . .,N}) scaled down to the unit square [0,1]2. We prove exact large deviation results for these graphs when τ has length 3; it follows, for example, that it is exponentially unlikely for a random 312-avoiding permutation to have points above the diagonal strip |y−x| < ε, but not unlikely to have points below the strip. For general τ, we show that some neighbourhood of the upper left corner of [0,1]2 is exponentially unlikely to contain a point of the graph if and only if τ starts with its largest element. For patterns such as τ=4231 we establish that this neighbourhood can be extended along the sides of [0,1]2 to come arbitrarily close to the corner points (0,0) and (1,1), as simulations had suggested.
For a fixed permutation tau , let be the set of permutations on N elements that avoid the pattern tau . Madras and Liu (2010) conjectured that exists; if it does, it must equal the Stanley-Wilf limit. We prove the conjecture for every permutation tau of length 5 or less, as well as for some longer cases (including 704 of the 720 permutations of length 6). We also consider permutations drawn at random from , and we investigate properties of their graphs (viewing permutations as functions on {1,. . .,N}) scaled down to the unit square [0,1] super(2). We prove exact large deviation results for these graphs when tau has length 3; it follows, for example, that it is exponentially unlikely for a random 312-avoiding permutation to have points above the diagonal strip |y-x| < epsilon , but not unlikely to have points below the strip. For general tau , we show that some neighbourhood of the upper left corner of [0,1] super(2) is exponentially unlikely to contain a point of the graph if and only if tau starts with its largest element. For patterns such as tau =4231 we establish that this neighbourhood can be extended along the sides of [0,1] super(2) to come arbitrarily close to the corner points (0,0) and (1,1), as simulations had suggested.
Author ATAPOUR, MAHSHID
MADRAS, NEAL
Author_xml – sequence: 1
  givenname: MAHSHID
  surname: ATAPOUR
  fullname: ATAPOUR, MAHSHID
  email: atapour@math.usask.ca
  organization: 1Department of Finance and Management Science, University of Saskatchewan, 25 Campus Drive, Saskatoon, Saskatchewan S7N 5A7, Canada (e-mail: atapour@math.usask.ca)
– sequence: 2
  givenname: NEAL
  surname: MADRAS
  fullname: MADRAS, NEAL
  email: madras@mathstat.yorku.ca
  organization: 2Department of Mathematics and Statistics, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada (e-mail: madras@mathstat.yorku.ca)
BookMark eNp9kF1LwzAUhoMouE1_gHcFb7ypJk3SLJdjfmLBofO6pPmYGW0zk3Tgv3elu5CJXp0D7_McDu8YHLeu1QBcIHiNIGI3b5DnmJIpRhhCSFl-BEaI5DzNUI6PwaiP0z4_BeMQ1j1DczgCz4XwK53c6q0V0bo2JKJVyWu_J4VtbEyWH9p53YTEOJ8sRIzat-ls66yy7SpZaN90cVDPwIkRddDn-zkB7_d3y_ljWrw8PM1nRSoxhTGlIseEKqorbDiWKmNCZgTLXBnCjDaiwizjFRGikhWXmUBIk6nJpkpRKBjEE3A13N1499npEMvGBqnrWrTadaFEFCMIEcp69PIAXbvOt7vvSkQ4p4wjwnYUGijpXQhem3LjbSP8V4lg2ddb_qp357ADR9qhh-iFrf818d4UTeWtWukfT_1pfQM5Wo7u
CitedBy_id crossref_primary_10_1002_rsa_20882
crossref_primary_10_1112_jlms_jdv020
crossref_primary_10_1016_j_aam_2022_102361
crossref_primary_10_1016_j_aam_2021_102221
crossref_primary_10_1016_j_aam_2013_12_004
crossref_primary_10_1016_j_aam_2023_102520
crossref_primary_10_1016_j_disc_2024_114199
crossref_primary_10_1088_1751_8121_aca3de
crossref_primary_10_1214_17_AOP1223
crossref_primary_10_1016_j_dam_2017_02_013
crossref_primary_10_1093_imrn_rnad096
crossref_primary_10_1002_rsa_20601
Cites_doi 10.1016/0001-8708(81)90012-8
10.1016/j.ejc.2005.09.005
10.1201/9780203494370
10.1006/jcta.1998.2908
10.1016/j.jcta.2004.04.002
10.1016/S0012-365X(02)00443-0
10.1016/j.jcta.2012.05.006
10.1017/CBO9780511801655
10.1016/j.jcta.2009.12.007
10.1006/jcta.1999.3002
10.1063/1.1704022
10.37236/1477
10.1088/0305-4470/18/1/022
10.1016/j.aam.2005.05.007
10.1016/S0195-6698(85)80052-4
ContentType Journal Article
Copyright Copyright © Cambridge University Press 2013
Copyright_xml – notice: Copyright © Cambridge University Press 2013
DBID AAYXX
CITATION
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1017/S0963548313000576
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central (via ProQuest)
Technology Collection (ProQuest)
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection (Proquest)
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Computer Science Database

Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
DocumentTitleAlternate M. Atapour and N. Madras
Large Deviations and Ratio Limit Theorems for Pattern-Avoiding Permutations
EISSN 1469-2163
EndPage 200
ExternalDocumentID 3222284431
10_1017_S0963548313000576
Genre Feature
GroupedDBID -1D
-1F
-2P
-2V
-E.
