Efficient Microfluidic Power Generator Based on Interaction between DI Water and Hydrophobic-Channel Surface
The fabrication of power generators utilized by streaming potential has been attracting profound interests for various applications such as wearable healthcare and self-powered micro/nano systems. So far, streaming potential has been generated by a charged channel wall and accumulated counter-ions....
Saved in:
Published in | International Journal of Precision Engineering and Manufacturing-Green Technology, 5(2) Vol. 5; no. 2; pp. 255 - 260 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Seoul
Korean Society for Precision Engineering
01.04.2018
Springer Nature B.V 한국정밀공학회 |
Subjects | |
Online Access | Get full text |
ISSN | 2288-6206 2198-0810 |
DOI | 10.1007/s40684-018-0026-5 |
Cover
Abstract | The fabrication of power generators utilized by streaming potential has been attracting profound interests for various applications such as wearable healthcare and self-powered micro/nano systems. So far, streaming potential has been generated by a charged channel wall and accumulated counter-ions. However, this approach is assumed as no-slip boundary condition, while the slippery channel wall is critical for high efficiency. Herein, we demonstrate a microfluidic power generator based on streaming potential that can be intrinsically charged at a hydrophobic channel wall. This charging mechanism has higher values of charge density and slip boundary condition. We have achieved output voltage of ~2.7 V and streaming conductance density of ~1.23 A/m
2
·bar with the channel that is ~2 μm high and ~3.5 μm wide. Our result is a promising step for obtaining low-cost, high efficient power-generators for micro/nano systems. |
---|---|
AbstractList | The fabrication of power generators utilized by streaming potential has been attracting profound interests for various applications such as wearable healthcare and self-powered micro/nano systems. So far, streaming potential has been generated by a charged channel wall and accumulated counter-ions. However, this approach is assumed as no-slip boundary condition, while the slippery channel wall is critical for high efficiency. Herein, we demonstrate a microfluidic power generator based on streaming potential that can be intrinsically charged at a hydrophobic channel wall. This charging mechanism has higher values of charge density and slip boundary condition. We have achieved output voltage of ~2.7 V and streaming conductance density of ~1.23 A/m2·bar with the channel that is ~2 μm high and ~3.5 μm wide. Our result is a promising step for obtaining low-cost, high efficient power-generators for micro/nano systems. The fabrication of power generators utilized by streaming potential has been attracting profound interests for various applications such as wearable healthcare and self-powered micro/nano systems. So far, streaming potential has been generated by a charged channel wall and accumulated counter-ions. However, this approach is assumed as no-slip boundary condition, while the slippery channel wall is critical for high efficiency. Herein, we demonstrate a microfluidic power generator based on streaming potential that can be intrinsically charged at a hydrophobic channel wall. This charging mechanism has higher values of charge density and slip boundary condition. We have achieved output voltage of ~2.7 V and streaming conductance density of ~1.23 A/m2·bar with the channel that is ~2 µm high and ~3.5 µm wide. Our result is a promising step for obtaining low-cost, high efficient power-generators for micro/nano systems. KCI Citation