Accelerating iterative ptychography with an integrated neural network
Electron ptychography is a powerful and versatile tool for high‐resolution and dose‐efficient imaging. Iterative reconstruction algorithms are powerful but also computationally expensive due to their relative complexity and the many hyperparameters that must be optimised. Gradient descent‐based iter...
Saved in:
| Published in | Journal of microscopy (Oxford) Vol. 300; no. 2; pp. 180 - 190 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
England
Wiley Subscription Services, Inc
01.11.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0022-2720 1365-2818 1365-2818 |
| DOI | 10.1111/jmi.13407 |
Cover
| Abstract | Electron ptychography is a powerful and versatile tool for high‐resolution and dose‐efficient imaging. Iterative reconstruction algorithms are powerful but also computationally expensive due to their relative complexity and the many hyperparameters that must be optimised. Gradient descent‐based iterative ptychography is a popular method, but it may converge slowly when reconstructing low spatial frequencies. In this work, we present a method for accelerating a gradient descent‐based iterative reconstruction algorithm by training a neural network (NN) that is applied in the reconstruction loop. The NN works in Fourier space and selectively boosts low spatial frequencies, thus enabling faster convergence in a manner similar to accelerated gradient descent algorithms. We discuss the difficulties that arise when incorporating a NN into an iterative reconstruction algorithm and show how they can be overcome with iterative training. We apply our method to simulated and experimental data of gold nanoparticles on amorphous carbon and show that we can significantly speed up ptychographic reconstruction of the nanoparticles. |
|---|---|
| AbstractList | Electron ptychography is a powerful and versatile tool for high‐resolution and dose‐efficient imaging. Iterative reconstruction algorithms are powerful but also computationally expensive due to their relative complexity and the many hyperparameters that must be optimised. Gradient descent‐based iterative ptychography is a popular method, but it may converge slowly when reconstructing low spatial frequencies. In this work, we present a method for accelerating a gradient descent‐based iterative reconstruction algorithm by training a neural network (NN) that is applied in the reconstruction loop. The NN works in Fourier space and selectively boosts low spatial frequencies, thus enabling faster convergence in a manner similar to accelerated gradient descent algorithms. We discuss the difficulties that arise when incorporating a NN into an iterative reconstruction algorithm and show how they can be overcome with iterative training. We apply our method to simulated and experimental data of gold nanoparticles on amorphous carbon and show that we can significantly speed up ptychographic reconstruction of the nanoparticles. Electron ptychography is a powerful and versatile tool for high‐resolution and dose‐efficient imaging. Iterative reconstruction algorithms are powerful but also computationally expensive due to their relative complexity and the many hyperparameters that must be optimised. Gradient descent‐based iterative ptychography is a popular method, but it may converge slowly when reconstructing low spatial frequencies. In this work, we present a method for accelerating a gradient