Accelerating iterative ptychography with an integrated neural network

Electron ptychography is a powerful and versatile tool for high‐resolution and dose‐efficient imaging. Iterative reconstruction algorithms are powerful but also computationally expensive due to their relative complexity and the many hyperparameters that must be optimised. Gradient descent‐based iter...

Full description

Saved in:
Bibliographic Details
Published inJournal of microscopy (Oxford) Vol. 300; no. 2; pp. 180 - 190
Main Authors McCray, Arthur R. C., Ribet, Stephanie M., Varnavides, Georgios, Ophus, Colin
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.11.2025
Subjects
Online AccessGet full text
ISSN0022-2720
1365-2818
1365-2818
DOI10.1111/jmi.13407

Cover

Abstract Electron ptychography is a powerful and versatile tool for high‐resolution and dose‐efficient imaging. Iterative reconstruction algorithms are powerful but also computationally expensive due to their relative complexity and the many hyperparameters that must be optimised. Gradient descent‐based iterative ptychography is a popular method, but it may converge slowly when reconstructing low spatial frequencies. In this work, we present a method for accelerating a gradient descent‐based iterative reconstruction algorithm by training a neural network (NN) that is applied in the reconstruction loop. The NN works in Fourier space and selectively boosts low spatial frequencies, thus enabling faster convergence in a manner similar to accelerated gradient descent algorithms. We discuss the difficulties that arise when incorporating a NN into an iterative reconstruction algorithm and show how they can be overcome with iterative training. We apply our method to simulated and experimental data of gold nanoparticles on amorphous carbon and show that we can significantly speed up ptychographic reconstruction of the nanoparticles.
AbstractList Electron ptychography is a powerful and versatile tool for high‐resolution and dose‐efficient imaging. Iterative reconstruction algorithms are powerful but also computationally expensive due to their relative complexity and the many hyperparameters that must be optimised. Gradient descent‐based iterative ptychography is a popular method, but it may converge slowly when reconstructing low spatial frequencies. In this work, we present a method for accelerating a gradient descent‐based iterative reconstruction algorithm by training a neural network (NN) that is applied in the reconstruction loop. The NN works in Fourier space and selectively boosts low spatial frequencies, thus enabling faster convergence in a manner similar to accelerated gradient descent algorithms. We discuss the difficulties that arise when incorporating a NN into an iterative reconstruction algorithm and show how they can be overcome with iterative training. We apply our method to simulated and experimental data of gold nanoparticles on amorphous carbon and show that we can significantly speed up ptychographic reconstruction of the nanoparticles.
Electron ptychography is a powerful and versatile tool for high‐resolution and dose‐efficient imaging. Iterative reconstruction algorithms are powerful but also computationally expensive due to their relative complexity and the many hyperparameters that must be optimised. Gradient descent‐based iterative ptychography is a popular method, but it may converge slowly when reconstructing low spatial frequencies. In this work, we present a method for accelerating a gradient descent‐based iterative reconstruction algorithm by training a neural network (NN) that is applied in the reconstruction loop. The NN works in Fourier space and selectively boosts low spatial frequencies, thus enabling faster convergence in a manner similar to accelerated gradient descent algorithms. We discuss the difficulties that arise when incorporating a NN into an iterative reconstruction algorithm and show how they can be overcome with iterative training. We apply our method to simulated and experimental data of gold nanoparticles on amorphous carbon and show that we can significantly speed up ptychographic reconstruction of the nanoparticles.
