Vendor‐agnostic 3D multiparametric relaxometry improves cross‐platform reproducibility
Purpose To address the unmet need for a cross‐platform, multiparametric relaxometry technique to facilitate data harmonization across different sites. Methods A simultaneous T1 and T2 mapping technique, 3D quantification using an interleaved Look–Locker acquisition sequence with a T2 preparation pul...
        Saved in:
      
    
          | Published in | Magnetic resonance in medicine Vol. 94; no. 3; pp. 937 - 948 | 
|---|---|
| Main Authors | , , , , , , , , , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Wiley Subscription Services, Inc
    
        01.09.2025
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0740-3194 1522-2594 1522-2594  | 
| DOI | 10.1002/mrm.30566 | 
Cover
| Abstract | Purpose
To address the unmet need for a cross‐platform, multiparametric relaxometry technique to facilitate data harmonization across different sites.
Methods
A simultaneous T1 and T2 mapping technique, 3D quantification using an interleaved Look–Locker acquisition sequence with a T2 preparation pulse (3D‐QALAS), was implemented using the open‐source vendor‐agnostic Pulseq platform. The technique was tested on four 3 T scanners from two vendors across two sites, evaluating cross‐scanner, cross‐software version, cross‐site, and cross‐vendor variability. The cross‐vendor reproducibility was assessed using both the vendor‐native and Pulseq‐based implementations. A National Institute of Standards and Technology/International Society for Magnetic Resonance in Medicine system phantom and three human subjects were evaluated. The acquired T1 and T2 maps from the different 3D‐QALAS runs were compared using linear regression, Bland–Altman plots, coefficient of variation (CV), and intraclass correlation coefficient (ICC).
Results
Pulseq‐QALAS demonstrated high linearity (R2 = 0.994 for T1, R2 = 0.999 for T2) and correlation (ICC = 0.99 [0.98–0.99]) against temperature‐corrected NMR reference values in the system phantom. Compared to vendor‐native sequences, the Pulseq implementation showed significantly higher reproducibility in phantom T2 values (CV, 2.3% vs. 17%; p < 0.001), and improved T1 reproducibility (CV, 3.4% vs. 4.9%; p = 0.71, not significant). The Pulseq implementation reduced cross‐vendor variability to a level comparable to cross‐scanner (within‐vendor) variability. In vivo, Pulseq‐QALAS exhibited reduced cross‐vendor variability, particularly for T2 values in gray matter with a twofold reduction in variability (CV, 2.3 vs. 5.9%; p < 0.001).
Conclusion
An identical implementation across different scanners and vendors, combined with consistent reconstruction and fitting pipelines, can improve relaxometry measurement reproducibility across platforms. | 
    