descent‐based iterative reconstruction algorithm by training a neural network (NN) that is applied in the reconstruction loop. The NN works in Fourier space and selectively boosts low spatial frequencies, thus enabling faster convergence in a manner similar to accelerated gradient descent algorithms. We discuss the difficulties that arise when incorporating a NN into an iterative reconstruction algorithm and show how they can be overcome with iterative training. We apply our method to simulated and experimental data of gold nanoparticles on amorphous carbon and show that we can significantly speed up ptychographic reconstruction of the nanoparticles. Electron ptychography is a powerful and versatile tool for high-resolution and dose-efficient imaging. Iterative reconstruction algorithms are powerful but also computationally expensive due to their relative complexity and the many hyperparameters that must be optimised. Gradient descent-based iterative ptychography is a popular method, but it may converge slowly when reconstructing low spatial frequencies. In this work, we present a method for accelerating a gradient descent-based iterative reconstruction algorithm by training a neural network (NN) that is applied in the reconstruction loop. The NN works in Fourier space and selectively boosts low spatial frequencies, thus enabling faster convergence in a manner similar to accelerated gradient descent algorithms. We discuss the difficulties that arise when incorporating a NN into an iterative reconstruction algorithm and show how they can be overcome with iterative training. We apply our method to simulated and experimental data of gold nanoparticles on amorphous carbon and show that we can significantly speed up ptychographic reconstruction of the nanoparticles.Electron ptychography is a powerful and versatile tool for high-resolution and dose-efficient imaging. Iterative reconstruction algorithms are powerful but also computationally expensive due to their relative complexity and the many hyperparameters that must be optimised. Gradient descent-based iterative ptychography is a popular method, but it may converge slowly when reconstructing low spatial frequencies. In this work, we present a method for accelerating a gradient descent-based iterative reconstruction algorithm by training a neural network (NN) that is applied in the reconstruction loop. The NN works in Fourier space and selectively boosts low spatial frequencies, thus enabling faster convergence in a manner similar to accelerated gradient descent algorithms. We discuss the difficulties that arise when incorporating a NN into an iterative reconstruction algorithm and show how they can be overcome with iterative training. We apply our method to simulated and experimental data of gold nanoparticles on amorphous carbon and show that we can significantly speed up ptychographic reconstruction of the nanoparticles. |
| Author | Varnavides, Georgios Ophus, Colin McCray, Arthur R. C. Ribet, Stephanie M. |
| Author_xml | – sequence: 1 givenname: Arthur R. C. orcidid: 0000-0001-6077-4698 surname: McCray fullname: McCray, Arthur R. C. organization: Lawrence Berkeley National Laboratory – sequence: 2 givenname: Stephanie M. surname: Ribet fullname: Ribet, Stephanie M. organization: Lawrence Berkeley National Laboratory – sequence: 3 givenname: Georgios surname: Varnavides fullname: Varnavides, Georgios organization: University of California – sequence: 4 givenname: Colin surname: Ophus fullname: Ophus, Colin email: cophus@gmail.com organization: Lawrence Berkeley National Laboratory |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40195648$$D View this record in MEDLINE/PubMed |
