Efficient Microfluidic Power Generator Based on Interaction between DI Water and Hydrophobic-Channel Surface

The fabrication of power generators utilized by streaming potential has been attracting profound interests for various applications such as wearable healthcare and self-powered micro/nano systems. So far, streaming potential has been generated by a charged channel wall and accumulated counter-ions....

Full description

Saved in:
Bibliographic Details
Published inInternational Journal of Precision Engineering and Manufacturing-Green Technology, 5(2) Vol. 5; no. 2; pp. 255 - 260
Main Authors Choi, Yong Whan, Jang, Segeun, Chun, Myung-Suk, Kim, Sang Moon, Choi, Mansoo
Format Journal Article
LanguageEnglish
Published Seoul Korean Society for Precision Engineering 01.04.2018
Springer Nature B.V
한국정밀공학회
Subjects
Online AccessGet full text
ISSN2288-6206
2198-0810
DOI10.1007/s40684-018-0026-5

Cover

Abstract The fabrication of power generators utilized by streaming potential has been attracting profound interests for various applications such as wearable healthcare and self-powered micro/nano systems. So far, streaming potential has been generated by a charged channel wall and accumulated counter-ions. However, this approach is assumed as no-slip boundary condition, while the slippery channel wall is critical for high efficiency. Herein, we demonstrate a microfluidic power generator based on streaming potential that can be intrinsically charged at a hydrophobic channel wall. This charging mechanism has higher values of charge density and slip boundary condition. We have achieved output voltage of ~2.7 V and streaming conductance density of ~1.23 A/m 2 ·bar with the channel that is ~2 μm high and ~3.5 μm wide. Our result is a promising step for obtaining low-cost, high efficient power-generators for micro/nano systems.
AbstractList The fabrication of power generators utilized by streaming potential has been attracting profound interests for various applications such as wearable healthcare and self-powered micro/nano systems. So far, streaming potential has been generated by a charged channel wall and accumulated counter-ions. However, this approach is assumed as no-slip boundary condition, while the slippery channel wall is critical for high efficiency. Herein, we demonstrate a microfluidic power generator based on streaming potential that can be intrinsically charged at a hydrophobic channel wall. This charging mechanism has higher values of charge density and slip boundary condition. We have achieved output voltage of ~2.7 V and streaming conductance density of ~1.23 A/m2·bar with the channel that is ~2 μm high and ~3.5 μm wide. Our result is a promising step for obtaining low-cost, high efficient power-generators for micro/nano systems.
The fabrication of power generators utilized by streaming potential has been attracting profound interests for various applications such as wearable healthcare and self-powered micro/nano systems. So far, streaming potential has been generated by a charged channel wall and accumulated counter-ions. However, this approach is assumed as no-slip boundary condition, while the slippery channel wall is critical for high efficiency. Herein, we demonstrate a microfluidic power generator based on streaming potential that can be intrinsically charged at a hydrophobic channel wall. This charging mechanism has higher values of charge density and slip boundary condition. We have achieved output voltage of ~2.7 V and streaming conductance density of ~1.23 A/m2·bar with the channel that is ~2 µm high and ~3.5 µm wide. Our result is a promising step for obtaining low-cost, high efficient power-generators for micro/nano systems. KCI Citation Count: 5
The fabrication of power generators utilized by streaming potential has been attracting profound interests for various applications such as wearable healthcare and self-powered micro/nano systems. So far, streaming potential has been generated by a charged channel wall and accumulated counter-ions. However, this approach is assumed as no-slip boundary condition, while the slippery channel wall is critical for high efficiency. Herein, we demonstrate a microfluidic power generator based on streaming potential that can be intrinsically charged at a hydrophobic channel wall. This charging mechanism has higher values of charge density and slip boundary condition. We have achieved output voltage of ~2.7 V and streaming conductance density of ~1.23 A/m 2 ·bar with the channel that is ~2 μm high and ~3.5 μm wide. Our result is a promising step for obtaining low-cost, high efficient power-generators for micro/nano systems.