|---|---|
| AbstractList | To address the unmet need for a cross-platform, multiparametric relaxometry technique to facilitate data harmonization across different sites.PURPOSETo address the unmet need for a cross-platform, multiparametric relaxometry technique to facilitate data harmonization across different sites.A simultaneous T1 and T2 mapping technique, 3D quantification using an interleaved Look-Locker acquisition sequence with a T2 preparation pulse (3D-QALAS), was implemented using the open-source vendor-agnostic Pulseq platform. The technique was tested on four 3 T scanners from two vendors across two sites, evaluating cross-scanner, cross-software version, cross-site, and cross-vendor variability. The cross-vendor reproducibility was assessed using both the vendor-native and Pulseq-based implementations. A National Institute of Standards and Technology/International Society for Magnetic Resonance in Medicine system phantom and three human subjects were evaluated. The acquired T1 and T2 maps from the different 3D-QALAS runs were compared using linear regression, Bland-Altman plots, coefficient of variation (CV), and intraclass correlation coefficient (ICC).METHODSA simultaneous T1 and T2 mapping technique, 3D quantification using an interleaved Look-Locker acquisition sequence with a T2 preparation pulse (3D-QALAS), was implemented using the open-source vendor-agnostic Pulseq platform. The technique was tested on four 3 T scanners from two vendors across two sites, evaluating cross-scanner, cross-software version, cross-site, and cross-vendor variability. The cross-vendor reproducibility was assessed using both the vendor-native and Pulseq-based implementations. A National Institute of Standards and Technology/International Society for Magnetic Resonance in Medicine system phantom and three human subjects were evaluated. The acquired T1 and T2 maps from the different 3D-QALAS runs were compared using linear regression, Bland-Altman plots, coefficient of variation (CV), and intraclass correlation coefficient (ICC).Pulseq-QALAS demonstrated high linearity (R2 = 0.994 for T1, R2 = 0.999 for T2) and correlation (ICC = 0.99 [0.98-0.99]) against temperature-corrected NMR reference values in the system phantom. Compared to vendor-native sequences, the Pulseq implementation showed significantly higher reproducibility in phantom T2 values (CV, 2.3% vs. 17%; p < 0.001), and improved T1 reproducibility (CV, 3.4% vs. 4.9%; p = 0.71, not significant). The Pulseq implementation reduced cross-vendor variability to a level comparable to cross-scanner (within-vendor) variability. In vivo, Pulseq-QALAS exhibited reduced cross-vendor variability, particularly for T2 values in gray matter with a twofold reduction in variability (CV, 2.3 vs. 5.9%; p < 0.001).RESULTSPulseq-QALAS demonstrated high linearity (R2 = 0.994 for T1, R2 = 0.999 for T2) and correlation (ICC = 0.99 [0.98-0.99]) against temperature-corrected NMR reference values in the system phantom. Compared to vendor-native sequences, the Pulseq implementation showed significantly higher reproducibility in phantom T2 values (CV, 2.3% vs. 17%; p < 0.001), and improved T1 reproducibility (CV, 3.4% vs. 4.9%; p = 0.71, not significant). The Pulseq implementation reduced cross-vendor variability to a level comparable to cross-scanner (within-vendor) variability. In vivo, Pulseq-QALAS exhibited reduced cross-vendor variability, particularly for T2 values in gray matter with a twofold reduction in variability (CV, 2.3 vs. 5.9%; p < 0.001).An identical implementation across different scanners and vendors, combined with consistent reconstruction and fitting pipelines, can improve relaxometry measurement reproducibility across platforms.CONCLUSIONAn identical implementation across different scanners and vendors, combined with consistent reconstruction and fitting pipelines, can improve relaxometry measurement reproducibility across platforms. To address the unmet need for a cross-platform, multiparametric relaxometry technique to facilitate data harmonization across different sites. A simultaneous T and T mapping technique, 3D quantification using an interleaved Look-Locker acquisition sequence with a T preparation pulse (3D-QALAS), was implemented using the open-source vendor-agnostic Pulseq platform. The technique was tested on four 3 T scanners from two vendors across two sites, evaluating cross-scanner, cross-software version, cross-site, and cross-vendor variability. The cross-vendor reproducibility was assessed using both the vendor-native and Pulseq-based implementations. A National Institute of Standards and Technology/International Society for Magnetic Resonance in Medicine system phantom and three human subjects were evaluated. The acquired T and T maps from the different 3D-QALAS runs were compared using linear regression, Bland-Altman plots, coefficient of variation (CV), and intraclass correlation coefficient (ICC). Pulseq-QALAS demonstrated high linearity (R = 0.994 for T , R = 0.999 for T ) and correlation (ICC = 0.99 [0.98-0.99]) against temperature-corrected NMR reference values in the system phantom. Compared to vendor-native sequences, the Pulseq implementation showed significantly higher reproducibility in phantom T values (CV, 2.3% vs. 17%; p < 0.001), and improved T reproducibility (CV, 3.4% vs. 4.9%; p = 0.71, not significant). The Pulseq implementation reduced cross-vendor variability to a level comparable to cross-scanner (within-vendor) variability. In vivo, Pulseq-QALAS exhibited reduced cross-vendor variability, particularly for T values in gray matter with a twofold reduction in variability (CV, 2.3 vs. 5.9%; p < 0.001). An identical implementation across different scanners and vendors, combined with consistent reconstruction and fitting pipelines, can improve relaxometry measurement reproducibility across platforms. Purpose To address the unmet need for a cross‐platform, multiparametric relaxometry technique to facilitate data harmonization across different sites. Methods A simultaneous T1 and T2 mapping technique, 3D quantification using an interleaved Look–Locker acquisition sequence with a T2 preparation pulse (3D‐QALAS), was implemented using the open‐source vendor‐agnostic Pulseq platform. The technique was tested on four 3 T scanners from two vendors across two sites, evaluating cross‐scanner, cross‐software version, cross‐site, and cross‐vendor variability. The cross‐vendor reproducibility was assessed using both the vendor‐native and Pulseq‐based implementations. A National Institute of Standards and Technology/International Society for Magnetic Resonance in Medicine system phantom and three human subjects were evaluated. The acquired T1 and T2 maps from the different 3D‐QALAS runs were compared using linear regression, Bland–Altman plots, coefficient of variation (CV), and intraclass correlation coefficient (ICC). Results Pulseq‐QALAS demonstrated high linearity (R2 = 0.994 for T1, R2 = 0.999 for T2) and correlation (ICC = 0.99 [0.98–0.99]) against temperature‐corrected NMR reference values in the system phantom. Compared to vendor‐native sequences, the Pulseq implementation showed significantly higher reproducibility in phantom T2 values (CV, 2.3% vs. 17%; p < 0.001), and improved T1 reproducibility (CV, 3.4% vs. 4.9%; p = 0.71, not significant). The Pulseq implementation reduced cross‐vendor variability to a level comparable to cross‐scanner (within‐vendor) variability. In vivo, Pulseq‐QALAS exhibited reduced cross‐vendor variability, particularly for T2 values in gray matter with a twofold reduction in variability (CV, 2.3 vs. 5.9%; p < 0.001). Conclusion An identical implementation across different scanners and vendors, combined with consistent reconstruction and fitting pipelines, can improve relaxometry measurement reproducibility across platforms. Purpose To address the unmet need for a cross‐platform, multiparametric relaxometry technique to facilitate data harmonization across different sites. Methods A simultaneous T1 and T2 mapping technique, 3D quantification using an interleaved Look–Locker acquisition sequence with a T2 preparation pulse (3D‐QALAS), was implemented using the open‐source vendor‐agnostic Pulseq platform. The technique was tested on four 3 T scanners from two vendors across two sites, evaluating cross‐scanner, cross‐software version, cross‐site, and cross‐vendor variability. The cross‐vendor reproducibility was assessed using both the vendor‐native and Pulseq‐based implementations. A National Institute of Standards and Technology/International Society for Magnetic Resonance in Medicine system phantom and three human subjects were evaluated. The acquired T1 and T2 maps from the different 3D‐QALAS runs were compared using linear regression, Bland–Altman plots, coefficient of variation (CV), and intraclass correlation coefficient (ICC). Results Pulseq‐QALAS demonstrated high linearity (R2 = 0.994 for T1, R2 = 0.999 for T2) and correlation (ICC = 0.99 [0.98–0.99]) against temperature‐corrected NMR reference values in the system phantom. Compared to vendor‐native sequences, the Pulseq implementation showed significantly higher reproducibility in phantom T2 values (CV, 2.3% vs. 17%; p < 0.001), and improved T1 reproducibility (CV, 3.4% vs. 4.9%; p = 0.71, not significant). The Pulseq implementation reduced cross‐vendor variability to a level comparable to cross‐scanner (within‐vendor) variability. In vivo, Pulseq‐QALAS exhibited reduced cross‐vendor variability, particularly for T2 values in gray matter with a twofold reduction in variability (CV, 2.3 vs. 5.9%; p < 0.001). Conclusion An identical implementation across different scanners and vendors, combined with consistent reconstruction and fitting pipelines, can improve relaxometry measurement reproducibility across platforms.  | 
    
