Structure and NO2 gas sensing properties of SnO2-core/In2O3-shell nanobelts

SnO2-core/In2O3-shell nanobelts were fabricated by a two-step process comprising thermal evaporation of Sn powders and sputter-deposition of In2O3. Transmission electron microscopy and X-ray diffraction analyses revealed that the core of a typical core–shell nanobelt comprised a simple tetragonal-st...

Full description

Saved in:
Bibliographic Details
Published inCurrent applied physics Vol. 12; no. 4; pp. 1125 - 1130
Main Authors Kim, Hyunsu, An, Soyeon, Jin, Changhyun, Lee, Chongmu
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2012
한국물리학회
Subjects
Online AccessGet full text
ISSN1567-1739
1878-1675
DOI10.1016/j.cap.2012.02.006

Cover

Abstract SnO2-core/In2O3-shell nanobelts were fabricated by a two-step process comprising thermal evaporation of Sn powders and sputter-deposition of In2O3. Transmission electron microscopy and X-ray diffraction analyses revealed that the core of a typical core–shell nanobelt comprised a simple tetragonal-structured single crystal SnO2 and that the shell comprised an amorphous In2O3. Multiple networked SnO2-core/In2O3-shell nanobelt sensors showed the response of 5.35% at a NO2 concentration of 10 ppm at 300 °C. This response value is more than three times larger than that of bare-SnO2 nanobelt sensors at the same NO2 concentration. The enhancement in the sensitivity of SnO2 nanobelts to NO2 gas by sheathing the nanobelts with In2O3 can be accounted for by the modulation of electron transport by the In2O3–In2O3 homojunction. ► SnO2-core/In2O3-shell nanobelts were fabricated by a two-step process. ► The core–shell nanobelt sensors showed the response of 5.35% at NO2 10 ppm. ► This response value is more than 3 times larger than that of SnO2 nanobelts. ► The enhancement is due to the In2O3–In2O3 homojunction.
AbstractList SnO2-core/In2O3-shell nanobelts were fabricated by a two-step process comprising thermal evaporation of Sn powders and sputter-deposition of In2O3. Transmission electron microscopy and X-ray diffraction analyses revealed that the core of a typical core–shell nanobelt comprised a simple tetragonal-structured single crystal SnO2 and that the shell comprised an amorphous In2O3. Multiple networked SnO2-core/In2O3-shell nanobelt sensors showed the response of 5.35% at a NO2 concentration of 10 ppm at 300 °C. This response value is more than three times larger than that of bare-SnO2 nanobelt sensors at the same NO2 concentration. The enhancement in the sensitivity of SnO2 nanobelts to NO2 gas by sheathing the nanobelts with In2O3 can be accounted for by the modulation of electron transport by the In2O3–In2O3 homojunction. ► SnO2-core/In2O3-shell nanobelts were fabricated by a two-step process. ► The core–shell nanobelt sensors showed the response of 5.35% at NO2 10 ppm. ► This response value is more than 3 times larger than that of SnO2 nanobelts. ► The enhancement is due to the In2O3–In2O3 homojunction.
SnO2-core/In2O3-shell nanobelts were fabricated by a two-step process comprising thermal evaporation of Sn powders and sputter-deposition of In2O3. Transmission electron microscopy and X-ray diffraction analyses revealed that the core of a typical coreeshell nanobelt comprised a simple tetragonal-structured single crystal SnO2 and that the shell comprised an amorphous In2O3. Multiple networked SnO2-core/In2O3-shell nanobelt sensors showed the response of 5.35% at a NO2 concentration of 10 ppm at 300 ℃. This response value is more than three times larger than that of bare-SnO2 nanobelt sensors at the same NO2 concentration. The enhancement in the sensitivity of SnO2 nanobelts to NO2 gas by sheathing the nanobelts with In2O3 can be accounted for by the modulation of electron transport by the In2O3eIn2O3homojunction. KCI Citation Count: 30
SnO₂-core/In₂O₃-shell nanobelts were fabricated by a two-step process comprising thermal evaporation of Sn powders and sputter-deposition of In₂O₃. Transmission electron microscopy and X-ray diffraction analyses revealed that the core of a typical core–shell nanobelt comprised a simple tetragonal-structured single crystal SnO₂ and that the shell comprised an amorphous In₂O₃. Multiple networked SnO₂-core/In₂O₃-shell nanobelt sensors showed the response of 5.35% at a NO₂ concentration of 10 ppm at 300 °C. This response value is more than three times larger than that of bare-SnO₂ nanobelt sensors at the same NO₂ concentration. The enhancement in the sensitivity of SnO₂ nanobelts to NO₂ gas by sheathing the nanobelts with In₂O₃ can be accounted for by the modulation of electron transport by the In₂O₃–In₂O₃ homojunction.
