The (1+λ) Evolutionary Algorithm with Self-Adjusting Mutation Rate

We propose a new way to self-adjust the mutation rate in population-based evolutionary algorithms in discrete search spaces. Roughly speaking, it consists of creating half the offspring with a mutation rate that is twice the current mutation rate and the other half with half the current rate. The mu...

Full description

Saved in:
Bibliographic Details
Published inAlgorithmica Vol. 81; no. 2; pp. 593 - 631
Main Authors Doerr, Benjamin, Gießen, Christian, Witt, Carsten, Yang, Jing
Format Journal Article
LanguageEnglish
Published New York Springer US 15.02.2019
Springer Nature B.V
Springer Verlag
Subjects
Online AccessGet full text
ISSN0178-4617
1432-0541
DOI10.1007/s00453-018-0502-x

Cover

Abstract We propose a new way to self-adjust the mutation rate in population-based evolutionary algorithms in discrete search spaces. Roughly speaking, it consists of creating half the offspring with a mutation rate that is twice the current mutation rate and the other half with half the current rate. The mutation rate is then updated to the rate used in that subpopulation which contains the best offspring. We analyze how the ( 1 + λ ) evolutionary algorithm with this self-adjusting mutation rate optimizes the OneMax test function. We prove that this dynamic version of the ( 1 + λ )  EA finds the optimum in an expected optimization time (number of fitness evaluations) of O ( n λ / log λ + n log n ) . This time is asymptotically smaller than the optimization time of the classic ( 1 + λ ) EA. Previous work shows that this performance is best-possible among all λ -parallel mutation-based unbiased black-box algorithms. This result shows that the new way of adjusting the mutation rate can find optimal dynamic parameter values on the fly. Since our adjustment mechanism is simpler than the ones previously used for adjusting the mutation rate and does not have parameters itself, we are optimistic that it will find other applications.
AbstractList We propose a new way to self-adjust the mutation rate in population-based evolutionary algorithms in discrete search spaces. Roughly speaking, it consists of creating half the offspring with a mutation rate that is twice the current mutation rate and the other half with half the current rate. The mutation rate is then updated to the rate used in that subpopulation which contains the best offspring. We analyze how the (1+λ) evolutionary algorithm with this self-adjusting mutation rate optimizes the OneMax test function. We prove that this dynamic version of the (1+λ) EA finds the optimum in an expected optimization time (number of fitness evaluations) of O(nλ/logλ+nlogn). This time is asymptotically smaller than the optimization time of the classic (1+λ) EA. Previous work shows that this performance is best-possible among all λ-parallel mutation-based unbiased black-box algorithms. This result shows that the new way of adjusting the mutation rate can find optimal dynamic parameter values on the fly. Since our adjustment mechanism is simpler than the ones previously used for adjusting the mutation rate and does not have parameters itself, we are optimistic that it will find other applications.
We propose a new way to self-adjust the mutation rate in population-based evolutionary algorithms in discrete search spaces. Roughly speaking, it consists of creating half the offspring with a mutation rate that is twice the current mutation rate and the other half with half the current rate. The mutation rate is then updated to the rate used in that subpopulation which contains the best offspring. We analyze how the ( 1 + λ ) evolutionary algorithm with this self-adjusting mutation rate optimizes the OneMax test function. We prove that this dynamic version of the ( 1 + λ )  EA finds the optimum in an expected optimization time (number of fitness evaluations) of O ( n λ / log λ + n log n ) . This time is asymptotically smaller than the optimization time of the classic ( 1 + λ ) EA. Previous work shows that this performance is best-possible among all λ -parallel mutation-based unbiased black-box algorithms. This result shows that the new way of adjusting the mutation rate can find optimal dynamic parameter values on the fly. Since our adjustment mechanism is simpler than the ones previously used for adjusting the mutation rate and does not have parameters itself, we are optimistic that it will find other applications.