| Author | Fujita, Shohei Jun, Yohan Afacan, Onur Bilgic, Berkin Liu, Qiang Yong, Xingwang Milshteyn, Eugene Uhl, Quentin Chen, Qingping Rathi, Yogesh Shaik, Imam Ahmed Nielsen, Jon‐Fredrik Cho, Jaejin Gagoski, Borjan Zaitsev, Maxim Kirsch, John E. Xu, Pengcheng  | 
    
| Author_xml | – sequence: 1 givenname: Shohei orcidid: 0000-0003-4276-6226 surname: Fujita fullname: Fujita, Shohei email: sfujita@mgh.harvard.edu organization: The University of Tokyo – sequence: 2 givenname: Borjan orcidid: 0000-0003-3777-2621 surname: Gagoski fullname: Gagoski, Borjan organization: Boston Children's Hospital – sequence: 3 givenname: Jon‐Fredrik surname: Nielsen fullname: Nielsen, Jon‐Fredrik organization: University of Michigan – sequence: 4 givenname: Maxim surname: Zaitsev fullname: Zaitsev, Maxim organization: University of Freiburg – sequence: 5 givenname: Yohan orcidid: 0000-0003-4787-4760 surname: Jun fullname: Jun, Yohan organization: Harvard Medical School – sequence: 6 givenname: Jaejin orcidid: 0000-0001-5672-6765 surname: Cho fullname: Cho, Jaejin organization: Sejong University – sequence: 7 givenname: Xingwang surname: Yong fullname: Yong, Xingwang organization: Zhejiang University – sequence: 8 givenname: Quentin surname: Uhl fullname: Uhl, Quentin organization: Lausanne University Hospital (CHUV) and University of Lausanne – sequence: 9 givenname: Pengcheng surname: Xu fullname: Xu, Pengcheng organization: Harvard Medical School – sequence: 10 givenname: Eugene surname: Milshteyn fullname: Milshteyn, Eugene organization: GE HealthCare – sequence: 11 givenname: Imam Ahmed surname: Shaik fullname: Shaik, Imam Ahmed organization: Harvard Medical School – sequence: 12 givenname: Qiang orcidid: 0009-0007-6818-0115 surname: Liu fullname: Liu, Qiang organization: Harvard Medical School – sequence: 13 givenname: Qingping surname: Chen fullname: Chen, Qingping organization: University of Freiburg – sequence: 14 givenname: Onur orcidid: 0000-0003-2112-3205 surname: Afacan fullname: Afacan, Onur organization: Boston Children's Hospital – sequence: 15 givenname: John E. surname: Kirsch fullname: Kirsch, John E. organization: Massachusetts General Hospital – sequence: 16 givenname: Yogesh surname: Rathi fullname: Rathi, Yogesh organization: Harvard Medical School – sequence: 17 givenname: Berkin orcidid: 0000-0002-9080-7865 surname: Bilgic fullname: Bilgic, Berkin organization: Harvard/MIT Health Sciences and Technology  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40420483$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp90M1KHTEUB_Agil6tC1-gXHCjwujJ19w7S7FWBUUo2kU3QyZzpkSSyZjMaGfXR-gz9kmMju1CULIISX5JzvlvktXWt0jIDoVDCsCOXHCHHGSer5AZlYxlTBZilcxgISDjtBAbZDPGOwAoioVYJxsCBAOx5DPy4zu2tQ9_f_9RP1sfe6Pn_MvcDbY3nQrKYR_SVkCrfvnnxTg3rgv-AeNcBx9juthZ1Tc-uKTSST1oUxlr-vETWWuUjbj9Om-R26-nNyfn2eX12cXJ8WWmuYQ8KyoBrGE6l0KjELJii0bkSwkCKhRQ13xBEVMrqBqaVyAajbqCpcYlr1Vd8C1yML07tJ0aH5W1ZReMU2EsKZTPAZUpoPIloIT3JpxKvR8w9qUzUaO1qkU_xJIzmgYUkia6-4be-SG0qZWkWAGSMwlJfX5VQ-Ww_v_1v4gT2J_AS14Bmw-rO5rso7E4vg_Lq29X040nKnSdaA | 
    
| Cites_doi | 10.1016/j.media.2023.102789 10.1002/mrm.28779 10.1097/WCO.0b013e32832d92de 10.1002/mrm.1910030217 10.1016/j.jmr.2004.05.021 10.1002/mrm.28020 10.1002/mrm.28825 10.1002/mrm.26235 10.1002/mrm.25640 10.1016/j.mri.2019.08.031 10.1148/radiol.2019182360 10.1002/mrm.29084 10.1016/j.neuroimage.2010.04.255 10.1002/mrm.30281 10.1002/alz.14162 10.1177/0962280214537344 10.1002/mrm.29059 10.1002/mrm.21391 10.1002/mrm.25421 10.1016/j.neuroimage.2020.117573 10.1002/jmri.25692 10.1038/nature11971 10.1016/j.neuroimage.2022.118963 10.1002/mrm.29939 10.1002/mrm.24389 10.1016/j.neuroimage.2012.01.021 10.1002/mrm.29710 10.1002/mrm.22357 10.1002/mrm.29854 10.1002/mrm.20310 10.1016/j.neuroimage.2019.03.047 10.1016/j.neuroimage.2018.09.062 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S 10.1038/s41592-022-01737-3 10.1002/mrm.27939 10.1002/mrm.29661 10.1002/jmri.25106 10.1002/mrm.26990 10.1002/mrm.22497 10.1016/j.neuroimage.2005.09.046 10.1002/mrm.22423 10.1002/mrm.29384 10.1002/mrm.24564 10.1002/mrm.30062 10.1016/j.dcn.2017.10.002 10.1002/mrm.29292 10.1093/cercor/bhac096 10.1186/1532‐429X‐16‐S1‐O82 10.1007/s10334‐024‐01211‐5 10.1002/mrm.29865 10.1002/mrm.29224 10.1002/mrm.21237 10.1016/j.mri.2021.11.014 10.1038/s41551-018-0217-y 10.1002/mrm.28224 10.1016/j.neuroimage.2019.116364  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2025 International Society for Magnetic Resonance in Medicine. | 
    