Count: 5 The fabrication of power generators utilized by streaming potential has been attracting profound interests for various applications such as wearable healthcare and self-powered micro/nano systems. So far, streaming potential has been generated by a charged channel wall and accumulated counter-ions. However, this approach is assumed as no-slip boundary condition, while the slippery channel wall is critical for high efficiency. Herein, we demonstrate a microfluidic power generator based on streaming potential that can be intrinsically charged at a hydrophobic channel wall. This charging mechanism has higher values of charge density and slip boundary condition. We have achieved output voltage of ~2.7 V and streaming conductance density of ~1.23 A/m 2 ·bar with the channel that is ~2 μm high and ~3.5 μm wide. Our result is a promising step for obtaining low-cost, high efficient power-generators for micro/nano systems. |
Author | Jang, Segeun Chun, Myung-Suk Choi, Yong Whan Kim, Sang Moon Choi, Mansoo |
Author_xml | – sequence: 1 givenname: Yong Whan surname: Choi fullname: Choi, Yong Whan organization: Global Frontier Center for Multiscale Energy Systems, Seoul National University, Department of Mechanical and Aerospace Engineering, Seoul National University – sequence: 2 givenname: Segeun surname: Jang fullname: Jang, Segeun organization: Global Frontier Center for Multiscale Energy Systems, Seoul National University, Department of Mechanical and Aerospace Engineering, Seoul National University – sequence: 3 givenname: Myung-Suk surname: Chun fullname: Chun, Myung-Suk organization: Complex Fluids Laboratory, National Agenda Research Division, Korea Institute of Science and Technology – sequence: 4 givenname: Sang Moon orcidid: 0000-0002-2311-2211 surname: Kim fullname: Kim, Sang Moon email: ksm7852@inu.ac.kr organization: Department of Mechanical Engineering, Incheon National University – sequence: 5 givenname: Mansoo surname: Choi fullname: Choi, Mansoo organization: Global Frontier Center for Multiscale Energy Systems, Seoul National University, Department of Mechanical and Aerospace Engineering, Seoul National University |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002335118$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kU1LXDEUhoNYqLX-gO4CrlzcevJxczNLO53qgKVFLV2G3Hxo6m0yJhnEf2-mt1AQ7OqcnLxP8nLed2g_pugQ-kDgIwEYTgsHIXkHRHYAVHT9HjqgZNFOksB-66mUnaAg3qKjUsIIFAbaCwEHaFp5H0xwseKvweTkp22wweDv6dFlfO6iy7qmjD_p4ixOEa9jbSNTQ-tHVx-di_jzGv_UbYx1tPjiyea0uUtjMN3yTsfoJny9zV4b9x698Xoq7uhvPUQ_vqxulhfd5bfz9fLssjOsh9pxZjgZuBsJay4Hpr0AaSWTwJkYJBghyegdWOlHb6Q3RGpP2u04LnprLTtEJ_O7MXt1b4JKOvypt0ndZ3V2dbNWjHCgPWva41m7yelh60pVv9I2x2ZP0QWjXPCBL5qKzKq2olKy82qTw2-dnxQBtctAzRmoloHaZaD6xgwvGBOq3i2uZh2m_5J0Jkv7Jd66_M_T69AzN7-cPA |
CitedBy_id | crossref_primary_10_1002_elps_201800352 crossref_primary_10_3390_en15165807 crossref_primary_10_1039_D0NR04326E crossref_primary_10_1007_s40684_020_00238_y crossref_primary_10_1007_s40684_020_00245_z crossref_primary_10_1007_s40684_019_00148_8 crossref_primary_10_1007_s40684_019_00143_z crossref_primary_10_1016_j_nanoen_2019_104017 |
Cites_doi | 10.1021/la026201t 10.1021/nl070194h 10.1007/s12541-016-0008-x 10.1016/j.applthermaleng.2010.05.022 10.1038/nature11876 10.1038/nature05064 10.1073/pnas.0901480106 10.1021/nl061524l 10.1088/0960-1317/15/4/007 10.1021/la4008813 10.1002/elps.200700734 10.1039/C6EE02135B 10.1126/science.1124005 10.1039/b503856a 10.1039/b514327f 10.1021/ja202081x 10.1021/jz2014852 10.1002/adma.201201414 10.1021/jp070060s 10.1016/j.aca.2005.09.035 10.1126/science.aaf5289 10.1007/s40684-015-0007-x 10.1002/adma.201302441 10.1021/nl5042287 10.1016/S0925-4005(02)00249-6 10.1038/ncomms10987 10.1038/ncomms5929 |