Author Witt, Carsten
Gießen, Christian
Yang, Jing
Doerr, Benjamin
Author_xml – sequence: 1
  givenname: Benjamin
  surname: Doerr
  fullname: Doerr, Benjamin
  organization: École Polytechnique, CNRS, Laboratoire d’Informatique (LIX)
– sequence: 2
  givenname: Christian
  surname: Gießen
  fullname: Gießen, Christian
  organization: Division Chassis & Safety, Advanced Engineering, Continental
– sequence: 3
  givenname: Carsten
  surname: Witt
  fullname: Witt, Carsten
  email: cawi@dtu.dk
  organization: DTU Compute, Technical University of Denmark
– sequence: 4
  givenname: Jing
  surname: Yang
  fullname: Yang, Jing
  organization: École Polytechnique, CNRS, Laboratoire d’Informatique (LIX)
BackLink https://hal.science/hal-04484762$$DView record in HAL
BookMark eNp9kNFKwzAUhoNMcJs-gHcFbxwSPWnSpL0cczphIui8DlmbbB1dO5N2zrfxPbzzAXwmW6oIgt4kJHzf4T9_D3XyItcIHRM4JwDiwgGwgGIgIYYAfLzbQ13CqF-_GOmgLhARYsaJOEA951YAxBcR76LL2VJ7p-Ts423w_jreFllVpkWu7Is3zBaFTcvl2nuuT-9BZwYPk1XlyjRfeLdVqRrSu1elPkT7RmVOH33dffR4NZ6NJnh6d30zGk5xTAMoMTOUJnPgc0IgCgVLKDVCcW6iKEoiw1iSkHkIfmgimjDONRgexAkFRpXQLKR9NGjnLlUmNzZd1zlloVI5GU5l8weMhUxwf0tq9qRlN7Z4qrQr5aqobF7Hkz4RIvIppQ0lWiq2hXNWGxmn7WKlVWkmCcimXtnWK-t6ZVOv3NUm-WV-B_rP8VvH1Wy-0PYn09_SJ-aNje0
CitedBy_id crossref_primary_10_1016_j_cor_2025_107050
crossref_primary_10_1007_s00453_020_00726_2
crossref_primary_10_1007_s00453_020_00731_5
crossref_primary_10_1007_s00453_022_00933_z
crossref_primary_10_1162_evco_a_00290
crossref_primary_10_1145_3472304
crossref_primary_10_1016_j_ic_2023_105125
crossref_primary_10_1145_3564755
crossref_primary_10_1016_j_artint_2023_104061
crossref_primary_10_1109_TEVC_2019_2956633
crossref_primary_10_1016_j_artint_2024_104098
crossref_primary_10_1088_1742_6596_2198_1_012004
crossref_primary_10_1109_TEVC_2019_2954234
crossref_primary_10_1162_evco_a_00313
crossref_primary_10_1007_s00453_023_01153_9
crossref_primary_10_1162_evco_a_00325
crossref_primary_10_1016_j_tcs_2023_114181
crossref_primary_10_1016_j_tcs_2019_06_014
Cites_doi 10.1007/3-540-36494-3_37
10.1016/j.jda.2005.01.002
10.1007/978-3-319-45823-6_73
10.1109/TEVC.2012.2202241
10.1016/j.spl.2018.03.016
10.1145/1830483.1830749
10.1145/2739480.2754681
10.1145/2908812.2908891
10.1145/1967654.1967671
10.1017/S0963548309990599
10.1016/j.tcs.2014.03.015
10.1111/j.1467-9574.1980.tb00681.x
10.1142/7438
10.1016/j.tcs.2006.11.002
10.1007/978-3-319-45823-6_75
10.1007/11523468_48
10.1145/3071178.3071301
10.1145/2908812.2908885
10.1016/S0304-3975(01)00182-7
10.1145/3071178.3071233
10.1007/978-3-540-87700-4_12
10.1162/evco.1999.7.2.173
10.1108/17563780910959893
10.1145/2001576.2001856
10.1145/1389095.1389271
10.1109/CEC.2009.4983114
10.1145/2725494.2725502
10.1162/106365605774666921
10.1145/3071178.3071288
10.1162/evco_a_00212
10.1109/CEC.2014.6900602
10.1145/3205455.3205627
10.1145/1967654.1967670
10.1145/3205455.3205611
10.1145/2739480.2754684
10.1145/2908812.2908950
10.1109/4235.771166
10.1145/3071178.3071297
10.1007/978-3-319-10762-2_88
10.1016/j.tcs.2014.11.028
10.1007/978-3-642-15844-5_1
10.1007/978-3-642-17339-4
10.1145/1527125.1527132
10.1007/978-3-319-45823-6_77
10.1007/s00453-016-0214-z
10.1007/978-3-319-45823-6_78
10.1145/2460239.2460249
10.1145/3071178.3071279
10.1007/s00453-012-9622-x
10.1145/3205455.3205569
10.1007/978-3-319-13075-0_54
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2018
Copyright Springer Nature B.V. 2019
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018
– notice: Copyright Springer Nature B.V. 2019
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
JQ2
1XC
DOI 10.1007/s00453-018-0502-x
DatabaseName CrossRef
ProQuest Computer Science Collection
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1432-0541
EndPage 631
ExternalDocumentID oai:HAL:hal-04484762v1
10_1007_s00453_018_0502_x
GrantInformation_xml – fundername: Det Frie Forskningsråd
  grantid: DFF-FNU 4002-00542
  funderid: http://dx.doi.org/10.13039/501100004836
– fundername: Investissement d’avenir project
  grantid: ANR-11-LABX-0056-LMH
GroupedDBID -4Z
-59
-5G
-BR
-EM
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
203
23M
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P9O
PF-
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
~EX
-Y2
1SB
28-
2P1
2VQ
5QI
AAAVM
AAOBN
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABDPE
ABFSG
ABFSI
ABQSL
ABRTQ
ABULA
ACBXY
ACSTC
ADHKG
AEBTG
AEFIE
AEKMD
AEZWR
AFDZB
AFEXP
AFGCZ
AFHIU
AFOHR
AGGDS
AGQPQ
AHPBZ
AHWEU
AI.
