Prediction of shear viscosity of a zinc oxide suspension with colloidal aggregation

We deal with scaling relations based on fractal theory and rheological properties of a colloidal suspension to determine a structure parameter of colloidal aggregates and thereby predict shear viscosity of the colloidal suspension using an effective-medium model. The parameter denoted by β is m (3-...

Full description

Saved in:
Bibliographic Details
Published inKorea-Australia rheology journal Vol. 30; no. 2; pp. 67 - 74
Main Authors Kim, Danbi, Koo, Sangkyun
Format Journal Article
LanguageEnglish
Published Seoul / Melbourne Korean Society of Rheology, Australian Society of Rheology 01.05.2018
Springer Nature B.V
한국유변학회
Subjects
Online AccessGet full text
ISSN1226-119X
2093-7660
DOI10.1007/s13367-018-0008-8

Cover

Abstract We deal with scaling relations based on fractal theory and rheological properties of a colloidal suspension to determine a structure parameter of colloidal aggregates and thereby predict shear viscosity of the colloidal suspension using an effective-medium model. The parameter denoted by β is m (3- d f ), where m indicates shear rate ( D ) dependence of aggregate size R , i.e. R ∝ D − m , and d f is the fractal dimension for the aggregate. A scaling relation between yield stress and particle volume fraction φ is applied to a set of experimental data for colloidal suspensions consisting of 0.13 μm zinc oxide and hydroxyethyl acrylate at φ = 0.01-0.055 to determine β . Another scaling relation between intrinsic viscosity and shear rate is used at lower φ than the relation for the yield stress. It is found that the estimations of β from the two relations are in a good agreement. The parameter β is utilized in establishing rheological models to predict shear viscosity of aggregated suspension as a function of φ and D . An effective-medium (EM) model is employed to take hydrodynamic interaction between aggregates into account. Particle concentration dependence of the suspension viscosity which is given in terms of volume fraction of aggregates φ a instead of φ is incorporated to the EM model. It is found that the EM model combined with Quemada’s equation is quite successful in predicting shear viscosity of aggregated suspension.
AbstractList We deal with scaling relations based on fractal theory and rheological properties of a colloidal suspension to determine a structure parameter of colloidal aggregates and thereby predict shear viscosity of the colloidal suspension using an effective-medium model. The parameter denoted by β is m(3-df), where m indicates shear rate (D) dependence of aggregate size R, i.e. R∝D−m, and df is the fractal dimension for the aggregate. A scaling relation between yield stress and particle volume fraction φ is applied to a set of experimental data for colloidal suspensions consisting of 0.13 μm zinc oxide and hydroxyethyl acrylate at φ = 0.01-0.055 to determine β. Another scaling relation between intrinsic viscosity and shear rate is used at lower φ than the relation for the yield stress. It is found that the estimations of β from the two relations are in a good agreement. The parameter β is utilized in establishing rheological models to predict shear viscosity of aggregated suspension as a function of φ and D. An effective-medium (EM) model is employed to take hydrodynamic interaction between aggregates into account. Particle concentration dependence of the suspension viscosity which is given in terms of volume fraction of aggregates φa instead of φ is incorporated to the EM model. It is found that the EM model combined with Quemada’s equation is quite successful in predicting shear viscosity of aggregated suspension. KCI Citation Count: 5
We deal with scaling relations based on fractal theory and rheological properties of a colloidal suspension to determine a structure parameter of colloidal aggregates and thereby predict shear viscosity of the colloidal suspension using an effective-medium model. The parameter denoted by β is m (3- d f ), where m indicates shear rate ( D ) dependence of aggregate size R , i.e. R ∝ D − m , and d f is the fractal dimension for the aggregate. A scaling relation between yield stress and particle volume fraction φ is applied to a set of experimental data for colloidal suspensions consisting of 0.13 μm zinc oxide and hydroxyethyl acrylate at φ = 0.01-0.055 to determine β . Another scaling relation between intrinsic viscosity and shear rate is used at lower φ than the relation for the yield stress. It is found that the estimations of β from the two relations are in a good agreement. The parameter β is utilized in establishing rheological models to predict shear viscosity of aggregated suspension as a function of φ and D . An effective-medium (EM) model is employed to take hydrodynamic interaction between aggregates into account. Particle concentration dependence of the suspension viscosity which is given in terms of volume fraction of aggregates φ a instead of φ is incorporated to the EM model. It is found that the EM model combined with Quemada’s equation is quite successful in predicting shear viscosity of aggregated suspension.