Author Jang, Segeun
Chun, Myung-Suk
Choi, Yong Whan
Kim, Sang Moon
Choi, Mansoo
Author_xml – sequence: 1
  givenname: Yong Whan
  surname: Choi
  fullname: Choi, Yong Whan
  organization: Global Frontier Center for Multiscale Energy Systems, Seoul National University, Department of Mechanical and Aerospace Engineering, Seoul National University
– sequence: 2
  givenname: Segeun
  surname: Jang
  fullname: Jang, Segeun
  organization: Global Frontier Center for Multiscale Energy Systems, Seoul National University, Department of Mechanical and Aerospace Engineering, Seoul National University
– sequence: 3
  givenname: Myung-Suk
  surname: Chun
  fullname: Chun, Myung-Suk
  organization: Complex Fluids Laboratory, National Agenda Research Division, Korea Institute of Science and Technology
– sequence: 4
  givenname: Sang Moon
  orcidid: 0000-0002-2311-2211
  surname: Kim
  fullname: Kim, Sang Moon
  email: ksm7852@inu.ac.kr
  organization: Department of Mechanical Engineering, Incheon National University
– sequence: 5
  givenname: Mansoo
  surname: Choi
  fullname: Choi, Mansoo
  organization: Global Frontier Center for Multiscale Energy Systems, Seoul National University, Department of Mechanical and Aerospace Engineering, Seoul National University
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002335118$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kU1LXDEUhoNYqLX-gO4CrlzcevJxczNLO53qgKVFLV2G3Hxo6m0yJhnEf2-mt1AQ7OqcnLxP8nLed2g_pugQ-kDgIwEYTgsHIXkHRHYAVHT9HjqgZNFOksB-66mUnaAg3qKjUsIIFAbaCwEHaFp5H0xwseKvweTkp22wweDv6dFlfO6iy7qmjD_p4ixOEa9jbSNTQ-tHVx-di_jzGv_UbYx1tPjiyea0uUtjMN3yTsfoJny9zV4b9x698Xoq7uhvPUQ_vqxulhfd5bfz9fLssjOsh9pxZjgZuBsJay4Hpr0AaSWTwJkYJBghyegdWOlHb6Q3RGpP2u04LnprLTtEJ_O7MXt1b4JKOvypt0ndZ3V2dbNWjHCgPWva41m7yelh60pVv9I2x2ZP0QWjXPCBL5qKzKq2olKy82qTw2-dnxQBtctAzRmoloHaZaD6xgwvGBOq3i2uZh2m_5J0Jkv7Jd66_M_T69AzN7-cPA
CitedBy_id crossref_primary_10_1002_elps_201800352
crossref_primary_10_3390_en15165807
crossref_primary_10_1039_D0NR04326E
crossref_primary_10_1007_s40684_020_00238_y
crossref_primary_10_1007_s40684_020_00245_z
crossref_primary_10_1007_s40684_019_00148_8
crossref_primary_10_1007_s40684_019_00143_z
crossref_primary_10_1016_j_nanoen_2019_104017
Cites_doi 10.1021/la026201t
10.1021/nl070194h
10.1007/s12541-016-0008-x
10.1016/j.applthermaleng.2010.05.022
10.1038/nature11876
10.1038/nature05064
10.1073/pnas.0901480106
10.1021/nl061524l
10.1088/0960-1317/15/4/007
10.1021/la4008813
10.1002/elps.200700734
10.1039/C6EE02135B
10.1126/science.1124005
10.1039/b503856a
10.1039/b514327f
10.1021/ja202081x
10.1021/jz2014852
10.1002/adma.201201414
10.1021/jp070060s
10.1016/j.aca.2005.09.035
10.1126/science.aaf5289
10.1007/s40684-015-0007-x
10.1002/adma.201302441
10.1021/nl5042287
10.1016/S0925-4005(02)00249-6
10.1038/ncomms10987
10.1038/ncomms5929
ContentType Journal Article
Copyright Korean Society for Precision Engineering 2018
Korean Society for Precision Engineering 2018.