| BookMark | eNp90E1P3DAQBmCrApWF9tA_gCL1UpCyjD1x7BxXiK8KxKU9W04yYbNkndRJWOXf1yVbDpWKL2NZjz2e95gduNYRY184LHlYF5ttveSYgPrAFhxTGQvN9QFbAAgRCyXgiB33_QYAtNTwkR0lwDOZJnrBrlZFQQ15O9TuKaqH190LRd0wFev2ydtuPUW7elhH1kW1GygcDVRGjkZvm1CGXeufP7HDyjY9fd7XE_bz-urH5W18_3hzd7m6jwuUoGJeIlCRVYiEVpfAeYaqyitKtMpyiVkpE7Qy0WleqTyVWQGqpCxHEhJFkuMJO5_fHV1np51tGtP5emv9ZDiYP1mYkIV5zSLgbzPufPtrpH4w27oPwzbWUTv2BrlWUqSAEOjXf-imHb0LoxgUKQeVotJBne7VmG-pfGv9N80AzmZQ-LbvPVXv_u5itru6oen_0Hx_uJtv_AaPBZID |
| Cites_doi | 10.1017/S1431927619000497 10.1107/S0108767397010490 10.1038/s41467‐020‐16391‐6 10.1038/s41598‐017‐07488‐y 10.1016/j.neunet.2019.02.011 10.1063/5.0206814 10.69761/XUNR2166 10.1093/micmic/ozac002 10.1103/PhysRevLett.130.016101 10.1109/MSP.2020.3016905 10.1038/nphys2337 10.1038/s41467‐024‐52403‐5 10.1364/OSAC.411174 10.1016/j.ultramic.2014.09.013 10.1016/j.ultramic.2011.10.016 10.1038/s41586‐018‐0298‐5 10.1126/science.abg2533 10.1098/rsta.1992.0050 10.1364/OE.551986 10.1038/s41565‐022‐01224‐y 10.1016/j.ultramic.2023.113716 10.1017/S1431927621000477 10.1109/TMI.2018.2799231 10.1038/s41467‐023‐41496‐z 10.1038/s41598‐022‐16041‐5 |
| ContentType | Journal Article |
| Copyright | 2025 Royal Microscopical Society. |
| Copyright_xml | – notice: 2025 Royal Microscopical Society. |
| DBID | AAYXX CITATION NPM 7U5 8FD L7M 7X8 ADTOC UNPAY |
| DOI | 10.1111/jmi.13407 |
| DatabaseName | CrossRef PubMed Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts MEDLINE - Academic |
| DatabaseTitleList | CrossRef Technology Research Database PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1365-2818 |
| EndPage | 190 |
| ExternalDocumentID | 10.1111/jmi.13407 40195648 10_1111_jmi_13407 JMI13407 |
| Genre | researchArticle Journal Article |
| GrantInformation_xml | – fundername: Adolph C. and Mary Sprague Miller Institute for Basic Research in Science, University of California Berkeley – fundername: U.S. Department of Energy funderid: DE‐AC02‐05CH11231 – fundername: US Department of Energy Early Career Research Award – fundername: Office of Science – fundername: National Energy Research Scientific Computing Center funderid: BES‐ERCAP0028035 – fundername: National Energy Research Scientific Computing Center grantid: BES-ERCAP0028035 – fundername: U.S. Department of Energy grantid: DE-AC02-05CH11231 |
| GroupedDBID | --- -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 29L 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABDPE ABEFU ABEML ABJNI ABLJU ABPVW ABUFD ACAHQ ACBWZ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFEBI AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AI. AIAGR AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 C45 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM E3Z EAD EAP EAS EBB EBC EBD EBO EBS EBX EJD EMB EMK EMOBN EPT ESX EX3 F00 F01 F04 F5P FA8 FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OBC OBS OIG OVD P2P P2W P2X P4D PALCI Q.N Q11 QB0 Q~Q R.K RIWAO RJQFR RNS ROL RX1 SAMSI SUPJJ SV3 TEORI TH9 TN5 TUS TWZ UB1 V8K VH1 W8V W99 WBKPD WH7 WHWMO WIH WIK WIN WOHZO WOW WQJ WVDHM WXSBR X7M XG1 XOL Y6R YFH YUY ZGI ZXP ZY4 ZZTAW ~02 ~IA ~KM ~WT AAYXX CITATION NPM 7U5 8FD L7M 7X8 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c3507-1d30ec9f33e3a8d011937fbfe4879b539d543a5486bf7b659c07de9b3e25324b3 |