SnO₂-core/In₂O₃-shell nanobelts were fabricated by a two-step process comprising thermal evaporation of Sn powders and sputter-deposition of In₂O₃. Transmission electron microscopy and X-ray diffraction analyses revealed that the core of a typical core–shell nanobelt comprised a simple tetragonal-structured single crystal SnO₂ and that the shell comprised an amorphous In₂O₃. Multiple networked SnO₂-core/In₂O₃-shell nanobelt sensors showed the response of 5.35% at a NO₂ concentration of 10 ppm at 300 °C. This response value is more than three times larger than that of bare-SnO₂ nanobelt sensors at the same NO₂ concentration. The enhancement in the sensitivity of SnO₂ nanobelts to NO₂ gas by sheathing the nanobelts with In₂O₃ can be accounted for by the modulation of electron transport by the In₂O₃–In₂O₃ homojunction.
SnO2-core/In2O3-shell nanobelts were fabricated by a two-step process comprising thermal evaporation of Sn powders and sputter-deposition of In2O3. Transmission electron microscopy and X-ray diffraction analyses revealed that the core of a typical core-shell nanobelt comprised a simple tetragonal-structured single crystal SnO2 and that the shell comprised an amorphous In2O3. Multiple networked SnO2-core/In2O3-shell nanobelt sensors showed the response of 5.35% at a NO2 concentration of 10 ppm at 300 degree C. This response value is more than three times larger than that of bare-SnO2 nanobelt sensors at the same NO2 concentration. The enhancement in the sensitivity of SnO2 nanobelts to NO2 gas by sheathing the nanobelts with In2O3 can be accounted for by the modulation of electron transport by the In2O3-In2O3 homojunction.
Author Lee, Chongmu
Jin, Changhyun
Kim, Hyunsu
An, Soyeon
Author_xml – sequence: 1
  givenname: Hyunsu
  surname: Kim
  fullname: Kim, Hyunsu
– sequence: 2
  givenname: Soyeon
  surname: An
  fullname: An, Soyeon
– sequence: 3
  givenname: Changhyun
  surname: Jin
  fullname: Jin, Changhyun
– sequence: 4
  givenname: Chongmu
  surname: Lee
  fullname: Lee, Chongmu
  email: cmlee@inha.ac.kr
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001682622$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNqFkU1r3DAQhkVJoPn6AT3Vx1680Ui2ZNNTCP1YGrqQTc5COx5vtXGkraQt9N9X7hYKPaQwMDo872jeec_ZiQ-eGHsDfAEc1PVugXa_EBzEgpfi6hU7g053NSjdnpR3q3QNWvav2XlKO140DW_O2Jd1jgfMh0iV9UP1dSWqrU1VIp-c31b7GPYUs6NUhbFa-5WoMUS6XnqxknX6RtNUeevDhqacLtnpaKdEV3_6BXv8-OHh9nN9t_q0vL25q1G2PNdiwK5vcBz6gQZNQ6NlM_bAx152GwDUGoVsbat4A0pRh4DFSaMkbjppC3XB3h3n-jiaJ3QmWPe7b4N5iubm_mFpgEvR679oMfL9QCmbZ5ewbG09hUMy5TpdKwC0-j_KhegBhJqn6iOKMaQUaTToss0u-Bytmwpq5lDMzpRQzByK4aX4_An8o9xH92zjzxc1b4-a0QZjt9El87guQFtCLCa7eZ_3R4LK1X84iiahI480uEiYzRDcC_N_AQWwrQc
CitedBy_id crossref_primary_10_1039_D1CE00643F
crossref_primary_10_1016_j_jallcom_2018_04_188
crossref_primary_10_1007_s10853_013_7545_9
crossref_primary_10_1016_j_snb_2012_11_051
crossref_primary_10_1016_j_snb_2018_07_158
crossref_primary_10_1007_s10854_018_0087_9
crossref_primary_10_1016_j_snb_2020_127716
crossref_primary_10_1016_j_ceramint_2020_10_088
crossref_primary_10_1016_j_jhazmat_2018_06_015
crossref_primary_10_7498_aps_65_036802
crossref_primary_10_1109_JSEN_2020_3032952
crossref_primary_10_1016_j_snb_2017_03_121
crossref_primary_10_3390_mi13101609
crossref_primary_10_1016_j_ceramint_2016_09_052
crossref_primary_10_1016_j_cap_2016_08_005
crossref_primary_10_1016_j_ssi_2018_07_014
crossref_primary_10_1016_j_matlet_2013_04_028
crossref_primary_10_1039_c3ra47467d
crossref_primary_10_1016_j_snb_2024_137002
crossref_primary_10_1039_C5CE01519G
crossref_primary_10_2478_msp_2023_0014
