Microstructures and mechanical properties of bonding layers between low carbon steel and alloy 625 processed by gas tungsten arc welding

A filler metal wire, Alloy 625, was cladded on a plate of a low carbon streel, SS400, by gas tungsten arc welding, and the morphology of the weld bead and resulting dilution ratio were investigated under different welding parameter values (the input current, weld speed and wire feed speed). The wire...

Full description

Saved in:
Bibliographic Details
Published inMetals and materials international Vol. 23; no. 6; pp. 1168 - 1175
Main Authors Lou, Shuai, Lee, Seul Bi, Nam, Dae-Geun, Choi, Yoon Suk
Format Journal Article
LanguageEnglish
Published Seoul The Korean Institute of Metals and Materials 01.11.2017
Springer Nature B.V
대한금속·재료학회
Subjects
Online AccessGet full text
ISSN1598-9623
2005-4149
DOI10.1007/s12540-017-7167-x

Cover

More Information
Summary:A filler metal wire, Alloy 625, was cladded on a plate of a low carbon streel, SS400, by gas tungsten arc welding, and the morphology of the weld bead and resulting dilution ratio were investigated under different welding parameter values (the input current, weld speed and wire feed speed). The wire feed speed was found to be most influential in controlling the dilution ratio of the weld bead, and seemed to limit the influence of other welding parameters. Two extreme welding conditions (with the minimum and maximum dilution ratios) were identified, and the corresponding microstructures, hardness and tensile properties near the bond line were compared between the two cases. The weld bead with the minimum dilution ratio showed superior hardness and tensile properties, while the formation lath martensite (due to relatively fast cooling) affected mechanical properties in the heat affected zone of the base metal with the maximum dilution ratio.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1598-9623
2005-4149
DOI:10.1007/s12540-017-7167-x