| IEDL.DBID | UNPAY |
| ISSN | 0022-2720 1365-2818 |
| IngestDate | Wed Oct 01 16:42:51 EDT 2025 Fri Sep 05 17:42:57 EDT 2025 Thu Oct 16 08:35:38 EDT 2025 Thu Oct 16 01:42:19 EDT 2025 Sat Oct 25 05:14:36 EDT 2025 Thu Oct 16 09:53:15 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | 4DSTEM machine learning ptychography gradient descent |
| Language | English |
| License | 2025 Royal Microscopical Society. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3507-1d30ec9f33e3a8d011937fbfe4879b539d543a5486bf7b659c07de9b3e25324b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-6077-4698 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/jmi.13407 |
| PMID | 40195648 |
| PQID | 3261076378 |
| PQPubID | 1086390 |
| PageCount | 11 |
| ParticipantIDs | unpaywall_primary_10_1111_jmi_13407 proquest_miscellaneous_3187526030 proquest_journals_3261076378 pubmed_primary_40195648 crossref_primary_10_1111_jmi_13407 wiley_primary_10_1111_jmi_13407_JMI13407 |
| PublicationCentury | 2000 |
| PublicationDate | November 2025 |
| PublicationDateYYYYMMDD | 2025-11-01 |
| PublicationDate_xml | – month: 11 year: 2025 text: November 2025 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Oxford |
| PublicationTitle | Journal of microscopy (Oxford) |
| PublicationTitleAlternate | J Microsc |
| PublicationYear | 2025 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2004; 87 2017; 7 2021; 27 2023; 14 2021; 4 2023; 248 2020; 11 2024; 124 2024 2024; 15 2015; 151 2021; 38 2012; 113 2023 2023; 130 2023; 29 2018; 559 2019; 25 2022; 12 2019; 115 2018 1992; 339 2017 2021; 372 1998; 54 2022; 17 2018; 37 2012; 8 2008; 150 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 Nesterov Y. (e_1_2_7_24_1) 2004 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Rodenburg J. (e_1_2_7_12_1) 2008 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_23_1 e_1_2_7_22_1 e_1_2_7_21_1 e_1_2_7_20_1 |
| References_xml | – volume: 559 start-page: 343 issue: 7714 year: 2018 end-page: 349 article-title: Electron ptychography of 2D materials to deep sub‐ångström resolution publication-title: Nature – volume: 87 year: 2004 – volume: 248 year: 2023 article-title: An integrated constrained gradient descent (iCGD) protocol to correct scan‐positional errors for electron ptychography with high accuracy and precision publication-title: Ultramicroscopy – volume: 38 start-page: 18 issue: 2 year: 2021 end-page: 44 article-title: Algorithm unrolling: Interpretable, efficient deep learning for signal and image processing publication-title: IEEE Signal Processing Magazine – volume: 29 start-page: 395 issue: 1 year: 2023 end-page: 407 article-title: Phase object reconstruction for 4D‐STEM using deep learning publication-title: Microscopy and Microanalysis – volume: 130 issue: 1 year: 2023 article-title: Deep‐learning electron diffractive imaging publication-title: Physical Review Letters – year: 2018 article-title: Accelerated wirtinger flow: A fast algorithm for ptychography – volume: 115 start-page: 50 year: 2019 end-page: 64 article-title: Fully complex conjugate gradient‐based neural networks using Wirtinger calculus framework: Deterministic convergence and its application publication-title: Neural Networks – volume: 54 start-page: 49 issue: 1 year: 1998 end-page: 60 article-title: Electron ptychography. I. Experimental demonstration beyond the conventional resolution limits publication-title: Acta