crossref_primary_10_1016_j_mtcomm_2021_102094
crossref_primary_10_1007_s00339_021_05063_x
crossref_primary_10_1016_j_apsusc_2019_04_122
crossref_primary_10_1016_j_snb_2019_127196
crossref_primary_10_1016_j_ceramint_2024_03_049
crossref_primary_10_1016_j_snb_2017_04_053
crossref_primary_10_1016_j_snb_2016_07_127
crossref_primary_10_1016_j_snb_2017_04_090
crossref_primary_10_1016_j_snb_2013_10_035
crossref_primary_10_1016_j_snb_2015_12_104
crossref_primary_10_1071_CH17354
crossref_primary_10_1016_j_jcis_2018_04_015
crossref_primary_10_1021_acsami_8b19839
crossref_primary_10_3762_bjnano_5_194
crossref_primary_10_1016_j_jallcom_2019_01_311
crossref_primary_10_1002_admi_201900992
crossref_primary_10_1016_j_jallcom_2018_02_171
crossref_primary_10_1016_j_vacuum_2013_01_013
Cites_doi 10.1038/35035045
10.1063/1.359433
10.1063/1.331230
10.1002/adfm.200304327
10.1002/crat.200410462
10.1002/1616-3028(20020101)12:1<59::AID-ADFM59>3.0.CO;2-B
10.1016/S0167-577X(03)00582-2
10.1016/j.cplett.2005.03.119
10.1016/S0022-0248(01)01531-7
10.1063/1.1488246
10.1016/S0925-4005(01)00784-5
10.1016/0925-4005(91)80007-7
10.1016/S1359-6462(02)00077-5
10.1002/1521-4095(200112)13:24<1883::AID-ADMA1883>3.0.CO;2-Q
10.1002/adma.200390087
10.1016/j.snb.2008.04.040
10.1021/jp013214r
10.1016/j.snb.2007.10.044
10.1016/j.snb.2004.12.073
10.1023/A:1014405811371
10.1016/S0009-2614(03)01081-9
10.1016/j.cap.2009.01.049
10.1016/j.snb.2009.06.031
10.1021/nl0489283
10.1016/S0925-4005(98)00271-8
10.1039/b816646c
10.1088/0957-4484/20/46/465603
10.1016/S0928-4931(02)00068-1
ContentType Journal Article
Copyright 2012 Elsevier B.V.
Copyright_xml – notice: 2012 Elsevier B.V.
DBID FBQ
AAYXX
CITATION
7QQ
7U5
8FD
JG9
L7M
7S9
L.6
ACYCR
DOI 10.1016/j.cap.2012.02.006
DatabaseName AGRIS
CrossRef
Ceramic Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
Korean Citation Index
DatabaseTitle CrossRef
Materials Research Database
Solid State and Superconductivity Abstracts
Ceramic Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA

Materials Research Database
Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1878-1675
EndPage 1130
ExternalDocumentID oai_kci_go_kr_ARTI_103297
10_1016_j_cap_2012_02_006
US201500132987
S1567173912000351
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9ZL
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABNEU
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SSQ
SSZ
T5K
UHS
~G-
AATTM
AAXKI
ABJNI
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AKRWK
ANKPU
BNPGV
FBQ
SSH
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
~HD
7QQ
7U5
8FD
JG9
L7M
7S9
L.6
ABPIF
ABPTK
ACYCR
ID FETCH-LOGICAL-c350t-2dc894cfd9ded7ed4734f910f938b11c77c235a5604166e8c1c187463cb83af93
IEDL.DBID .~1
ISSN 1567-1739
IngestDate Fri Nov 17 19:28:42 EST 2023
Sun Sep 28 02:48:03 EDT 2025
Sun Sep 28 08:19:06 EDT 2025
Wed Oct 29 21:18:58 EDT 2025
Thu Apr 24 23:08:36 EDT 2025
Thu Apr 03 09:41:16 EDT 2025
Fri Feb 23 02:29:58 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords NO2
SnO2
Nanobelts
In2O3
Sensor
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c350t-2dc894cfd9ded7ed4734f910f938b11c77c235a5604166e8c1c187463cb83af93
Notes http://dx.doi.org/10.1016/j.cap.2012.02.006
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
G704-001115.2012.12.4.026
PQID 1022911267
PQPubID 23500
PageCount 6
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_103297
proquest_miscellaneous_1678521176
proquest_miscellaneous_1022911267
crossref_citationtrail_10_1016_j_cap_2012_02_006
crossref_primary_10_1016_j_cap_2012_02_006
fao_agris_US201500132987