AIXLP
AJBLW
ATHPR
AYFIA
BBWZM
CAG
CITATION
COF
E.L
H13
H~9
KOW
N2Q
NDZJH
O9-
R4E
RNI
RZK
S1Z
S26
S28
SCJ
SCLPG
T16
UQL
VH1
ZY4
JQ2
1XC
ID FETCH-LOGICAL-c350t-4f33db06b1109874d33f7a66f999d9f44dd1b8028f93d466e0f65cd3043a7e483
IEDL.DBID AGYKE
ISSN 0178-4617
IngestDate Tue Oct 14 20:34:15 EDT 2025
Thu Oct 02 16:37:50 EDT 2025
Wed Oct 01 05:50:01 EDT 2025
Thu Apr 24 23:06:22 EDT 2025
Fri Feb 21 02:43:10 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Mutation
Runtime analysis
Self-adaptation
Evolutionary computation
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c350t-4f33db06b1109874d33f7a66f999d9f44dd1b8028f93d466e0f65cd3043a7e483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9786-220X
PQID 2177923331
PQPubID 2043795
PageCount 39
ParticipantIDs hal_primary_oai_HAL_hal_04484762v1
proquest_journals_2177923331
crossref_citationtrail_10_1007_s00453_018_0502_x
crossref_primary_10_1007_s00453_018_0502_x
springer_journals_10_1007_s00453_018_0502_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190215
PublicationDateYYYYMMDD 2019-02-15
PublicationDate_xml – month: 2
  year: 2019
  text: 20190215
  day: 15
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Algorithmica
PublicationTitleAbbrev Algorithmica
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: Springer Verlag
References DrosteSJansenTWegenerIOn the analysis of the (1+1) evolutionary algorithmTheor. Comput. Sci.20022765181189634710.1016/S0304-3975(01)00182-71002.68037
EibenAEHinterdingRMichalewiczZParameter control in evolutionary algorithmsIEEE Trans. Evolut. Comput.1999312414110.1109/4235.771166
JansenTWegenerIOn the analysis of a dynamic evolutionary algorithmJ. Discrete Algorithms20064181199221174510.1016/j.jda.2005.01.0021128.68118
JansenTDe JongKAWegenerIOn the choice of the offspring population size in evolutionary algorithmsEvolut. Comput.20051341344010.1162/106365605774666921
Kötzing, T., Lissovoi, A., Witt, C.: (1+1) EA on generalized dynamic OneMax. In: Proceedings of FOGA ’15, pp. 40–51. ACM (2015)
Giel, O., Wegener, I.: Evolutionary algorithms and the maximum matching problem. In: Proceedings of STACS ’03, pp. 415–426. Springer (2003)
Doerr, B., Doerr, C., Kötzing, T.: Provably optimal self-adjusting step sizes for multi-valued decision variables. In: Proceedings of PPSN ’16, pp. 782–791. Springer (2016b)
Doerr, B., Doerr, C., Kötzing, T.: Solving problems with unknown solution length at (almost) no extra cost. In: Proceedings of GECCO ’15, pp. 831–838. ACM (2015b)
DoerrBAugerADoerrBAnalyzing randomized search heuristics: tools from probability theoryTheory of Randomized Search Heuristics2011SingaporeWorld Scientific Publishing120
DoerrBDoerrCEbelFFrom black-box complexity to designing new genetic algorithmsTheor. Comput. Sci.201556787104329562610.1016/j.tcs.2014.11.0281314.68290
RobbinsHA remark on Stirling’s formulaAm. Math. Mon.1955622629693280068.05404
Alanazi, F., Lehre, P.K.: Runtime analysis of selection hyper-heuristics with classical learning mechanisms. In: Proceedings of CEC ’14, pp. 2515–2523. IEEE (2014)
Lehre, P.K., Witt, C.: Concentrated hitting times of randomized search heuristics with variable drift. In: Proceedings of ISAAC ’14, pp. 686–697. Springer (2014)
DietzfelbingerMRoweJEWegenerIWoelfelPTight bounds for blind search on the integers and the realsComb. Probab. Comput.201019711728272607610.1017/S09635483099905991261.68069
DoerrBAn elementary analysis of the probability that a binomial random variable exceeds its expectationStat. Probab. Lett.20181396774380218510.1016/j.spl.2018.03.0161392.60022
SudholtDA new method for lower bounds on the running time of evolutionary algorithmsIEEE Trans. Evolut. Comput.20131741843510.1109/TEVC.2012.2202241
Zarges, C.: On the utility of the population size for inversely fitness proportional mutation rates. In: Proceedings of FOGA ’09, pp. 39–46. ACM (2009)
MitavskiyBRoweJECanningsCTheoretical analysis of local search strategies to optimize network communication subject to preserving the total number of linksInt. J. Intell. Comput. Cybern.20092243284275150210.1108/175637809109598931175.90210
Zarges, C.: Rigorous runtime analysis of inversely fitness proportional mutation rates. In: Proceedings of PPSN ’08, pp. 112–122. Springer (2008)
KaasRBuhrmanJMMean, median and mode in binomial distributionsStat. Neerl.198034131857600510.1111/j.1467-9574.1980.tb00681.x0444.62021
Doerr, B., Doerr, C., Kötzing, T.: Unknown solution length problems with no asymptotically optimal run time. In: Proceedings of GECCO ’17, pp. 1367–1374. ACM (2017a)
GießenCWittCThe interplay of population size and mutation probability in the (1+λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}) EA on OneMaxAlgorithmica201778587609364191210.1007/s00453-016-0214-z1366.68262
Doerr, B., Doerr, C.: Optimal parameter choices through self-adjustment: applying the 1/5-th rule in discrete settings. In: Proceedings of GECCO ’15, pp. 1335–1342. ACM (2015)
Auger, A., Doerr, B. (eds.): Theory of Randomized Search Heuristics. World Scientific Publishing, Singapore (2011)
Doerr, B., Witt, C., Yang, J.: Runtime analysis for self-adaptive mutation rates. In: Proc. GECCO ’18, pp. 1475–1482. ACM (2018b)