Copyright_xml – notice: Korean Society for Precision Engineering 2018
– notice: Korean Society for Precision Engineering 2018.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
M7S
P5Z
P62
PATMY
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
ACYCR
DOI 10.1007/s40684-018-0026-5
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
Korean Citation Index
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList ProQuest Central Student


Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2198-0810
EndPage 260
ExternalDocumentID oai_kci_go_kr_ARTI_3140253
10_1007_s40684_018_0026_5
GroupedDBID -EM
0R~
203
4.4
406
8FE
8FG
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AAYIU
AAYQN
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJCF
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACREN
ACZOJ
ADHHG
ADKPE
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEUYN
AEVLU
AEXYK
AFKRA
AFZKB
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYQR
ARAPS
ASPBG
ATCPS
AUKKA
AVWKF
AXYYD
AZFZN
BENPR
BGLVJ
BGNMA
BHPHI
CCPQU
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
GGRSB
GJIRD
HCIFZ
IKXTQ
IWAJR
IXD
J-C
JBSCW
JCJTX
JZLTJ
KOV
L6V
LLZTM
M4Y
M7S
NPVJJ
NQJWS
NU0
O9J
PATMY
PT4
PTHSS
PYCSY
ROL
RSV
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
Z7R
Z7V
Z7X
Z7Y
Z7Z
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
AZQEC
DWQXO
GNUQQ
P62
PKEHL
PQEST
PQQKQ
PQUKI
AAAVM
ACYCR
ID FETCH-LOGICAL-c350t-43c4174eb1325673af608d8380436780c681bfe0d8fbfc8fc18af1804bb95ddd3
IEDL.DBID AGYKE
ISSN 2288-6206
IngestDate Tue Nov 21 21:42:42 EST 2023
Fri Jul 25 10:57:04 EDT 2025
Wed Oct 01 04:08:13 EDT 2025
Thu Apr 24 23:11:21 EDT 2025
Fri Feb 21 02:34:17 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 2
Keywords Intrinsic charge
Streaming potential
Microfluidics
Electrokinetics
Hydrophobic surface
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c350t-43c4174eb1325673af608d8380436780c681bfe0d8fbfc8fc18af1804bb95ddd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
http://link.springer.com/article/10.1007/s40684-018-0026-5
ORCID 0000-0002-2311-2211
PQID 2932464749
PQPubID 2044252
PageCount 6
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_3140253
proquest_journals_2932464749
crossref_primary_10_1007_s40684_018_0026_5
crossref_citationtrail_10_1007_s40684_018_0026_5
springer_journals_10_1007_s40684_018_0026_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180400
2018-4-00
20180401
2018-04
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 4
  year: 2018
  text: 20180400
PublicationDecade 2010
PublicationPlace Seoul
PublicationPlace_xml – name: Seoul
– name: Heidelberg
PublicationTitle International Journal of Precision Engineering and Manufacturing-Green Technology, 5(2)
PublicationTitleAbbrev Int. J. of Precis. Eng. and Manuf.-Green Tech
PublicationYear 2018
Publisher Korean Society for Precision Engineering
Springer Nature B.V
한국정밀공학회
Publisher_xml – name: Korean Society for Precision Engineering
– name: Springer Nature B.V
– name: 한국정밀공학회
References Vácha, Rick, Jungwirth, Beer, Aguiar (CR30) 2011; 133
Nguyen, Navid, Pilon (CR7) 2010; 30
Koltonow, Huang (CR16) 2016; 351
Wang, Song (CR2) 2006; 312
Sun, Kwok (CR21) 2006; 556
(CR29) 2015; 143
Creux, Lachaise, Graciaa, Beattie (CR28) 2007; 111
Siria, Poncharal, Biance, Fulcrand, Blase (CR8) 2013; 494
Zhong, Zhong, Chen, Hu, Zhao (CR1) 2016; 9
Tandon, Bhagavatula, Nelson, Kirby (CR25) 2008; 29
Chun, Shim, Choi (CR12) 2006; 6
Van Der Heyden, Bonthuis, Stein, Meyer, Dekker (CR14) 2007; 7
CR32
Chun, Lee, Choi (CR11) 2005; 15
Haldrup, Catalano, Hansen, Wagner, Jensen (CR10) 2015; 15
(CR24) 2008; 19
Vacha, Marsalek, Willard, Bonthuis, Netz (CR26) 2011; 3
CR4
Yang, Jung, Yun, Zhang, Pradel (CR6) 2012; 24
Guo, Cheng, Wu, Jiang, Gao (CR9) 2013; 25
CR5
Zaytseva, Goral, Montagna, Baeumner (CR17) 2005; 5
Lin, Ferguson, Chaudhury (CR22) 2013; 29
Yager, Edwards, Fu, Helton, Nelson (CR20) 2006; 442
Van der Heyden, Bonthuis, Stein, Meyer, Dekker (CR13) 2006; 6
(CR31) 2005; 71
Tian, Shen (CR27) 2009; 106
Kim, Kim, Yoon, Kim, Youn (CR3) 2015; 2
(CR15) 2005; 95
Yang, Kwok (CR23) 2003; 19
Kim, Jang, Kim, Seo (CR19) 2016; 17
Kurita, Hayashi, Fan, Yamamoto, Kato (CR18) 2002; 87
N. V. Zaytseva (26_CR17) 2005; 5