elsevier_sciencedirect_doi_10_1016_j_cap_2012_02_006
PublicationCentury 2000
PublicationDate 2012-07-01
PublicationDateYYYYMMDD 2012-07-01
PublicationDate_xml – month: 07
  year: 2012
  text: 2012-07-01
  day: 01
PublicationDecade 2010
PublicationTitle Current applied physics
PublicationYear 2012
Publisher Elsevier B.V
한국물리학회
Publisher_xml – name: Elsevier B.V
– name: 한국물리학회
References Xu, Cheng, Pan, Xu, Xiang, Yu, Chu (bib17) 2008; 130
Wang, Yang, Wang, Yang (bib5) 2005; 407
Poizot, Laruelle, Grugeon, Dupont, Tarascon (bib12) 2000; 407
Zhu, Xie, Wang, Huang, Hu (bib22) 2004; 58
Schierbaum, Weimar, Gӧpel, Kowalkowski (bib24) 1991; 3
Fleischer, Meixner (bib13) 1998; 52
Hu, Bando, Liu, Golberg (bib7) 2003; 13
Hoefer, Frank, Fleischer (bib23) 2001; 78
Zanotti, Zha, Calestani, Comini, Sberveglieri (bib3) 2005; 40
Choi, Park, Kim (bib15) 2009; 20
Xia, Yang, Sun, Wu, Mayers, Gates, Yin, Kim, Yan (bib14) 2003; 15
Barsan, Weimar (bib27) 2001; 7
Weis, Lipperheide, Wille, Brehme (bib28) 2002; 92
Ramgir, Mulla, Vijayamohanan (bib18) 2005; 107
Liu, Zheng, Wang, Zhan, Wang (bib6) 2001; 233
Park, Hong, Kang, Cho, Lee (bib4) 2009; 9
Ma, li, Zhu (bib8) 2003; 376
Zhang, Liu, Li, Tang, Liu, Han, Lei, Zhou (bib16) 2004; 4
Ogawa, Nishikawa, Abe (bib26) 1982; 53
Safonova, Delabouglise, Chenevier, Gaskov, Labeau (bib25) 2002; 21
Xu, Xu, Liu, Zhao, Wang (bib1) 2002; 46
Limmer, Seraji, Wu, Chou, Nguyen, Cao (bib10) 2002; 12
Oh, Choi, Jung, Cho, Kim, Lee, Kang, Kim, Yun, Jeong (bib20) 2009; 141
Cao, Chen, Tang, Zhou (bib19) 2009; 19
Liu, Zheng, Wang, Yin, Wang (bib9) 2001; 13
Chen, Bai, Zhou, Li, Chen, Chung (bib21) 2008; 134
Talledo, Granqvist (bib11) 1995; 77
Dai, Gole, Stout, Wang (bib2) 2002; 106
Park (10.1016/j.cap.2012.02.006_bib4) 2009; 9
Choi (10.1016/j.cap.2012.02.006_bib15) 2009; 20
Chen (10.1016/j.cap.2012.02.006_bib21) 2008; 134
Xia (10.1016/j.cap.2012.02.006_bib14) 2003; 15
Hu (10.1016/j.cap.2012.02.006_bib7) 2003; 13
Zhang (10.1016/j.cap.2012.02.006_bib16) 2004; 4
Zanotti (10.1016/j.cap.2012.02.006_bib3) 2005; 40
Hoefer (10.1016/j.cap.2012.02.006_bib23) 2001; 78
Weis (10.1016/j.cap.2012.02.006_bib28) 2002; 92
Limmer (10.1016/j.cap.2012.02.006_bib10) 2002; 12
Cao (10.1016/j.cap.2012.02.006_bib19) 2009; 19
Dai (10.1016/j.cap.2012.02.006_bib2) 2002; 106
Liu (10.1016/j.cap.2012.02.006_bib9) 2001; 13
Ma (10.1016/j.cap.2012.02.006_bib8) 2003; 376
Schierbaum (10.1016/j.cap.2012.02.006_bib24) 1991; 3
Xu (10.1016/j.cap.2012.02.006_bib1) 2002; 46
Ogawa (10.1016/j.cap.2012.02.006_bib26) 1982; 53
Liu (10.1016/j.cap.2012.02.006_bib6) 2001; 233
Safonova (10.1016/j.cap.2012.02.006_bib25) 2002; 21
Xu (10.1016/j.cap.2012.02.006_bib17) 2008; 130
Oh (10.1016/j.cap.2012.02.006_bib20) 2009; 141
Barsan (10.1016/j.cap.2012.02.006_bib27) 2001; 7
Zhu (10.1016/j.cap.2012.02.006_bib22) 2004; 58
Wang (10.1016/j.cap.2012.02.006_bib5) 2005; 407
Fleischer (10.1016/j.cap.2012.02.006_bib13) 1998; 52
Ramgir (10.1016/j.cap.2012.02.006_bib18) 2005; 107
Talledo (10.1016/j.cap.2012.02.006_bib11) 1995; 77
Poizot (10.1016/j.cap.2012.02.006_bib12) 2000; 407
References_xml – volume: 3
  start-page: 205
  year: 1991
  end-page: 214
  ident: bib24
  article-title: Conductance, work function and catalytic activity of SnO
  publication-title: Sens. Actautors B
– volume: 130
  start-page: 802
  year: 2008
  end-page: 808
  ident: bib17
  article-title: High aspect ratio In
  publication-title: Sens. Actuators B
– volume: 376
  start-page: 794
  year: 2003
  end-page: 798
  ident: bib8
  article-title: Growth mode of the SnO
  publication-title: Chem. Phys. Lett.