We deal with scaling relations based on fractal theory and rheological properties of a colloidal suspension to determine a structure parameter of colloidal aggregates and thereby predict shear viscosity of the colloidal suspension using an effective-medium model. The parameter denoted by β is m(3-df), where m indicates shear rate (D) dependence of aggregate size R, i.e.R∝D−m, and df is the fractal dimension for the aggregate. A scaling relation between yield stress and particle volume fraction φ is applied to a set of experimental data for colloidal suspensions consisting of 0.13 μm zinc oxide and hydroxyethyl acrylate at φ = 0.01-0.055 to determine β. Another scaling relation between intrinsic viscosity and shear rate is used at lower φ than the relation for the yield stress. It is found that the estimations of β from the two relations are in a good agreement. The parameter β is utilized in establishing rheological models to predict shear viscosity of aggregated suspension as a function of φ and D. An effective-medium (EM) model is employed to take hydrodynamic interaction between aggregates into account. Particle concentration dependence of the suspension viscosity which is given in terms of volume fraction of aggregates φa instead of φ is incorporated to the EM model. It is found that the EM model combined with Quemada’s equation is quite successful in predicting shear viscosity of aggregated suspension.
Author Koo, Sangkyun
Kim, Danbi
Author_xml – sequence: 1
  givenname: Danbi
  surname: Kim
  fullname: Kim, Danbi
  organization: Department of Chemical Engineering and Materials Science, Sangmyung University
– sequence: 2
  givenname: Sangkyun
  surname: Koo
  fullname: Koo, Sangkyun
  email: skkoo@smu.ac.kr
  organization: Department of Chemical Engineering and Materials Science, Sangmyung University
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002347305$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kF1LwzAUhoMoOOd-gHcFr7yoniRt0l6O4cdgoOgE70KWpl1cTWbSqfPX266CICgEDhye5-TlPUL71lmN0AmGcwzALwKmlPEYcBYDQBZne2hAIKcxZwz20QATwmKM86dDNArBLCCllLOMZQP0cOd1YVRjnI1cGYWllj56M0G5YJptt5LRp7Eqch-m0FHYhLW2oaPfTbOMlKtrZwpZR7KqvK5kd-gYHZSyDnr0PYfo8epyPrmJZ7fX08l4FiuaQhOTPG8fT0BlQIpEqbRURVLyXJYJ0zjHC8hSSJgknEHBWQkYVJ6mRIFst0CH6Ky_a30pVsoIJ81uVk6svBjfz6ciIRxSwlr2tGfX3r1udGjEs9t428YTBJI2AOa0o3BPKe9C8LoUa29epN8KDKKrWvRVi7Zq0VUtstbhvxxlml0PjZem_tckvRnaX2yl_U-mv6UvpFuTQA
CitedBy_id crossref_primary_10_1007_s43207_024_00426_5
crossref_primary_10_1016_j_fbp_2020_06_017
crossref_primary_10_1021_acsomega_9b01043
crossref_primary_10_1007_s13367_018_0019_5
crossref_primary_10_1007_s11814_022_1271_4
Cites_doi 10.1039/f19888404249
10.1002/andp.19063240204
10.1016/0033-0655(94)87001-2
10.1051/jp3:1996215
10.1103/PhysRevA.46.R3008
10.1016/j.jcis.2009.10.062
10.1016/j.jiec.2014.12.038
10.1006/jcis.1993.1202
10.1063/1.469317
10.1122/1.548848
10.1063/1.462229
10.1007/BF01516932
10.1016/0021-9797(86)90175-X
10.1016/j.powtec.2014.06.014
10.1103/PhysRevA.42.4772
10.1017/S0022112072002435
10.1038/339360a0
10.1016/0166-6622(88)80205-1
10.1007/s13367-016-0028-1
10.1051/epjap:1998125
10.1016/0001-8686(87)80016-7
10.1016/0021-9797(79)90176-0
ContentType Journal Article
Copyright Korean Society of Rheology (KSR) and the Australian Society of Rheology (ASR) and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Copyright Springer Science & Business Media 2018
Copyright_xml – notice: Korean Society of Rheology (KSR) and the Australian Society of Rheology (ASR) and Springer-Verlag GmbH Germany, part of Springer Nature 2018
– notice: Copyright Springer Science & Business Media 2018
DBID AAYXX
CITATION
ACYCR
DOI 10.1007/s13367-018-0008-8
