Large Deviations and Ratio Limit Theorems for Pattern-Avoiding Permutations
For a fixed permutation τ, let $\mathcal{S}_N(\tau)$ be the set of permutations on N elements that avoid the pattern τ. Madras and Liu (2010) conjectured that $\lim_{N\rightarrow\infty}\frac{|\mathcal{S}_{N+1}(\tau)|}{ |\mathcal{S}_N(\tau)|}$ exists; if it does, it must equal the Stanley–Wilf limit....
        Saved in:
      
    
          | Published in | Combinatorics, probability & computing Vol. 23; no. 2; pp. 161 - 200 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Cambridge, UK
          Cambridge University Press
    
        01.03.2014
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0963-5483 1469-2163  | 
| DOI | 10.1017/S0963548313000576 | 
Cover
| Abstract | For a fixed permutation τ, let $\mathcal{S}_N(\tau)$ be the set of permutations on N elements that avoid the pattern τ. Madras and Liu (2010) conjectured that $\lim_{N\rightarrow\infty}\frac{|\mathcal{S}_{N+1}(\tau)|}{ |\mathcal{S}_N(\tau)|}$ exists; if it does, it must equal the Stanley–Wilf limit. We prove the conjecture for every permutation τ of length 5 or less, as well as for some longer cases (including 704 of the 720 permutations of length 6). We also consider permutations drawn at random from $\mathcal{S}_N(\tau)$, and we investigate properties of their graphs (viewing permutations as functions on {1,. . .,N}) scaled down to the unit square [0,1]2. We prove exact large deviation results for these graphs when τ has length 3; it follows, for example, that it is exponentially unlikely for a random 312-avoiding permutation to have points above the diagonal strip |y−x| < ε, but not unlikely to have points below the strip. For general τ, we show that some neighbourhood of the upper left corner of [0,1]2 is exponentially unlikely to contain a point of the graph if and only if τ starts with its largest element. For patterns such as τ=4231 we establish that this neighbourhood can be extended along the sides of [0,1]2 to come arbitrarily close to the corner points (0,0) and (1,1), as simulations had suggested. | 
    