ContentType | Journal Article |
Copyright | Korean Society for Precision Engineering 2018 Korean Society for Precision Engineering 2018. |
Copyright_xml | – notice: Korean Society for Precision Engineering 2018 – notice: Korean Society for Precision Engineering 2018. |
DBID | AAYXX CITATION 8FE 8FG ABJCF AEUYN AFKRA ARAPS ATCPS AZQEC BENPR BGLVJ BHPHI CCPQU DWQXO GNUQQ HCIFZ L6V M7S P5Z P62 PATMY PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY ACYCR |
DOI | 10.1007/s40684-018-0026-5 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection Korean Citation Index |
DatabaseTitle | CrossRef ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | ProQuest Central Student |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2198-0810 |
EndPage | 260 |
ExternalDocumentID | oai_kci_go_kr_ARTI_3140253 10_1007_s40684_018_0026_5 |
GroupedDBID | -EM 0R~ 203 4.4 406 8FE 8FG AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AAYIU AAYQN AAZMS ABAKF ABDZT ABECU ABFTV ABJCF ABJOX ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACIWK ACKNC ACMLO ACOKC ACPIV ACREN ACZOJ ADHHG ADKPE ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEUYN AEVLU AEXYK AFKRA AFZKB AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHKAY AHSBF AHYZX AIAKS AIGIU AILAN AITGF AJBLW AJRNO AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AMXSW AMYQR ARAPS ASPBG ATCPS AUKKA AVWKF AXYYD AZFZN BENPR BGLVJ BGNMA BHPHI CCPQU CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD FERAY FIGPU FINBP FNLPD FRRFC FSGXE GGRSB GJIRD HCIFZ IKXTQ IWAJR IXD J-C JBSCW JCJTX JZLTJ KOV L6V LLZTM M4Y M7S NPVJJ NQJWS NU0 O9J PATMY PT4 PTHSS PYCSY ROL RSV SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UG4 UOJIU UTJUX UZXMN VFIZW W48 Z7R Z7V Z7X Z7Y Z7Z ZMTXR AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO AZQEC DWQXO GNUQQ P62 PKEHL PQEST PQQKQ PQUKI AAAVM ACYCR |
ID | FETCH-LOGICAL-c350t-43c4174eb1325673af608d8380436780c681bfe0d8fbfc8fc18af1804bb95ddd3 |
IEDL.DBID | AGYKE |
ISSN | 2288-6206 |
IngestDate | Tue Nov 21 21:42:42 EST 2023 Fri Jul 25 10:57:04 EDT 2025 Wed Oct 01 04:08:13 EDT 2025 Thu Apr 24 23:11:21 EDT 2025 Fri Feb 21 02:34:17 EST 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Keywords | Intrinsic charge Streaming potential Microfluidics Electrokinetics Hydrophobic surface |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c350t-43c4174eb1325673af608d8380436780c681bfe0d8fbfc8fc18af1804bb95ddd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 http://link.springer.com/article/10.1007/s40684-018-0026-5 |
ORCID | 0000-0002-2311-2211 |
PQID | 2932464749 |
PQPubID | 2044252 |
PageCount | 6 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_3140253 proquest_journals_2932464749 crossref_primary_10_1007_s40684_018_0026_5 crossref_citationtrail_10_1007_s40684_018_0026_5 springer_journals_10_1007_s40684_018_0026_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180400 2018-4-00 20180401 2018-04 |
PublicationDateYYYYMMDD | 2018-04-01 |
PublicationDate_xml | – month: 4 year: 2018 text: 20180400 |
PublicationDecade | 2010 |
PublicationPlace | Seoul |
PublicationPlace_xml | – name: Seoul – name: Heidelberg |
PublicationTitle | International Journal of Precision Engineering and Manufacturing-Green Technology, 5(2) |
PublicationTitleAbbrev | Int. J. of Precis. Eng. and Manuf.-Green Tech |
PublicationYear | 2018 |
Publisher | Korean Society for Precision Engineering Springer Nature B.V 한국정밀공학회 |
Publisher_xml | – name: Korean Society for Precision Engineering – name: Springer Nature B.V – name: 한국정밀공학회 |