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2093-7660
EndPage 74
ExternalDocumentID oai_kci_go_kr_ARTI_4270526
10_1007_s13367_018_0008_8
GroupedDBID -EM
.UV
06D
0R~
0VY
203
2KG
2VQ
2WC
30V
4.4
406
408
5GY
96X
9ZL
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AAKDD
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACREN
ACZOJ
ADHHG
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AXYYD
AYJHY
BGNMA
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
H13
HF~
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O9J
OK1
P2P
P9N
PT4
R9I
RIG
RLLFE
ROL
RSV
S1Z
S27
S3B
SCM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
WK8
Z7V
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
AAFGU
AAPBV
AAYFA
ABFGW
ABKAS
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ACYCR
ADMDM
ADOXG
AEFTE
AESTI
AEVTX
AFNRJ
AGGBP
AIMYW
AJDOV
AKQUC
SQXTU
Z7X
ID FETCH-LOGICAL-c350t-299299740c802d4cc5fcd4f79af46e191b085046a2760d76f010c9552c0a46a03
IEDL.DBID U2A
ISSN 1226-119X
IngestDate Tue Nov 21 21:40:30 EST 2023
Wed Sep 17 13:40:53 EDT 2025
Thu Apr 24 22:58:05 EDT 2025
Wed Oct 01 05:03:31 EDT 2025
Fri Feb 21 02:40:12 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords fractal dimension
yield stress
colloidal aggregate
effective-medium model
zinc oxide
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c350t-299299740c802d4cc5fcd4f79af46e191b085046a2760d76f010c9552c0a46a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2048021736
PQPubID 2044133
PageCount 8
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_4270526
proquest_journals_2048021736
crossref_primary_10_1007_s13367_018_0008_8
crossref_citationtrail_10_1007_s13367_018_0008_8
springer_journals_10_1007_s13367_018_0008_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-05-01
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Seoul / Melbourne
PublicationPlace_xml – name: Seoul / Melbourne
– name: Heidelberg
PublicationTitle Korea-Australia rheology journal
PublicationTitleAbbrev Korea-Aust. Rheol. J
PublicationYear 2018
Publisher Korean Society of Rheology, Australian Society of Rheology
Springer Nature B.V
한국유변학회
Publisher_xml – name: Korean Society of Rheology, Australian Society of Rheology
– name: Springer Nature B.V
– name: 한국유변학회
References Smith, Bruce (CR22) 1979; 72
Lin, Lindsay, Weitz, Ball, Klein, Meakin (CR11) 1989; 339
Lee, Koo (CR9) 2014; 266
Potanin (CR15) 1992; 96
Shih, Shih, Kim, Liu, Aksay (CR21) 1990; 42
Sonntag, Russel (CR24) 1986; 113
Eggersdorfer, Kadau, Herrmann, Pratsinis (CR5) 2010; 342
Lee, Koo (CR10) 2016; 28
Mewis, Wagner (CR13) 2012
Russel, Sperry (CR20) 1994; 23
Patel, Russel (CR14) 1988; 31
Cho, Koo (CR4) 2015; 27
Potanin (CR16) 1993; 157
Quemada (CR19) 1998; 1
Meakin (CR12) 1987; 28
Quemada (CR18) 1977; 16
Jullien, Botet (CR7) 1987
Buscall, Mills, Goodwin, Lawson (CR2) 1988; 84
Snabre, Mills (CR23) 1996; 6
Potanin, De Rooij, van den Ende, Mellema (CR17) 1995; 102
Batchelor, Green (CR1) 1972; 56
Casson, Mill (CR3) 1959
Wessel, Ball (CR25) 1992; 46
Krieger, Dougherty (CR8) 1959; 3
Einstein (CR6) 1906; 19
P. Meakin (8_CR12) 1987; 28
P.D. Patel (8_CR14) 1988; 31
T.L. Smith (8_CR22) 1979; 72
H. Lee (8_CR10) 2016; 28
J. Mewis (8_CR13) 2012
D. Quemada (8_CR18) 1977; 16
D. Quemada (8_CR19) 1998; 1
R.C. Sonntag (8_CR24) 1986; 113
A.A. Potanin (8_CR16) 1993; 157
M.I. Eggersdorfer (8_CR5) 2010; 342
M.Y. Lin (8_CR11) 1989; 339
R. Wessel (8_CR25) 1992; 46
N. Casson (8_CR3) 1959
W.H. Shih (8_CR21) 1990; 42
B. Lee (8_CR9) 2014; 266
G.K. Batchelor (8_CR1) 1972; 56
R. Jullien (8_CR7) 1987
R. Buscall (8_CR2) 1988; 84
I.M. Krieger (8_CR8) 1959; 3
J. Cho (8_CR4) 2015; 27
P. Snabre (8_CR23) 1996; 6
A.A. Potanin (8_CR17) 1995; 102
A. Einstein (8_CR6) 1906; 19