Buzdalov, M., Doerr, B.: Runtime analysis of the (1+(λ,λ))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+(\lambda ,\lambda ))$$\end{document} genetic algorithm on random satisfiable 3-CNF formulas. In: Proceedings of GECCO ’17, pp. 1343–1350. ACM (2017)
Böttcher, S., Doerr, B., Neumann, F.: Optimal fixed and adaptive mutation rates for the LeadingOnes problem. In: Proceedings of PPSN ’10, pp. 1–10. Springer (2010)
Dang, D-C., Lehre, P.K.: Self-adaptation of mutation rates in non-elitist populations. In: Proceedings of PPSN ’16, pp. 803–813. Springer (2016)
Doerr, B., Doerr, C., Kötzing, T.: The right mutation strength for multi-valued decision variables. In: Proceedings of GECCO ’16, pp. 1115–1122. ACM (2016a)
HwangH-KPanholzerARolinNTsaiT-HChenW-MProbabilistic analysis of the (1+1)-evolutionary algorithmEvolut. Comput.20182629934510.1162/evco_a_00212
Doerr, B., Fouz, M., Witt, C.: Quasirandom evolutionary algorithms. In: Proceedings of GECCO ’10, pp. 1457–1464. ACM (2010)
Cathabard, S., Lehre, P.K., Yao, X.: Non-uniform mutation rates for problems with unknown solution lengths. In: Proceedings of FOGA ’11, pp. 173–180. ACM (2011)
Doerr, B., Lissovoi, A., Oliveto, P.S., Warwicker, J.A.: On the runtime analysis of selection hyper-heuristics with adaptive learning periods. In: Proceedings of GECCO ’18, pp. 1015–1022. ACM (2018a)
Doerr, B., Doerr, C., Yang, J.: k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-bit mutation with self-adjusting k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} outperforms standard bit mutation. In: Proceedings of PPSN ’16, pp. 824–834. Springer (2016d)
Badkobeh, G., Lehre, P.K., Sudholt, D.: Unbiased black-box complexity of parallel search. In: Proceedings of PPSN ’14, pp. 892–901. Springer (2014)
Oliveto, P.S., Lehre, P.K., Neumann, F.: Theoretical analysis of rank-based mutation-combining exploration and exploitation. In: Proceedings of CEC ’09, pp. 1455–1462. IEEE (2009)
Johannsen, D.: Random combinatorial structures and randomized search heuristics. Ph.D. thesis, Saarland University (2010)
Doerr, B., Doerr, C., Yang, J.: Optimal parameter choices via precise black-box analysis. In: Proceedings of GECCO ’16, pp. 1123–1130. ACM (2016c)
Lehre, P.K., Özcan, E.: A runtime analysis of simple hyper-heuristics: to mix or not to mix operators. In: Proceedings of FOGA ’13, pp. 97–104. ACM (2013)
Doerr, B., Fouz, M., Witt, C.: Sharp bounds by probability-generating functions and variable drift. In: Proceedings of GECCO ’11, pp. 2083–2090. ACM (2011)
DoerrBKünnemannMOptimizing linear functions with the (1+λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}) evolutionary algorithm—different asymptotic runtimes for different instancesTheor. Comput. Sci.2015561323328218110.1016/j.tcs.2014.03.0151303.68120
Cervantes, J., Stephens, C.R.: Rank based variation operators for genetic algorithms. In: Proceedings of GECCO ’08, pp. 905–912. ACM (2008)
Qian, C., Tang, K., Zhou, Z-H.: Selection hyper-heuristics can provably be helpful in evolutionary multi-objective optimization. In: Proceedings of PPSN ’16, pp. 835–846. Springer (2016)
Lässig, J., Sudholt, D.: Adaptive population models for offspring populations and parallel evolutionary algorithms. In: Proceedings of FOGA ’11, pp. 181–192. ACM (2011)
Antipov, D., Doerr, B., Fang, J., Hetet, T.: Runtime analysis for the (μ+λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mu +\lambda )$$\end{document} EA optimizing OneMax. In: Proceedings of GECCO ’18, pp. 1459–1466. ACM (2018)
Wegener, I.: Simulated annealing beats Metropolis in combinatorial optimization. In: Proceedings of ICALP ’05, pp. 589–601. Springer (2005)
GarnierJKallelLSchoenauerMRigorous hitting times for binary mutationsEvolut. Comput.1999717320310.1162/evco.1999.7.2.173
Doerr, B., Le, H.P., Makhmara, R., Nguyen, T.D.: Fast genetic algorithms. In: Proceedings of GECCO ’17, pp. 777–784. ACM (2017c)
NeumannFWegenerIRandomized local search, evolutionary algorithms, and the minimum spanning tree problemTheor. Comput. Sci.20073783240232604910.1016/j.tcs.2006.11.0021117.68090
Doerr, B., Gießen, C., Witt, C., Yang, J.: The (1+λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}) evolutionary algorithm with self-adjusting mutation rate. In: Proceedings of GECCO ’17, pp. 1351–1358. ACM (2017b)
Mühlenbein, H.: How genetic algorithms really work: Mutation and hillclimbing. In: Proceedings of PPSN ’92, pp. 15–26. Elsevier (1992)
Lissovoi, A., Oliveto, P.S., Warwicker, J.A.: On the runtime analysis of generalised selection hyper-heuristics for pseudo-Boolean optimisation. In: Proceedings of GECCO ’17, pp. 849–856. ACM (2017)
DoerrBJohannsenDWinzenCMultiplicative drift analysisAlgorithmica201264673697298947010.1007/s00453-012-9622-x1264.68220
JansenTAnalyzing Evolutionary Algorithms—The Computer Science Pe
502_CR43
502_CR44
502_CR41
B Doerr (502_CR11) 2011
502_CR42
H-K Hwang (502_CR35) 2018; 26
H Robbins (502_CR52) 1955; 62
502_CR47
502_CR45
J Garnier (502_CR32) 1999; 7
F Neumann (502_CR48) 2007; 378
502_CR9
502_CR8
502_CR7
R Kaas (502_CR40) 1980; 34
502_CR6
502_CR5
B Doerr (502_CR15) 2015; 561
502_CR4
502_CR3
502_CR2
502_CR1
F Neumann (502_CR49) 2010
AE Eiben (502_CR31) 1999; 3
502_CR39
502_CR34
B Doerr (502_CR13) 2018; 139
B Mitavskiy (502_CR46) 2009; 2
B Doerr (502_CR18) 2012; 64
502_CR21
502_CR22
502_CR20
502_CR29
S Droste (502_CR30) 2002; 276
502_CR27