|---|---|
| AbstractList | For a fixed permutation τ, let
$\mathcal{S}_N(\tau)$
be the set of permutations on
N
elements that avoid the pattern τ. Madras and Liu (2010) conjectured that
$\lim_{N\rightarrow\infty}\frac{|\mathcal{S}_{N+1}(\tau)|}{ |\mathcal{S}_N(\tau)|}$
exists; if it does, it must equal the Stanley–Wilf limit. We prove the conjecture for every permutation τ of length 5 or less, as well as for some longer cases (including 704 of the 720 permutations of length 6). We also consider permutations drawn at random from
$\mathcal{S}_N(\tau)$
, and we investigate properties of their graphs (viewing permutations as functions on {1,. . .,
N
}) scaled down to the unit square [0,1]
2
. We prove exact large deviation results for these graphs when τ has length 3; it follows, for example, that it is exponentially unlikely for a random 312-avoiding permutation to have points above the diagonal strip |
y−x
| < ε, but not unlikely to have points below the strip. For general τ, we show that some neighbourhood of the upper left corner of [0,1]
2
is exponentially unlikely to contain a point of the graph if and only if τ starts with its largest element. For patterns such as τ=4231 we establish that this neighbourhood can be extended along the sides of [0,1]
2
to come arbitrarily close to the corner points (0,0) and (1,1), as simulations had suggested. For a fixed permutation [tau], let [formula omitted, refer to PDF] be the set of permutations on N elements that avoid the pattern [tau]. Madras and Liu (2010) conjectured that [formula omitted, refer to PDF] exists; if it does, it must equal the Stanley-Wilf limit. We prove the conjecture for every permutation [tau] of length 5 or less, as well as for some longer cases (including 704 of the 720 permutations of length 6). We also consider permutations drawn at random from [formula omitted, refer to PDF], and we investigate properties of their graphs (viewing permutations as functions on {1,. . .,N}) scaled down to the unit square [0,1]2. We prove exact large deviation results for these graphs when [tau] has length 3; it follows, for example, that it is exponentially unlikely for a random 312-avoiding permutation to have points above the diagonal strip |y-x| < [straight epsilon], but not unlikely to have points below the strip. For general [tau], we show that some neighbourhood of the upper left corner of [0,1]2 is exponentially unlikely to contain a point of the graph if and only if [tau] starts with its largest element. For patterns such as [tau]=4231 we establish that this neighbourhood can be extended along the sides of [0,1]2 to come arbitrarily close to the corner points (0,0) and (1,1), as simulations had suggested. [PUBLICATION ABSTRACT] For a fixed permutation τ, let $\mathcal{S}_N(\tau)$ be the set of permutations on N elements that avoid the pattern τ. Madras and Liu (2010) conjectured that $\lim_{N\rightarrow\infty}\frac{|\mathcal{S}_{N+1}(\tau)|}{ |\mathcal{S}_N(\tau)|}$ exists; if it does, it must equal the Stanley–Wilf limit. We prove the conjecture for every permutation τ of length 5 or less, as well as for some longer cases (including 704 of the 720 permutations of length 6). We also consider permutations drawn at random from $\mathcal{S}_N(\tau)$, and we investigate properties of their graphs (viewing permutations as functions on {1,. . .,N}) scaled down to the unit square [0,1]2. We prove exact large deviation results for these graphs when τ has length 3; it follows, for example, that it is exponentially unlikely for a random 312-avoiding permutation to have points above the diagonal strip |y−x| < ε, but not unlikely to have points below the strip. For general τ, we show that some neighbourhood of the upper left corner of [0,1]2 is exponentially unlikely to contain a point of the graph if and only if τ starts with its largest element. For patterns such as τ=4231 we establish that this neighbourhood can be extended along the sides of [0,1]2 to come arbitrarily close to the corner points (0,0) and (1,1), as simulations had suggested. For a fixed permutation tau , let be the set of permutations on N elements that avoid the pattern tau . Madras and Liu (2010) conjectured that exists; if it does, it must equal the Stanley-Wilf limit. We prove the conjecture for every permutation tau of length 5 or less, as well as for some longer cases (including 704 of the 720 permutations of length 6). We also consider permutations drawn at random from , and we investigate properties of their graphs (viewing permutations as functions on {1,. . .,N}) scaled down to the unit square [0,1] super(2). We prove exact large deviation results for these graphs when tau has length 3; it follows, for example, that it is exponentially unlikely for a random 312-avoiding permutation to have points above the diagonal strip |y-x| < epsilon , but not unlikely to have points below the strip. For general tau , we show that some neighbourhood of the upper left corner of [0,1] super(2) is exponentially unlikely to contain a point of the graph if and only if tau starts with its largest element. For patterns such as tau =4231 we establish that this neighbourhood can be extended along the sides of [0,1] super(2) to come arbitrarily close to the corner points (0,0) and (1,1), as simulations had suggested.  | 
    
| Author | ATAPOUR, MAHSHID MADRAS, NEAL  | 
    
| Author_xml | – sequence: 1 givenname: MAHSHID surname: ATAPOUR fullname: ATAPOUR, MAHSHID email: atapour@math.usask.ca organization: 1Department of Finance and Management Science, University of Saskatchewan, 25 Campus Drive, Saskatoon, Saskatchewan S7N 5A7, Canada (e-mail: atapour@math.usask.ca) – sequence: 2 givenname: NEAL surname: MADRAS fullname: MADRAS, NEAL email: madras@mathstat.yorku.ca organization: 2Department of Mathematics and Statistics, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada (e-mail: madras@mathstat.yorku.ca)  | 
    