References | Vácha, Rick, Jungwirth, Beer, Aguiar (CR30) 2011; 133 Nguyen, Navid, Pilon (CR7) 2010; 30 Koltonow, Huang (CR16) 2016; 351 Wang, Song (CR2) 2006; 312 Sun, Kwok (CR21) 2006; 556 (CR29) 2015; 143 Creux, Lachaise, Graciaa, Beattie (CR28) 2007; 111 Siria, Poncharal, Biance, Fulcrand, Blase (CR8) 2013; 494 Zhong, Zhong, Chen, Hu, Zhao (CR1) 2016; 9 Tandon, Bhagavatula, Nelson, Kirby (CR25) 2008; 29 Chun, Shim, Choi (CR12) 2006; 6 Van Der Heyden, Bonthuis, Stein, Meyer, Dekker (CR14) 2007; 7 CR32 Chun, Lee, Choi (CR11) 2005; 15 Haldrup, Catalano, Hansen, Wagner, Jensen (CR10) 2015; 15 (CR24) 2008; 19 Vacha, Marsalek, Willard, Bonthuis, Netz (CR26) 2011; 3 CR4 Yang, Jung, Yun, Zhang, Pradel (CR6) 2012; 24 Guo, Cheng, Wu, Jiang, Gao (CR9) 2013; 25 CR5 Zaytseva, Goral, Montagna, Baeumner (CR17) 2005; 5 Lin, Ferguson, Chaudhury (CR22) 2013; 29 Yager, Edwards, Fu, Helton, Nelson (CR20) 2006; 442 Van der Heyden, Bonthuis, Stein, Meyer, Dekker (CR13) 2006; 6 (CR31) 2005; 71 Tian, Shen (CR27) 2009; 106 Kim, Kim, Yoon, Kim, Youn (CR3) 2015; 2 (CR15) 2005; 95 Yang, Kwok (CR23) 2003; 19 Kim, Jang, Kim, Seo (CR19) 2016; 17 Kurita, Hayashi, Fan, Yamamoto, Kato (CR18) 2002; 87 N. V. Zaytseva (26_CR17) 2005; 5 (26_CR31) 2005; 71 P. Yager (26_CR20) 2006; 442 R. Kurita (26_CR18) 2002; 87 (26_CR24) 2008; 19 W. Guo (26_CR9) 2013; 25 (26_CR29) 2015; 143 R. Vácha (26_CR30) 2011; 133 M.-S. Chun (26_CR12) 2006; 6 Y. Yang (26_CR6) 2012; 24 A. R. Koltonow (26_CR16) 2016; 351 H. J. Kim (26_CR19) 2016; 17 26_CR5 26_CR4 F. H. Heyden Van Der (26_CR14) 2007; 7 26_CR32 J. E. Kim (26_CR3) 2015; 2 F. H. Heyden Van der (26_CR13) 2006; 6 R. Vacha (26_CR26) 2011; 3 H. Nguyen (26_CR7) 2010; 30 J. Zhong (26_CR1) 2016; 9 V. Tandon (26_CR25) 2008; 29 P. Creux (26_CR28) 2007; 111 S. Haldrup (26_CR10) 2015; 15 Y. Sun (26_CR21) 2006; 556 (26_CR15) 2005; 95 Z. L. Wang (26_CR2) 2006; 312 C.-H. Lin (26_CR22) 2013; 29 M.-S. Chun (26_CR11) 2005; 15 J. Yang (26_CR23) 2003; 19 C. Tian (26_CR27) 2009; 106 A. Siria (26_CR8) 2013; 494 |
References_xml | – volume: 19 start-page: 1047 issue: 4 year: 2003 end-page: 1053 ident: CR23 article-title: Microfluid Flow in Circular Microchannel with Electrokinetic Effect and Navier’s Slip Condition publication-title: Langmuir doi: 10.1021/la026201t – volume: 143 issue: 8 year: 2015 ident: CR29 publication-title: The Journal of Chemical Physics – volume: 7 start-page: 1022 issue: 4 year: 2007 end-page: 1025 ident: CR14 article-title: Power Generation by Pressure-Driven Transport of Ions in Nanofluidic Channels publication-title: Nano Letters doi: 10.1021/nl070194h – volume: 17 start-page: 59 issue: 1 year: 2016 end-page: 63 ident: CR19 article-title: Advancing Liquid Front Shape Control in Capillary Filling of Microchannel via Arrangement of Microposts for Microfluidic Biomedical Sensors publication-title: Int. J. Precis. Eng. Manuf. doi: 10.1007/s12541-016-0008-x – ident: CR4 – volume: 30 start-page: 2127 issue: 14 year: 2010 end-page: 2137 ident: CR7 article-title: Pyroelectric Energy Converter Using Co-Polymer P (VDF-TrFE) and Olsen Cycle for Waste Heat Energy Harvesting publication-title: Applied Thermal Engineering doi: 10.1016/j.applthermaleng.2010.05.022 – volume: 95 issue: 11 year: 2005 ident: CR15 publication-title: Physical Review Letters – volume: 494 start-page: 455 issue: 7438 year: 2013 end-page: 458 ident: CR8 article-title: Giant Osmotic Energy Conversion Measured in a Single Transmembrane Boron Nitride Nanotube publication-title: Nature doi: 10.1038/nature11876 – volume: 71 issue: 3 year: 2005 ident: CR31 publication-title: Physical Review E – volume: 19 issue: 19 year: 2008 ident: CR24 publication-title: Nanotechnology – volume: 442 start-page: 412 issue: 7101 year: 2006 end-page: 418 ident: CR20 article-title: Microfluidic Diagnostic Technologies for Global Public Health publication-title: Nature doi: 10.1038/nature05064 – volume: 106 start-page: 15148 issue: 36 year: 2009 end-page: 15153 ident: CR27 article-title: Structure and Charging of Hydrophobic Material/Water Interfaces Studied by Phase-Sensitive Sum-Frequency Vibrational Spectroscopy publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.0901480106 – volume: 6 start-page: 2232 issue: 10 year: 2006 end-page: 2237 ident: CR13 article-title: Electrokinetic Energy Conversion Efficiency in Nanofluidic Channels publication-title: Nano Letters doi: 10.1021/nl061524l – volume: 15 start-page: 710 issue: 4 year: 2005 end-page: 719 ident: CR11 article-title: Microfluidic Analysis of Electrokinetic Streaming Potential Induced by Microflows of Monovalent Electrolyte Solution publication-title: Journal of Micromechanics and Microengineering doi: 10.1088/0960-1317/15/4/007 – volume: 29 start-page: 7793 issue: 25 year: 2013 end-page: 7801 ident: CR22 article-title: Electrokinetics of Polar Liquids in Contact with Nonpolar Surfaces publication-title: Langmuir doi: 10.1021/la4008813 – volume: 29 start-page: 1092 issue: 5 year: 2008 end-page: 1101 ident: CR25 article-title: Zeta Potential and Electroosmotic Mobility in Microfluidic Devices Fabricated from Hydrophobic Polymers: 1. The Origins of Charge publication-title: Electrophoresis doi: 10.1002/elps.200700734 – volume: 9 start-page: 3085 issue: 10 year: 2016 end-page: 3091 ident: CR1 article-title: Surface Charge Self-Recovering Electret Film for Wearable Energy Conversion in a Harsh Environment publication-title: Energy & Environmental Science doi: 10.1039/C6EE02135B – volume: 312 start-page: 242 issue: 5771 year: 2006 end-page: 246 ident: CR2 article-title: Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays publication-title: Science doi: 10.1126/science.1124005 – volume: 5 start-page: 805 issue: 8 year: 2005 end-page: 811 ident: CR17 article-title: Development of a Microfluidic Biosensor Module for Pathogen Detection publication-title: Lab on a Chip doi: 10.1039/b503856a – volume: 6 start-page: 302 issue: 2 year: 2006 end-page: 309 ident: CR12 article-title: Fabrication and Validation of a Multi-Channel Type Microfluidic Chip for Electrokinetic Streaming Potential Devices publication-title: Lab on a Chip doi: 10.1039/b514327f – volume: 133 start-page: 10204 issue: 26 year: 2011 end-page: 10210 ident: CR30 article-title: The Orientation and Charge of Water at the Hydrophobic Oil Droplet–Water Interface publication-title: Journal of the American Chemical Society doi: 10.1021/ja202081x – ident: CR32 – volume: 3 start-page: 107 issue: 1 year: 2011 end-page: 111 ident: CR26 article-title: Charge Transfer between Water Molecules as the Possible Origin of the Observed Charging at the Surface of Pure Water publication-title: The Journal of Physical Chemistry Letters doi: 10.1021/jz2014852 – volume: 24 start-page: 5357 issue: 39 year: 2012 end-page: 5362 ident: CR6 article-title: Flexible Pyroelectric Nanogenerators Using a Composite Structure of Lead-Free KNbO3 Nanowires publication-title: Advanced Materials doi: 10.1002/adma.201201414 – ident: CR5 – volume: 111 start-page: 3753 issue: 9 year: 2007 end-page: 3755 ident: CR28 article-title: Specific Cation Effects at the Hydroxide-Charged Air/Water Interface publication-title: The Journal of Physical Chemistry C doi: 10.1021/jp070060s – volume: 556 start-page: 80 