502_CR28
502_CR25
502_CR26
502_CR23
D Sudholt (502_CR53) 2013; 17
502_CR24
T Jansen (502_CR36) 2013
T Jansen (502_CR38) 2005; 13
502_CR54
502_CR55
M Dietzfelbinger (502_CR10) 2010; 19
502_CR50
502_CR51
502_CR16
502_CR17
502_CR14
B Doerr (502_CR19) 2015; 567
502_CR12
502_CR56
C Gießen (502_CR33) 2017; 78
T Jansen (502_CR37) 2006; 4
References_xml – reference: Doerr, B., Fouz, M., Witt, C.: Sharp bounds by probability-generating functions and variable drift. In: Proceedings of GECCO ’11, pp. 2083–2090. ACM (2011)
– reference: MitavskiyBRoweJECanningsCTheoretical analysis of local search strategies to optimize network communication subject to preserving the total number of linksInt. J. Intell. Comput. Cybern.20092243284275150210.1108/175637809109598931175.90210
– reference: Oliveto, P.S., Lehre, P.K., Neumann, F.: Theoretical analysis of rank-based mutation-combining exploration and exploitation. In: Proceedings of CEC ’09, pp. 1455–1462. IEEE (2009)
– reference: Doerr, B., Doerr, C., Kötzing, T.: Provably optimal self-adjusting step sizes for multi-valued decision variables. In: Proceedings of PPSN ’16, pp. 782–791. Springer (2016b)
– reference: Giel, O., Wegener, I.: Evolutionary algorithms and the maximum matching problem. In: Proceedings of STACS ’03, pp. 415–426. Springer (2003)
– reference: Kötzing, T., Lissovoi, A., Witt, C.: (1+1) EA on generalized dynamic OneMax. In: Proceedings of FOGA ’15, pp. 40–51. ACM (2015)
– reference: DoerrBJohannsenDWinzenCMultiplicative drift analysisAlgorithmica201264673697298947010.1007/s00453-012-9622-x1264.68220
– reference: EibenAEHinterdingRMichalewiczZParameter control in evolutionary algorithmsIEEE Trans. Evolut. Comput.1999312414110.1109/4235.771166
– reference: NeumannFWegenerIRandomized local search, evolutionary algorithms, and the minimum spanning tree problemTheor. Comput. Sci.20073783240232604910.1016/j.tcs.2006.11.0021117.68090
– reference: Cathabard, S., Lehre, P.K., Yao, X.: Non-uniform mutation rates for problems with unknown solution lengths. In: Proceedings of FOGA ’11, pp. 173–180. ACM (2011)
– reference: Böttcher, S., Doerr, B., Neumann, F.: Optimal fixed and adaptive mutation rates for the LeadingOnes problem. In: Proceedings of PPSN ’10, pp. 1–10. Springer (2010)
– reference: Badkobeh, G., Lehre, P.K., Sudholt, D.: Unbiased black-box complexity of parallel search. In: Proceedings of PPSN ’14, pp. 892–901. Springer (2014)
– reference: DoerrBAugerADoerrBAnalyzing randomized search heuristics: tools from probability theoryTheory of Randomized Search Heuristics2011SingaporeWorld Scientific Publishing120
– reference: Doerr, B., Doerr, C., Kötzing, T.: The right mutation strength for multi-valued decision variables. In: Proceedings of GECCO ’16, pp. 1115–1122. ACM (2016a)
– reference: KaasRBuhrmanJMMean, median and mode in binomial distributionsStat. Neerl.198034131857600510.1111/j.1467-9574.1980.tb00681.x0444.62021
– reference: Johannsen, D.: Random combinatorial structures and randomized search heuristics. Ph.D. thesis, Saarland University (2010)
– reference: Doerr, B., Doerr, C., Kötzing, T.: Solving problems with unknown solution length at (almost) no extra cost. In: Proceedings of GECCO ’15, pp. 831–838. ACM (2015b)
– reference: DoerrBKünnemannMOptimizing linear functions with the (1+λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}) evolutionary algorithm—different asymptotic runtimes for different instancesTheor. Comput. Sci.2015561323328218110.1016/j.tcs.2014.03.0151303.68120
– reference: Doerr, B., Doerr, C., Yang, J.: k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-bit mutation with self-adjusting k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} outperforms standard bit mutation. In: Proceedings of PPSN ’16, pp. 824–834. Springer (2016d)
– reference: Lehre, P.K., Özcan, E.: A runtime analysis of simple hyper-heuristics: to mix or not to mix operators. In: Proceedings of FOGA ’13, pp. 97–104. ACM (2013)
– reference: DoerrBAn elementary analysis of the probability that a binomial random variable exceeds its expectationStat. Probab. Lett.20181396774380218510.1016/j.spl.2018.03.0161392.60022
– reference: Wegener, I.: Simulated annealing beats Metropolis in combinatorial optimization. In: Proceedings of ICALP ’05, pp. 589–601. Springer (2005)
– reference: Doerr, B., Le, H.P., Makhmara, R., Nguyen, T.D.: Fast genetic algorithms. In: Proceedings of GECCO ’17, pp. 777–784. ACM (2017c)
– reference: RobbinsHA remark on Stirling’s formulaAm. Math. Mon.1955622629693280068.05404
– reference: Doerr, B., Witt, C., Yang, J.: Runtime analysis for self-adaptive mutation rates. In: Proc. GECCO ’18, pp. 1475–1482. ACM (2018b)
– reference: Lissovoi, A., Oliveto, P.S., Warwicker, J.A.: On the runtime analysis of generalised selection hyper-heuristics for pseudo-Boolean optimisation. In: Proceedings of GECCO ’17, pp. 849–856. ACM (2017)
– reference: Doerr, B., Doerr, C., Kötzing, T.: Unknown solution length problems with no asymptotically optimal run time. In: Proceedings of GECCO ’17, pp. 1367–1374. ACM (2017a)
– reference: Alanazi, F., Lehre, P.K.: Runtime analysis of selection hyper-heuristics with classical learning mechanisms. In: Proceedings of CEC ’14, pp. 2515–2523. IEEE (2014)