– volume: 13
  start-page: 493
  year: 2003
  end-page: 496
  ident: bib7
  article-title: Laser-ablation growth and optical properties of wide and long single-crystal SnO
  publication-title: Adv. Funct. Mater.
– volume: 107
  start-page: 708
  year: 2005
  end-page: 715
  ident: bib18
  article-title: A room temperature nitric oxide sensor actualized from Ru-doped SnO
  publication-title: Sens. Actuators B
– volume: 407
  start-page: 496
  year: 2000
  end-page: 499
  ident: bib12
  article-title: Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries
  publication-title: Nature
– volume: 40
  start-page: 932
  year: 2005
  end-page: 936
  ident: bib3
  article-title: Growth of tin oxide nanocrystals
  publication-title: Crystal Res. Technol.
– volume: 13
  start-page: 1883
  year: 2001
  end-page: 1887
  ident: bib9
  article-title: Synthesis and characterization of Rutile SnO
  publication-title: Adv. Mater.
– volume: 141
  start-page: 239
  year: 2009
  end-page: 243
  ident: bib20
  article-title: High-performance NO
  publication-title: Sens. Actuators B
– volume: 9
  start-page: S230
  year: 2009
  end-page: S233
  ident: bib4
  article-title: Growth of SnO
  publication-title: Curr. Appl. Phys.
– volume: 134
  start-page: 360
  year: 2008
  end-page: 366
  ident: bib21
  article-title: Synthesis of ZnO-SnO
  publication-title: Sens. Actuators B
– volume: 58
  start-page: 624
  year: 2004
  end-page: 629
  ident: bib22
  article-title: Improvement in gas sensitivity of ZnO thick film to volatile organic compounds (VOCs) by adding TiO
  publication-title: Mater. Lett.
– volume: 106
  start-page: 1274
  year: 2002
  end-page: 1279
  ident: bib2
  article-title: Tin oxide nanowires, nanoribbons, and nanotubes
  publication-title: J. Phys. Chem. B
– volume: 21
  start-page: 105
  year: 2002
  end-page: 111
  ident: bib25
  article-title: CO and NO
  publication-title: Mater. Sci. Eng. C
– volume: 7
  start-page: 143
  year: 2001
  end-page: 167
  ident: bib27
  article-title: Conduction model of metal oxide gas sensors
  publication-title: Electroceramics
– volume: 46
  start-page: 789
  year: 2002
  end-page: 794
  ident: bib1
  article-title: Preparation and characterization of SnO
  publication-title: Scr. Mater.
– volume: 52
  start-page: 179
  year: 1998
  end-page: 187
  ident: bib13
  article-title: Selectivity in high-temperature operated semiconductor gas-sensors
  publication-title: Sens. Actuators B
– volume: 92
  start-page: 1411
  year: 2002
  end-page: 1418
  ident: bib28
  article-title: Barrier-controlled carrier transport in microcrystalline semiconducting materials: description within a unified model
  publication-title: J. Appl. Phys.
– volume: 77
  start-page: 4655
  year: 1995
  end-page: 4666
  ident: bib11
  article-title: Electrochromic vanadium-pentoxide-based films: structural, electrochemical, and optical properties
  publication-title: J. Appl. Phys.
– volume: 19
  start-page: 2323
  year: 2009
  end-page: 2327
  ident: bib19
  article-title: Growth of monoclinic WO
  publication-title: J. Mater. Chem.
– volume: 4
  start-page: 1919
  year: 2004
  end-page: 1924
  ident: bib16
  article-title: Detection of NO
  publication-title: Nano Lett.
– volume: 20
  start-page: 465603
  year: 2009
  ident: bib15
  article-title: Synthesis of SnO
  publication-title: Nanotechnology
– volume: 53
  start-page: 4448
  year: 1982
  end-page: 4455
  ident: bib26
  article-title: Hall measurement studies and an electrical conduction model of tin oxide ultrafine particle films
  publication-title: J. Appl. Phys.