issue: 1 year: 2006 end-page: 96 ident: CR21 article-title: Polymeric Microfluidic System for DNA Analysis publication-title: Analytica Chimica Acta doi: 10.1016/j.aca.2005.09.035 – volume: 351 start-page: 1395 issue: 6280 year: 2016 end-page: 1396 ident: CR16 article-title: Two-Dimensional Nanofluidics publication-title: Science doi: 10.1126/science.aaf5289 – volume: 2 start-page: 51 issue: 1 year: 2015 end-page: 57 ident: CR3 article-title: An Energy Conversion Model for Cantilevered Piezoelectric Vibration Energy Harvesters Using Only Measurable Parameters publication-title: Int. J. Precis. Eng. Manuf.-Green Tech. doi: 10.1007/s40684-015-0007-x – volume: 25 start-page: 6064 issue: 42 year: 2013 end-page: 6068 ident: CR9 article-title: Bio-Inspired Two-Dimensional Nanofluidic Generators Based on a Layered Graphene Hydrogel Membrane publication-title: Advanced Materials doi: 10.1002/adma.201302441 – volume: 15 start-page: 1158 issue: 2 year: 2015 end-page: 1165 ident: CR10 article-title: High Electrokinetic Energy Conversion Efficiency in Charged Nanoporous Nitrocellulose/Sulfonated Polystyrene Membranes publication-title: Nano Letters doi: 10.1021/nl5042287 – volume: 87 start-page: 296 issue: 2 year: 2002 end-page: 303 ident: CR18 article-title: Microfluidic Device Integrated with Pre-Reactor and Dual Enzyme-Modified Microelectrodes for Monitoring in Vivo Glucose and Lactate publication-title: Sensors and Actuators B: Chemical doi: 10.1016/S0925-4005(02)00249-6 – volume: 6 start-page: 2232 issue: 10 year: 2006 ident: 26_CR13 publication-title: Nano Letters doi: 10.1021/nl061524l – volume: 7 start-page: 1022 issue: 4 year: 2007 ident: 26_CR14 publication-title: Nano Letters doi: 10.1021/nl070194h – volume: 9 start-page: 3085 issue: 10 year: 2016 ident: 26_CR1 publication-title: Energy & Environmental Science doi: 10.1039/C6EE02135B – volume: 17 start-page: 59 issue: 1 year: 2016 ident: 26_CR19 publication-title: Int. J. Precis. Eng. Manuf. doi: 10.1007/s12541-016-0008-x – ident: 26_CR5 doi: 10.1038/ncomms10987 – volume: 442 start-page: 412 issue: 7101 year: 2006 ident: 26_CR20 publication-title: Nature doi: 10.1038/nature05064 – volume: 312 start-page: 242 issue: 5771 year: 2006 ident: 26_CR2 publication-title: Science doi: 10.1126/science.1124005 – volume: 133 start-page: 10204 issue: 26 year: 2011 ident: 26_CR30 publication-title: Journal of the American Chemical Society doi: 10.1021/ja202081x – volume: 143 issue: 8 year: 2015 ident: 26_CR29 publication-title: The Journal of Chemical Physics – volume: 87 start-page: 296 issue: 2 year: 2002 ident: 26_CR18 publication-title: Sensors and Actuators B: Chemical doi: 10.1016/S0925-4005(02)00249-6 – ident: 26_CR4 doi: 10.1038/ncomms5929 – volume: 29 start-page: 1092 issue: 5 year: 2008 ident: 26_CR25 publication-title: Electrophoresis doi: 10.1002/elps.200700734 – volume: 5 start-page: 805 issue: 8 year: 2005 ident: 26_CR17 publication-title: Lab on a Chip doi: 10.1039/b503856a – volume: 95 issue: 11 year: 2005 ident: 26_CR15 publication-title: Physical Review Letters – volume: 15 start-page: 1158 issue: 2 year: 2015 ident: 26_CR10 publication-title: Nano Letters doi: 10.1021/nl5042287 – volume: 106 start-page: 15148 issue: 36 year: 2009 ident: 26_CR27 publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.0901480106 – volume: 71 issue: 3 year: 2005 ident: 26_CR31 publication-title: Physical Review E – volume: 19 issue: 19 year: 2008 ident: 26_CR24 publication-title: Nanotechnology – volume: 111 start-page: 3753 issue: 9 year: 2007 ident: 26_CR28 publication-title: The Journal of Physical Chemistry C doi: 10.1021/jp070060s – volume: 2 start-page: 51 issue: 1 year: 2015 ident: 26_CR3 publication-title: Int. J. Precis. Eng. Manuf.