– reference: GarnierJKallelLSchoenauerMRigorous hitting times for binary mutationsEvolut. Comput.1999717320310.1162/evco.1999.7.2.173
– reference: Antipov, D., Doerr, B., Fang, J., Hetet, T.: Runtime analysis for the (μ+λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mu +\lambda )$$\end{document} EA optimizing OneMax. In: Proceedings of GECCO ’18, pp. 1459–1466. ACM (2018)
– reference: Doerr, B., Gießen, C., Witt, C., Yang, J.: The (1+λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}) evolutionary algorithm with self-adjusting mutation rate. In: Proceedings of GECCO ’17, pp. 1351–1358. ACM (2017b)
– reference: DrosteSJansenTWegenerIOn the analysis of the (1+1) evolutionary algorithmTheor. Comput. Sci.20022765181189634710.1016/S0304-3975(01)00182-71002.68037
– reference: Buzdalov, M., Doerr, B.: Runtime analysis of the (1+(λ,λ))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+(\lambda ,\lambda ))$$\end{document} genetic algorithm on random satisfiable 3-CNF formulas. In: Proceedings of GECCO ’17, pp. 1343–1350. ACM (2017)
– reference: NeumannFWittCBioinspired Computation in Combinatorial Optimization—Algorithms and Their Computational Complexity2010BerlinSpringer1223.68002
– reference: JansenTAnalyzing Evolutionary Algorithms—The Computer Science Perspective2013BerlinSpringer10.1007/978-3-642-17339-41282.68008
– reference: Zarges, C.: Rigorous runtime analysis of inversely fitness proportional mutation rates. In: Proceedings of PPSN ’08, pp. 112–122. Springer (2008)
– reference: Cervantes, J., Stephens, C.R.: Rank based variation operators for genetic algorithms. In: Proceedings of GECCO ’08, pp. 905–912. ACM (2008)
– reference: DoerrBDoerrCEbelFFrom black-box complexity to designing new genetic algorithmsTheor. Comput. Sci.201556787104329562610.1016/j.tcs.2014.11.0281314.68290
– reference: Lehre, P.K., Witt, C.: Concentrated hitting times of randomized search heuristics with variable drift. In: Proceedings of ISAAC ’14, pp. 686–697. Springer (2014)
– reference: Auger, A., Doerr, B. (eds.): Theory of Randomized Search Heuristics. World Scientific Publishing, Singapore (2011)
– reference: Doerr, B., Fouz, M., Witt, C.: Quasirandom evolutionary algorithms. In: Proceedings of GECCO ’10, pp. 1457–1464. ACM (2010)
– reference: HwangH-KPanholzerARolinNTsaiT-HChenW-MProbabilistic analysis of the (1+1)-evolutionary algorithmEvolut. Comput.20182629934510.1162/evco_a_00212
– reference: Qian, C., Tang, K., Zhou, Z-H.: Selection hyper-heuristics can provably be helpful in evolutionary multi-objective optimization. In: Proceedings of PPSN ’16, pp. 835–846. Springer (2016)
– reference: DietzfelbingerMRoweJEWegenerIWoelfelPTight bounds for blind search on the integers and the realsComb. Probab. Comput.201019711728272607610.1017/S09635483099905991261.68069
– reference: Doerr, B.: Optimal parameter settings for the (1+(λ,λ))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+(\lambda , \lambda ))$$\end{document} genetic algorithm. In: Proceedings of GECCO ’16, pp. 1107–1114. ACM (2016)
– reference: Doerr, B., Doerr, C., Yang, J.: Optimal parameter choices via precise black-box analysis. In: Proceedings of GECCO ’16, pp. 1123–1130. ACM (2016c)
– reference: JansenTDe JongKAWegenerIOn the choice of the offspring population size in evolutionary algorithmsEvolut. Comput.20051341344010.1162/106365605774666921
– reference: Doerr, B., Lissovoi, A., Oliveto, P.S., Warwicker, J.A.: On the runtime analysis of selection hyper-heuristics with adaptive learning periods. In: Proceedings of GECCO ’18, pp. 1015–1022. ACM (2018a)
– reference: Lässig, J., Sudholt, D.: Adaptive population models for offspring populations and parallel evolutionary algorithms. In: Proceedings of FOGA ’11, pp. 181–192. ACM (2011)
– reference: JansenTWegenerIOn the analysis of a dynamic evolutionary algorithmJ. Discrete Algorithms20064181199221174510.1016/j.jda.2005.01.0021128.68118
– reference: Dang, D-C., Lehre, P.K.: Self-adaptation of mutation rates in non-elitist populations. In: Proceedings of PPSN ’16, pp. 803–813. Springer (2016)
– reference: SudholtDA new method for lower bounds on the running time of evolutionary algorithmsIEEE Trans. Evolut. Comput.20131741843510.1109/TEVC.2012.2202241
– reference: Mühlenbein, H.: How genetic algorithms really work: Mutation and hillclimbing. In: Proceedings of PPSN ’92, pp. 15–26. Elsevier (1992)
– reference: Zarges, C.: On the utility of the population size for inversely fitness proportional mutation rates. In: Proceedings of FOGA ’09, pp. 39–46. ACM (2009)
– reference: GießenCWittCThe interplay of population size and mutation probability in the (1+λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}) EA on OneMaxAlgorithmica201778587609364191210.1007/s00453-016-0214-z1366.68262
– reference: Doerr, B., Doerr, C.: Optimal parameter choices through self-adjustment: applying the 1/5-th rule in discrete settings. In: Proceedings of GECCO ’15, pp. 1335–1342. ACM (2015)
– ident: 502_CR34
  doi: 10.1007/3-540-36494-3_37
– volume: 4
  start-page: 181
  year: 2006
  ident: 502_CR37
  publication-title: J. Discrete Algorithms
  doi: 10.1016/j.jda.2005.01.002
– ident: 502_CR47
– ident: 502_CR22
  doi: 10.1007/978-3-319-45823-6_73
– volume: 17
  start-page: 418
  year: 2013
  ident: 502_CR53
  publication-title: IEEE Trans. Evolut. Comput.