Crystallographica Section A Foundations of Crystallography – volume: 14 issue: 1 year: 2023 article-title: Deep learning at the edge enables real‐time streaming ptychographic imaging publication-title: Nature Communications – volume: 25 start-page: 563 issue: 3 year: 2019 end-page: 582 article-title: Four‐dimensional scanning transmission electron microscopy (4D‐STEM): From scanning nanodiffraction to ptychography and beyond publication-title: Microscopy and Microanalysis – volume: 11 issue: 1 year: 2020 article-title: Low‐dose phase retrieval of biological specimens using cryo‐electron ptychography publication-title: Nature Communications – volume: 150 start-page: 87 year: 2008 end-page: 184 – volume: 339 start-page: 521 issue: 1655 year: 1992 end-page: 553 article-title: The theory of super‐resolution electron microscopy via Wigner‐distribution deconvolution publication-title: Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences – volume: 151 start-page: 160 year: 2015 end-page: 167 article-title: Efficient phase contrast imaging in STEM using a pixelated detector. Part 1: Experimental demonstration at atomic resolution publication-title: Ultramicroscopy – volume: 372 start-page: 826 issue: 6544 year: 2021 end-page: 831 article-title: Electron ptychography achieves atomic‐resolution limits set by lattice vibrations publication-title: Science – year: 2017 article-title: Adam: A method for stochastic optimization – volume: 8 start-page: 611 issue: 8 year: 2012 end-page: 615 article-title: Differential phase‐contrast microscopy at atomic resolution publication-title: Nature Physics – volume: 37 start-page: 1322 issue: 6 year: 2018 end-page: 1332 article-title: Learned primal‐dual reconstruction publication-title: IEEE Transactions on Medical Imaging – volume: 4 start-page: 121 issue: 1 year: 2021 article-title: Efficient and flexible approach to ptychography using an optimization framework based on automatic differentiation publication-title: OSA Continuum – volume: 7 issue: 1 year: 2017 article-title: Low‐dose cryo electron ptychography via non‐convex Bayesian optimization publication-title: Scientific Reports – volume: 12 issue: 1 year: 2022 article-title: Automatic parameter selection for electron ptychography via Bayesian optimization publication-title: Scientific Reports – year: 2024 article-title: Tilt‐corrected BF‐STEM – year: 2024 article-title: LoRePIE: Regularised Extended Ptychographical Iterative Engine for Low‐dose and Fast Electron Ptychography (Version 2) – volume: 15 issue: 1 year: 2024 article-title: Low‐dose cryo‐electron ptychography of proteins at sub‐nanometer resolution publication-title: Nature Communications – volume: 124 issue: 24 year: 2024 article-title: Uncovering the three‐dimensional structure of upconverting core–shell nanoparticles with multislice electron ptychography publication-title: Applied Physics Letters – year: 2023 article-title: Iterative phase retrieval algorithms for scanning transmission electron microscopy – volume: 27 start-page: 712 issue: 4 year: 2021 end-page: 743 article-title: py4DSTEM: A software package for four‐dimensional scanning transmission electron microscopy data analysis publication-title: Microscopy and Microanalysis – volume: 17 start-page: 1165 issue: 11 year: 2022 end-page: 1170 article-title: Muller, Lorentz electron ptychography for imaging magnetic textures beyond the diffraction limit publication-title: Nature Nanotechnology – volume: 113 