(26_CR31) 2005; 71
P. Yager (26_CR20) 2006; 442
R. Kurita (26_CR18) 2002; 87
(26_CR24) 2008; 19
W. Guo (26_CR9) 2013; 25
(26_CR29) 2015; 143
R. Vácha (26_CR30) 2011; 133
M.-S. Chun (26_CR12) 2006; 6
Y. Yang (26_CR6) 2012; 24
A. R. Koltonow (26_CR16) 2016; 351
H. J. Kim (26_CR19) 2016; 17
26_CR5
26_CR4
F. H. Heyden Van Der (26_CR14) 2007; 7
26_CR32
J. E. Kim (26_CR3) 2015; 2
F. H. Heyden Van der (26_CR13) 2006; 6
R. Vacha (26_CR26) 2011; 3
H. Nguyen (26_CR7) 2010; 30
J. Zhong (26_CR1) 2016; 9
V. Tandon (26_CR25) 2008; 29
P. Creux (26_CR28) 2007; 111
S. Haldrup (26_CR10) 2015; 15
Y. Sun (26_CR21) 2006; 556
(26_CR15) 2005; 95
Z. L. Wang (26_CR2) 2006; 312
C.-H. Lin (26_CR22) 2013; 29
M.-S. Chun (26_CR11) 2005; 15
J. Yang (26_CR23) 2003; 19
C. Tian (26_CR27) 2009; 106
A. Siria (26_CR8) 2013; 494
References_xml – volume: 19
  start-page: 1047
  issue: 4
  year: 2003
  end-page: 1053
  ident: CR23
  article-title: Microfluid Flow in Circular Microchannel with Electrokinetic Effect and Navier’s Slip Condition
  publication-title: Langmuir
  doi: 10.1021/la026201t
– volume: 143
  issue: 8
  year: 2015
  ident: CR29
  publication-title: The Journal of Chemical Physics
– volume: 7
  start-page: 1022
  issue: 4
  year: 2007
  end-page: 1025
  ident: CR14
  article-title: Power Generation by Pressure-Driven Transport of Ions in Nanofluidic Channels
  publication-title: Nano Letters
  doi: 10.1021/nl070194h
– volume: 17
  start-page: 59
  issue: 1
  year: 2016
  end-page: 63
  ident: CR19
  article-title: Advancing Liquid Front Shape Control in Capillary Filling of Microchannel via Arrangement of Microposts for Microfluidic Biomedical Sensors
  publication-title: Int. J. Precis. Eng. Manuf.
  doi: 10.1007/s12541-016-0008-x
– ident: CR4
– volume: 30
  start-page: 2127
  issue: 14
  year: 2010
  end-page: 2137
  ident: CR7
  article-title: Pyroelectric Energy Converter Using Co-Polymer P (VDF-TrFE) and Olsen Cycle for Waste Heat Energy Harvesting
  publication-title: Applied Thermal Engineering
  doi: 10.1016/j.applthermaleng.2010.05.022
– volume: 95
  issue: 11
  year: 2005
  ident: CR15
  publication-title: Physical Review Letters
– volume: 494
  start-page: 455
  issue: 7438
  year: 2013
  end-page: 458
  ident: CR8
  article-title: Giant Osmotic Energy Conversion Measured in a Single Transmembrane Boron Nitride Nanotube
  publication-title: Nature
  doi: 10.1038/nature11876
– volume: 71
  issue: 3
  year: 2005
  ident: CR31
  publication-title: Physical Review E
– volume: 19
  issue: 19
  year: 2008
  ident: CR24
  publication-title: Nanotechnology
– volume: 442
  start-page: 412
  issue: 7101
  year: 2006
  end-page: 418
  ident: CR20
  article-title: Microfluidic Diagnostic Technologies for Global Public Health
  publication-title: Nature
  doi: 10.1038/nature05064
– volume: 106
  start-page: 15148
  issue: 36
  year: 2009
  end-page: 15153
  ident: CR27
  article-title: Structure and Charging of Hydrophobic Material/Water Interfaces Studied by Phase-Sensitive Sum-Frequency Vibrational Spectroscopy
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.0901480106
– volume: 6
  start-page: 2232
  issue: 10
  year: 2006
  end-page: 2237
  ident: CR13
  article-title: Electrokinetic Energy Conversion Efficiency in Nanofluidic Channels
  publication-title: Nano Letters
  doi: 10.1021/nl061524l
– volume: 15
  start-page: 710
  issue: 4
  year: 2005
  end-page: 719
  ident: CR11
  article-title: Microfluidic Analysis of Electrokinetic Streaming Potential Induced by Microflows of Monovalent Electrolyte Solution
  publication-title: Journal of Micromechanics and Microengineering
  doi: 10.1088/0960-1317/15/4/007
– volume: 29
  start-page: 7793
  issue: 25
  year: 2013
  end-page: 7801
  ident: CR22
  article-title: Electrokinetics of Polar Liquids in Contact with Nonpolar Surfaces
  publication-title: Langmuir
  doi: 10.1021/la4008813
– volume: 29
  start-page: 1092
  issue: 5
  year: 2008
  end-page: 1101
  ident: CR25
  article-title: Zeta Potential and Electroosmotic Mobility in Microfluidic Devices Fabricated from Hydrophobic Polymers: 1. The Origins of Charge
  publication-title: Electrophoresis
  doi: 10.1002/elps.200700734
– volume: 9
  start-page: 3085
  issue: 10