Electron ptychography is a powerful and versatile tool for high-resolution and dose-efficient imaging. Iterative reconstruction algorithms are powerful but also computationally expensive due to their relative complexity and the many hyperparameters that must be optimised. Gradient descent-based iterative ptychography is a popular method, but it may converge slowly when reconstructing low spatial frequencies. In this work, we present a method for accelerating a gradient descent-based iterative reconstruction algorithm by training a neural network (NN) that is applied in the reconstruction loop. The NN works in Fourier space and selectively boosts low spatial frequencies, thus enabling faster convergence in a manner similar to accelerated gradient descent algorithms. We discuss the difficulties that arise when incorporating a NN into an iterative reconstruction algorithm and show how they can be overcome with iterative training. We apply our method to simulated and experimental data of gold nanoparticles on amorphous carbon and show that we can significantly speed up ptychographic reconstruction of the nanoparticles.Electron ptychography is a powerful and versatile tool for high-resolution and dose-efficient imaging. Iterative reconstruction algorithms are powerful but also computationally expensive due to their relative complexity and the many hyperparameters that must be optimised. Gradient descent-based iterative ptychography is a popular method, but it may converge slowly when reconstructing low spatial frequencies. In this work, we present a method for accelerating a gradient descent-based iterative reconstruction algorithm by training a neural network (NN) that is applied in the reconstruction loop. The NN works in Fourier space and selectively boosts low spatial frequencies, thus enabling faster convergence in a manner similar to accelerated gradient descent algorithms. We discuss the difficulties that arise when incorporating a NN into an iterative reconstruction algorithm and show how they can be overcome with iterative training. We apply our method to simulated and experimental data of gold nanoparticles on amorphous carbon and show that we can significantly speed up ptychographic reconstruction of the nanoparticles.
Author Varnavides, Georgios
Ophus, Colin
McCray, Arthur R. C.
Ribet, Stephanie M.
Author_xml – sequence: 1
  givenname: Arthur R. C.
  orcidid: 0000-0001-6077-4698
  surname: McCray
  fullname: McCray, Arthur R. C.
  organization: Lawrence Berkeley National Laboratory
– sequence: 2
  givenname: Stephanie M.
  surname: Ribet
  fullname: Ribet, Stephanie M.
  organization: Lawrence Berkeley National Laboratory
– sequence: 3
  givenname: Georgios
  surname: Varnavides
  fullname: Varnavides, Georgios
  organization: University of California
– sequence: 4
  givenname: Colin
  surname: Ophus
  fullname: Ophus, Colin
  email: cophus@gmail.com
  organization: Lawrence Berkeley National Laboratory
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40195648$$D View this record in MEDLINE/PubMed
BookMark eNp90E1P3DAQBmCrApWF9tA_gCL1UpCyjD1x7BxXiK8KxKU9W04yYbNkndRJWOXf1yVbDpWKL2NZjz2e95gduNYRY184LHlYF5ttveSYgPrAFhxTGQvN9QFbAAgRCyXgiB33_QYAtNTwkR0lwDOZJnrBrlZFQQ15O9TuKaqH190LRd0wFev2ydtuPUW7elhH1kW1GygcDVRGjkZvm1CGXeufP7HDyjY9fd7XE_bz-urH5W18_3hzd7m6jwuUoGJeIlCRVYiEVpfAeYaqyitKtMpyiVkpE7Qy0WleqTyVWQGqpCxHEhJFkuMJO5_fHV1np51tGtP5emv9ZDiYP1mYkIV5zSLgbzPufPtrpH4w27oPwzbWUTv2BrlWUqSAEOjXf-imHb0LoxgUKQeVotJBne7VmG-pfGv9N80AzmZQ-LbvPVXv_u5itru6oen_0Hx_uJtv_AaPBZID
Cites_doi 10.1017/S1431927619000497
10.1107/S0108767397010490
10.1038/s41467‐020‐16391‐6
10.1038/s41598‐017‐07488‐y
10.1016/j.neunet.2019.02.011
10.1063/5.0206814
10.69761/XUNR2166
10.1093/micmic/ozac002
10.1103/PhysRevLett.130.016101
10.1109/MSP.2020.3016905
10.1038/nphys2337
10.1038/s41467‐024‐52403‐5
10.1364/OSAC.411174
10.1016/j.ultramic.2014.09.013
10.1016/j.ultramic.2011.10.016
10.1038/s41586‐018‐0298‐5
10.1126/science.abg2533
10.1098/rsta.1992.0050
10.1364/OE.551986
10.1038/s41565‐022‐01224‐y
10.1016/j.ultramic.2023.113716
10.1017/S1431927621000477
10.1109/TMI.2018.2799231
10.1038/s41467‐023‐41496‐z
10.1038/s41598‐022‐16041‐5
ContentType Journal Article
Copyright 2025 Royal Microscopical Society.