| Copyright_xml | – notice: 2025 International Society for Magnetic Resonance in Medicine. | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 ADTOC UNPAY  | 
    
| DOI | 10.1002/mrm.30566 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic MEDLINE Biochemistry Abstracts 1  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine Physics  | 
    
| EISSN | 1522-2594 | 
    
| EndPage | 948 | 
    
| ExternalDocumentID | 10.1002/mrm.30566 40420483 10_1002_mrm_30566 MRM30566  | 
    
| Genre | rapidPublication Journal Article  | 
    
| GrantInformation_xml | – fundername: NIH funderid: P41 EB030006; R01 EB028797; R01 EB032378; R01 EB034757; R03 EB031175; U01 DA055353; U01 EB025162; U01 EB026996; UG3 EB034875 – fundername: JSPS – fundername: NVidia Corporation – fundername: NIDA NIH HHS grantid: U01 DA055353 – fundername: NIH HHS grantid: UG3 EB034875 – fundername: NIH HHS grantid: U01 EB026996 – fundername: NIH HHS grantid: P41 EB030006 – fundername: NIH HHS grantid: R01 EB032378 – fundername: NIH HHS grantid: R01 EB034757 – fundername: NIH HHS grantid: U01 DA055353 – fundername: NIBIB NIH HHS grantid: R01 EB032378 – fundername: NIBIB NIH HHS grantid: R03 EB031175  | 
    
| GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIACR AIAGR AIDQK AIDYY AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAYXX AIQQE CITATION AAHHS ACCFJ AEEZP AEQDE AIWBW AJBDE CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c3506-9b402f2c654ce445b27f4685040be40dd371ee074eaf16b04fcecb08ce83dad93 | 
    
| IEDL.DBID | DR2 | 
    
| ISSN | 0740-3194 1522-2594  | 
    
| IngestDate | Tue Aug 19 23:29:46 EDT 2025 Fri Sep 05 16:00:07 EDT 2025 Tue Oct 07 06:36:59 EDT 2025 Mon Jun 30 02:54:32 EDT 2025 Wed Oct 01 05:48:13 EDT 2025 Thu Jul 03 09:30:27 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Keywords | data pooling quantitative magnetic resonance imaging relaxometry relaxation time multiparametric mapping cross‐vendor technique  | 
    
| Language | English | 
    
| License | 2025 International Society for Magnetic Resonance in Medicine. | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c3506-9b402f2c654ce445b27f4685040be40dd371ee074eaf16b04fcecb08ce83dad93 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0003-4276-6226 0000-0003-2112-3205 0000-0003-4787-4760 0000-0001-5672-6765 0000-0002-9080-7865 0000-0003-3777-2621 0009-0007-6818-0115  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.30566 | 
    
| PMID | 40420483 | 
    
| PQID | 3229053250 | 
    
| PQPubID | 1016391 | 
    
| PageCount | 12 | 
    
| ParticipantIDs | unpaywall_primary_10_1002_mrm_30566 proquest_miscellaneous_3212120951 proquest_journals_3229053250 pubmed_primary_40420483 crossref_primary_10_1002_mrm_30566 wiley_primary_10_1002_mrm_30566_MRM30566  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | September 2025 | 
    
| PublicationDateYYYYMMDD | 2025-09-01 | 
    
| PublicationDate_xml | – month: 09 year: 2025 text: September 2025  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: Hoboken  | 
    
| PublicationTitle | Magnetic resonance in medicine | 
    
| PublicationTitleAlternate | Magn Reson Med | 
    
| PublicationYear | 2025 | 
    
| Publisher | Wiley Subscription Services, Inc | 
    
| Publisher_xml | – name: Wiley Subscription Services, Inc | 
    
| References | 2022; 250 2006; 30 2013; 69 2015; 74 2017; 46 2016; 75 2013; 70 1999; 42 2024 2010; 63 2020; 207 2023; 20 2010; 64 2018; 2 2019; 63 2017; 77 1986; 3 2014; 16 2016; 43 2024; 20 2022; 33 2019; 195 2018; 32 2018; 79 2012; 62 2009; 22 2021; 86 170 2020; 84 2020; 83 2021; 226 2005 2022; 87 2022; 88 2019; 184 2007; 57 2007; 58 2025; 93 2023; 86 2015; 24 2019; 82 2021 2020 2024; 91 2024; 92 2005; 53 2015 2013; 495 2023; 90 2019; 292 2010; 52 2023; 91 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_54_1 Child Mind Institute (e_1_2_9_4_1) 2015 Fuderer M (e_1_2_9_53_1) 2025; 93 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 Tofts P (e_1_2_9_11_1) 2005 e_1_2_9_30_1 e_1_2_9_51_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_15_1 e_1_2_9_38_1 Seiberlich N (e_1_2_9_12_1) 2020 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 National Institute on Drug Abuse (e_1_2_9_3_1) 2021 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1  | 
    