  year: 2016
  end-page: 3091
  ident: CR1
  article-title: Surface Charge Self-Recovering Electret Film for Wearable Energy Conversion in a Harsh Environment
  publication-title: Energy & Environmental Science
  doi: 10.1039/C6EE02135B
– volume: 312
  start-page: 242
  issue: 5771
  year: 2006
  end-page: 246
  ident: CR2
  article-title: Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays
  publication-title: Science
  doi: 10.1126/science.1124005
– volume: 5
  start-page: 805
  issue: 8
  year: 2005
  end-page: 811
  ident: CR17
  article-title: Development of a Microfluidic Biosensor Module for Pathogen Detection
  publication-title: Lab on a Chip
  doi: 10.1039/b503856a
– volume: 6
  start-page: 302
  issue: 2
  year: 2006
  end-page: 309
  ident: CR12
  article-title: Fabrication and Validation of a Multi-Channel Type Microfluidic Chip for Electrokinetic Streaming Potential Devices
  publication-title: Lab on a Chip
  doi: 10.1039/b514327f
– volume: 133
  start-page: 10204
  issue: 26
  year: 2011
  end-page: 10210
  ident: CR30
  article-title: The Orientation and Charge of Water at the Hydrophobic Oil Droplet–Water Interface
  publication-title: Journal of the American Chemical Society
  doi: 10.1021/ja202081x
– ident: CR32
– volume: 3
  start-page: 107
  issue: 1
  year: 2011
  end-page: 111
  ident: CR26
  article-title: Charge Transfer between Water Molecules as the Possible Origin of the Observed Charging at the Surface of Pure Water
  publication-title: The Journal of Physical Chemistry Letters
  doi: 10.1021/jz2014852
– volume: 24
  start-page: 5357
  issue: 39
  year: 2012
  end-page: 5362
  ident: CR6
  article-title: Flexible Pyroelectric Nanogenerators Using a Composite Structure of Lead-Free KNbO3 Nanowires
  publication-title: Advanced Materials
  doi: 10.1002/adma.201201414
– ident: CR5
– volume: 111
  start-page: 3753
  issue: 9
  year: 2007
  end-page: 3755
  ident: CR28
  article-title: Specific Cation Effects at the Hydroxide-Charged Air/Water Interface
  publication-title: The Journal of Physical Chemistry C
  doi: 10.1021/jp070060s
– volume: 556
  start-page: 80
  issue: 1
  year: 2006
  end-page: 96
  ident: CR21
  article-title: Polymeric Microfluidic System for DNA Analysis
  publication-title: Analytica Chimica Acta
  doi: 10.1016/j.aca.2005.09.035
– volume: 351
  start-page: 1395
  issue: 6280
  year: 2016
  end-page: 1396
  ident: CR16
  article-title: Two-Dimensional Nanofluidics
  publication-title: Science
  doi: 10.1126/science.aaf5289
– volume: 2
  start-page: 51
  issue: 1
  year: 2015
  end-page: 57
  ident: CR3
  article-title: An Energy Conversion Model for Cantilevered Piezoelectric Vibration Energy Harvesters Using Only Measurable Parameters
  publication-title: Int. J. Precis. Eng. Manuf.-Green Tech.
  doi: 10.1007/s40684-015-0007-x
– volume: 25
  start-page: 6064
  issue: 42
  year: 2013
  end-page: 6068
  ident: CR9
  article-title: Bio-Inspired Two-Dimensional Nanofluidic Generators Based on a Layered Graphene Hydrogel Membrane
  publication-title: Advanced Materials
  doi: 10.1002/adma.201302441
– volume: 15
  start-page: 1158
  issue: 2
  year: 2015
  end-page: 1165
  ident: CR10
  article-title: High Electrokinetic Energy Conversion Efficiency in Charged Nanoporous Nitrocellulose/Sulfonated Polystyrene Membranes
  publication-title: Nano Letters
  doi: 10.1021/nl5042287
– volume: 87
  start-page: 296
  issue: 2
  year: 2002
  end-page: 303
  ident: CR18
  article-title: Microfluidic Device Integrated with Pre-Reactor and Dual Enzyme-Modified Microelectrodes for Monitoring in Vivo Glucose and Lactate
  publication-title: Sensors and Actuators B: Chemical
  doi: 10.1016/S0925-4005(02)00249-6
– volume: 6
  start-page: 2232
  issue: 10
  year: 2006
  ident: 26_CR13
  publication-title: Nano Letters
  doi: 10.1021/nl061524l
– volume: 7
  start-page: 1022
  issue: 4
  year: 2007
  ident: 26_CR14
  publication-title: Nano Letters
  doi: 10.1021/nl070194h
– volume: 9
  start-page: 3085
  issue: 10
  year: 2016
  ident: 26_CR1
  publication-title: Energy & Environmental Science
  doi: 10.1039/C6EE02135B
– volume: 17
  start-page: 59
  issue: 1
  year: 2016
  ident: 26_CR19
  publication-title: Int. J. Precis. Eng. Manuf.