Copyright_xml – notice: 2025 Royal Microscopical Society.
DBID AAYXX
CITATION
NPM
7U5
8FD
L7M
7X8
ADTOC
UNPAY
DOI 10.1111/jmi.13407
DatabaseName CrossRef
PubMed
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
Technology Research Database
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1365-2818
EndPage 190
ExternalDocumentID 10.1111/jmi.13407
40195648
10_1111_jmi_13407
JMI13407
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: Adolph C. and Mary Sprague Miller Institute for Basic Research in Science, University of California Berkeley
– fundername: U.S. Department of Energy
  funderid: DE‐AC02‐05CH11231
– fundername: US Department of Energy Early Career Research Award
– fundername: Office of Science
– fundername: National Energy Research Scientific Computing Center
  funderid: BES‐ERCAP0028035
– fundername: National Energy Research Scientific Computing Center
  grantid: BES-ERCAP0028035
– fundername: U.S. Department of Energy
  grantid: DE-AC02-05CH11231
GroupedDBID ---
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
29L
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEFU
ABEML
ABJNI
ABLJU
ABPVW
ABUFD
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AI.
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
E3Z
EAD
EAP
EAS
EBB
EBC
EBD
EBO
EBS
EBX
EJD
EMB
EMK
EMOBN
EPT
ESX
EX3
F00
F01
F04
F5P
FA8
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBC
OBS
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
Q~Q
R.K
RIWAO
RJQFR
RNS
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TH9
TN5
TUS
TWZ
UB1
V8K
VH1
W8V
W99
WBKPD
WH7
WHWMO
WIH
WIK
WIN
WOHZO
WOW
WQJ
WVDHM
WXSBR
X7M
XG1
XOL
Y6R
YFH
YUY
ZGI
ZXP
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAYXX
CITATION
NPM
7U5
8FD
L7M
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c3507-1d30ec9f33e3a8d011937fbfe4879b539d543a5486bf7b659c07de9b3e25324b3
IEDL.DBID UNPAY
ISSN 0022-2720
1365-2818
IngestDate Wed Oct 01 16:42:51 EDT 2025
Fri Sep 05 17:42:57 EDT 2025
Thu Oct 16 08:35:38 EDT 2025
Thu Oct 16 01:42:19 EDT 2025
Sat Oct 25 05:14:36 EDT 2025
Thu Oct 16 09:53:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords 4DSTEM
machine learning
ptychography
gradient descent
Language English
License 2025 Royal Microscopical Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3507-1d30ec9f33e3a8d011937fbfe4879b539d543a5486bf7b659c07de9b3e25324b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6077-4698
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/jmi.13407
PMID 40195648
PQID 3261076378
PQPubID 1086390
PageCount 11
ParticipantIDs unpaywall_primary_10_1111_jmi_13407
proquest_miscellaneous_3187526030
proquest_journals_3261076378
pubmed_primary_40195648
crossref_primary_10_1111_jmi_13407
wiley_primary_10_1111_jmi_13407_JMI13407
PublicationCentury 2000
PublicationDate November 2025
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: November 2025
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Journal of microscopy (Oxford)
PublicationTitleAlternate J Microsc
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2004; 87
2017; 7
2021; 27
2023; 14
2021; 4
2023; 248
2020; 11
2024; 124
2024
2024; 15
2015; 151
2021; 38
2012; 113
2023
2023; 130
2023; 29
2018; 559
2019; 25
2022; 12
2019; 115
2018
1992; 339
2017
2021; 372
1998; 54
2022; 17
2018; 37
2012; 8
2008; 150
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
Nesterov Y. (e_1_2_7_24_1) 2004
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Rodenburg J. (e_1_2_7_12_1) 2008
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – volume: 559
  start-page: 343
  issue: 7714
  year: 2018
  end-page: 349