-Green Tech. doi: 10.1007/s40684-015-0007-x – volume: 19 start-page: 1047 issue: 4 year: 2003 ident: 26_CR23 publication-title: Langmuir doi: 10.1021/la026201t – volume: 351 start-page: 1395 issue: 6280 year: 2016 ident: 26_CR16 publication-title: Science doi: 10.1126/science.aaf5289 – volume: 6 start-page: 302 issue: 2 year: 2006 ident: 26_CR12 publication-title: Lab on a Chip doi: 10.1039/b514327f – volume: 25 start-page: 6064 issue: 42 year: 2013 ident: 26_CR9 publication-title: Advanced Materials doi: 10.1002/adma.201302441 – volume: 15 start-page: 710 issue: 4 year: 2005 ident: 26_CR11 publication-title: Journal of Micromechanics and Microengineering doi: 10.1088/0960-1317/15/4/007 – volume: 30 start-page: 2127 issue: 14 year: 2010 ident: 26_CR7 publication-title: Applied Thermal Engineering doi: 10.1016/j.applthermaleng.2010.05.022 – volume: 29 start-page: 7793 issue: 25 year: 2013 ident: 26_CR22 publication-title: Langmuir doi: 10.1021/la4008813 – volume: 24 start-page: 5357 issue: 39 year: 2012 ident: 26_CR6 publication-title: Advanced Materials doi: 10.1002/adma.201201414 – volume: 3 start-page: 107 issue: 1 year: 2011 ident: 26_CR26 publication-title: The Journal of Physical Chemistry Letters doi: 10.1021/jz2014852 – volume: 494 start-page: 455 issue: 7438 year: 2013 ident: 26_CR8 publication-title: Nature doi: 10.1038/nature11876 – ident: 26_CR32 – volume: 556 start-page: 80 issue: 1 year: 2006 ident: 26_CR21 publication-title: Analytica Chimica Acta doi: 10.1016/j.aca.2005.09.035 |
SSID | ssib020725660 ssib023362405 ssib021620261 ssj0002963678 ssib060478650 ssib017593019 ssib031263587 ssib016919596 ssib017001181 |
Score | 2.1333387 |
Snippet | The fabrication of power generators utilized by streaming potential has been attracting profound interests for various applications such as wearable healthcare... |
SourceID | nrf proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 255 |
SubjectTerms | Arrays Boundary conditions Charge density Clean technology Contact angle Digital cameras Efficiency Electrodes Energy Efficiency Engineering Ethanol Fabrication Generators Hydrophobic surfaces Hydrophobicity Industrial and Production Engineering Manufacturing Microelectromechanical systems Microfluidics Plasma etching Regular Paper Streaming potential Sustainable Development 기계공학 |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZoucAB8RRLW2QhTiCLxHYS51RR6LJFKkKCit4sP8uqq2RJdw_9951JnF2KRE9R5DiRxl_mYc98Q8jb3Na2ypRkQQjHpAk5s4WxLIB3Ilyonesr5E6_lbMz-fW8OE8bblcprXLUib2i9q3DPfIPYJa4LGUl68PlH4Zdo_B0NbXQ2CH3cw5Iwkrx6ZcRTzyrwKBv3X-elxxDjs29AO0tt3gvkammTKd8qMk5oHNQ5pwDoGB2OR6MYvUd2EKFKRyKYSTDilumbafp4i2v9Z-D1t5-TR-TR8nxpB8HpDwh90LzlDz8i47wGVkc93wSYIboKebpxcV67ueOfsdOanQgqIYQnR6B5fO0bWi_nThURtCU8EU_n9Bf4L921DSezq591y5_t3buGNYxNGFBf6y7aFx4Ts6mxz8_zVjqxsCcKLIVk8JJCF9AtwuQaiVMLDPllVBIYl-pzJXgAceQeRVtdCq6XJmYw6i1deG9Fy_IbtM24SWhpa18BbFZ8LWRzgoLqOAus7w2hodoJyQbBaldoirHjhkLvSFZ7mWvQfYaZa-LCXm3mbIceDruevgNrI6-dHON7Np4vWj1ZachhjjRAmJOXogJ2R8XT6f_-kpvUTgh78cF3Q7_94uv7n7ZHnnAexwhnPbJ7qpbhwNwdlb2dY_oG31Y8tM priority: 102 providerName: ProQuest |
Title | Efficient Microfluidic Power Generator Based on Interaction between DI Water and Hydrophobic-Channel Surface |
URI | https://link.springer.com/article/10.1007/s40684-018-0026-5 https://www.proquest.com/docview/2932464749 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002335118 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | International Journal of Precision Engineering and Manufacturing-Green Technology, 2018, 5(2), , pp.255-260 |
journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2198-0810 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib020725660 issn: 2288-6206 databaseCode: AFBBN dateStart: 20140101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2198-0810 dateEnd: 20241002 omitProxy: true ssIdentifier: ssj0002963678 issn: 2288-6206 databaseCode: BENPR dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 2198-0810 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002963678 issn: 2288-6206 databaseCode: AGYKE dateStart: 20140101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD6i3Qs8cEd0G5WFeAJ5Sm0ncR5XaNeBVk2wifFkxTeoWiVT1j7Ar-c4l45NgLQnK7IjK8efzyU-5zPAm5HOdBpJQR3nhorcjaiOc00deifcuMyYukLuZJ7MzsXHi_iireO-6rLduyPJWlNvi93Q9MiQMSFpCBxo3IOdOMQnfdg5PPr2adLBiEUp2vFrr5-NEhYije0zR6UtWpgHhc0QhI3OZgxxg6OT7vzzb_PesGC9ovI3nNNb56m1mZo-grPuA5vslOXBZq0PzK9b3I93lMBjeNi6reSwwdkTuOeKp_DgDzLDZ7Ca1GwUaMTIScjy86vNwi4MOQ33sJGG3hoDfDJGu2lJWZD6Z2RTV0HadDHy4Zh8Re-3InlhyeynrcrLH6VeGBqqIAq3Il82lc-New7n08nZ-xlt73KghsfRmgpuBAY_aBk4Lk7Kc59E0kouAwV-KiOToP_sXWSl195Ib0Yy9yPs1TqLrbX8BfSLsnAvgSQ6tSlGds5muTCaa8QUM5FmWZ4z5_UAom59lGmJzsN9Gyu1pWiuBalQkCoIUsUDeLt95bJh-fjf4Ne46GppFipwc4f2e6mWlcII5FhxjFhZzAew32FCtVrhSqFrxUQiUpEN4F23xNfd_5xx906j9-A-qzESoLIP_XW1ca_Qc1rrIfTk9GiI-2U6Hs-H7b7BdjyZn37-DffzDIY |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbacgAOiKdYKGAhuIAsEttJnANCQLvs0m6FRCt6c-MXrLpKlnRXqH-K38hMHrsUid56iqIkjuT57G_G9nxDyIvY5CaLlGReCMtk4WNmksIwD96JsD63tsmQmxykoyP5-Tg53iC_-1wYPFbZz4nNRO0qi2vkb4CWuExlJvN3858Mq0bh7mpfQqOFxZ4__wUh29nb8Q7Y9yXnw93DjyPWVRVgViTRgklhJbjhMEcJoPtMFCGNlFNCoRh7piKbgicXfORUMMGqYGNVhBieGpMnzjkB7W6Sa1IIgVr9avipxy-PMmhxHW7wOOUY4qzuBbCFXI-vFJVx0m5XEZmDw2hoyYNzADB8nfYbsZjtB9yr8MiIYhg5seQClW6WdbjgJf-zsdvw5fA2udU5uvR9i8w7ZMOXd8nNv-QP75HZbqNfAbRHJ3guMMyWUze19AtWbqOtIPaiqukHYFpHq5I2y5dtJgbtDpjRnTH9Bv5yTYvS0dG5q6v5j8pMLcO8idLP6NdlHQrr75OjK7HTA7JVVqV_SGhqMpdBLOhdXkhrhAEUchsZnhcF98EMSNR3pLadNDpW6Jjplahz0_ca-l5j3-tkQF6tPpm3uiCXvfwcrKNP7VSjmjdev1f6tNYQs4y1gBiXJ2JAtnvj6W4eOdNr1A_I696g68f__eOjyxt7Rq6PDif7en98sPeY3OANphBa22RrUS_9E3C0FuZpg25KTq56OP0BfmYvjg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELboVkJw4I3YUsBCnEBuE9tJnGOhu-xSWlWCinJy_aSrXSWrNHuAX884jy2tAAlxiiI7iTL-Mo945huEXsU611kkOHGMGcKVi4lOlCYOvBNmXG5MUyF3eJROTviH0-S063N60We791uSbU1DYGkq6t2l9bvrwjcwQyJkTwgSggiSbKBNDsYtGaDNvfdfD0Y9pGiUgU2_jABonNIQdazPGShw3kE-KG8KgGz1N6WAIZid9nuhv3vuFWu2UVT-iqN6bW-1MVnju-isf9k2U2W-s6r1jvlxjQfyP6RxD93p3Fm81-LvPrrhigfo9i8khw_RYtSwVMDt8GHI_vOL1czODD4O_dlwS3sNgT9-C_bU4rLAzU_Ktt4Cd2lkeH-Kv4BXXGFVWDz5bqtyeV7qmSGhOqJwC_xpVXll3CN0Mh59fjchXY8HYlgS1YQzwyEoAovBYKEypnwaCSuYCNT4mYhMCn61d5EVXnsjvImF8jGMap0n1lr2GA2KsnBPEE51ZjOI-JzNFTeaacAaNZGmuVLUeT1EUb9W0nQE6KEPx0KuqZsbQUoQpAyClMkQvV5fsmzZP_42-SUAQM7NTAbO7nD8Vsp5JSEymUoGkSxN2BBt9_iQnba4kOByUZ7yjOdD9KZf7svhPz5x659mv0A3j_fH8uP06OApukUbuATUbKNBXa3cM3Cuav28-4B-Ap_ZFFY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Microfluidic+Power+Generator+Based+on+Interaction+between+DI+Water+and+Hydrophobic-Channel+Surface&rft.jtitle=International+journal+of+precision+engineering+and+manufacturing-green+technology&rft.au=Choi%2C+Yong+Whan&rft.au=Jang%2C+Segeun&rft.au=Chun%2C+Myung-Suk&rft.au=Kim%2C+Sang+Moon&rft.date=2018-04-01&rft.pub=Korean+Society+for+Precision+Engineering&rft.issn=2288-6206&rft.eissn=2198-0810&rft.volume=5&rft.issue=2&rft.spage=255&rft.epage=260&rft_id=info:doi/10.1007%2Fs40684-018-0026-5&rft.externalDocID=10_1007_s40684_018_0026_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2288-6206&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2288-6206&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2288-6206&client=summon |