| References_xml | – volume: 87 start-page: 7 year: 2022 end-page: 18 article-title: A framework for validating open‐source pulse sequences publication-title: Magn Reson Imaging – volume: 93 start-page: 490 year: 2025 end-page: 506 article-title: Color‐map recommendation for MR relaxometry maps publication-title: arXiv [physics.med‐ph] – volume: 91 start-page: 344 year: 2024 end-page: 356 article-title: mcLARO: multi‐contrast learned acquisition and reconstruction optimization for simultaneous quantitative multi‐parametric mapping publication-title: Magn Reson Med – volume: 24 start-page: 27 year: 2015 end-page: 67 article-title: Quantitative imaging bio‐markers: a review of statistical methods for technical performance assessment publication-title: Stat Methods Med Res – year: 2005 – volume: 74 start-page: 489 year: 2015 end-page: 498 article-title: Accelerated MR parameter mapping with low‐rank and sparsity constraints publication-title: Magn Reson Med – volume: 88 start-page: 651 year: 2022 end-page: 662 article-title: Single shot spiral TSE with annulated segmentation publication-title: Magn Reson Med – year: 2021 – volume: 86 start-page: 1194 year: 2021 end-page: 1211 article-title: A standard system phantom for magnetic resonance imaging publication-title: Magn Reson Med – volume: 64 start-page: 439 year: 2010 end-page: 446 article-title: Rapid B1+ mapping using a preconditioning RF pulse with TurboFLASH readout publication-title: Magn Reson Med – volume: 91 start-page: 630 year: 2023 end-page: 639 article-title: Time‐efficient, high‐resolution 3T whole‐brain relaxometry using 3D‐QALAS with wave‐CAIPI readouts publication-title: Magn Reson Med – volume: 79 start-page: 3128 year: 2018 end-page: 3134 article-title: TOPPE: a framework for rapid prototyping of MR pulse sequences publication-title: Magn Reson Med – volume: 64 start-page: 1057 year: 2010 end-page: 1067 article-title: A robust methodology for in vivo T mapping publication-title: Magn Reson Med – volume: 90 start-page: 1345 year: 2023 end-page: 1362 article-title: MR‐zero meets RARE MRI: joint optimization of refocusing flip angles and neural networks to minimize T ‐induced blurring in spin echo sequences publication-title: Magn Reson Med – volume: 43 start-page: 1355 year: 2016 end-page: 1368 article-title: Comprehensive motion‐compensated highly accelerated 4D flow MRI with ferumoxytol enhancement for pediatric congenital heart disease publication-title: J Magn Reson Imaging – volume: 22 start-page: 370 year: 2009 end-page: 378 article-title: Multisite neuroimaging trials publication-title: Curr Opin Neurol – volume: 33 start-page: 729 year: 2022 end-page: 739 article-title: Simultaneous relaxometry and morphometry of human brain structures with 3D magnetic resonance fingerprinting: a multicenter, multiplatform, multifield‐strength study publication-title: Cereb Cortex – volume: 57 start-page: 1131 year: 2007 end-page: 1139 article-title: Array compression for MRI with large coil arrays publication-title: Magn Reson Med – volume: 58 start-page: 1182 year: 2007 end-page: 1195 article-title: Sparse MRI: the application of compressed sensing for rapid MR imaging publication-title: Magn Reson Med – volume: 84 start-page: 1552 year: 2020 end-page: 1563 article-title: MRI‐visible liquid crystal thermometer publication-title: Magn Reson Med – volume: 63 start-page: 1315 year: 2010 end-page: 1322 article-title: B1 mapping by Bloch‐Siegert shift publication-title: Magn Reson Med – volume: 16 year: 2014 article-title: 3D‐quantification using an interleaved look‐locker acquisition sequence with T ‐prep pulse (3D‐QALAS) publication-title: J Cardiovasc Magn Reson – volume: 69 start-page: 1768 year: 2013 end-page: 1776 article-title: Gadgetron: an open source framework for medical image reconstruction publication-title: Magn Reson Med – volume: 495 start-page: 187 year: 2013 end-page: 192 article-title: Magnetic resonance fingerprinting publication-title: Nature – volume: 88 start-page: 1212 year: 2022 end-page: 1228 article-title: Vendor‐neutral sequences and fully transparent workflows improve inter‐vendor reproducibility of quantitative MRI publication-title: Magn Reson Med – year: 2024 article-title: Repeatability of 3D MR fingerprinting during scanner software upgrades publication-title: MAGMA – volume: 63 start-page: 235 year: 2019 end-page: 243 article-title: Three‐dimensional high‐resolution simultaneous quantitative mapping of the whole brain with 3D‐QALAS: an accuracy and repeatability study publication-title: Magn Reson Imaging – volume: 70 start-page: 1360 year: 2013 end-page: 1368 article-title: Motion and flow insensitive