  article-title: Electron ptychography of 2D materials to deep sub‐ångström resolution
  publication-title: Nature
– volume: 87
  year: 2004
– volume: 248
  year: 2023
  article-title: An integrated constrained gradient descent (iCGD) protocol to correct scan‐positional errors for electron ptychography with high accuracy and precision
  publication-title: Ultramicroscopy
– volume: 38
  start-page: 18
  issue: 2
  year: 2021
  end-page: 44
  article-title: Algorithm unrolling: Interpretable, efficient deep learning for signal and image processing
  publication-title: IEEE Signal Processing Magazine
– volume: 29
  start-page: 395
  issue: 1
  year: 2023
  end-page: 407
  article-title: Phase object reconstruction for 4D‐STEM using deep learning
  publication-title: Microscopy and Microanalysis
– volume: 130
  issue: 1
  year: 2023
  article-title: Deep‐learning electron diffractive imaging
  publication-title: Physical Review Letters
– year: 2018
  article-title: Accelerated wirtinger flow: A fast algorithm for ptychography
– volume: 115
  start-page: 50
  year: 2019
  end-page: 64
  article-title: Fully complex conjugate gradient‐based neural networks using Wirtinger calculus framework: Deterministic convergence and its application
  publication-title: Neural Networks
– volume: 54
  start-page: 49
  issue: 1
  year: 1998
  end-page: 60
  article-title: Electron ptychography. I. Experimental demonstration beyond the conventional resolution limits
  publication-title: Acta Crystallographica Section A Foundations of Crystallography
– volume: 14
  issue: 1
  year: 2023
  article-title: Deep learning at the edge enables real‐time streaming ptychographic imaging
  publication-title: Nature Communications
– volume: 25
  start-page: 563
  issue: 3
  year: 2019
  end-page: 582
  article-title: Four‐dimensional scanning transmission electron microscopy (4D‐STEM): From scanning nanodiffraction to ptychography and beyond
  publication-title: Microscopy and Microanalysis
– volume: 11
  issue: 1
  year: 2020
  article-title: Low‐dose phase retrieval of biological specimens using cryo‐electron ptychography
  publication-title: Nature Communications
– volume: 150
  start-page: 87
  year: 2008
  end-page: 184
– volume: 339
  start-page: 521
  issue: 1655
  year: 1992
  end-page: 553
  article-title: The theory of super‐resolution electron microscopy via Wigner‐distribution deconvolution
  publication-title: Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences
– volume: 151
  start-page: 160
  year: 2015
  end-page: 167
  article-title: Efficient phase contrast imaging in STEM using a pixelated detector. Part 1: Experimental demonstration at atomic resolution
  publication-title: Ultramicroscopy
– volume: 372
  start-page: 826
  issue: 6544
  year: 2021
  end-page: 831
  article-title: Electron ptychography achieves atomic‐resolution limits set by lattice vibrations
  publication-title: Science
– year: 2017
  article-title: Adam: A method for stochastic optimization
– volume: 8
  start-page: 611
  issue: 8
  year: 2012
  end-page: 615
  article-title: Differential phase‐contrast microscopy at atomic resolution
  publication-title: Nature Physics
– volume: 37
  start-page: 1322
  issue: 6
  year: 2018
  end-page: 1332
  article-title: Learned primal‐dual reconstruction
  publication-title: IEEE Transactions on Medical Imaging
– volume: 4
  start-page: 121
  issue: 1
  year: 2021
  article-title: Efficient and flexible approach to ptychography using an optimization framework based on automatic differentiation
  publication-title: OSA Continuum
– volume: 7
  issue: 1
  year: 2017