-~6
-~N
-~X
.FH
09C
09E
0E1
0R~
29F
3V.
4.4
5GY
5VS
6~7
74X
74Y
7~V
8FE
8FG
8R4
8R5
9M5
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAMNQ
AANRG
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABBZL
ABITZ
ABJCF
ABKKG
ABMWE
ABMYL
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABVFV
ABXAU
ABZCX
ABZUI
ACBMC
ACCHT
ACETC
ACGFS
ACIMK
ACIWK
ACMRT
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADGEJ
ADKIL
ADOCW
ADOVH
ADOVT
ADVJH
AEBAK
AEBPU
AEHGV
AEMTW
AENCP
AENGE
AEYYC
AFFUJ
AFKQG
AFKRA
AFKSM
AFLOS
AFLVW
AFUTZ
AGABE
AGBYD
AGJUD
AGLWM
AGOOT
AHQXX
AHRGI
AI.
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALWZO
AQJOH
ARABE
ARAPS
ARZZG
ATUCA
AUXHV
AYIQA
AZQEC
BBLKV
BCGOX
BENPR
BESQT
BGHMG
BGLVJ
BJBOZ
BLZWO
BMAJL
BPHCQ
BQFHP
C0O
CAG
CBIIA
CCPQU
CCQAD
CCUQV
CDIZJ
CFAFE
CFBFF
CGQII
CHEAL
CJCSC
COF
DC4
DOHLZ
DWQXO
EBS
EGQIC
EJD
GNUQQ
HCIFZ
HG-
HST
HZ~
I.6
I.7
I.9
IH6
IOEEP
IOO
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
K6V
K7-
KAFGG
KC5
KCGVB
KFECR
L6V
L98
LHUNA
LW7
M-V
M0N
M7S
M7~
M8.