– volume: 12
  start-page: 59
  year: 2002
  end-page: 64
  ident: bib10
  article-title: Template-based growth of various oxide nanorods by sol–gel electrophoresis
  publication-title: Adv. Funct. Mater.
– volume: 78
  start-page: 6
  year: 2001
  end-page: 11
  ident: bib23
  article-title: High temperature Ga
  publication-title: Sens. Actuators B
– volume: 407
  start-page: 347
  year: 2005
  end-page: 353
  ident: bib5
  article-title: Growth and photoluminescence of SnO
  publication-title: Chem. Phys. Lett.
– volume: 15
  start-page: 353
  year: 2003
  end-page: 389
  ident: bib14
  article-title: One-dimensional nanostructures: synthesis, characterization, and applications
  publication-title: Adv. Mater.
– volume: 233
  start-page: 8
  year: 2001
  end-page: 12
  ident: bib6
  article-title: Production of SnO
  publication-title: J. Crystal Growth
– volume: 407
  start-page: 496
  year: 2000
  ident: 10.1016/j.cap.2012.02.006_bib12
  article-title: Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries
  publication-title: Nature
  doi: 10.1038/35035045
– volume: 77
  start-page: 4655
  year: 1995
  ident: 10.1016/j.cap.2012.02.006_bib11
  article-title: Electrochromic vanadium-pentoxide-based films: structural, electrochemical, and optical properties
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.359433
– volume: 53
  start-page: 4448
  year: 1982
  ident: 10.1016/j.cap.2012.02.006_bib26
  article-title: Hall measurement studies and an electrical conduction model of tin oxide ultrafine particle films
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.331230
– volume: 13
  start-page: 493
  year: 2003
  ident: 10.1016/j.cap.2012.02.006_bib7
  article-title: Laser-ablation growth and optical properties of wide and long single-crystal SnO2 ribbons
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200304327
– volume: 40
  start-page: 932
  year: 2005
  ident: 10.1016/j.cap.2012.02.006_bib3
  article-title: Growth of tin oxide nanocrystals
  publication-title: Crystal Res. Technol.
  doi: 10.1002/crat.200410462
– volume: 12
  start-page: 59
  year: 2002
  ident: 10.1016/j.cap.2012.02.006_bib10
  article-title: Template-based growth of various oxide nanorods by sol–gel electrophoresis
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/1616-3028(20020101)12:1<59::AID-ADFM59>3.0.CO;2-B
– volume: 58
  start-page: 624
  year: 2004
  ident: 10.1016/j.cap.2012.02.006_bib22
  article-title: Improvement in gas sensitivity of ZnO thick film to volatile organic compounds (VOCs) by adding TiO2
  publication-title: Mater. Lett.
  doi: 10.1016/S0167-577X(03)00582-2
– volume: 407
  start-page: 347
  year: 2005
  ident: 10.1016/j.cap.2012.02.006_bib5
  article-title: Growth and photoluminescence of SnO2 nanostructures synthesized by Au-Aug alloying catalyst assisted carbothermal evaporation
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2005.03.119
– volume: 233
  start-page: 8
  year: 2001
  ident: 10.1016/j.cap.2012.02.006_bib6
  article-title: Production of SnO2 nanorods by redox reaction
  publication-title: J. Crystal Growth
  doi: 10.1016/S0022-0248(01)01531-7
– volume: 92
  start-page: 1411
  year: 2002
  ident: 10.1016/j.cap.2012.02.006_bib28
  article-title: Barrier-controlled carrier transport in microcrystalline semiconducting materials: description within a unified model
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1488246
– volume: 78
  start-page: 6
  year: 2001
  ident: 10.1016/j.cap.2012.02.006_bib23
  article-title: High temperature Ga2O3-gas sensors and SnO2-gas sensors a comparison
  publication-title: Sens. Actuators B
  doi: 10.1016/S0925-4005(01)00784-5
– volume: 3
  start-page: 205
  year: 1991
  ident: 10.1016/j.cap.2012.02.006_bib24
  article-title: Conductance, work function and catalytic activity of SnO2-based gas
  publication-title: Sens. Actautors B
  doi: 10.1016/0925-4005(91)80007-7
– volume: 46
  start-page: 789
  year: 2002
  ident: 10.1016/j.cap.2012.02.006_bib1
  article-title: Preparation and characterization of SnO2 nanorods by thermal decomposition of SnC2O4 precursor
  publication-title: Scr. Mater.