  article-title: Low‐dose cryo electron ptychography via non‐convex Bayesian optimization
  publication-title: Scientific Reports
– volume: 12
  issue: 1
  year: 2022
  article-title: Automatic parameter selection for electron ptychography via Bayesian optimization
  publication-title: Scientific Reports
– year: 2024
  article-title: Tilt‐corrected BF‐STEM
– year: 2024
  article-title: LoRePIE: Regularised Extended Ptychographical Iterative Engine for Low‐dose and Fast Electron Ptychography (Version 2)
– volume: 15
  issue: 1
  year: 2024
  article-title: Low‐dose cryo‐electron ptychography of proteins at sub‐nanometer resolution
  publication-title: Nature Communications
– volume: 124
  issue: 24
  year: 2024
  article-title: Uncovering the three‐dimensional structure of upconverting core–shell nanoparticles with multislice electron ptychography
  publication-title: Applied Physics Letters
– year: 2023
  article-title: Iterative phase retrieval algorithms for scanning transmission electron microscopy
– volume: 27
  start-page: 712
  issue: 4
  year: 2021
  end-page: 743
  article-title: py4DSTEM: A software package for four‐dimensional scanning transmission electron microscopy data analysis
  publication-title: Microscopy and Microanalysis
– volume: 17
  start-page: 1165
  issue: 11
  year: 2022
  end-page: 1170
  article-title: Muller, Lorentz electron ptychography for imaging magnetic textures beyond the diffraction limit
  publication-title: Nature Nanotechnology
– volume: 113
  start-page: 88
  year: 2012
  end-page: 95
  article-title: Guidelines for quantitative reconstruction of complex exit waves in HRTEM
  publication-title: Ultramicroscopy
– ident: e_1_2_7_6_1
  doi: 10.1017/S1431927619000497
– ident: e_1_2_7_7_1
  doi: 10.1107/S0108767397010490
– start-page: 87
  volume-title: Advances in imaging and electron physics
  year: 2008
  ident: e_1_2_7_12_1
– ident: e_1_2_7_2_1
  doi: 10.1038/s41467‐020‐16391‐6
– ident: e_1_2_7_21_1
  doi: 10.1038/s41598‐017‐07488‐y
– ident: e_1_2_7_25_1
– ident: e_1_2_7_27_1
  doi: 10.1016/j.neunet.2019.02.011
– ident: e_1_2_7_11_1
  doi: 10.1063/5.0206814
– ident: e_1_2_7_4_1
  doi: 10.69761/XUNR2166
– ident: e_1_2_7_19_1
  doi: 10.1093/micmic/ozac002
– ident: e_1_2_7_16_1
  doi: 10.1103/PhysRevLett.130.016101
– ident: e_1_2_7_28_1
  doi: 10.1109/MSP.2020.3016905
– ident: e_1_2_7_3_1
  doi: 10.1038/nphys2337
– ident: e_1_2_7_5_1
  doi: 10.1038/s41467‐024‐52403‐5
– ident: e_1_2_7_18_1
  doi: 10.1364/OSAC.411174
– ident: e_1_2_7_13_1
  doi: 10.1016/j.ultramic.2014.09.013
– ident: e_1_2_7_23_1
  doi: 10.1016/j.ultramic.2011.10.016
– volume-title: Applied optimization
  year: 2004
  ident: e_1_2_7_24_1
– ident: e_1_2_7_8_1
  doi: 10.1038/s41586‐018‐0298‐5
– ident: e_1_2_7_10_1
  doi: 10.1126/science.abg2533
– ident: e_1_2_7_14_1
  doi: 10.1098/rsta.1992.0050
– ident: e_1_2_7_30_1
  doi: 10.1364/OE.551986
– ident: e_1_2_7_9_1
  doi: 10.1038/s41565‐022‐01224‐y
– ident: e_1_2_7_20_1
  doi: 10.1016/j.ultramic.2023.113716
– ident: e_1_2_7_26_1
– ident: e_1_2_7_31_1
  doi: 10.1017/S1431927621000477
– ident: e_1_2_7_29_1
  doi: 10.1109/TMI.2018.2799231
– ident: e_1_2_7_17_1
  doi: 10.1038/s41467‐023‐41496‐z
– ident: e_1_2_7_22_1
  doi: 10.1038/s41598‐022‐16041‐5
– ident: e_1_2_7_15_1
SSID ssj0008580
Score 2.4630654
Snippet Electron ptychography is a powerful and versatile tool for high‐resolution and dose‐efficient imaging. Iterative reconstruction algorithms are powerful but...
Electron ptychography is a powerful and versatile tool for high-resolution and dose-efficient imaging. Iterative reconstruction algorithms are powerful but...