NIKVX
NMFBF
NZEOI
O9-
OYBOY
P2P
P62
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RIG
ROL
RR0
S6-
S6U
SAAAG
T9M
TN5
UT1
VH1
WFFJZ
WQ3
WXU
WXY
WYP
ZDLDU
ZJOSE
ZMEZD
ZYDXJ
~V1
AAKNA
AATMM
AAYXX
ABGDZ
ABVKB
ABVZP
ABXHF
ACDLN
ACEJA
ACRPL
ADNMO
AEMFK
AFZFC
AGQPQ
AKMAY
AMVHM
ANOYL
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c350t-5a6345d5eb3f93cd27ac243c6df47fefab3729b4aabcb9c2a11e48f28dd50a703
IEDL.DBID BENPR
ISSN 0963-5483
IngestDate Fri Sep 05 09:34:39 EDT 2025
Sat Aug 23 14:51:21 EDT 2025
Thu Apr 24 23:06:53 EDT 2025
Wed Oct 01 04:30:54 EDT 2025
Wed Mar 13 05:51:22 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Primary 60C05
60F10
Secondary 05A05
05A16
Language English
License https://www.cambridge.org/core/terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c350t-5a6345d5eb3f93cd27ac243c6df47fefab3729b4aabcb9c2a11e48f28dd50a703
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 1499579147
PQPubID 33829
PageCount 40
ParticipantIDs proquest_miscellaneous_1531001120
proquest_journals_1499579147
crossref_primary_10_1017_S0963548313000576
crossref_citationtrail_10_1017_S0963548313000576
cambridge_journals_10_1017_S0963548313000576
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20140300
2014-03-00
20140301
PublicationDateYYYYMMDD 2014-03-01
PublicationDate_xml – month: 03
  year: 2014
  text: 20140300
PublicationDecade 2010
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationSubtitle CPC
PublicationTitle Combinatorics, probability & computing
PublicationTitleAlternate Combinator. Probab. Comp
PublicationYear 2014
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References S0963548313000576_ref8
S0963548313000576_ref14
S0963548313000576_ref7
S0963548313000576_ref6
S0963548313000576_ref16
S0963548313000576_ref18
S0963548313000576_ref19
S0963548313000576_ref9
Madras (S0963548313000576_ref15) 2010
Arratia (S0963548313000576_ref3) 1999; 6
S0963548313000576_ref4
S0963548313000576_ref2
S0963548313000576_ref1
Backelin (S0963548313000576_ref5) 2001
S0963548313000576_ref20
S0963548313000576_ref10
Madras (S0963548313000576_ref17) 1993
S0963548313000576_ref21
S0963548313000576_ref11
S0963548313000576_ref12
S0963548313000576_ref13
References_xml – volume-title: Algorithmic Probability and Combinatorics
  year: 2010
  ident: S0963548313000576_ref15
– volume-title: The Self-Avoiding Walk
  year: 1993
  ident: S0963548313000576_ref17
– ident: S0963548313000576_ref20
  doi: 10.1016/0001-8708(81)90012-8
– ident: S0963548313000576_ref8
  doi: 10.1016/j.ejc.2005.09.005
– ident: S0963548313000576_ref19
– ident: S0963548313000576_ref7
  doi: 10.1201/9780203494370
– ident: S0963548313000576_ref16
– ident: S0963548313000576_ref6
  doi: 10.1006/jcta.1998.2908
– ident: S0963548313000576_ref18
  doi: 10.1016/j.jcta.2004.04.002
– ident: S0963548313000576_ref4
  doi: 10.1016/S0012-365X(02)00443-0
– ident: S0963548313000576_ref11
  doi: 10.1016/j.jcta.2012.05.006
– ident: S0963548313000576_ref12
  doi: 10.1017/CBO9780511801655
– ident: S0963548313000576_ref9
– ident: S0963548313000576_ref10
  doi: 10.1016/j.jcta.2009.12.007
– volume-title: Proc. 13th Conference on Formal Power Series and Algebraic Combinatorics
  year: 2001
  ident: S0963548313000576_ref5
– ident: S0963548313000576_ref2
  doi: 10.1006/jcta.1999.3002
– ident: S0963548313000576_ref14
  doi: 10.1063/1.1704022
– volume: 6
  start-page: N1
  year: 1999
  ident: S0963548313000576_ref3
  article-title: On the Stanley–Wilf conjecture for the number of permutations avoiding a given pattern
  publication-title: Electron. J. Combin.
  doi: 10.37236/1477
– ident: S0963548313000576_ref13
  doi: 10.1088/0305-4470/18/1/022
– ident: S0963548313000576_ref1
  doi: 10.1016/j.aam.2005.05.007
– ident: S0963548313000576_ref21
  doi: 10.1016/S0195-6698(85)80052-4
SSID ssj0005560
Score 2.0578158
Snippet For a fixed permutation τ, let $\mathcal{S}_N(\tau)$ be the set of permutations on N elements that avoid the pattern τ. Madras and Liu (2010) conjectured that...
For a fixed permutation τ, let $\mathcal{S}_N(\tau)$ be the set of permutations on N elements that avoid the pattern τ. Madras and Liu (2010) conjectured that...
For a fixed permutation [tau], let [formula omitted, refer to PDF] be the set of permutations on N elements that avoid the pattern [tau]. Madras and Liu (2010)...