  doi: 10.1016/S1359-6462(02)00077-5
– volume: 13
  start-page: 1883
  year: 2001
  ident: 10.1016/j.cap.2012.02.006_bib9
  article-title: Synthesis and characterization of Rutile SnO2 nanorods
  publication-title: Adv. Mater.
  doi: 10.1002/1521-4095(200112)13:24<1883::AID-ADMA1883>3.0.CO;2-Q
– volume: 15
  start-page: 353
  year: 2003
  ident: 10.1016/j.cap.2012.02.006_bib14
  article-title: One-dimensional nanostructures: synthesis, characterization, and applications
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200390087
– volume: 134
  start-page: 360
  year: 2008
  ident: 10.1016/j.cap.2012.02.006_bib21
  article-title: Synthesis of ZnO-SnO2 nanocomposites by microemulsion and sensing properties for NO2
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2008.04.040
– volume: 106
  start-page: 1274
  year: 2002
  ident: 10.1016/j.cap.2012.02.006_bib2
  article-title: Tin oxide nanowires, nanoribbons, and nanotubes
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp013214r
– volume: 130
  start-page: 802
  year: 2008
  ident: 10.1016/j.cap.2012.02.006_bib17
  article-title: High aspect ratio In2O3 nanowires synthesis, mechanism and NO2 gas-sensing properties
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2007.10.044
– volume: 107
  start-page: 708
  year: 2005
  ident: 10.1016/j.cap.2012.02.006_bib18
  article-title: A room temperature nitric oxide sensor actualized from Ru-doped SnO2 nanowires
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2004.12.073
– volume: 7
  start-page: 143
  year: 2001
  ident: 10.1016/j.cap.2012.02.006_bib27
  article-title: Conduction model of metal oxide gas sensors
  publication-title: Electroceramics
  doi: 10.1023/A:1014405811371
– volume: 376
  start-page: 794
  year: 2003
  ident: 10.1016/j.cap.2012.02.006_bib8
  article-title: Growth mode of the SnO2 nanobelts synthesized by rapid oxidation
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(03)01081-9
– volume: 9
  start-page: S230
  year: 2009
  ident: 10.1016/j.cap.2012.02.006_bib4
  article-title: Growth of SnO2 nanowires by thermal evaporation on Au-coated Si substrates
  publication-title: Curr. Appl. Phys.
  doi: 10.1016/j.cap.2009.01.049
– volume: 141
  start-page: 239
  year: 2009
  ident: 10.1016/j.cap.2012.02.006_bib20
  article-title: High-performance NO2 gas sensor based on ZnO nanorod grown by ultrasonic irradiation
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2009.06.031
– volume: 4
  start-page: 1919
  year: 2004
  ident: 10.1016/j.cap.2012.02.006_bib16
  article-title: Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices
  publication-title: Nano Lett.
  doi: 10.1021/nl0489283
– volume: 52
  start-page: 179
  year: 1998
  ident: 10.1016/j.cap.2012.02.006_bib13
  article-title: Selectivity in high-temperature operated semiconductor gas-sensors
  publication-title: Sens. Actuators B
  doi: 10.1016/S0925-4005(98)00271-8
– volume: 19
  start-page: 2323
  year: 2009
  ident: 10.1016/j.cap.2012.02.006_bib19
  article-title: Growth of monoclinic WO3 nanowire array for highly sensitive NO2 detection
  publication-title: J. Mater. Chem.
  doi: 10.1039/b816646c
– volume: 20
  start-page: 465603
  year: 2009
  ident: 10.1016/j.cap.2012.02.006_bib15
  article-title: Synthesis of SnO2-ZnO core–shell nanofibers via a novel two-step process and their gas sensing properties
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/20/46/465603
– volume: 21
  start-page: 105
  year: 2002
  ident: 10.1016/j.cap.2012.02.006_bib25
  article-title: CO and NO2 gas sensitivity of nanocrystalline tin dioxide thin films doped with Pd, Ru Rh
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/S0928-4931(02)00068-1
SSID ssj0016404
Score 2.165082
Snippet SnO2-core/In2O3-shell nanobelts were fabricated by a two-step process comprising thermal evaporation of Sn powders and sputter-deposition of In2O3....
SnO₂-core/In₂O₃-shell nanobelts were fabricated by a two-step process comprising thermal evaporation of Sn powders and sputter-deposition of In₂O₃....