SourceID unpaywall
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 180
SubjectTerms 4DSTEM
Algorithms
gradient descent
Image reconstruction
machine learning
Nanoparticles
Neural networks
ptychography
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_GQNQHvz-mU-rHgy8dWZN0LT4NUeZAH0TBB6EkaSqi64bbkPnXe0nW-oUi0pdCL2nay-Xul-R-AThEkwlYpAKfBpr6TLHMFzwQvhJEoX3FRAcmd_jiMuzcsO4tv63AcZEL4_ghygk3Yxl2vDYGLuTwo5H3HhpNymwmeZOGFk5dvVNHRTwiBVO4WWucsgrZXTxFyc--6FuAOQ-z43wgJi_i6elz7Gqdz9ki3BXNdntOHhvjkWyo1y-Mjv_8riVYmAalXtv1omWo6HwFZtwxlZNVOG0rhd7J9JX83nM8zDhIeoORGTwd5bVnJnQ9kXsl_0TqGa5MrDZ3O83X4Obs9Pqk40-PX_AV5YY6MqVEqzijVFMRpYYcjrYymWnEOLHkNE45owIRTyizlgx5rEgr1bGkOuAYpkm6DtW8n-tN8NJIErxkqrOYoTi6RfSCXLBmQHREohrsF4pIBo5lIynRSe8hsf-jBvVCRcnU0IYJRp8IYEPawjr2ysdoImbdQ-S6P0aZJoIyxG2U1GDDqbZ8C7MJkwxLH5S6_q0JR1Z1P0sk3Ytze7P1d9FtmAvMqcI2w7EO1dHzWO9gqDOSu7ZPvwEA9vha
  priority: 102
  providerName: Wiley-Blackwell
Title Accelerating iterative ptychography with an integrated neural network
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjmi.13407
https://www.ncbi.nlm.nih.gov/pubmed/40195648
https://www.proquest.com/docview/3261076378
https://www.proquest.com/docview/3187526030
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/jmi.13407
UnpaywallVersion publishedVersion
Volume 300
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0022-2720
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1365-2818
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008580
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED9kQ9QHvz-mc9SPB186uyTd2schG3OwIeJgPtUkTWW4dUM3ZP71XpquMEURpC-FJmnay-V-l-R-B3CJKkOYJ4lNiaI2kyyyuUu4LbkjUb98RxEdO9zpVls91u67_TTPqY6FMfwQ2YKb1oxkvtYKPgkjM89fZ-dxRoNyhTIdTZ6vugjGc5Dvde_qjwuOcL3LmEVeoW1KuYWW6i5bpG8wcwPWZvGEz9_5cLiMYBMT1NyCp0XnzcmTl_JsKsry4wuv4z--bhs2U3hq1c142oEVFe_CqklYOd-DRl1KtFN61MTPlmFkxunSmkz1NGrIry29tGvx2MqYKEJLs2Zis7E5c74PvWbj4aZlp4kYbEldTSIZUkdJP6JUUe6FmiaO1iIRKfR2fOFSP3QZ5ej7VEVUEygI6dRC5QuqiIuATdADyMXjWB2BFXrCwUuEKvIZFkcDifbQ5axCHOU5XgHOF8IIJoZvI8j8lNEgSP5HAYoLMQWpyr0FiEPRla3SGrZxlj1GZdE7IDxW4xmWqaB7hh4cdQpwaMSbvYUloZMMa19k8v6tC1eJ-H4uEbQ7t8nN8Z8aPIF1olMLJ2GORchNX2fqFPHOVJQQ6d-TUjqyPwEk5v3D