W.B. Russel (8_CR20) 1994; 23
A.A. Potanin (8_CR15) 1992; 96
References_xml – volume: 84
  start-page: 4249
  year: 1988
  end-page: 4260
  ident: CR2
  article-title: Scaling behaviour of the rheology of aggregate networks formed from colloidal particles
  publication-title: J. Chem. Soc., Faraday Trans. 1
  doi: 10.1039/f19888404249
– volume: 19
  start-page: 289
  year: 1906
  end-page: 306
  ident: CR6
  article-title: A new determination of the molecular dimensions
  publication-title: Ann. Phys.
  doi: 10.1002/andp.19063240204
– volume: 23
  start-page: 305
  year: 1994
  end-page: 324
  ident: CR20
  article-title: Effect of microstructure on the viscosity of hard sphere dispersions and modulus of composites
  publication-title: Prog. Org. Coat.
  doi: 10.1016/0033-0655(94)87001-2
– volume: 6
  start-page: 1811
  year: 1996
  end-page: 1834
  ident: CR23
  article-title: I. Rheology of weakly flocculated suspensions of rigid particles
  publication-title: J. Phys. III France
  doi: 10.1051/jp3:1996215
– volume: 46
  start-page: R3008
  year: 1992
  end-page: R3011
  ident: CR25
  article-title: Fractal aggregates and gels in shear flow
  publication-title: Phys. Rev. A.
  doi: 10.1103/PhysRevA.46.R3008
– volume: 342
  start-page: 261
  year: 2010
  end-page: 268
  ident: CR5
  article-title: Fragmentation and restructuring of soft-agglomerates under shear
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2009.10.062
– volume: 27
  start-page: 218
  year: 2015
  end-page: 222
  ident: CR4
  article-title: Characterization of particle aggregation in a colloidal suspension of magnetite particles
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2014.12.038
– volume: 157
  start-page: 399
  year: 1993
  end-page: 410
  ident: CR16
  article-title: On the computer simulation of the deformation and breakup of colloidal aggregates in shear flow
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.1993.1202
– volume: 102
  start-page: 5845
  year: 1995
  end-page: 5853
  ident: CR17
  article-title: Microrheological modeling of weakly aggregated dispersions
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.469317
– volume: 3
  start-page: 137
  year: 1959
  end-page: 152
  ident: CR8
  article-title: A mechanism for non Newtonian flow in suspensions of rigid spheres
  publication-title: Trans. Soc. Rheol.
  doi: 10.1122/1.548848
– volume: 96
  start-page: 9191
  year: 1992
  end-page: 9200
  ident: CR15
  article-title: On the model of colloid aggregates and aggregating colloids
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.462229
– volume: 16
  start-page: 82
  year: 1977
  end-page: 94
  ident: CR18
  article-title: Rheology of concentrated disperse systems and minimum energy dissipation principle: 1. Viscosity-concentration relationship
  publication-title: Rheol. Acta
  doi: 10.1007/BF01516932
– volume: 113
  start-page: 399
  year: 1986
  end-page: 413
  ident: CR24
  article-title: Structure and breakup of flocs subjected to fluid stresses: I. Shear experiments
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/0021-9797(86)90175-X
– volume: 266
  start-page: 16
  year: 2014
  end-page: 21
  ident: CR9
  article-title: Estimation of microstructure of titania particulate dispersion through viscosity measurement
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2014.06.014
– year: 2012
  ident: CR13
  publication-title: Colloidal Suspension Rheology
– year: 1987
  ident: CR7
  publication-title: Aggregation and Fractal Aggregates
– volume: 42
  start-page: 4772
  year: 1990
  end-page: 4779
  ident: CR21
  article-title: Scaling behavior of the elastic properties of colloidal gels
  publication-title: Phys. Rev. A.