  doi: 10.1109/TEVC.2012.2202241
– volume: 139
  start-page: 67
  year: 2018
  ident: 502_CR13
  publication-title: Stat. Probab. Lett.
  doi: 10.1016/j.spl.2018.03.016
– ident: 502_CR16
  doi: 10.1145/1830483.1830749
– ident: 502_CR20
  doi: 10.1145/2739480.2754681
– ident: 502_CR21
  doi: 10.1145/2908812.2908891
– ident: 502_CR42
  doi: 10.1145/1967654.1967671
– volume: 19
  start-page: 711
  year: 2010
  ident: 502_CR10
  publication-title: Comb. Probab. Comput.
  doi: 10.1017/S0963548309990599
– volume: 561
  start-page: 3
  year: 2015
  ident: 502_CR15
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2014.03.015
– volume-title: Bioinspired Computation in Combinatorial Optimization—Algorithms and Their Computational Complexity
  year: 2010
  ident: 502_CR49
– volume: 34
  start-page: 13
  year: 1980
  ident: 502_CR40
  publication-title: Stat. Neerl.
  doi: 10.1111/j.1467-9574.1980.tb00681.x
– ident: 502_CR3
  doi: 10.1142/7438
– volume: 378
  start-page: 32
  year: 2007
  ident: 502_CR48
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2006.11.002
– ident: 502_CR9
  doi: 10.1007/978-3-319-45823-6_75
– ident: 502_CR54
  doi: 10.1007/11523468_48
– ident: 502_CR27
  doi: 10.1145/3071178.3071301
– ident: 502_CR12
  doi: 10.1145/2908812.2908885
– volume: 276
  start-page: 51
  year: 2002
  ident: 502_CR30
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/S0304-3975(01)00182-7
– ident: 502_CR25
  doi: 10.1145/3071178.3071233
– ident: 502_CR55
  doi: 10.1007/978-3-540-87700-4_12
– volume: 7
  start-page: 173
  year: 1999
  ident: 502_CR32
  publication-title: Evolut. Comput.
  doi: 10.1162/evco.1999.7.2.173
– volume: 2
  start-page: 243
  year: 2009
  ident: 502_CR46
  publication-title: Int. J. Intell. Comput. Cybern.
  doi: 10.1108/17563780910959893
– ident: 502_CR17
  doi: 10.1145/2001576.2001856
– ident: 502_CR8
  doi: 10.1145/1389095.1389271
– ident: 502_CR50
  doi: 10.1109/CEC.2009.4983114
– ident: 502_CR41
  doi: 10.1145/2725494.2725502
– start-page: 1
  volume-title: Theory of Randomized Search Heuristics
  year: 2011
  ident: 502_CR11
– volume: 13
  start-page: 413
  year: 2005
  ident: 502_CR38
  publication-title: Evolut. Comput.
  doi: 10.1162/106365605774666921
– ident: 502_CR45
  doi: 10.1145/3071178.3071288
– volume: 26
  start-page: 299
  year: 2018
  ident: 502_CR35
  publication-title: Evolut. Comput.
  doi: 10.1162/evco_a_00212
– ident: 502_CR1
  doi: 10.1109/CEC.2014.6900602
– ident: 502_CR2
  doi: 10.1145/3205455.3205627
– ident: 502_CR7
  doi: 10.1145/1967654.1967670
– ident: 502_CR28
  doi: 10.1145/3205455.3205611
– ident: 502_CR14
  doi: 10.1145/2739480.2754684
– ident: 502_CR23
  doi: 10.1145/2908812.2908950
– volume: 3
  start-page: 124
  year: 1999
  ident: 502_CR31
  publication-title: IEEE Trans. Evolut. Comput.
  doi: 10.1109/4235.771166
– ident: 502_CR6
  doi: 10.1145/3071178.3071297
– ident: 502_CR4
  doi: 10.1007/978-3-319-10762-2_88
– ident: 502_CR39
– volume: 567
  start-page: 87
  year: 2015
  ident: 502_CR19
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2014.11.028
– volume: 62
  start-page: 26
  year: 1955
  ident: 502_CR52
  publication-title: Am. Math. Mon.