| BookMark | eNp9kF1LwzAUhoMouE1_gHcFb7ypJk3SLJdjfmLBofO6pPmYGW0zk3Tgv3elu5CJXp0D7_McDu8YHLeu1QBcIHiNIGI3b5DnmJIpRhhCSFl-BEaI5DzNUI6PwaiP0z4_BeMQ1j1DczgCz4XwK53c6q0V0bo2JKJVyWu_J4VtbEyWH9p53YTEOJ8sRIzat-ls66yy7SpZaN90cVDPwIkRddDn-zkB7_d3y_ljWrw8PM1nRSoxhTGlIseEKqorbDiWKmNCZgTLXBnCjDaiwizjFRGikhWXmUBIk6nJpkpRKBjEE3A13N1499npEMvGBqnrWrTadaFEFCMIEcp69PIAXbvOt7vvSkQ4p4wjwnYUGijpXQhem3LjbSP8V4lg2ddb_qp357ADR9qhh-iFrf818d4UTeWtWukfT_1pfQM5Wo7u | 
    
| CitedBy_id | crossref_primary_10_1002_rsa_20882 crossref_primary_10_1112_jlms_jdv020 crossref_primary_10_1016_j_aam_2022_102361 crossref_primary_10_1016_j_aam_2021_102221 crossref_primary_10_1016_j_aam_2013_12_004 crossref_primary_10_1016_j_aam_2023_102520 crossref_primary_10_1016_j_disc_2024_114199 crossref_primary_10_1088_1751_8121_aca3de crossref_primary_10_1214_17_AOP1223 crossref_primary_10_1016_j_dam_2017_02_013 crossref_primary_10_1093_imrn_rnad096 crossref_primary_10_1002_rsa_20601  | 
    
| Cites_doi | 10.1016/0001-8708(81)90012-8 10.1016/j.ejc.2005.09.005 10.1201/9780203494370 10.1006/jcta.1998.2908 10.1016/j.jcta.2004.04.002 10.1016/S0012-365X(02)00443-0 10.1016/j.jcta.2012.05.006 10.1017/CBO9780511801655 10.1016/j.jcta.2009.12.007 10.1006/jcta.1999.3002 10.1063/1.1704022 10.37236/1477 10.1088/0305-4470/18/1/022 10.1016/j.aam.2005.05.007 10.1016/S0195-6698(85)80052-4  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright © Cambridge University Press 2013 | 
    
| Copyright_xml | – notice: Copyright © Cambridge University Press 2013 | 
    
| DBID | AAYXX CITATION 3V. 7SC 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V L7M L~C L~D M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U  | 
    
| DOI | 10.1017/S0963548313000576 | 
    
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central (via ProQuest) Technology Collection (ProQuest) ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection (Proquest) ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic  | 
    
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New)  | 
    
| DatabaseTitleList | CrossRef Computer Science Database Computer and Information Systems Abstracts  | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Mathematics | 
    
| DocumentTitleAlternate | M. Atapour and N. Madras Large Deviations and Ratio Limit Theorems for Pattern-Avoiding Permutations  | 
    