  doi: 10.1103/PhysRevA.42.4772
– volume: 56
  start-page: 401
  year: 1972
  end-page: 427
  ident: CR1
  article-title: The determination of the bulk stress in a suspension of spherical particles to order c2
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112072002435
– volume: 339
  start-page: 360
  year: 1989
  end-page: 362
  ident: CR11
  article-title: Universality in colloid aggregation
  publication-title: Nature
  doi: 10.1038/339360a0
– volume: 31
  start-page: 355
  year: 1988
  end-page: 383
  ident: CR14
  article-title: A mean field theory for the rheology of phase separated or flocculated dispersions
  publication-title: Colloid Surf.
  doi: 10.1016/0166-6622(88)80205-1
– volume: 28
  start-page: 267
  year: 2016
  end-page: 273
  ident: CR10
  article-title: Analysis of fractal aggregates in a colloidal suspension of carbon black from its sedimentation and viscosity
  publication-title: Korea-Aust. Rheol. J.
  doi: 10.1007/s13367-016-0028-1
– volume: 1
  start-page: 119
  year: 1998
  end-page: 127
  ident: CR19
  article-title: Rheological modelling of complex fluids. I. The concept of effective volume fraction revisited
  publication-title: Eur. Phys. J. Appl. Phys.
  doi: 10.1051/epjap:1998125
– start-page: 84
  year: 1959
  end-page: 104
  ident: CR3
  article-title: A flow equation for pigment-oil suspensions of the printing ink type
  publication-title: Rheology of Disperse Systems
– volume: 28
  start-page: 249
  year: 1987
  end-page: 331
  ident: CR12
  article-title: Fractal aggregates
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/0001-8686(87)80016-7
– volume: 72
  start-page: 13
  year: 1979
  end-page: 26
  ident: CR22
  article-title: Intrinsic viscosities and other rheological properties of flocculated suspensions of nonmagnetic and magnetic ferric oxides
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/0021-9797(79)90176-0
– volume: 28
  start-page: 267
  year: 2016
  ident: 8_CR10
  publication-title: Korea-Aust. Rheol. J.
  doi: 10.1007/s13367-016-0028-1
– volume-title: Aggregation and Fractal Aggregates
  year: 1987
  ident: 8_CR7
– volume: 102
  start-page: 5845
  year: 1995
  ident: 8_CR17
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.469317
– volume-title: Colloidal Suspension Rheology
  year: 2012
  ident: 8_CR13
– volume: 1
  start-page: 119
  year: 1998
  ident: 8_CR19
  publication-title: Eur. Phys. J. Appl. Phys.
  doi: 10.1051/epjap:1998125
– volume: 266
  start-page: 16
  year: 2014
  ident: 8_CR9
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2014.06.014
– volume: 16
  start-page: 82
  year: 1977
  ident: 8_CR18
  publication-title: Rheol. Acta
  doi: 10.1007/BF01516932
– volume: 23
  start-page: 305
  year: 1994
  ident: 8_CR20
  publication-title: Prog. Org. Coat.
  doi: 10.1016/0033-0655(94)87001-2
– volume: 6
  start-page: 1811
  year: 1996
  ident: 8_CR23
  publication-title: J. Phys. III France
  doi: 10.1051/jp3:1996215
– volume: 84
  start-page: 4249
  year: 1988
  ident: 8_CR2
  publication-title: J. Chem. Soc., Faraday Trans. 1
  doi: 10.1039/f19888404249
– volume: 28
  start-page: 249
  year: 1987
  ident: 8_CR12
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/0001-8686(87)80016-7
– volume: 3
  start-page: 137
  year: 1959
  ident: 8_CR8
  publication-title: Trans. Soc. Rheol.