SourceID nrf
proquest
crossref
fao
elsevier
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1125
SubjectTerms electron transfer
evaporation
In2O3
Indium oxides
Nanobelts
Nanocomposites
Nanomaterials
Nanostructure
Nitrogen dioxide
NO2
physics
powders
Sensor
Sensors
SnO2
tin
Tin dioxide
Tin oxides
transmission electron microscopy
X-ray diffraction
물리학
Title Structure and NO2 gas sensing properties of SnO2-core/In2O3-shell nanobelts
URI https://dx.doi.org/10.1016/j.cap.2012.02.006
https://www.proquest.com/docview/1022911267
https://www.proquest.com/docview/1678521176
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001682622
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Current Applied Physics, 2012, 12(4), , pp.1125-1130
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1878-1675
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016404
  issn: 1567-1739
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1878-1675
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016404
  issn: 1567-1739
  databaseCode: AIKHN
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1878-1675
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016404
  issn: 1567-1739
  databaseCode: ACRLP
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1878-1675
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016404
  issn: 1567-1739
  databaseCode: .~1
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1878-1675
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016404
  issn: 1567-1739
  databaseCode: AKRWK
  dateStart: 20010101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9swFBddxmCX0a0rzfqBBjsVtNiWY1vHUFqSlSWHNNCb0GdIU-QQp9f-7X3PH4UymsPA2Ng8GfEkPb0v_R4hv-I8017nKbOOKwYr0bJCiZj52Ga-SHWhNPo7_k6z8SL9cz-8PyBX3VkYTKtsZX8j02tp3X4ZtNwcbFarwRwsDwwhizhp4mF4gj3NsYrB7-fXNA-wBuoSgkjMkLqLbNY5XkYhZCW6AxG2M3tvb_rgVQn3sPX_SOx6G7o5JF9a_ZGOmi5-JQcufCOf6jxOUx2R23mNB_u0dVQFS6ezhC5VRStMUw9LukHX-xYxVGnp6TzMElYXhpuEZMZZhUmhNKhQave4q76Txc313dWYtfUSmOHDaMcSawqRGm-FdTZ3Ns156kEd8IIXOo5NnpuEDxXoOKCFZa4wscGKfBk3uuAKqI5JL5TBnRDK3VA5pyOfgULlEyMc6G3Wwz-1tTbmfRJ1nJKmBRPHmhaPsssae5DAXInMlRFcUdYnl69NNg2Sxj7itGO_fDMdJEj6fc1OYKikWoKAlIt5gu4cDCaJIu-TnzB-cm1WEhG18bks5XorwW6YSIQVFEjTja6EVYahExVc-VRJtIsFnrbaRwP7PihDMPt__F_vT8lnfGuSgc9IDyaMOweVZ6cv6jl9QT6OJrfj6QvTffuU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBZJSmkvpU_iPlXoqaB6V9qXjiU02E1iHxxDbkJP4yRojde55rdnZh-BUupDYdmF3dEiRtJoHp9mCPmWloUJpsyY80IzWImOVVqmLKSuCFVmKm3Q33ExKybL7PdVfnVAToazMAir7GV_J9Nbad2_GffcHG_W6_ECLA8MIcuUd_GwQ_Iky3mJFtiP-0ecB5gDbQ1BpGZIPoQ2W5CX1ZizEv2BmLez-NfmdBh0Dfe4DX-J7HYfOn1JXvQKJP3Z9fEVOfDxNXnaAjlt84acLdqEsHdbT3V0dDbndKUb2iBOPa7oBn3vW0yiSutAF3HOWVsZbhr5XLAGUaE06lgbf7tr3pLl6a_LkwnrCyYwK_Jkx7izlcxscNJ5V3qXlSILoA8EKSqTprYsLRe5BiUH1LDCVza1WJKvENZUQgPVO3IU6-iPCRU-196bJBSgUQVupQfFzQX4p3HOpWJEkoFTyvbZxLGoxa0aYGPXCpirkLkqgSspRuT7Y5NNl0pjH3E2sF_9MR8UiPp9zY5hqJRegYRUywVHfw5Gk2RVjshXGD91Y9cKU2rjc1Wrm60Cw2GqMK-gRJphdBUsM4yd6Ojru0ahYSzxuNU-Gtj4QRuC6f_-_3r_hTybXF6cq_Pp7OwDeY5fOmTwR3IEk8d_Av1nZz638_sBoWn9KQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure+and+NO2+gas+sensing+properties+of+SnO2-core%2FIn2O3-shell+nanobelts&rft.jtitle=Current+applied+physics&rft.au=Kim%2C+Hyunsu&rft.au=An%2C+Soyeon&rft.au=Jin%2C+Changhyun&rft.au=Lee%2C+Chongmu&rft.date=2012-07-01&rft.pub=Elsevier+B.V&rft.issn=1567-1739&rft.eissn=1878-1675&rft.volume=12&rft.issue=4&rft.spage=1125&rft.epage=1130&rft_id=info:doi/10.1016%2Fj.cap.2012.02.006&rft.externalDocID=S1567173912000351
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1567-1739&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1567-1739&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1567-1739&client=summon