| EISSN | 1469-2163 | 
    
| EndPage | 200 | 
    
| ExternalDocumentID | 3222284431 10_1017_S0963548313000576  | 
    
| Genre | Feature | 
    
| GroupedDBID | -1D -1F -2P -2V -E. -~6 -~N -~X .FH 09C 09E 0E1 0R~ 29F 3V. 4.4 5GY 5VS 6~7 74X 74Y 7~V 8FE 8FG 8R4 8R5 9M5 AAAZR AABES AABWE AACJH AAEED AAGFV AAKTX AAMNQ AANRG AARAB AASVR AAUIS AAUKB ABBXD ABBZL ABITZ ABJCF ABKKG ABMWE ABMYL ABQTM ABQWD ABROB ABTCQ ABUWG ABVFV ABXAU ABZCX ABZUI ACBMC ACCHT ACETC ACGFS ACIMK ACIWK ACMRT ACQFJ ACREK ACUIJ ACUYZ ACWGA ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADGEJ ADKIL ADOCW ADOVH ADOVT ADVJH AEBAK AEBPU AEHGV AEMTW AENCP AENGE AEYYC AFFUJ AFKQG AFKRA AFKSM AFLOS AFLVW AFUTZ AGABE AGBYD AGJUD AGLWM AGOOT AHQXX AHRGI AI. AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS AKZCZ ALMA_UNASSIGNED_HOLDINGS ALWZO AQJOH ARABE ARAPS ARZZG ATUCA AUXHV AYIQA AZQEC BBLKV BCGOX BENPR BESQT BGHMG BGLVJ BJBOZ BLZWO BMAJL BPHCQ BQFHP C0O CAG CBIIA CCPQU CCQAD CCUQV CDIZJ CFAFE CFBFF CGQII CHEAL CJCSC COF DC4 DOHLZ DWQXO EBS EGQIC EJD GNUQQ HCIFZ HG- HST HZ~ I.6 I.7 I.9 IH6 IOEEP IOO IS6 I~P J36 J38 J3A JHPGK JQKCU K6V K7- KAFGG KC5 KCGVB KFECR L6V L98 LHUNA LW7 M-V M0N M7S M7~ M8. NIKVX NMFBF NZEOI O9- OYBOY P2P P62 PQQKQ PROAC PTHSS PYCCK Q2X RAMDC RCA RIG ROL RR0 S6- S6U SAAAG T9M TN5 UT1 VH1 WFFJZ WQ3 WXU WXY WYP ZDLDU ZJOSE ZMEZD ZYDXJ ~V1 AAKNA AATMM AAYXX ABGDZ ABVKB ABVZP ABXHF ACDLN ACEJA ACRPL ADNMO AEMFK AFZFC AGQPQ AKMAY AMVHM ANOYL CITATION PHGZM PHGZT PQGLB PUEGO 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U  | 
    
| ID | FETCH-LOGICAL-c350t-5a6345d5eb3f93cd27ac243c6df47fefab3729b4aabcb9c2a11e48f28dd50a703 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 0963-5483 | 
    
| IngestDate | Fri Sep 05 09:34:39 EDT 2025 Sat Aug 23 14:51:21 EDT 2025 Thu Apr 24 23:06:53 EDT 2025 Wed Oct 01 04:30:54 EDT 2025 Wed Mar 13 05:51:22 EDT 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Keywords | Primary 60C05 60F10 Secondary 05A05 05A16  | 
    
| Language | English | 
    
| License | https://www.cambridge.org/core/terms | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c350t-5a6345d5eb3f93cd27ac243c6df47fefab3729b4aabcb9c2a11e48f28dd50a703 | 
    
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23  | 
    
| PQID | 1499579147 | 
    
| PQPubID | 33829 | 
    
| PageCount | 40 | 
    
| ParticipantIDs | proquest_miscellaneous_1531001120 proquest_journals_1499579147 crossref_primary_10_1017_S0963548313000576 crossref_citationtrail_10_1017_S0963548313000576 cambridge_journals_10_1017_S0963548313000576  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20140300 2014-03-00 20140301  | 
    
| PublicationDateYYYYMMDD | 2014-03-01 | 
    
| PublicationDate_xml | – month: 03 year: 2014 text: 20140300  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Cambridge, UK | 
    