  doi: 10.1122/1.548848
– volume: 27
  start-page: 218
  year: 2015
  ident: 8_CR4
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2014.12.038
– volume: 342
  start-page: 261
  year: 2010
  ident: 8_CR5
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2009.10.062
– start-page: 84
  volume-title: Rheology of Disperse Systems
  year: 1959
  ident: 8_CR3
– volume: 113
  start-page: 399
  year: 1986
  ident: 8_CR24
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/0021-9797(86)90175-X
– volume: 72
  start-page: 13
  year: 1979
  ident: 8_CR22
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/0021-9797(79)90176-0
– volume: 31
  start-page: 355
  year: 1988
  ident: 8_CR14
  publication-title: Colloid Surf.
  doi: 10.1016/0166-6622(88)80205-1
– volume: 96
  start-page: 9191
  year: 1992
  ident: 8_CR15
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.462229
– volume: 42
  start-page: 4772
  year: 1990
  ident: 8_CR21
  publication-title: Phys. Rev. A.
  doi: 10.1103/PhysRevA.42.4772
– volume: 56
  start-page: 401
  year: 1972
  ident: 8_CR1
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112072002435
– volume: 339
  start-page: 360
  year: 1989
  ident: 8_CR11
  publication-title: Nature
  doi: 10.1038/339360a0
– volume: 46
  start-page: R3008
  year: 1992
  ident: 8_CR25
  publication-title: Phys. Rev. A.
  doi: 10.1103/PhysRevA.46.R3008
– volume: 157
  start-page: 399
  year: 1993
  ident: 8_CR16
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.1993.1202
– volume: 19
  start-page: 289
  year: 1906
  ident: 8_CR6
  publication-title: Ann. Phys.
  doi: 10.1002/andp.19063240204
SSID ssib053376868
ssj0068810
ssib036278787
ssib010203878
ssib004298614
Score 2.1234806
Snippet We deal with scaling relations based on fractal theory and rheological properties of a colloidal suspension to determine a structure parameter of colloidal...
SourceID nrf
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 67
SubjectTerms Aggregates
Characterization and Evaluation of Materials
Chemistry and Materials Science
Colloids
Complex Fluids and Microfluidics
Dependence
Food Science
Fractals
Hydroxyethyl acrylate
Materials Science
Mathematical models
Mechanical Engineering
Parameters
Polymer Sciences
Predictions
Rheological properties
Rheology
Scaling
Shear rate
Shear viscosity
Soft and Granular Matter
Viscosity
Yield strength
Yield stress
Zinc oxide
Zinc oxides
공학일반
Title Prediction of shear viscosity of a zinc oxide suspension with colloidal aggregation
URI https://link.springer.com/article/10.1007/s13367-018-0008-8
https://www.proquest.com/docview/2048021736
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002347305
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX The Korea-Australia Rheology Journal, 2018, 30(2), , pp.67-74
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2093-7660
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0068810
  issn: 1226-119X
  databaseCode: AFBBN
  dateStart: 20110301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 2093-7660