start-page: 88 year: 2012 end-page: 95 article-title: Guidelines for quantitative reconstruction of complex exit waves in HRTEM publication-title: Ultramicroscopy – ident: e_1_2_7_6_1 doi: 10.1017/S1431927619000497 – ident: e_1_2_7_7_1 doi: 10.1107/S0108767397010490 – start-page: 87 volume-title: Advances in imaging and electron physics year: 2008 ident: e_1_2_7_12_1 – ident: e_1_2_7_2_1 doi: 10.1038/s41467‐020‐16391‐6 – ident: e_1_2_7_21_1 doi: 10.1038/s41598‐017‐07488‐y – ident: e_1_2_7_25_1 – ident: e_1_2_7_27_1 doi: 10.1016/j.neunet.2019.02.011 – ident: e_1_2_7_11_1 doi: 10.1063/5.0206814 – ident: e_1_2_7_4_1 doi: 10.69761/XUNR2166 – ident: e_1_2_7_19_1 doi: 10.1093/micmic/ozac002 – ident: e_1_2_7_16_1 doi: 10.1103/PhysRevLett.130.016101 – ident: e_1_2_7_28_1 doi: 10.1109/MSP.2020.3016905 – ident: e_1_2_7_3_1 doi: 10.1038/nphys2337 – ident: e_1_2_7_5_1 doi: 10.1038/s41467‐024‐52403‐5 – ident: e_1_2_7_18_1 doi: 10.1364/OSAC.411174 – ident: e_1_2_7_13_1 doi: 10.1016/j.ultramic.2014.09.013 – ident: e_1_2_7_23_1 doi: 10.1016/j.ultramic.2011.10.016 – volume-title: Applied optimization year: 2004 ident: e_1_2_7_24_1 – ident: e_1_2_7_8_1 doi: 10.1038/s41586‐018‐0298‐5 – ident: e_1_2_7_10_1 doi: 10.1126/science.abg2533 – ident: e_1_2_7_14_1 doi: 10.1098/rsta.1992.0050 – ident: e_1_2_7_30_1 doi: 10.1364/OE.551986 – ident: e_1_2_7_9_1 doi: 10.1038/s41565‐022‐01224‐y – ident: e_1_2_7_20_1 doi: 10.1016/j.ultramic.2023.113716 – ident: e_1_2_7_26_1 – ident: e_1_2_7_31_1 doi: 10.1017/S1431927621000477 – ident: e_1_2_7_29_1 doi: 10.1109/TMI.2018.2799231 – ident: e_1_2_7_17_1 doi: 10.1038/s41467‐023‐41496‐z – ident: e_1_2_7_22_1 doi: 10.1038/s41598‐022‐16041‐5 – ident: e_1_2_7_15_1 |
| SSID | ssj0008580 |
| Score | 2.4630654 |
| Snippet | Electron ptychography is a powerful and versatile tool for high‐resolution and dose‐efficient imaging. Iterative reconstruction algorithms are powerful but... Electron ptychography is a powerful and versatile tool for high-resolution and dose-efficient imaging. Iterative reconstruction algorithms are powerful but... |
| SourceID | unpaywall proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 180 |
| SubjectTerms | 4DSTEM Algorithms gradient descent Image reconstruction machine learning Nanoparticles Neural networks ptychography |
| SummonAdditionalLinks | – databaseName: Wiley Online Library - Core collection (SURFmarket) dbid: DR2 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_GQNQHvz-mU-rHgy8dWZN0LT4NUeZAH0TBB6EkaSqi64bbkPnXe0nW-oUi0pdCL2nay-Xul-R-AThEkwlYpAKfBpr6TLHMFzwQvhJEoX3FRAcmd_jiMuzcsO4tv63AcZEL4_ghygk3Yxl2vDYGLuTwo5H3HhpNymwmeZOGFk5dvVNHRTwiBVO4WWucsgrZXTxFyc--6FuAOQ-z43wgJi_i6elz7Gqdz9ki3BXNdntOHhvjkWyo1y-Mjv_8riVYmAalXtv1omWo6HwFZtwxlZNVOG0rhd7J9JX83nM8zDhIeoORGTwd5bVnJnQ9kXsl_0TqGa5MrDZ3O83X4Obs9Pqk40-PX_AV5YY6MqVEqzijVFMRpYYcjrYymWnEOLHkNE45owIRTyizlgx5rEgr1bGkOuAYpkm6DtW8n-tN8NJIErxkqrOYoTi6RfSCXLBmQHREohrsF4pIBo5lIynRSe8hsf-jBvVCRcnU0IYJRp8IYEPawjr2ysdoImbdQ-S6P0aZJoIyxG2U1GDDqbZ8C7MJkwxLH5S6_q0JR1Z1P0sk3Ytze7P1d9FtmAvMqcI2w7EO1dHzWO9gqDOSu7ZPvwEA9vha priority: 102 providerName: Wiley-Blackwell |
| Title | Accelerating iterative ptychography with an integrated neural network |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjmi.13407 https://www.ncbi.nlm.nih.gov/pubmed/40195648 https://www.proquest.com/docview/3261076378 https://www.proquest.com/docview/3187526030 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/jmi.13407 |
| UnpaywallVersion | publishedVersion |