| PublicationPlace_xml | – name: Cambridge, UK – name: Cambridge  | 
    
| PublicationSubtitle | CPC | 
    
| PublicationTitle | Combinatorics, probability & computing | 
    
| PublicationTitleAlternate | Combinator. Probab. Comp | 
    
| PublicationYear | 2014 | 
    
| Publisher | Cambridge University Press | 
    
| Publisher_xml | – name: Cambridge University Press | 
    
| References | S0963548313000576_ref8 S0963548313000576_ref14 S0963548313000576_ref7 S0963548313000576_ref6 S0963548313000576_ref16 S0963548313000576_ref18 S0963548313000576_ref19 S0963548313000576_ref9 Madras (S0963548313000576_ref15) 2010 Arratia (S0963548313000576_ref3) 1999; 6 S0963548313000576_ref4 S0963548313000576_ref2 S0963548313000576_ref1 Backelin (S0963548313000576_ref5) 2001 S0963548313000576_ref20 S0963548313000576_ref10 Madras (S0963548313000576_ref17) 1993 S0963548313000576_ref21 S0963548313000576_ref11 S0963548313000576_ref12 S0963548313000576_ref13  | 
    
| References_xml | – volume-title: Algorithmic Probability and Combinatorics year: 2010 ident: S0963548313000576_ref15 – volume-title: The Self-Avoiding Walk year: 1993 ident: S0963548313000576_ref17 – ident: S0963548313000576_ref20 doi: 10.1016/0001-8708(81)90012-8 – ident: S0963548313000576_ref8 doi: 10.1016/j.ejc.2005.09.005 – ident: S0963548313000576_ref19 – ident: S0963548313000576_ref7 doi: 10.1201/9780203494370 – ident: S0963548313000576_ref16 – ident: S0963548313000576_ref6 doi: 10.1006/jcta.1998.2908 – ident: S0963548313000576_ref18 doi: 10.1016/j.jcta.2004.04.002 – ident: S0963548313000576_ref4 doi: 10.1016/S0012-365X(02)00443-0 – ident: S0963548313000576_ref11 doi: 10.1016/j.jcta.2012.05.006 – ident: S0963548313000576_ref12 doi: 10.1017/CBO9780511801655 – ident: S0963548313000576_ref9 – ident: S0963548313000576_ref10 doi: 10.1016/j.jcta.2009.12.007 – volume-title: Proc. 13th Conference on Formal Power Series and Algebraic Combinatorics year: 2001 ident: S0963548313000576_ref5 – ident: S0963548313000576_ref2 doi: 10.1006/jcta.1999.3002 – ident: S0963548313000576_ref14 doi: 10.1063/1.1704022 – volume: 6 start-page: N1 year: 1999 ident: S0963548313000576_ref3 article-title: On the Stanley–Wilf conjecture for the number of permutations avoiding a given pattern publication-title: Electron. J. Combin. doi: 10.37236/1477 – ident: S0963548313000576_ref13 doi: 10.1088/0305-4470/18/1/022 – ident: S0963548313000576_ref1 doi: 10.1016/j.aam.2005.05.007 – ident: S0963548313000576_ref21 doi: 10.1016/S0195-6698(85)80052-4  | 
    
| SSID | ssj0005560 | 
    
| Score | 2.0578158 | 
    
| Snippet | For a fixed permutation τ, let $\mathcal{S}_N(\tau)$ be the set of permutations on N elements that avoid the pattern τ. Madras and Liu (2010) conjectured that... For a fixed permutation τ, let $\mathcal{S}_N(\tau)$ be the set of permutations on N elements that avoid the pattern τ. Madras and Liu (2010) conjectured that... For a fixed permutation [tau], let [formula omitted, refer to PDF] be the set of permutations on N elements that avoid the pattern [tau]. Madras and Liu (2010)... For a fixed permutation tau , let be the set of permutations on N elements that avoid the pattern tau . Madras and Liu (2010) conjectured that exists; if it...  | 
    
| SourceID | proquest crossref cambridge  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 161 | 
    
| SubjectTerms | Combinatorial analysis Computer simulation Corners Deviation Graphs Mathematical analysis Permutations Strip  | 
    
| Title | Large Deviations and Ratio Limit Theorems for Pattern-Avoiding Permutations | 
    
| URI | https://www.cambridge.org/core/product/identifier/S0963548313000576/type/journal_article https://www.proquest.com/docview/1499579147 https://www.proquest.com/docview/1531001120  | 
    