  doi: 10.1007/s12541-016-0008-x
– ident: 26_CR5
  doi: 10.1038/ncomms10987
– volume: 442
  start-page: 412
  issue: 7101
  year: 2006
  ident: 26_CR20
  publication-title: Nature
  doi: 10.1038/nature05064
– volume: 312
  start-page: 242
  issue: 5771
  year: 2006
  ident: 26_CR2
  publication-title: Science
  doi: 10.1126/science.1124005
– volume: 133
  start-page: 10204
  issue: 26
  year: 2011
  ident: 26_CR30
  publication-title: Journal of the American Chemical Society
  doi: 10.1021/ja202081x
– volume: 143
  issue: 8
  year: 2015
  ident: 26_CR29
  publication-title: The Journal of Chemical Physics
– volume: 87
  start-page: 296
  issue: 2
  year: 2002
  ident: 26_CR18
  publication-title: Sensors and Actuators B: Chemical
  doi: 10.1016/S0925-4005(02)00249-6
– ident: 26_CR4
  doi: 10.1038/ncomms5929
– volume: 29
  start-page: 1092
  issue: 5
  year: 2008
  ident: 26_CR25
  publication-title: Electrophoresis
  doi: 10.1002/elps.200700734
– volume: 5
  start-page: 805
  issue: 8
  year: 2005
  ident: 26_CR17
  publication-title: Lab on a Chip
  doi: 10.1039/b503856a
– volume: 95
  issue: 11
  year: 2005
  ident: 26_CR15
  publication-title: Physical Review Letters
– volume: 15
  start-page: 1158
  issue: 2
  year: 2015
  ident: 26_CR10
  publication-title: Nano Letters
  doi: 10.1021/nl5042287
– volume: 106
  start-page: 15148
  issue: 36
  year: 2009
  ident: 26_CR27
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.0901480106
– volume: 71
  issue: 3
  year: 2005
  ident: 26_CR31
  publication-title: Physical Review E
– volume: 19
  issue: 19
  year: 2008
  ident: 26_CR24
  publication-title: Nanotechnology
– volume: 111
  start-page: 3753
  issue: 9
  year: 2007
  ident: 26_CR28
  publication-title: The Journal of Physical Chemistry C
  doi: 10.1021/jp070060s
– volume: 2
  start-page: 51
  issue: 1
  year: 2015
  ident: 26_CR3
  publication-title: Int. J. Precis. Eng. Manuf.-Green Tech.
  doi: 10.1007/s40684-015-0007-x
– volume: 19
  start-page: 1047
  issue: 4
  year: 2003
  ident: 26_CR23
  publication-title: Langmuir
  doi: 10.1021/la026201t
– volume: 351
  start-page: 1395
  issue: 6280
  year: 2016
  ident: 26_CR16
  publication-title: Science
  doi: 10.1126/science.aaf5289
– volume: 6
  start-page: 302
  issue: 2
  year: 2006
  ident: 26_CR12
  publication-title: Lab on a Chip
  doi: 10.1039/b514327f
– volume: 25
  start-page: 6064
  issue: 42
  year: 2013
  ident: 26_CR9
  publication-title: Advanced Materials
  doi: 10.1002/adma.201302441
– volume: 15
  start-page: 710
  issue: 4
  year: 2005
  ident: 26_CR11
  publication-title: Journal of Micromechanics and Microengineering
  doi: 10.1088/0960-1317/15/4/007
– volume: 30
  start-page: 2127
  issue: 14
  year: 2010
  ident: 26_CR7
  publication-title: Applied Thermal Engineering
  doi: 10.1016/j.applthermaleng.2010.05.022
– volume: 29
  start-page: 7793
  issue: 25
  year: 2013
  ident: 26_CR22
  publication-title: Langmuir
  doi: 10.1021/la4008813
– volume: 24
  start-page: 5357
  issue: 39
  year: 2012
  ident: 26_CR6
  publication-title: Advanced Materials
  doi: 10.1002/adma.201201414
– volume: 3
  start-page: 107
  issue: 1
  year: 2011
  ident: 26_CR26
  publication-title: The Journal of Physical Chemistry Letters
  doi: 10.1021/jz2014852
– volume: 494
  start-page: 455
  issue: 7438
  year: 2013
  ident: 26_CR8
  publication-title: Nature
  doi: 10.1038/nature11876
– ident: 26_CR32
– volume: 556
  start-page: 80
  issue: 1
  year: 2006
  ident: 26_CR21
  publication-title: Analytica Chimica Acta
  doi: 10.1016/j.aca.2005.09.035
SSID ssib020725660
ssib023362405
ssib021620261
ssj0002963678
ssib060478650
ssib017593019
ssib031263587
ssib016919596
ssib017001181
Score 2.1333387
Snippet The fabrication of power generators utilized by streaming potential has been attracting profound interests for various applications such as wearable healthcare...