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0068810
  issn: 1226-119X
  databaseCode: AGYKE
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 2093-7660
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0068810
  issn: 1226-119X
  databaseCode: U2A
  dateStart: 20110301
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEA4eCL6IJ64XQXxSCmmbJtnHRbxRBF1Yn0KbJktRWtmuov56Z7qtVVFBKC3kaEJmmsz0m3whZC-WJnLKhF5XucjjVjov4dZ5vp8kUiShkFUQzeWVOO3z80E0qPdxl020ewNJVjN1u9kthJrg-ircCa08NU1mI2TzAiXuB73PE6wSLTToI9SmWs4qmLBBR1ubBMwdsLjFB_QglJpQGIBdAj3uDhoo9KcufFnMpvOR-2KnfoNWqxXreJEs1KYm7U10Y4lM2XyZzFUhn6ZcITfXIwRpUDC0cLTEo63pc1YaDON6xaSYvmW5ocVLllpaPpWPGOwOpfHfLUUFKrIUGoiH4LMPKwmvkv7x0e3hqVcfseCZMGJjDxYjuCRnRrEg5QYEZ1LuZDd2XFjw5RKktOMiDqRgqRQOxtN0oygwLIZUFq6RmbzI7TqhaSxS5sNN-YYnSaiY5VYEfszxfWHUIawZK21q_nE8BuNBt8zJOLwahhchcaVVh-x_VHmckG_8VXgXBKDvTaaRMhufw0LfjzQ4BmeaBxKZbTpkq5GPrj_WUiN3MbpmIWQfNDJrs39tceNfpTfJfFBpDgZLbpGZ8ejJboNBM052yGzv5O7iaKdS5HfvDeTW
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB-8PURf_D5cPTWIT0qPtE3T7OMhd-55HwjuwfoUmjRZykp7tLui99c7022v3qHCQWkhSZs0M01m-pv8AvAuS23ilY2DifJJIFzqAyOcD8LQmFSaWKZtEM3pmZyei8_zZN6t4276aPcekmxH6mGxW4x3ouuraCW0CtQWbAv0T6IRbO9_-nZ88OcQq-QADoYEtqmBtQqHbNTSwSpBgwdtbnkFPkilNiQGaJlgmyfzHgz9WyOuTWdbZe2vWao3wNV2zjp8CLP-bTehKsu99crs2csbRJC37I5H8KCzYdn-Rukewx1XPoG7bSypbZ7C1y81oT8kcVZ51tCe2exH0ViKD_tFSRm7LErLqp9F7lizbi4oih5L009hRppZFTlWkC0WtVu0qvMMzg8PZh-nQbd3Q2DjhK8CnOXwSAW3ike5sKgRNhc-nWReSIdOoiGuPCGzKJU8T6VHMdlJkkSWZ5jK4x0YlVXpngPLM5nzEE8qtMKYWHEnnIzCTNDz4mQMvBeBth2xOe2v8V0PlMzUVxr7irB2pdUY3l_dcrFh9fhf4bcoV720hSYubrouKr2sNXocR1pEKVHmjGG3F7vuRoFGEyky-XwxZn_opThk_7PGF7cq_QbuTWenJ_rk6Oz4JdyPWpWgiMxdGK3qtXuFVtPKvO6-kt-VFAMB
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS-QwEA9-4OGL-HW4fga5p5Ni2qZJ9lHURb1ThLuFfQttmixFaZftKupf70y3tSoqCKWFJE3CzDSZ6Ux-Q8ivWJrIKRN6XeUij1vpvIRb5_l-kkiRhEJWQTSXV-Kszy8G0aDOc1o20e6NS3J6pgFRmvLJ4Sh1h-3BtxB6ATNY4alo5alZMs8RJwEEuh8cvV5slWjdhD663VSLXwWLN8hrq5-A6gPat3hxQwilpnAGoKPA7LuDxi360RTebGyz-di90VnfuVmr3au3TJZqtZMeTeVkhczYfJUsVOGfplwj_67H6LBBJtHC0RLTXNP7rDQY0vWIRTF9ynJDi4cstbS8K0cY-A6t8T8uRWEqshQGiIdgvw8rbq-Tfu_0__GZV6db8EwYsYkHGxNckjOjWJByA0w0KXeyGzsuLNh1CcLbcREHUrBUCgf0NN0oCgyLoZSFP8lcXuR2g9A0Finz4aZ8w5MkVMxyKwI_5thfGHUIa2ilTY1FjikxbnWLoozk1UBedI8rrTrk98sroykQx1eN94EB-sZkGuGz8Tks9M1Yg5FwrnkgEeWmQ7Yb_uj6wy014hijmRZC9UHDs7b60xE3v9V6j_y4Punpv-dXf7bIYlAJEcZQbpO5yfjO7oCeM0l2K1l-Bm8O6mo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+shear+viscosity+of+a+zinc+oxide+suspension+with+colloidal+aggregation&rft.jtitle=Korea-Australia+rheology+journal&rft.au=%EA%B9%80%EB%8B%A8%EB%B9%84&rft.au=%EA%B5%AC%EC%83%81%EA%B7%A0&rft.date=2018-05-01&rft.pub=%ED%95%9C%EA%B5%AD%EC%9C%A0%EB%B3%80%ED%95%99%ED%9A%8C&rft.issn=1226-119X&rft.eissn=2093-7660&rft.spage=67&rft.epage=74&rft_id=info:doi/10.1007%2Fs13367-018-0008-8&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_4270526
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1226-119X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1226-119X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1226-119X&client=summon