adiabatic T ‐preparation module for cardiac MR imaging at 3 tesla publication-title: Magn Reson Med – volume: 292 start-page: 429 year: 2019 end-page: 437 article-title: Reproducibility and repeatability of MR fingerprinting relaxometry in the human brain publication-title: Radiology – volume: 90 start-page: 539 year: 2023 end-page: 551 article-title: Open‐source myocardial T mapping with simultaneous multi‐slice acceleration: combining an auto‐calibrated blipped‐bSSFP readout with VERSE‐MB pulses publication-title: Magn Reson Med – year: 2015 – volume: 184 start-page: 555 year: 2019 end-page: 565 article-title: Estimating and accounting for the effect of MRI scanner changes on longitudinal whole‐brain volume change measurements publication-title: Neuroimage – volume: 87 start-page: 1375 year: 2022 end-page: 1389 article-title: Three‐dimensional simultaneous brain mapping of T , T , and magnetic susceptibility with MR multitasking publication-title: Magn Reson Med – volume: 86 start-page: 1845 year: 2021 end-page: 1858 article-title: Pulseq‐CEST: towards multi‐site multi‐vendor compatibility and reproducibility of CEST experiments using an open‐source sequence standard publication-title: Magn Reson Med – volume: 207 year: 2020 article-title: How stable is quantitative MRI? – assessment of intra‐ and inter‐scanner‐model reproducibility using identical acquisition sequences and data analysis programs publication-title: Neuroimage – volume: 170 start-page: 67 end-page: 78 article-title: ODIN – object‐oriented development Interface for NMR publication-title: J Magn Reson – volume: 32 start-page: 4 year: 2018 end-page: 7 article-title: The conception of the ABCD study: from substance use to a broad NIH collaboration publication-title: Dev Cogn Neurosci – volume: 195 start-page: 362 year: 2019 end-page: 372 article-title: Multi‐site repeatability and reproducibility of MR fingerprinting of the healthy brain at 1.5 and 3.0 T publication-title: Neuroimage – volume: 2 start-page: 215 year: 2018 end-page: 226 article-title: Magnetic resonance multitasking for motion‐resolved quantitative cardiovascular imaging publication-title: Nat Biomed Eng – volume: 92 start-page: 246 year: 2024 end-page: 256 article-title: Reduced cross‐scanner variability using vendor‐agnostic sequences for single‐shell diffusion MRI publication-title: Magn Reson Med – volume: 82 start-page: 1981 year: 2019 end-page: 1983 article-title: Reproducibility and the future of MRI research publication-title: Magn Reson Med – volume: 93 start-page: 289 year: 2025 end-page: 300 article-title: T and T measurements across multiple 0.55T MRI systems using open‐source vendor‐neutral sequences publication-title: Magn Reson Med – volume: 226 year: 2021 article-title: Three dimensional MRF obtains highly repeatable and reproducible multi‐parametric estimations in the healthy human brain at 1.5T and 3T publication-title: Neuroimage – volume: 87 start-page: 1184 year: 2022 end-page: 1206 article-title: Development, validation, qualification, and dissemination of quantitative MR methods: overview and recommendations by the ISMRM quantitative MR study group publication-title: Magn Reson Med – volume: 83 start-page: 1277 year: 2020 end-page: 1290 article-title: Portable and platform‐independent MR pulse sequence programs publication-title: Magn Reson Med – volume: 62 start-page: 774 year: 2012 end-page: 781 article-title: FreeSurfer publication-title: Neuroimage – volume: 52 start-page: 508 year: 2010 end-page: 514 article-title: Whole brain quantitative T MRI across multiple scanners with dual echo FSE: applications to AD, MCI, and normal aging publication-title: Neuroimage – volume: 20 start-page: 6615 year: 2024 end-page: 6621 article-title: Design and validation of the ADNI MR protocol publication-title: Alzheimers Dement – volume: 46 start-page: 1673 year: 2017 end-page: 1682 article-title: B mapping for bias‐correction in quantitative T imaging of the brain at 3T using standard pulse sequences publication-title: J Magn Reson Imaging – volume: 42 start-page: 952 year: 1999 end-page: 962 article-title: SENSE: sensitivity encoding for fast MRI publication-title: Magn Reson Med – volume: 20 start-page: 34 year: 2023 article-title: Reproducibility in MRI publication-title: Nat Methods – volume: 3 start-page: 321 year: 1986 end-page: 327 article-title: Rapid NMR imaging of dynamic processes using the FLASH technique publication-title: Magn Reson Med – volume: 30 start-page: 436 year: 2006 end-page: 443 article-title: Reliability in multi‐site structural MRI studies: effects of gradient non‐linearity correction on phantom and human data