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5kRdSD78f6rI-Dly7ZJum24GWRlXV1PYiCFylJmoqoddFdRH-9k2RbXygivRQ6SdNOJjNfkvkCsIsmE7BIBT4NNPWZYpkveCB8JYhC-4qJDkzucPc0bF-wziW_HIH9IhfG8UOUE27GMux4bQzcTEh_tPL7m1qdMpNKPspCxCkmJDp7J4-KeEQKrnCz2jjkFbL7eIqin73RtxBzEsYHeU-8PIu7u8_Rq3U_h9NwVTTc7Tq5rQ36sqZev3A6_vfLZmBqGJd6TdeRZmFE53Mw5k6qfJmHVlMpdFCmu-TXnqNixnHS6_XN-OlYrz0zp-uJ3CspKFLP0GVitbnbbL4AF4et84O2PzyBwVeUG_bIlBKt4oxSTUWUGn442shkphHmxJLTOOWMCgQ9ocwaMuSxIo1Ux5LqgGOkJukiVPKHXC-Dl0aS4CVTncUMxdEzoiPkgtUDoiMSVWG70ETSc0QbSQlQ7m8S-z-qsFboKBna2lOCAShi2JA2sI6t8jFaiVn6ELl-GKBMHXEZQjdKqrDkdFu-hdmcSYald0pl_9aEPau7nyWSTvfI3qz8XXQTxtvn3ZPk5Oj0eBUmAnPIsE14XINK_3Gg1zHy6csN28HfAJTL_Hs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB4WxevB-1jPejz40iXbJLst-CK6i-uxiCj4IiVJUxG1LrqL6K93kmzrhSLSl0InadrJZGaSmW8AtlBkAhaqwKeBpj5TLPUFD4SvBFEoXxHRgckdPmnXDi7Y4SW_LMFOngvj8CGKDTcjGXa9NgKuO0n6UcrvbypVykwq-SDjUWgC-vbP3sGjQh6SHCvcnDb2cYVsHE_e9LM2-mZijsFIL-uIl2dxd_fZerXqpzkBV_nAXdTJbaXXlRX1-gXT8b9fNgnjfbvU23UTaQpKOpuGIVep8mUGGrtKoYIy0yW79hwUM66TXqdr1k-Heu2ZPV1PZF4BQZF4Bi4Tu81csPksXDQb53sHfr8Cg68oN-iRCSVaRSmlmoowMfhwtJ7KVKObE0lOo4QzKtDpqcm0Lms8UqSe6EhSHXC01CSdg4HsIdML4CWhJHjJRKcRQ3LUjKgIuWDVgOiQhGXYyDkRdxzQRlw4KPc3sf0fZVjOeRT3Ze0pRgMUfdgarWMf68VjlBJz9CEy_dBDmir6Zei6UVKGecfb4i3M5kwybL1ZMPu3IWxb3v1MER-etOzN4t9J12D4dL8ZH7faR0swGpgawzbfcRkGuo89vYKGT1eu2vn9BkJb-_8
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7IhqgP3i_TKfXy4Etn16S3xyEbc7Dhg4P5VJM0leHWDV2R-es9abrCFEWQvhR6kqY9Obck5zsAVygyNvWFbRJbEpMKGpvMsZkpmCVQvgJL2ip3uNtz233aGTiDvM6pyoXR-BDFgpuSjExfKwGfRrHW8zfFeZzxsFYnVGWTl10HnfESlPu9-8bjAiNc7TIWmVdom3JsoaW2yxbpm5u5AWtpMmXzdzYaLXuwmQlqbcHTYvD65MlLLZ3xmvj4guv4j6_bhs3cPTUaej7twIpMdmFVF6yc70GzIQTaKTVrkmdDIzKjujSmM6VGNfi1oZZ2DZYYBRJFZCjUTOw20WfO96Hfaj7cts28EIMpiKNAJCNiSRHEhEjC_EjBxBEv5rHEaCfgDgkihxKGsY_LY48jI4TlRTLgRNoOOmycHEApmSTyCIzI5xZePJJxQJEcDSTaQ4fRum1J3_IrcLFgRjjVeBthEaeMh2H2PypQXbApzEXuLUQ_FENZl3jYx3nxGIVF7YCwRE5SpKljeIYRHLEqcKjZW7yFZqmTFFtfFvz-bQjXGft-pgg73bvs5vhPHZ7Auq1KC2dpjlUozV5TeYr-zoyf5XP6Ezfm_No
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerating+iterative+ptychography+with+an+integrated+neural+network&rft.jtitle=Journal+of+microscopy+%28Oxford%29&rft.au=McCray%2C+Arthur+R+C&rft.au=Ribet%2C+Stephanie+M&rft.au=Varnavides%2C+Georgios&rft.au=Ophus%2C+Colin&rft.date=2025-11-01&rft.issn=1365-2818&rft.eissn=1365-2818&rft_id=info:doi/10.1111%2Fjmi.13407&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2720&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2720&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2720&client=summon