SourceID nrf
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 255
SubjectTerms Arrays
Boundary conditions
Charge density
Clean technology
Contact angle
Digital cameras
Efficiency
Electrodes
Energy Efficiency
Engineering
Ethanol
Fabrication
Generators
Hydrophobic surfaces
Hydrophobicity
Industrial and Production Engineering
Manufacturing
Microelectromechanical systems
Microfluidics
Plasma etching
Regular Paper
Streaming potential
Sustainable Development
기계공학
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZoucAB8RRLW2QhTiCLxHYS51RR6LJFKkKCit4sP8uqq2RJdw_9951JnF2KRE9R5DiRxl_mYc98Q8jb3Na2ypRkQQjHpAk5s4WxLIB3Ilyonesr5E6_lbMz-fW8OE8bblcprXLUib2i9q3DPfIPYJa4LGUl68PlH4Zdo_B0NbXQ2CH3cw5Iwkrx6ZcRTzyrwKBv3X-elxxDjs29AO0tt3gvkammTKd8qMk5oHNQ5pwDoGB2OR6MYvUd2EKFKRyKYSTDilumbafp4i2v9Z-D1t5-TR-TR8nxpB8HpDwh90LzlDz8i47wGVkc93wSYIboKebpxcV67ueOfsdOanQgqIYQnR6B5fO0bWi_nThURtCU8EU_n9Bf4L921DSezq591y5_t3buGNYxNGFBf6y7aFx4Ts6mxz8_zVjqxsCcKLIVk8JJCF9AtwuQaiVMLDPllVBIYl-pzJXgAceQeRVtdCq6XJmYw6i1deG9Fy_IbtM24SWhpa18BbFZ8LWRzgoLqOAus7w2hodoJyQbBaldoirHjhkLvSFZ7mWvQfYaZa-LCXm3mbIceDruevgNrI6-dHON7Np4vWj1ZachhjjRAmJOXogJ2R8XT6f_-kpvUTgh78cF3Q7_94uv7n7ZHnnAexwhnPbJ7qpbhwNwdlb2dY_oG31Y8tM
  priority: 102
  providerName: ProQuest
Title Efficient Microfluidic Power Generator Based on Interaction between DI Water and Hydrophobic-Channel Surface
URI https://link.springer.com/article/10.1007/s40684-018-0026-5
https://www.proquest.com/docview/2932464749
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002335118
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX International Journal of Precision Engineering and Manufacturing-Green Technology, 2018, 5(2), , pp.255-260
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2198-0810
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib020725660
  issn: 2288-6206
  databaseCode: AFBBN
  dateStart: 20140101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2198-0810
  dateEnd: 20241002
  omitProxy: true
  ssIdentifier: ssj0002963678
  issn: 2288-6206
  databaseCode: BENPR
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 2198-0810
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002963678
  issn: 2288-6206
  databaseCode: AGYKE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD6i3Qs8cEd0G5WFeAJ5Sm0ncR5XaNeBVk2wifFkxTeoWiVT1j7Ar-c4l45NgLQnK7IjK8efzyU-5zPAm5HOdBpJQR3nhorcjaiOc00deifcuMyYukLuZJ7MzsXHi_iireO-6rLduyPJWlNvi93Q9MiQMSFpCBxo3IOdOMQnfdg5PPr2adLBiEUp2vFrr5-NEhYije0zR6UtWpgHhc0QhI3OZgxxg6OT7vzzb_PesGC9ovI3nNNb56m1mZo-grPuA5vslOXBZq0PzK9b3I93lMBjeNi6reSwwdkTuOeKp_DgDzLDZ7Ca1GwUaMTIScjy86vNwi4MOQ33sJGG3hoDfDJGu2lJWZD6Z2RTV0HadDHy4Zh8Re-3InlhyeynrcrLH6VeGBqqIAq3Il82lc-New7n08nZ-xlt73KghsfRmgpuBAY_aBk4Lk7Kc59E0kouAwV-KiOToP_sXWSl195Ib0Yy9yPs1TqLrbX8BfSLsnAvgSQ6tSlGds5muTCaa8QUM5FmWZ4z5_UAom59lGmJzsN9Gyu1pWiuBalQkCoIUsUDeLt95bJh-fjf4Ne46GppFipwc4f2e6mWlcII5FhxjFhZzAew32FCtVrhSqFrxUQiUpEN4F23xNfd_5xx906j9-A-qzESoLIP_XW1ca_Qc1rrIfTk9GiI-2U6Hs-H7b7BdjyZn37-DffzDIY