publication-title: Neuroimage – volume: 53 start-page: 134 year: 2005 end-page: 140 article-title: Assessment and correction ofB1‐induced errors in magnetization transfer ratio measurements publication-title: Magn Reson Med – volume: 75 start-page: 257 year: 2016 end-page: 265 article-title: Pulse sequence programming in a dynamic visual environment: SequenceTree publication-title: Magn Reson Med – year: 2020 – volume: 86 year: 2023 article-title: SynthSeg: segmentation of brain MRI scans of any contrast and resolution without retraining publication-title: Med Image Anal – volume: 91 start-page: 1863 year: 2024 end-page: 1875 article-title: Cross‐vendor multiparametric mapping of the human brain using 3D‐QALAS: a multicenter and multivendor study publication-title: Magn Reson Med – volume: 77 start-page: 1544 year: 2017 end-page: 1552 article-title: Pulseq: a rapid and hardware‐independent pulse sequence prototyping framework publication-title: Magn Reson Med – volume: 88 start-page: 2395 year: 2022 end-page: 2407 article-title: Open‐source MR imaging and reconstruction workflow publication-title: Magn Reson Med – volume: 250 year: 2022 article-title: 3D Echo planar time‐resolved imaging (3D‐EPTI) for ultrafast multi‐parametric quantitative MRI publication-title: Neuroimage – ident: e_1_2_9_49_1 doi: 10.1016/j.media.2023.102789 – volume-title: Magnetic Resonance Imaging of Healthy and Diseased Brain Networks year: 2015 ident: e_1_2_9_4_1 – ident: e_1_2_9_37_1 doi: 10.1002/mrm.28779 – ident: e_1_2_9_5_1 doi: 10.1097/WCO.0b013e32832d92de – ident: e_1_2_9_38_1 doi: 10.1002/mrm.1910030217 – ident: e_1_2_9_25_1 doi: 10.1016/j.jmr.2004.05.021 – ident: e_1_2_9_29_1 doi: 10.1002/mrm.28020 – ident: e_1_2_9_30_1 doi: 10.1002/mrm.28825 – ident: e_1_2_9_27_1 doi: 10.1002/mrm.26235 – ident: e_1_2_9_26_1 doi: 10.1002/mrm.25640 – ident: e_1_2_9_19_1 doi: 10.1016/j.mri.2019.08.031 – volume: 93 start-page: 490 year: 2025 ident: e_1_2_9_53_1 article-title: Color‐map recommendation for MR relaxometry maps publication-title: arXiv [physics.med‐ph] – ident: e_1_2_9_20_1 doi: 10.1148/radiol.2019182360 – ident: e_1_2_9_54_1 doi: 10.1002/mrm.29084 – ident: e_1_2_9_56_1 doi: 10.1016/j.neuroimage.2010.04.255 – ident: e_1_2_9_36_1 doi: 10.1002/mrm.30281 – ident: e_1_2_9_43_1 doi: 10.1002/alz.14162 – ident: e_1_2_9_55_1 doi: 10.1177/0962280214537344 – ident: e_1_2_9_16_1 doi: 10.1002/mrm.29059 – ident: e_1_2_9_46_1 doi: 10.1002/mrm.21391 – ident: e_1_2_9_52_1 doi: 10.1002/mrm.25421 – ident: e_1_2_9_22_1 doi: 10.1016/j.neuroimage.2020.117573 – ident: e_1_2_9_62_1 doi: 10.1002/jmri.25692 – ident: e_1_2_9_13_1 doi: 10.1038/nature11971 – ident: e_1_2_9_14_1 doi: 10.1016/j.neuroimage.2022.118963 – ident: e_1_2_9_24_1 doi: 10.1002/mrm.29939 – ident: e_1_2_9_59_1 doi: 10.1002/mrm.24389 – volume-title: Quantitative Magnetic Resonance Imaging year: 2020 ident: e_1_2_9_12_1 – ident: e_1_2_9_50_1 doi: 10.1016/j.neuroimage.2012.01.021 – ident: e_1_2_9_34_1 doi: 10.1002/mrm.29710 – ident: e_1_2_9_42_1 doi: 10.1002/mrm.22357 – ident: e_1_2_9_15_1 doi: 10.1002/mrm.29854 – ident: e_1_2_9_57_1 doi: 10.1002/mrm.20310 – ident: e_1_2_9_23_1 doi: 10.1016/j.neuroimage.2019.03.047 – ident: e_1_2_9_7_1 doi: 10.1016/j.neuroimage.2018.09.062 – ident: e_1_2_9_47_1 doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S – ident: e_1_2_9_10_1 doi: 10.1038/s41592-022-01737-3 – ident: e_1_2_9_8_1 doi: 10.1002/mrm.27939 – ident: e_1_2_9_33_1 doi: 10.1002/mrm.29661 – ident: e_1_2_9_44_1 doi: 10.1002/jmri.25106 – ident: e_1_2_9_28_1 doi: 10.1002/mrm.26990 – ident: e_1_2_9_51_1 doi: 10.1002/mrm.22497 – volume-title: Quantitative MRI of the Brain: Measuring Changes Caused by Disease year: 2005 ident: e_1_2_9_11_1 – ident: e_1_2_9_63_1 doi: 10.1016/j.neuroimage.2005.09.046 – ident: e_1_2_9_41_1 doi: 10.1002/mrm.22423 – ident: e_1_2_9_60_1 doi: 10.1002/mrm.29384 – ident: e_1_2_9_39_1 doi: 10.1002/mrm.24564 – ident: e_1_2_9_35_1 doi: 10.1002/mrm.30062 – ident: e_1_2_9_2_1 doi: 10.1016/j.dcn.2017.10.002 – ident: e_1_2_9_9_1 doi: 10.1002/mrm.29292 – volume-title: National Institute on Drug Abuse year: 2021 ident: e_1_2_9_3_1 – ident: e_1_2_9_21_1 doi: 10.1093/cercor/bhac096 – ident: e_1_2_9_18_1 doi: 10.1186/1532‐429X‐16‐S1‐O82 – ident: e_1_2_9_58_1 doi: 10.1007/s10334‐024‐01211‐5 – ident: e_1_2_9_48_1 doi: 10.1002/mrm.29865 – ident: e_1_2_9_32_1 doi: 10.1002/mrm.29224 – ident: e_1_2_9_45_1 doi: 10.1002/mrm.21237 – ident: e_1_2_9_31_1 doi: 10.1016/j.mri.2021.11.014 – ident: e_1_2_9_17_1 doi: 10.1038/s41551-018-0217-y – ident: e_1_2_9_40_1 doi: 10.1002/mrm.28224 – ident: e_1_2_9_6_1 doi: 10.1016/j.neuroimage.2019.116364 – ident: e_1_2_9_61_1  | 
    