– ident: 502_CR5
  doi: 10.1007/978-3-642-15844-5_1
– volume-title: Analyzing Evolutionary Algorithms—The Computer Science Perspective
  year: 2013
  ident: 502_CR36
  doi: 10.1007/978-3-642-17339-4
– ident: 502_CR56
  doi: 10.1145/1527125.1527132
– ident: 502_CR24
  doi: 10.1007/978-3-319-45823-6_77
– volume: 78
  start-page: 587
  year: 2017
  ident: 502_CR33
  publication-title: Algorithmica
  doi: 10.1007/s00453-016-0214-z
– ident: 502_CR51
  doi: 10.1007/978-3-319-45823-6_78
– ident: 502_CR43
  doi: 10.1145/2460239.2460249
– ident: 502_CR26
  doi: 10.1145/3071178.3071279
– volume: 64
  start-page: 673
  year: 2012
  ident: 502_CR18
  publication-title: Algorithmica
  doi: 10.1007/s00453-012-9622-x
– ident: 502_CR29
  doi: 10.1145/3205455.3205569
– ident: 502_CR44
  doi: 10.1007/978-3-319-13075-0_54
SSID ssj0012796
Score 2.469801
Snippet We propose a new way to self-adjust the mutation rate in population-based evolutionary algorithms in discrete search spaces. Roughly speaking, it consists of...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 593
SubjectTerms Algorithm Analysis and Problem Complexity
Algorithms
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Evolutionary algorithms
Fitness
Genetic algorithms
Mathematics of Computing
Mutation
Optimization
Parameters
Special Issue on Theory of Genetic and Evolutionary Computation
Theory of Computation
Yeast
Title The (1+λ) Evolutionary Algorithm with Self-Adjusting Mutation Rate
URI https://link.springer.com/article/10.1007/s00453-018-0502-x
https://www.proquest.com/docview/2177923331
https://hal.science/hal-04484762
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1432-0541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012796
  issn: 0178-4617
  databaseCode: AFBBN
  dateStart: 19861101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1432-0541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012796
  issn: 0178-4617
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1432-0541
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012796
  issn: 0178-4617
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BuXBhR5SlshAHFhmlsZO4xwAtFdsBqASnKI5jtlJQSRHwNfwHNz6Ab2KcJmERIHGNnW1mnHmTGb8BWOKecEMhNJWyxijXEaNSR4pKpQXiY6ltmVZbHLjNFt85cU6yfdx3ebV7npJMv9TFZjeDPkztj6CWg8sYgeNQSrdVgiF_-3S3XiQPbC9ty2Uaz1OOHjpPZv50kS_uaPDcFEN-QprfkqOpz2mMwnH-tP1Sk6v1XiLXo6dvRI7_fJ0xGMkwKPH7RjMOA3FnAkbz_g4kW-6TsIU2RJara28vK6_P9fvMSMPuI_HbZzfdi-T8mpj_uOQobmvqq0vTGaxzRvZ7_fw-OUQgOwWtRv14s0mzrgs0Yo6VoL4YU9JypeEiFR5XjGkvdF2NUFLVNOdKVaVAWKJrTHHXjS3tOpFiFmehF3PBpqHUuenEM0AcziNhydiOQodjqCm5sKUTS4W4KFRSlcHKhR9EGSW56YzRDgoy5VRKAUopMFIKHsqwWpxy2-fj-GvyImq0mGeYtJv-XmCOWRiWcnQE99UyzOcKD7L1exdgoGaIFRnD4bVcfx_Dv95x9l-z52AY8VfNFIFXnXkoJd1evIAYJ5EVtOnGxsZBJbPtCgy2bP8dWOT0aw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgHODCjigUsBAHFllKYydxjxG0KtD2AK3UmxXHcStUWtRN8Df8Bzc-gG9inCZhESBxje1EmvF43mTGbxA6Yh53A841kbJECdMhJVKHikilOeBjqW0ZV1s03GqLXbWddnKPe5RWu6cpyfikzi67GfRhan84sRwwYwCOC4a_yhDmt2w_Sx3YXtyUy7SdJwz8c5rK_OkVX5zRfNeUQn7Cmd9So7HHqayi5QQqYn-m2zU0F_XX0UrahgEnVrmBLkDV-Lh49vZy8vpcniZ7KRg-Yb_XGUDw373H5ncrvo16mvjqzjTw6ndwfTJLw-MbwJubqFUpN8-rJGmOQELqWGMQK6VKWq40lKHcY4pS7QWuqwHxqZJmTKmi5IAedIkq5rqRpV0nVNRiNPAixukWyvUH_WgbYYexkFsyssPAYRARSsZt6URSAXwJlFR5ZKVSEmHCHG4aWPRExnkcC1aAYIURrHjMo9NsycOMNuOvyYcg-myeIbyu-jVhnlkQPTI4r6fFPCqkmhGJmY0ExFOG_5BSGD5LtfUx_OsXd_41-wAtVpv1mqhdNq530RJAppKp2y46BZQbDyfRHsCSsdyPt-E7hLDX6g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVYJMSFHVEoYCEOLLKaxk7iHiPaqkBBCKjEzYrjmEUloJJW8Df8Bzc-gG9inCZhESBxjZ1EmrEzbzLj9xDaZB53A841kbJGCdMhJVKHikilOeBjqW2Zdlscu60OO7hwLjKd04e82z0vSQ7PNBiWpjip3CtdKQ6-GSRi-oA4sRzY0gAix5nhSYAF3bH9ooxge6lAl5GgJwxidV7W_OkRXwLT6JVpi_yEOb-VSdPo05xBUxlsxP7Qz7NoJIrn0HQuyYCzHTqP6uB2vFXdfXvZfn1uDLJ1FfSesN-9vOtdJ1e32Px6xWdRVxNf3Rgxr_gSH_WHJXl8CthzAXWajfO9FsmEEkhIHSsBE1OqpOVKQx_KPaYo1V7guhrQn6ppxpSqSg5IQteoYq4bWdp1QkUtRgMvYpwuorH4Lo6WEHYYC7klIzsMHAbZoWTclk4kFUCZQElVQlZuJRFmLOJGzKIrCv7j1LACDCuMYcVjCe0Ut9wPKTT-mrwBpi_mGfLrlt8W5poFmSSDb_egWkLl3DMi23IPAnIrw4VIKQzv5t76GP71jcv_mr2OJk7qTdHePz5cQZOAnmqmhbvqlNFY0utHq4BQErmWrsJ3KsncJg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+%28+1+%2B+%CE%BB+%29+Evolutionary+Algorithm+with+Self-Adjusting+Mutation+Rate&rft.jtitle=Algorithmica&rft.au=Doerr%2C+Benjamin&rft.au=Gie%C3%9Fen%2C+Christian&rft.au=Witt%2C+Carsten&rft.au=Yang%2C+Jing&rft.date=2019-02-15&rft.pub=Springer+Nature+B.V&rft.issn=0178-4617&rft.eissn=1432-0541&rft.volume=81&rft.issue=2&rft.spage=593&rft.epage=631&rft_id=info:doi/10.1007%2Fs00453-018-0502-x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon