Structure and NO2 gas sensing properties of SnO2-core/In2O3-shell nanobelts
SnO2-core/In2O3-shell nanobelts were fabricated by a two-step process comprising thermal evaporation of Sn powders and sputter-deposition of In2O3. Transmission electron microscopy and X-ray diffraction analyses revealed that the core of a typical core–shell nanobelt comprised a simple tetragonal-st...
Saved in:
| Published in | Current applied physics Vol. 12; no. 4; pp. 1125 - 1130 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.07.2012
한국물리학회 |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1567-1739 1878-1675 |
| DOI | 10.1016/j.cap.2012.02.006 |
Cover
| Abstract | SnO2-core/In2O3-shell nanobelts were fabricated by a two-step process comprising thermal evaporation of Sn powders and sputter-deposition of In2O3. Transmission electron microscopy and X-ray diffraction analyses revealed that the core of a typical core–shell nanobelt comprised a simple tetragonal-structured single crystal SnO2 and that the shell comprised an amorphous In2O3. Multiple networked SnO2-core/In2O3-shell nanobelt sensors showed the response of 5.35% at a NO2 concentration of 10 ppm at 300 °C. This response value is more than three times larger than that of bare-SnO2 nanobelt sensors at the same NO2 concentration. The enhancement in the sensitivity of SnO2 nanobelts to NO2 gas by sheathing the nanobelts with In2O3 can be accounted for by the modulation of electron transport by the In2O3–In2O3 homojunction.
► SnO2-core/In2O3-shell nanobelts were fabricated by a two-step process. ► The core–shell nanobelt sensors showed the response of 5.35% at NO2 10 ppm. ► This response value is more than 3 times larger than that of SnO2 nanobelts. ► The enhancement is due to the In2O3–In2O3 homojunction. |
|---|---|
| AbstractList | SnO2-core/In2O3-shell nanobelts were fabricated by a two-step process comprising thermal evaporation of Sn powders and sputter-deposition of In2O3. Transmission electron microscopy and X-ray diffraction analyses revealed that the core of a typical core–shell nanobelt comprised a simple tetragonal-structured single crystal SnO2 and that the shell comprised an amorphous In2O3. Multiple networked SnO2-core/In2O3-shell nanobelt sensors showed the response of 5.35% at a NO2 concentration of 10 ppm at 300 °C. This response value is more than three times larger than that of bare-SnO2 nanobelt sensors at the same NO2 concentration. The enhancement in the sensitivity of SnO2 nanobelts to NO2 gas by sheathing the nanobelts with In2O3 can be accounted for by the modulation of electron transport by the In2O3–In2O3 homojunction.
► SnO2-core/In2O3-shell nanobelts were fabricated by a two-step process. ► The core–shell nanobelt sensors showed the response of 5.35% at NO2 10 ppm. ► This response value is more than 3 times larger than that of SnO2 nanobelts. ► The enhancement is due to the In2O3–In2O3 homojunction. SnO2-core/In2O3-shell nanobelts were fabricated by a two-step process comprising thermal evaporation of Sn powders and sputter-deposition of In2O3. Transmission electron microscopy and X-ray diffraction analyses revealed that the core of a typical coreeshell nanobelt comprised a simple tetragonal-structured single crystal SnO2 and that the shell comprised an amorphous In2O3. Multiple networked SnO2-core/In2O3-shell nanobelt sensors showed the response of 5.35% at a NO2 concentration of 10 ppm at 300 ℃. This response value is more than three times larger than that of bare-SnO2 nanobelt sensors at the same NO2 concentration. The enhancement in the sensitivity of SnO2 nanobelts to NO2 gas by sheathing the nanobelts with In2O3 can be accounted for by the modulation of electron transport by the In2O3eIn2O3homojunction. KCI Citation Count: 30 SnO₂-core/In₂O₃-shell nanobelts were fabricated by a two-step process comprising thermal evaporation of Sn powders and sputter-deposition of In₂O₃. Transmission electron microscopy and X-ray diffraction analyses revealed that the core of a typical core–shell nanobelt comprised a simple tetragonal-structured single crystal SnO₂ and that the shell comprised an amorphous In₂O₃. Multiple networked SnO₂-core/In₂O₃-shell nanobelt sensors showed the response of 5.35% at a NO₂ concentration of 10 ppm at 300 °C. This response value is more than three times larger than that of bare-SnO₂ nanobelt sensors at the same NO₂ concentration. The enhancement in the sensitivity of SnO₂ nanobelts to NO₂ gas by sheathing the nanobelts with In₂O₃ can be accounted for by the modulation of electron transport by the In₂O₃–In₂O₃ homojunction. SnO₂-core/In₂O₃-shell nanobelts were fabricated by a two-step process comprising thermal evaporation of Sn powders and sputter-deposition of In₂O₃. Transmission electron microscopy and X-ray diffraction analyses revealed that the core of a typical core–shell nanobelt comprised a simple tetragonal-structured single crystal SnO₂ and that the shell comprised an amorphous In₂O₃. Multiple networked SnO₂-core/In₂O₃-shell nanobelt sensors showed the response of 5.35% at a NO₂ concentration of 10 ppm at 300 °C. This response value is more than three times larger than that of bare-SnO₂ nanobelt sensors at the same NO₂ concentration. The enhancement in the sensitivity of SnO₂ nanobelts to NO₂ gas by sheathing the nanobelts with In₂O₃ can be accounted for by the modulation of electron transport by the In₂O₃–In₂O₃ homojunction. SnO2-core/In2O3-shell nanobelts were fabricated by a two-step process comprising thermal evaporation of Sn powders and sputter-deposition of In2O3. Transmission electron microscopy and X-ray diffraction analyses revealed that the core of a typical core-shell nanobelt comprised a simple tetragonal-structured single crystal SnO2 and that the shell comprised an amorphous In2O3. Multiple networked SnO2-core/In2O3-shell nanobelt sensors showed the response of 5.35% at a NO2 concentration of 10 ppm at 300 degree C. This response value is more than three times larger than that of bare-SnO2 nanobelt sensors at the same NO2 concentration. The enhancement in the sensitivity of SnO2 nanobelts to NO2 gas by sheathing the nanobelts with In2O3 can be accounted for by the modulation of electron transport by the In2O3-In2O3 homojunction. |
| Author | Lee, Chongmu Jin, Changhyun Kim, Hyunsu An, Soyeon |
| Author_xml | – sequence: 1 givenname: Hyunsu surname: Kim fullname: Kim, Hyunsu – sequence: 2 givenname: Soyeon surname: An fullname: An, Soyeon – sequence: 3 givenname: Changhyun surname: Jin fullname: Jin, Changhyun – sequence: 4 givenname: Chongmu surname: Lee fullname: Lee, Chongmu email: cmlee@inha.ac.kr |
| BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001682622$$DAccess content in National Research Foundation of Korea (NRF) |
| BookMark | eNqFkU1r3DAQhkVJoPn6AT3Vx1680Ui2ZNNTCP1YGrqQTc5COx5vtXGkraQt9N9X7hYKPaQwMDo872jeec_ZiQ-eGHsDfAEc1PVugXa_EBzEgpfi6hU7g053NSjdnpR3q3QNWvav2XlKO140DW_O2Jd1jgfMh0iV9UP1dSWqrU1VIp-c31b7GPYUs6NUhbFa-5WoMUS6XnqxknX6RtNUeevDhqacLtnpaKdEV3_6BXv8-OHh9nN9t_q0vL25q1G2PNdiwK5vcBz6gQZNQ6NlM_bAx152GwDUGoVsbat4A0pRh4DFSaMkbjppC3XB3h3n-jiaJ3QmWPe7b4N5iubm_mFpgEvR679oMfL9QCmbZ5ewbG09hUMy5TpdKwC0-j_KhegBhJqn6iOKMaQUaTToss0u-Bytmwpq5lDMzpRQzByK4aX4_An8o9xH92zjzxc1b4-a0QZjt9El87guQFtCLCa7eZ_3R4LK1X84iiahI480uEiYzRDcC_N_AQWwrQc |
| CitedBy_id | crossref_primary_10_1039_D1CE00643F crossref_primary_10_1016_j_jallcom_2018_04_188 crossref_primary_10_1007_s10853_013_7545_9 crossref_primary_10_1016_j_snb_2012_11_051 crossref_primary_10_1016_j_snb_2018_07_158 crossref_primary_10_1007_s10854_018_0087_9 crossref_primary_10_1016_j_snb_2020_127716 crossref_primary_10_1016_j_ceramint_2020_10_088 crossref_primary_10_1016_j_jhazmat_2018_06_015 crossref_primary_10_7498_aps_65_036802 crossref_primary_10_1109_JSEN_2020_3032952 crossref_primary_10_1016_j_snb_2017_03_121 crossref_primary_10_3390_mi13101609 crossref_primary_10_1016_j_ceramint_2016_09_052 crossref_primary_10_1016_j_cap_2016_08_005 crossref_primary_10_1016_j_ssi_2018_07_014 crossref_primary_10_1016_j_matlet_2013_04_028 crossref_primary_10_1039_c3ra47467d crossref_primary_10_1016_j_snb_2024_137002 crossref_primary_10_1039_C5CE01519G crossref_primary_10_2478_msp_2023_0014 crossref_primary_10_1016_j_mtcomm_2021_102094 crossref_primary_10_1007_s00339_021_05063_x crossref_primary_10_1016_j_apsusc_2019_04_122 crossref_primary_10_1016_j_snb_2019_127196 crossref_primary_10_1016_j_ceramint_2024_03_049 crossref_primary_10_1016_j_snb_2017_04_053 crossref_primary_10_1016_j_snb_2016_07_127 crossref_primary_10_1016_j_snb_2017_04_090 crossref_primary_10_1016_j_snb_2013_10_035 crossref_primary_10_1016_j_snb_2015_12_104 crossref_primary_10_1071_CH17354 crossref_primary_10_1016_j_jcis_2018_04_015 crossref_primary_10_1021_acsami_8b19839 crossref_primary_10_3762_bjnano_5_194 crossref_primary_10_1016_j_jallcom_2019_01_311 crossref_primary_10_1002_admi_201900992 crossref_primary_10_1016_j_jallcom_2018_02_171 crossref_primary_10_1016_j_vacuum_2013_01_013 |
| Cites_doi | 10.1038/35035045 10.1063/1.359433 10.1063/1.331230 10.1002/adfm.200304327 10.1002/crat.200410462 10.1002/1616-3028(20020101)12:1<59::AID-ADFM59>3.0.CO;2-B 10.1016/S0167-577X(03)00582-2 10.1016/j.cplett.2005.03.119 10.1016/S0022-0248(01)01531-7 10.1063/1.1488246 10.1016/S0925-4005(01)00784-5 10.1016/0925-4005(91)80007-7 10.1016/S1359-6462(02)00077-5 10.1002/1521-4095(200112)13:24<1883::AID-ADMA1883>3.0.CO;2-Q 10.1002/adma.200390087 10.1016/j.snb.2008.04.040 10.1021/jp013214r 10.1016/j.snb.2007.10.044 10.1016/j.snb.2004.12.073 10.1023/A:1014405811371 10.1016/S0009-2614(03)01081-9 10.1016/j.cap.2009.01.049 10.1016/j.snb.2009.06.031 10.1021/nl0489283 10.1016/S0925-4005(98)00271-8 10.1039/b816646c 10.1088/0957-4484/20/46/465603 10.1016/S0928-4931(02)00068-1 |
| ContentType | Journal Article |
| Copyright | 2012 Elsevier B.V. |
| Copyright_xml | – notice: 2012 Elsevier B.V. |
| DBID | FBQ AAYXX CITATION 7QQ 7U5 8FD JG9 L7M 7S9 L.6 ACYCR |
| DOI | 10.1016/j.cap.2012.02.006 |
| DatabaseName | AGRIS CrossRef Ceramic Abstracts Solid State and Superconductivity Abstracts Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic Korean Citation Index |
| DatabaseTitle | CrossRef Materials Research Database Solid State and Superconductivity Abstracts Ceramic Abstracts Technology Research Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Materials Research Database |
| Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1878-1675 |
| EndPage | 1130 |
| ExternalDocumentID | oai_kci_go_kr_ARTI_103297 10_1016_j_cap_2012_02_006 US201500132987 S1567173912000351 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9ZL AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABNEU ABXDB ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SPD SSQ SSZ T5K UHS ~G- AATTM AAXKI ABJNI ABWVN ACRPL ADNMO AEIPS AFJKZ AKRWK ANKPU BNPGV FBQ SSH AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS ~HD 7QQ 7U5 8FD JG9 L7M 7S9 L.6 ABPIF ABPTK ACYCR |
| ID | FETCH-LOGICAL-c350t-2dc894cfd9ded7ed4734f910f938b11c77c235a5604166e8c1c187463cb83af93 |
| IEDL.DBID | .~1 |
| ISSN | 1567-1739 |
| IngestDate | Fri Nov 17 19:28:42 EST 2023 Sun Sep 28 02:48:03 EDT 2025 Sun Sep 28 08:19:06 EDT 2025 Wed Oct 29 21:18:58 EDT 2025 Thu Apr 24 23:08:36 EDT 2025 Thu Apr 03 09:41:16 EDT 2025 Fri Feb 23 02:29:58 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | NO2 SnO2 Nanobelts In2O3 Sensor |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c350t-2dc894cfd9ded7ed4734f910f938b11c77c235a5604166e8c1c187463cb83af93 |
| Notes | http://dx.doi.org/10.1016/j.cap.2012.02.006 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 G704-001115.2012.12.4.026 |
| PQID | 1022911267 |
| PQPubID | 23500 |
| PageCount | 6 |
| ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_103297 proquest_miscellaneous_1678521176 proquest_miscellaneous_1022911267 crossref_citationtrail_10_1016_j_cap_2012_02_006 crossref_primary_10_1016_j_cap_2012_02_006 fao_agris_US201500132987 elsevier_sciencedirect_doi_10_1016_j_cap_2012_02_006 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-07-01 |
| PublicationDateYYYYMMDD | 2012-07-01 |
| PublicationDate_xml | – month: 07 year: 2012 text: 2012-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Current applied physics |
| PublicationYear | 2012 |
| Publisher | Elsevier B.V 한국물리학회 |
| Publisher_xml | – name: Elsevier B.V – name: 한국물리학회 |
| References | Xu, Cheng, Pan, Xu, Xiang, Yu, Chu (bib17) 2008; 130 Wang, Yang, Wang, Yang (bib5) 2005; 407 Poizot, Laruelle, Grugeon, Dupont, Tarascon (bib12) 2000; 407 Zhu, Xie, Wang, Huang, Hu (bib22) 2004; 58 Schierbaum, Weimar, Gӧpel, Kowalkowski (bib24) 1991; 3 Fleischer, Meixner (bib13) 1998; 52 Hu, Bando, Liu, Golberg (bib7) 2003; 13 Hoefer, Frank, Fleischer (bib23) 2001; 78 Zanotti, Zha, Calestani, Comini, Sberveglieri (bib3) 2005; 40 Choi, Park, Kim (bib15) 2009; 20 Xia, Yang, Sun, Wu, Mayers, Gates, Yin, Kim, Yan (bib14) 2003; 15 Barsan, Weimar (bib27) 2001; 7 Weis, Lipperheide, Wille, Brehme (bib28) 2002; 92 Ramgir, Mulla, Vijayamohanan (bib18) 2005; 107 Liu, Zheng, Wang, Zhan, Wang (bib6) 2001; 233 Park, Hong, Kang, Cho, Lee (bib4) 2009; 9 Ma, li, Zhu (bib8) 2003; 376 Zhang, Liu, Li, Tang, Liu, Han, Lei, Zhou (bib16) 2004; 4 Ogawa, Nishikawa, Abe (bib26) 1982; 53 Safonova, Delabouglise, Chenevier, Gaskov, Labeau (bib25) 2002; 21 Xu, Xu, Liu, Zhao, Wang (bib1) 2002; 46 Limmer, Seraji, Wu, Chou, Nguyen, Cao (bib10) 2002; 12 Oh, Choi, Jung, Cho, Kim, Lee, Kang, Kim, Yun, Jeong (bib20) 2009; 141 Cao, Chen, Tang, Zhou (bib19) 2009; 19 Liu, Zheng, Wang, Yin, Wang (bib9) 2001; 13 Chen, Bai, Zhou, Li, Chen, Chung (bib21) 2008; 134 Talledo, Granqvist (bib11) 1995; 77 Dai, Gole, Stout, Wang (bib2) 2002; 106 Park (10.1016/j.cap.2012.02.006_bib4) 2009; 9 Choi (10.1016/j.cap.2012.02.006_bib15) 2009; 20 Chen (10.1016/j.cap.2012.02.006_bib21) 2008; 134 Xia (10.1016/j.cap.2012.02.006_bib14) 2003; 15 Hu (10.1016/j.cap.2012.02.006_bib7) 2003; 13 Zhang (10.1016/j.cap.2012.02.006_bib16) 2004; 4 Zanotti (10.1016/j.cap.2012.02.006_bib3) 2005; 40 Hoefer (10.1016/j.cap.2012.02.006_bib23) 2001; 78 Weis (10.1016/j.cap.2012.02.006_bib28) 2002; 92 Limmer (10.1016/j.cap.2012.02.006_bib10) 2002; 12 Cao (10.1016/j.cap.2012.02.006_bib19) 2009; 19 Dai (10.1016/j.cap.2012.02.006_bib2) 2002; 106 Liu (10.1016/j.cap.2012.02.006_bib9) 2001; 13 Ma (10.1016/j.cap.2012.02.006_bib8) 2003; 376 Schierbaum (10.1016/j.cap.2012.02.006_bib24) 1991; 3 Xu (10.1016/j.cap.2012.02.006_bib1) 2002; 46 Ogawa (10.1016/j.cap.2012.02.006_bib26) 1982; 53 Liu (10.1016/j.cap.2012.02.006_bib6) 2001; 233 Safonova (10.1016/j.cap.2012.02.006_bib25) 2002; 21 Xu (10.1016/j.cap.2012.02.006_bib17) 2008; 130 Oh (10.1016/j.cap.2012.02.006_bib20) 2009; 141 Barsan (10.1016/j.cap.2012.02.006_bib27) 2001; 7 Zhu (10.1016/j.cap.2012.02.006_bib22) 2004; 58 Wang (10.1016/j.cap.2012.02.006_bib5) 2005; 407 Fleischer (10.1016/j.cap.2012.02.006_bib13) 1998; 52 Ramgir (10.1016/j.cap.2012.02.006_bib18) 2005; 107 Talledo (10.1016/j.cap.2012.02.006_bib11) 1995; 77 Poizot (10.1016/j.cap.2012.02.006_bib12) 2000; 407 |
| References_xml | – volume: 3 start-page: 205 year: 1991 end-page: 214 ident: bib24 article-title: Conductance, work function and catalytic activity of SnO publication-title: Sens. Actautors B – volume: 130 start-page: 802 year: 2008 end-page: 808 ident: bib17 article-title: High aspect ratio In publication-title: Sens. Actuators B – volume: 376 start-page: 794 year: 2003 end-page: 798 ident: bib8 article-title: Growth mode of the SnO publication-title: Chem. Phys. Lett. – volume: 13 start-page: 493 year: 2003 end-page: 496 ident: bib7 article-title: Laser-ablation growth and optical properties of wide and long single-crystal SnO publication-title: Adv. Funct. Mater. – volume: 107 start-page: 708 year: 2005 end-page: 715 ident: bib18 article-title: A room temperature nitric oxide sensor actualized from Ru-doped SnO publication-title: Sens. Actuators B – volume: 407 start-page: 496 year: 2000 end-page: 499 ident: bib12 article-title: Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries publication-title: Nature – volume: 40 start-page: 932 year: 2005 end-page: 936 ident: bib3 article-title: Growth of tin oxide nanocrystals publication-title: Crystal Res. Technol. – volume: 13 start-page: 1883 year: 2001 end-page: 1887 ident: bib9 article-title: Synthesis and characterization of Rutile SnO publication-title: Adv. Mater. – volume: 141 start-page: 239 year: 2009 end-page: 243 ident: bib20 article-title: High-performance NO publication-title: Sens. Actuators B – volume: 9 start-page: S230 year: 2009 end-page: S233 ident: bib4 article-title: Growth of SnO publication-title: Curr. Appl. Phys. – volume: 134 start-page: 360 year: 2008 end-page: 366 ident: bib21 article-title: Synthesis of ZnO-SnO publication-title: Sens. Actuators B – volume: 58 start-page: 624 year: 2004 end-page: 629 ident: bib22 article-title: Improvement in gas sensitivity of ZnO thick film to volatile organic compounds (VOCs) by adding TiO publication-title: Mater. Lett. – volume: 106 start-page: 1274 year: 2002 end-page: 1279 ident: bib2 article-title: Tin oxide nanowires, nanoribbons, and nanotubes publication-title: J. Phys. Chem. B – volume: 21 start-page: 105 year: 2002 end-page: 111 ident: bib25 article-title: CO and NO publication-title: Mater. Sci. Eng. C – volume: 7 start-page: 143 year: 2001 end-page: 167 ident: bib27 article-title: Conduction model of metal oxide gas sensors publication-title: Electroceramics – volume: 46 start-page: 789 year: 2002 end-page: 794 ident: bib1 article-title: Preparation and characterization of SnO publication-title: Scr. Mater. – volume: 52 start-page: 179 year: 1998 end-page: 187 ident: bib13 article-title: Selectivity in high-temperature operated semiconductor gas-sensors publication-title: Sens. Actuators B – volume: 92 start-page: 1411 year: 2002 end-page: 1418 ident: bib28 article-title: Barrier-controlled carrier transport in microcrystalline semiconducting materials: description within a unified model publication-title: J. Appl. Phys. – volume: 77 start-page: 4655 year: 1995 end-page: 4666 ident: bib11 article-title: Electrochromic vanadium-pentoxide-based films: structural, electrochemical, and optical properties publication-title: J. Appl. Phys. – volume: 19 start-page: 2323 year: 2009 end-page: 2327 ident: bib19 article-title: Growth of monoclinic WO publication-title: J. Mater. Chem. – volume: 4 start-page: 1919 year: 2004 end-page: 1924 ident: bib16 article-title: Detection of NO publication-title: Nano Lett. – volume: 20 start-page: 465603 year: 2009 ident: bib15 article-title: Synthesis of SnO publication-title: Nanotechnology – volume: 53 start-page: 4448 year: 1982 end-page: 4455 ident: bib26 article-title: Hall measurement studies and an electrical conduction model of tin oxide ultrafine particle films publication-title: J. Appl. Phys. – volume: 12 start-page: 59 year: 2002 end-page: 64 ident: bib10 article-title: Template-based growth of various oxide nanorods by sol–gel electrophoresis publication-title: Adv. Funct. Mater. – volume: 78 start-page: 6 year: 2001 end-page: 11 ident: bib23 article-title: High temperature Ga publication-title: Sens. Actuators B – volume: 407 start-page: 347 year: 2005 end-page: 353 ident: bib5 article-title: Growth and photoluminescence of SnO publication-title: Chem. Phys. Lett. – volume: 15 start-page: 353 year: 2003 end-page: 389 ident: bib14 article-title: One-dimensional nanostructures: synthesis, characterization, and applications publication-title: Adv. Mater. – volume: 233 start-page: 8 year: 2001 end-page: 12 ident: bib6 article-title: Production of SnO publication-title: J. Crystal Growth – volume: 407 start-page: 496 year: 2000 ident: 10.1016/j.cap.2012.02.006_bib12 article-title: Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries publication-title: Nature doi: 10.1038/35035045 – volume: 77 start-page: 4655 year: 1995 ident: 10.1016/j.cap.2012.02.006_bib11 article-title: Electrochromic vanadium-pentoxide-based films: structural, electrochemical, and optical properties publication-title: J. Appl. Phys. doi: 10.1063/1.359433 – volume: 53 start-page: 4448 year: 1982 ident: 10.1016/j.cap.2012.02.006_bib26 article-title: Hall measurement studies and an electrical conduction model of tin oxide ultrafine particle films publication-title: J. Appl. Phys. doi: 10.1063/1.331230 – volume: 13 start-page: 493 year: 2003 ident: 10.1016/j.cap.2012.02.006_bib7 article-title: Laser-ablation growth and optical properties of wide and long single-crystal SnO2 ribbons publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200304327 – volume: 40 start-page: 932 year: 2005 ident: 10.1016/j.cap.2012.02.006_bib3 article-title: Growth of tin oxide nanocrystals publication-title: Crystal Res. Technol. doi: 10.1002/crat.200410462 – volume: 12 start-page: 59 year: 2002 ident: 10.1016/j.cap.2012.02.006_bib10 article-title: Template-based growth of various oxide nanorods by sol–gel electrophoresis publication-title: Adv. Funct. Mater. doi: 10.1002/1616-3028(20020101)12:1<59::AID-ADFM59>3.0.CO;2-B – volume: 58 start-page: 624 year: 2004 ident: 10.1016/j.cap.2012.02.006_bib22 article-title: Improvement in gas sensitivity of ZnO thick film to volatile organic compounds (VOCs) by adding TiO2 publication-title: Mater. Lett. doi: 10.1016/S0167-577X(03)00582-2 – volume: 407 start-page: 347 year: 2005 ident: 10.1016/j.cap.2012.02.006_bib5 article-title: Growth and photoluminescence of SnO2 nanostructures synthesized by Au-Aug alloying catalyst assisted carbothermal evaporation publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2005.03.119 – volume: 233 start-page: 8 year: 2001 ident: 10.1016/j.cap.2012.02.006_bib6 article-title: Production of SnO2 nanorods by redox reaction publication-title: J. Crystal Growth doi: 10.1016/S0022-0248(01)01531-7 – volume: 92 start-page: 1411 year: 2002 ident: 10.1016/j.cap.2012.02.006_bib28 article-title: Barrier-controlled carrier transport in microcrystalline semiconducting materials: description within a unified model publication-title: J. Appl. Phys. doi: 10.1063/1.1488246 – volume: 78 start-page: 6 year: 2001 ident: 10.1016/j.cap.2012.02.006_bib23 article-title: High temperature Ga2O3-gas sensors and SnO2-gas sensors a comparison publication-title: Sens. Actuators B doi: 10.1016/S0925-4005(01)00784-5 – volume: 3 start-page: 205 year: 1991 ident: 10.1016/j.cap.2012.02.006_bib24 article-title: Conductance, work function and catalytic activity of SnO2-based gas publication-title: Sens. Actautors B doi: 10.1016/0925-4005(91)80007-7 – volume: 46 start-page: 789 year: 2002 ident: 10.1016/j.cap.2012.02.006_bib1 article-title: Preparation and characterization of SnO2 nanorods by thermal decomposition of SnC2O4 precursor publication-title: Scr. Mater. doi: 10.1016/S1359-6462(02)00077-5 – volume: 13 start-page: 1883 year: 2001 ident: 10.1016/j.cap.2012.02.006_bib9 article-title: Synthesis and characterization of Rutile SnO2 nanorods publication-title: Adv. Mater. doi: 10.1002/1521-4095(200112)13:24<1883::AID-ADMA1883>3.0.CO;2-Q – volume: 15 start-page: 353 year: 2003 ident: 10.1016/j.cap.2012.02.006_bib14 article-title: One-dimensional nanostructures: synthesis, characterization, and applications publication-title: Adv. Mater. doi: 10.1002/adma.200390087 – volume: 134 start-page: 360 year: 2008 ident: 10.1016/j.cap.2012.02.006_bib21 article-title: Synthesis of ZnO-SnO2 nanocomposites by microemulsion and sensing properties for NO2 publication-title: Sens. Actuators B doi: 10.1016/j.snb.2008.04.040 – volume: 106 start-page: 1274 year: 2002 ident: 10.1016/j.cap.2012.02.006_bib2 article-title: Tin oxide nanowires, nanoribbons, and nanotubes publication-title: J. Phys. Chem. B doi: 10.1021/jp013214r – volume: 130 start-page: 802 year: 2008 ident: 10.1016/j.cap.2012.02.006_bib17 article-title: High aspect ratio In2O3 nanowires synthesis, mechanism and NO2 gas-sensing properties publication-title: Sens. Actuators B doi: 10.1016/j.snb.2007.10.044 – volume: 107 start-page: 708 year: 2005 ident: 10.1016/j.cap.2012.02.006_bib18 article-title: A room temperature nitric oxide sensor actualized from Ru-doped SnO2 nanowires publication-title: Sens. Actuators B doi: 10.1016/j.snb.2004.12.073 – volume: 7 start-page: 143 year: 2001 ident: 10.1016/j.cap.2012.02.006_bib27 article-title: Conduction model of metal oxide gas sensors publication-title: Electroceramics doi: 10.1023/A:1014405811371 – volume: 376 start-page: 794 year: 2003 ident: 10.1016/j.cap.2012.02.006_bib8 article-title: Growth mode of the SnO2 nanobelts synthesized by rapid oxidation publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(03)01081-9 – volume: 9 start-page: S230 year: 2009 ident: 10.1016/j.cap.2012.02.006_bib4 article-title: Growth of SnO2 nanowires by thermal evaporation on Au-coated Si substrates publication-title: Curr. Appl. Phys. doi: 10.1016/j.cap.2009.01.049 – volume: 141 start-page: 239 year: 2009 ident: 10.1016/j.cap.2012.02.006_bib20 article-title: High-performance NO2 gas sensor based on ZnO nanorod grown by ultrasonic irradiation publication-title: Sens. Actuators B doi: 10.1016/j.snb.2009.06.031 – volume: 4 start-page: 1919 year: 2004 ident: 10.1016/j.cap.2012.02.006_bib16 article-title: Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices publication-title: Nano Lett. doi: 10.1021/nl0489283 – volume: 52 start-page: 179 year: 1998 ident: 10.1016/j.cap.2012.02.006_bib13 article-title: Selectivity in high-temperature operated semiconductor gas-sensors publication-title: Sens. Actuators B doi: 10.1016/S0925-4005(98)00271-8 – volume: 19 start-page: 2323 year: 2009 ident: 10.1016/j.cap.2012.02.006_bib19 article-title: Growth of monoclinic WO3 nanowire array for highly sensitive NO2 detection publication-title: J. Mater. Chem. doi: 10.1039/b816646c – volume: 20 start-page: 465603 year: 2009 ident: 10.1016/j.cap.2012.02.006_bib15 article-title: Synthesis of SnO2-ZnO core–shell nanofibers via a novel two-step process and their gas sensing properties publication-title: Nanotechnology doi: 10.1088/0957-4484/20/46/465603 – volume: 21 start-page: 105 year: 2002 ident: 10.1016/j.cap.2012.02.006_bib25 article-title: CO and NO2 gas sensitivity of nanocrystalline tin dioxide thin films doped with Pd, Ru Rh publication-title: Mater. Sci. Eng. C doi: 10.1016/S0928-4931(02)00068-1 |
| SSID | ssj0016404 |
| Score | 2.165082 |
| Snippet | SnO2-core/In2O3-shell nanobelts were fabricated by a two-step process comprising thermal evaporation of Sn powders and sputter-deposition of In2O3.... SnO₂-core/In₂O₃-shell nanobelts were fabricated by a two-step process comprising thermal evaporation of Sn powders and sputter-deposition of In₂O₃.... |
| SourceID | nrf proquest crossref fao elsevier |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1125 |
| SubjectTerms | electron transfer evaporation In2O3 Indium oxides Nanobelts Nanocomposites Nanomaterials Nanostructure Nitrogen dioxide NO2 physics powders Sensor Sensors SnO2 tin Tin dioxide Tin oxides transmission electron microscopy X-ray diffraction 물리학 |
| Title | Structure and NO2 gas sensing properties of SnO2-core/In2O3-shell nanobelts |
| URI | https://dx.doi.org/10.1016/j.cap.2012.02.006 https://www.proquest.com/docview/1022911267 https://www.proquest.com/docview/1678521176 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001682622 |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| ispartofPNX | Current Applied Physics, 2012, 12(4), , pp.1125-1130 |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1878-1675 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016404 issn: 1567-1739 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection customDbUrl: eissn: 1878-1675 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016404 issn: 1567-1739 databaseCode: AIKHN dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1878-1675 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016404 issn: 1567-1739 databaseCode: ACRLP dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1878-1675 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016404 issn: 1567-1739 databaseCode: .~1 dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1878-1675 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016404 issn: 1567-1739 databaseCode: AKRWK dateStart: 20010101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9swFBddxmCX0a0rzfqBBjsVtNiWY1vHUFqSlSWHNNCb0GdIU-QQp9f-7X3PH4UymsPA2Ng8GfEkPb0v_R4hv-I8017nKbOOKwYr0bJCiZj52Ga-SHWhNPo7_k6z8SL9cz-8PyBX3VkYTKtsZX8j02tp3X4ZtNwcbFarwRwsDwwhizhp4mF4gj3NsYrB7-fXNA-wBuoSgkjMkLqLbNY5XkYhZCW6AxG2M3tvb_rgVQn3sPX_SOx6G7o5JF9a_ZGOmi5-JQcufCOf6jxOUx2R23mNB_u0dVQFS6ezhC5VRStMUw9LukHX-xYxVGnp6TzMElYXhpuEZMZZhUmhNKhQave4q76Txc313dWYtfUSmOHDaMcSawqRGm-FdTZ3Ns156kEd8IIXOo5NnpuEDxXoOKCFZa4wscGKfBk3uuAKqI5JL5TBnRDK3VA5pyOfgULlEyMc6G3Wwz-1tTbmfRJ1nJKmBRPHmhaPsssae5DAXInMlRFcUdYnl69NNg2Sxj7itGO_fDMdJEj6fc1OYKikWoKAlIt5gu4cDCaJIu-TnzB-cm1WEhG18bks5XorwW6YSIQVFEjTja6EVYahExVc-VRJtIsFnrbaRwP7PihDMPt__F_vT8lnfGuSgc9IDyaMOweVZ6cv6jl9QT6OJrfj6QvTffuU |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBZJSmkvpU_iPlXoqaB6V9qXjiU02E1iHxxDbkJP4yRojde55rdnZh-BUupDYdmF3dEiRtJoHp9mCPmWloUJpsyY80IzWImOVVqmLKSuCFVmKm3Q33ExKybL7PdVfnVAToazMAir7GV_J9Nbad2_GffcHG_W6_ECLA8MIcuUd_GwQ_Iky3mJFtiP-0ecB5gDbQ1BpGZIPoQ2W5CX1ZizEv2BmLez-NfmdBh0Dfe4DX-J7HYfOn1JXvQKJP3Z9fEVOfDxNXnaAjlt84acLdqEsHdbT3V0dDbndKUb2iBOPa7oBn3vW0yiSutAF3HOWVsZbhr5XLAGUaE06lgbf7tr3pLl6a_LkwnrCyYwK_Jkx7izlcxscNJ5V3qXlSILoA8EKSqTprYsLRe5BiUH1LDCVza1WJKvENZUQgPVO3IU6-iPCRU-196bJBSgUQVupQfFzQX4p3HOpWJEkoFTyvbZxLGoxa0aYGPXCpirkLkqgSspRuT7Y5NNl0pjH3E2sF_9MR8UiPp9zY5hqJRegYRUywVHfw5Gk2RVjshXGD91Y9cKU2rjc1Wrm60Cw2GqMK-gRJphdBUsM4yd6Ojru0ahYSzxuNU-Gtj4QRuC6f_-_3r_hTybXF6cq_Pp7OwDeY5fOmTwR3IEk8d_Av1nZz638_sBoWn9KQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure+and+NO2+gas+sensing+properties+of+SnO2-core%2FIn2O3-shell+nanobelts&rft.jtitle=Current+applied+physics&rft.au=Kim%2C+Hyunsu&rft.au=An%2C+Soyeon&rft.au=Jin%2C+Changhyun&rft.au=Lee%2C+Chongmu&rft.date=2012-07-01&rft.pub=Elsevier+B.V&rft.issn=1567-1739&rft.eissn=1878-1675&rft.volume=12&rft.issue=4&rft.spage=1125&rft.epage=1130&rft_id=info:doi/10.1016%2Fj.cap.2012.02.006&rft.externalDocID=S1567173912000351 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1567-1739&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1567-1739&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1567-1739&client=summon |