For a fixed permutation tau , let be the set of permutations on N elements that avoid the pattern tau . Madras and Liu (2010) conjectured that exists; if it...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 161
SubjectTerms Combinatorial analysis
Computer simulation
Corners
Deviation
Graphs
Mathematical analysis
Permutations
Strip
Title Large Deviations and Ratio Limit Theorems for Pattern-Avoiding Permutations
URI https://www.cambridge.org/core/product/identifier/S0963548313000576/type/journal_article
https://www.proquest.com/docview/1499579147
https://www.proquest.com/docview/1531001120
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 1469-2163
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0005560
  issn: 0963-5483
  databaseCode: AMVHM
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1469-2163
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0005560
  issn: 0963-5483
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1469-2163
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0005560
  issn: 0963-5483
  databaseCode: 8FG
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60XvQgPrFaJYInMZjdTbrbg0h9VPFRiljorWSTLAi6rbb19zuzLy1Cb0s2WZY8Zr7km3wDcEJkHfodw1XLSC6dp3gsvJgLp5wfm6jpdBZt0W3e9-XDQA2WoFvehaGwytImZobajgydkZ8jkidGyZPh5fiTU9YoYlfLFBq6SK1gLzKJsWVY8UkZqwYrV7fd3stv0Ed-bxhxO4UEREHJc2Yi0lhIZUTwIIqZU1uY91rzRjvzRJ0NWC8gJGvnY74JSy7dgrXnSn91sg2PTxTgzW7Q6-Unckynlr3QM8uuNLHsTr77mDAErayXiWymvP09eiNfxnpor2c5ST_ZgX7n9vX6nhdpE7gJlJhypZuBVFbhNjlpBcb6oTa-DEzTJjJMXKJjoupiqXVs4pbxtec5GSV-ZK0SGi3ALtTSUer2gFmLy9tTxgihcSPmadFKrAwtfhq3cUbU4azqomEx-SfDPHAsHP7r0TqIsheHppAgp0wY74uanFZNxrn-xqLKjXJo_vxNNXHqcFy9xkVEzIhO3WiGdRTxHAg9xf7iTxzAKiImmQehNaA2_Zq5Q0Ql0_gIlqPO3VEx4X4ADATcMg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB58HNSD-MT1GUEvYjBtk-32IOKT1V2XRRS81TRJQdCu2l3FP-dvc9KXLsLevJU2CWXymJnMN98A7NhgHeodRUWgOOXGETRiTkSZEcaNVKNuZIa26NSbd_zqXtyPwVeZC2NhleWZmB3UuqfsHfkBWvI2ouRw_-jlldqqUTa6WpbQkEVpBX2YUYwViR0t8_mBLlx6eHmG873ruhfnt6dNWlQZoMoTrE-FrHtcaIFeZRx4Sru-VC73VF3H3I9NLCMb2Yq4lJGKAuVKxzG8EbsNrQWTuGFw3HGY5B4P0PmbPDnvdG9-QCZ5njL6CRaC0PDKuGpGWo0v7TsbUEKraYjdYVhLDiuJTPNdzMFsYbKS43yNzcOYSRZg5rrie00XodW2gHJyhlo2vwEkMtHkxj6TLIWKZBwA5jklaCSTbkbqmdDj996j1Z2ki_phkIMC0iW4-xcBLsNE0kvMChCt8ThxhFKMSXT8HMmCWHNf49DoNipWg_1KRGGx2dIwB6r54R-J1oCVUgxVQXluK288jeqyV3V5yfk-RjVeL6fm199UC7UG29Vn3LQ2EiMT0xtgG2HjKmjqstXRQ2zBVPP2uh22LzutNZhGa43nALh1mOi_DcwGWkT9aLNYdgQe_nulfwMAFRo1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large+Deviations+and+Ratio+Limit+Theorems+for+Pattern-Avoiding+Permutations&rft.jtitle=Combinatorics%2C+probability+%26+computing&rft.au=ATAPOUR%2C+MAHSHID&rft.au=Madras%2C+Neal&rft.date=2014-03-01&rft.issn=0963-5483&rft.eissn=1469-2163&rft.volume=23&rft.issue=2&rft.spage=161&rft.epage=200&rft_id=info:doi/10.1017%2FS0963548313000576&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0963-5483&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0963-5483&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0963-5483&client=summon