| Volume | 300 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0022-2720 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1365-2818 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008580 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED9kQ9QHvz-mc9SPB186uyTd2schG3OwIeJgPtUkTWW4dUM3ZP71XpquMEURpC-FJmnay-V-l-R-B3CJKkOYJ4lNiaI2kyyyuUu4LbkjUb98RxEdO9zpVls91u67_TTPqY6FMfwQ2YKb1oxkvtYKPgkjM89fZ-dxRoNyhTIdTZ6vugjGc5Dvde_qjwuOcL3LmEVeoW1KuYWW6i5bpG8wcwPWZvGEz9_5cLiMYBMT1NyCp0XnzcmTl_JsKsry4wuv4z--bhs2U3hq1c142oEVFe_CqklYOd-DRl1KtFN61MTPlmFkxunSmkz1NGrIry29tGvx2MqYKEJLs2Zis7E5c74PvWbj4aZlp4kYbEldTSIZUkdJP6JUUe6FmiaO1iIRKfR2fOFSP3QZ5ej7VEVUEygI6dRC5QuqiIuATdADyMXjWB2BFXrCwUuEKvIZFkcDifbQ5axCHOU5XgHOF8IIJoZvI8j8lNEgSP5HAYoLMQWpyr0FiEPRla3SGrZxlj1GZdE7IDxW4xmWqaB7hh4cdQpwaMSbvYUloZMMa19k8v6tC1eJ-H4uEbQ7t8nN8Z8aPIF1olMLJ2GORchNX2fqFPHOVJQQ6d-TUjqyPwEk5v3D |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5kRdSD78f6rI-Dly7ZJum24GWRlXV1PYiCFylJmoqoddFdRH-9k2RbXygivRQ6SdNOJjNfkvkCsIsmE7BIBT4NNPWZYpkveCB8JYhC-4qJDkzucPc0bF-wziW_HIH9IhfG8UOUE27GMux4bQzcTEh_tPL7m1qdMpNKPspCxCkmJDp7J4-KeEQKrnCz2jjkFbL7eIqin73RtxBzEsYHeU-8PIu7u8_Rq3U_h9NwVTTc7Tq5rQ36sqZev3A6_vfLZmBqGJd6TdeRZmFE53Mw5k6qfJmHVlMpdFCmu-TXnqNixnHS6_XN-OlYrz0zp-uJ3CspKFLP0GVitbnbbL4AF4et84O2PzyBwVeUG_bIlBKt4oxSTUWUGn442shkphHmxJLTOOWMCgQ9ocwaMuSxIo1Ux5LqgGOkJukiVPKHXC-Dl0aS4CVTncUMxdEzoiPkgtUDoiMSVWG70ETSc0QbSQlQ7m8S-z-qsFboKBna2lOCAShi2JA2sI6t8jFaiVn6ELl-GKBMHXEZQjdKqrDkdFu-hdmcSYald0pl_9aEPau7nyWSTvfI3qz8XXQTxtvn3ZPk5Oj0eBUmAnPIsE14XINK_3Gg1zHy6csN28HfAJTL_Hs |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB4WxevB-1jPejz40iXbJLst-CK6i-uxiCj4IiVJUxG1LrqL6K93kmzrhSLSl0InadrJZGaSmW8AtlBkAhaqwKeBpj5TLPUFD4SvBFEoXxHRgckdPmnXDi7Y4SW_LMFOngvj8CGKDTcjGXa9NgKuO0n6UcrvbypVykwq-SDjUWgC-vbP3sGjQh6SHCvcnDb2cYVsHE_e9LM2-mZijsFIL-uIl2dxd_fZerXqpzkBV_nAXdTJbaXXlRX1-gXT8b9fNgnjfbvU23UTaQpKOpuGIVep8mUGGrtKoYIy0yW79hwUM66TXqdr1k-Heu2ZPV1PZF4BQZF4Bi4Tu81csPksXDQb53sHfr8Cg68oN-iRCSVaRSmlmoowMfhwtJ7KVKObE0lOo4QzKtDpqcm0Lms8UqSe6EhSHXC01CSdg4HsIdML4CWhJHjJRKcRQ3LUjKgIuWDVgOiQhGXYyDkRdxzQRlw4KPc3sf0fZVjOeRT3Ze0pRgMUfdgarWMf68VjlBJz9CEy_dBDmir6Zei6UVKGecfb4i3M5kwybL1ZMPu3IWxb3v1MER-etOzN4t9J12D4dL8ZH7faR0swGpgawzbfcRkGuo89vYKGT1eu2vn9BkJb-_8 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7IhqgP3i_TKfXy4Etn16S3xyEbc7Dhg4P5VJM0leHWDV2R-es9abrCFEWQvhR6kqY9Obck5zsAVygyNvWFbRJbEpMKGpvMsZkpmCVQvgJL2ip3uNtz233aGTiDvM6pyoXR-BDFgpuSjExfKwGfRrHW8zfFeZzxsFYnVGWTl10HnfESlPu9-8bjAiNc7TIWmVdom3JsoaW2yxbpm5u5AWtpMmXzdzYaLXuwmQlqbcHTYvD65MlLLZ3xmvj4guv4j6_bhs3cPTUaej7twIpMdmFVF6yc70GzIQTaKTVrkmdDIzKjujSmM6VGNfi1oZZ2DZYYBRJFZCjUTOw20WfO96Hfaj7cts28EIMpiKNAJCNiSRHEhEjC_EjBxBEv5rHEaCfgDgkihxKGsY_LY48jI4TlRTLgRNoOOmycHEApmSTyCIzI5xZePJJxQJEcDSTaQ4fRum1J3_IrcLFgRjjVeBthEaeMh2H2PypQXbApzEXuLUQ_FENZl3jYx3nxGIVF7YCwRE5SpKljeIYRHLEqcKjZW7yFZqmTFFtfFvz-bQjXGft-pgg73bvs5vhPHZ7Auq1KC2dpjlUozV5TeYr-zoyf5XP6Ezfm_No |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerating+iterative+ptychography+with+an+integrated+neural+network&rft.jtitle=Journal+of+microscopy+%28Oxford%29&rft.au=McCray%2C+Arthur+R+C&rft.au=Ribet%2C+Stephanie+M&rft.au=Varnavides%2C+Georgios&rft.au=Ophus%2C+Colin&rft.date=2025-11-01&rft.issn=1365-2818&rft.eissn=1365-2818&rft_id=info:doi/10.1111%2Fjmi.13407&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2720&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2720&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2720&client=summon |