| Volume | 23 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Mathematics Source customDbUrl: eissn: 1469-2163 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0005560 issn: 0963-5483 databaseCode: AMVHM dateStart: 19920101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1469-2163 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0005560 issn: 0963-5483 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1469-2163 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0005560 issn: 0963-5483 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60XvQgPrFaJYInMZjdTbrbg0h9VPFRiljorWSTLAi6rbb19zuzLy1Cb0s2WZY8Zr7km3wDcEJkHfodw1XLSC6dp3gsvJgLp5wfm6jpdBZt0W3e9-XDQA2WoFvehaGwytImZobajgydkZ8jkidGyZPh5fiTU9YoYlfLFBq6SK1gLzKJsWVY8UkZqwYrV7fd3stv0Ed-bxhxO4UEREHJc2Yi0lhIZUTwIIqZU1uY91rzRjvzRJ0NWC8gJGvnY74JSy7dgrXnSn91sg2PTxTgzW7Q6-Unckynlr3QM8uuNLHsTr77mDAErayXiWymvP09eiNfxnpor2c5ST_ZgX7n9vX6nhdpE7gJlJhypZuBVFbhNjlpBcb6oTa-DEzTJjJMXKJjoupiqXVs4pbxtec5GSV-ZK0SGi3ALtTSUer2gFmLy9tTxgihcSPmadFKrAwtfhq3cUbU4azqomEx-SfDPHAsHP7r0TqIsheHppAgp0wY74uanFZNxrn-xqLKjXJo_vxNNXHqcFy9xkVEzIhO3WiGdRTxHAg9xf7iTxzAKiImmQehNaA2_Zq5Q0Ql0_gIlqPO3VEx4X4ADATcMg | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB58HNSD-MT1GUEvYjBtk-32IOKT1V2XRRS81TRJQdCu2l3FP-dvc9KXLsLevJU2CWXymJnMN98A7NhgHeodRUWgOOXGETRiTkSZEcaNVKNuZIa26NSbd_zqXtyPwVeZC2NhleWZmB3UuqfsHfkBWvI2ouRw_-jlldqqUTa6WpbQkEVpBX2YUYwViR0t8_mBLlx6eHmG873ruhfnt6dNWlQZoMoTrE-FrHtcaIFeZRx4Sru-VC73VF3H3I9NLCMb2Yq4lJGKAuVKxzG8EbsNrQWTuGFw3HGY5B4P0PmbPDnvdG9-QCZ5njL6CRaC0PDKuGpGWo0v7TsbUEKraYjdYVhLDiuJTPNdzMFsYbKS43yNzcOYSRZg5rrie00XodW2gHJyhlo2vwEkMtHkxj6TLIWKZBwA5jklaCSTbkbqmdDj996j1Z2ki_phkIMC0iW4-xcBLsNE0kvMChCt8ThxhFKMSXT8HMmCWHNf49DoNipWg_1KRGGx2dIwB6r54R-J1oCVUgxVQXluK288jeqyV3V5yfk-RjVeL6fm199UC7UG29Vn3LQ2EiMT0xtgG2HjKmjqstXRQ2zBVPP2uh22LzutNZhGa43nALh1mOi_DcwGWkT9aLNYdgQe_nulfwMAFRo1 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large+Deviations+and+Ratio+Limit+Theorems+for+Pattern-Avoiding+Permutations&rft.jtitle=Combinatorics%2C+probability+%26+computing&rft.au=ATAPOUR%2C+MAHSHID&rft.au=Madras%2C+Neal&rft.date=2014-03-01&rft.issn=0963-5483&rft.eissn=1469-2163&rft.volume=23&rft.issue=2&rft.spage=161&rft.epage=200&rft_id=info:doi/10.1017%2FS0963548313000576&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0963-5483&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0963-5483&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0963-5483&client=summon |