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbacgAOiKdYKGAhuIAsEttJnANCQLvs0m6FRCt6c-MXrLpKlnRXqH-K38hMHrsUid56iqIkjuT57G_G9nxDyIvY5CaLlGReCMtk4WNmksIwD96JsD63tsmQmxykoyP5-Tg53iC_-1wYPFbZz4nNRO0qi2vkb4CWuExlJvN3858Mq0bh7mpfQqOFxZ4__wUh29nb8Q7Y9yXnw93DjyPWVRVgViTRgklhJbjhMEcJoPtMFCGNlFNCoRh7piKbgicXfORUMMGqYGNVhBieGpMnzjkB7W6Sa1IIgVr9avipxy-PMmhxHW7wOOUY4qzuBbCFXI-vFJVx0m5XEZmDw2hoyYNzADB8nfYbsZjtB9yr8MiIYhg5seQClW6WdbjgJf-zsdvw5fA2udU5uvR9i8w7ZMOXd8nNv-QP75HZbqNfAbRHJ3guMMyWUze19AtWbqOtIPaiqukHYFpHq5I2y5dtJgbtDpjRnTH9Bv5yTYvS0dG5q6v5j8pMLcO8idLP6NdlHQrr75OjK7HTA7JVVqV_SGhqMpdBLOhdXkhrhAEUchsZnhcF98EMSNR3pLadNDpW6Jjplahz0_ca-l5j3-tkQF6tPpm3uiCXvfwcrKNP7VSjmjdev1f6tNYQs4y1gBiXJ2JAtnvj6W4eOdNr1A_I696g68f__eOjyxt7Rq6PDif7en98sPeY3OANphBa22RrUS_9E3C0FuZpg25KTq56OP0BfmYvjg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELboVkJw4I3YUsBCnEBuE9tJnGOhu-xSWlWCinJy_aSrXSWrNHuAX884jy2tAAlxiiI7iTL-Mo945huEXsU611kkOHGMGcKVi4lOlCYOvBNmXG5MUyF3eJROTviH0-S063N60We791uSbU1DYGkq6t2l9bvrwjcwQyJkTwgSggiSbKBNDsYtGaDNvfdfD0Y9pGiUgU2_jABonNIQdazPGShw3kE-KG8KgGz1N6WAIZid9nuhv3vuFWu2UVT-iqN6bW-1MVnju-isf9k2U2W-s6r1jvlxjQfyP6RxD93p3Fm81-LvPrrhigfo9i8khw_RYtSwVMDt8GHI_vOL1czODD4O_dlwS3sNgT9-C_bU4rLAzU_Ktt4Cd2lkeH-Kv4BXXGFVWDz5bqtyeV7qmSGhOqJwC_xpVXll3CN0Mh59fjchXY8HYlgS1YQzwyEoAovBYKEypnwaCSuYCNT4mYhMCn61d5EVXnsjvImF8jGMap0n1lr2GA2KsnBPEE51ZjOI-JzNFTeaacAaNZGmuVLUeT1EUb9W0nQE6KEPx0KuqZsbQUoQpAyClMkQvV5fsmzZP_42-SUAQM7NTAbO7nD8Vsp5JSEymUoGkSxN2BBt9_iQnba4kOByUZ7yjOdD9KZf7svhPz5x659mv0A3j_fH8uP06OApukUbuATUbKNBXa3cM3Cuav28-4B-Ap_ZFFY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Microfluidic+Power+Generator+Based+on+Interaction+between+DI+Water+and+Hydrophobic-Channel+Surface&rft.jtitle=International+journal+of+precision+engineering+and+manufacturing-green+technology&rft.au=Choi%2C+Yong+Whan&rft.au=Jang%2C+Segeun&rft.au=Chun%2C+Myung-Suk&rft.au=Kim%2C+Sang+Moon&rft.date=2018-04-01&rft.pub=Korean+Society+for+Precision+Engineering&rft.issn=2288-6206&rft.eissn=2198-0810&rft.volume=5&rft.issue=2&rft.spage=255&rft.epage=260&rft_id=info:doi/10.1007%2Fs40684-018-0026-5&rft.externalDocID=10_1007_s40684_018_0026_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2288-6206&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2288-6206&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2288-6206&client=summon