| SSID | ssj0009974 | 
    
| Score | 2.485853 | 
    
| Snippet | Purpose
To address the unmet need for a cross‐platform, multiparametric relaxometry technique to facilitate data harmonization across different sites.
Methods... To address the unmet need for a cross-platform, multiparametric relaxometry technique to facilitate data harmonization across different sites. A simultaneous T... Purpose To address the unmet need for a cross‐platform, multiparametric relaxometry technique to facilitate data harmonization across different sites. Methods... To address the unmet need for a cross-platform, multiparametric relaxometry technique to facilitate data harmonization across different sites.PURPOSETo address...  | 
    
| SourceID | unpaywall proquest pubmed crossref wiley  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Publisher  | 
    
| StartPage | 937 | 
    
| SubjectTerms | Adult Algorithms Brain - diagnostic imaging Coefficient of variation Correlation coefficients cross‐vendor technique data pooling Evaluation Humans Image Processing, Computer-Assisted - methods Imaging, Three-Dimensional - methods Linearity Magnetic Resonance Imaging - methods Male Multiparametric Magnetic Resonance Imaging - methods multiparametric mapping NMR Nuclear magnetic resonance Phantoms, Imaging quantitative magnetic resonance imaging relaxation time relaxometry Reproducibility Reproducibility of Results Scanners Sequences Software Substantia grisea  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BKmg58OjTUJB5HHpxsPfhJMcKqCqkVAgRVLi4u-uxhJo6UR6C9MRP4DfyS5jZdSIKAiFxs-W1vd55fd6d_QbgGaFizrXARAotE6U0kkkZndjKyiq3ShpPktQ_yY8H6vWpPm3qnPJemMAPsZpwY8vw_poNfFxWwc83q_vi-cXkos0YOL8Oa7kmMN6CtcHJm8MPgXyTPYwvhUhBSiQE9NWSW-jne69GpN9g5i1Yn9djs_hshsOrCNaHoKM7cLbsfMg8OW_PZ7btLn_hdfyPr7sLtxt4Gh8GfboH17DehJv9ZgF-E274jFE33YKP77EuR5PvX7_5XD1qH8uXcchPNJzxxdT_MW-V-TLik0X8yc9f4DT240A3jodmxpg5ZmZNJp4NmbqLbRgcvXr34jhpCjUkTuo0T3qW_kIr4XKtHJK8rehUKu9qchAWVVqWspMhkkDQVFluU1U5dDbtOuzK0pQ9uQOtelTjHsQkJGeQ6UpVSdiuwwEUCYT0hJVZZboRPFkKqxgHPo4iMC-Lgsar8OMVwf5SjEVjktNCMrO9JpVMI3i8ukzGxCskpsbRnNtkgjcT6yyC3SD-1VsUuTfm34_g6Uof_taFAy_eP7co-m_7_uD-Pz3wAWwILj3s09v2oTWbzPEh4aGZfdTo_A-XgQo_ priority: 102 providerName: Unpaywall  | 
    
| Title | Vendor‐agnostic 3D multiparametric relaxometry improves cross‐platform reproducibility | 
    
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.30566 https://www.ncbi.nlm.nih.gov/pubmed/40420483 https://www.proquest.com/docview/3229053250 https://www.proquest.com/docview/3212120951 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.30566  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 94 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1522-2594 databaseCode: DR2 dateStart: 19990101 customDbUrl: isFulltext: true eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bTtwwEB0hKmj7wK3QplAUaB_6kiWJ7exGfUJchJAWIcRWtKoU2c5EQl2yq72oXZ74hH4jX1KPvQmCqgjxlihjJfF4xsf28THAJ4OKiWuBAYsFCzgXaEJKikAVihWJ4kxakaT2SXLU4ccX4mIGvlR7YZw-RD3hRpFh8zUFuFTDnTvR0KvBVYPwL8ltRyyxw6mzO-moNHUKzE1OeSbllapQGO_UJe_3Rf8AzNfwclz25eSX7HbvY1fb-Rwuwo_qsx3n5GdjPFINff1A0fGZ_7UEC1NQ6u-6VrQMM1iuwHx7uuy-AnOWJ6qHb-D7Vyzz3uD25o9l6Bl7n-37jpUoiedFgv8-bZD53aObiX9pZy1w6Ns6MAX7XTkipOyTnibJzTp-7mQVOocH53tHwfR4hkAzESZBqszYs4h1IrhG42UVNwuetIRJCwp5mOesGSEaB6AsokSFvNCoVdjS2GK5zFO2BrNlr8R34JsxmJZIIqU8N4iuSd0mGuiRxopFhWx5sF05Kus7FY7M6S3HmamvzNaXBxuVC7NpIA4zRnr2wjTE0IOt-rEJIVoXkSX2xmQTxbSFWEQevHWur9_CTVIj1X0PPtZt4bFP-Gxd-3-LrH3Wthfvn266Dq9iOnXYMts2YHY0GOMHA4VGatO2-U140Tk53f32F2BoB4w | 
    
| linkProvider | Wiley-Blackwell | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIigceJRXoEB4HLhkm8R2diNxQUC1QNND1aKqEopsZyIhttnVPgTLiZ_Ab-SXMGNvUhUEQtwSZawkHs_4s_35M8BTQsXMtcBIpEpEUiqkkNIqMrURdWak0E4kqdjLhofy7ZE6WoPn7V4Yrw_RTbhxZLh8zQHOE9Lbp6qhJ9OTHgPg7ByclxmNUxgS7Z-KR-W512DuS840uWx1heJ0uyt6tjf6DWJeho1FM9HLz3o0OoteXfezcxU-tB_uWSefeou56dmvv2g6_u-fXYMrK1wavvAN6TqsYbMJF4vVyvsmXHBUUTu7AcfvsanG0x_fvjuSHtmH4lXoiYmaqV6s-R_yHpkvY75Zhh_dxAXOQlcJVHAy0nMGyyFLarLirKfoLm_C4c7rg5fDaHVCQ2SFirMoNzT8rFObKWmRHG3Sfi2zgaLMYFDGVSX6CSJ5AHWdZCaWtUVr4oHFgah0lYtbsN6MG7wDIQ3DrEbWKZUVgbo-95xI6CNPjUhqPQjgceupcuKFOEovuZyWVF-lq68AtloflqtYnJWCJe0VtcU4gEfdY4oiXhrRDY4XbJOkvItYJQHc9r7v3iIpr7HwfgBPusbwt0945nz7Z4uy2C_cxd1_N30IG8ODYrfcfbP37h5cSvkQYkd024L1-XSB9wkZzc0DFwA_AYVoCf0 | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwEB2VIkp5gNKWEihtuDzwkm0S29lE4qXqsiqXrVBFqwoJRbYzkRDb7Govgu1TP4Fv7JfUY29SFQSqeEuUsZJ4PONj-_gY4JVBxcS1wIDFggWcCzQhJUWgSsXKRHEmrUhS7yDZP-LvT8TJAryp98I4fYhmwo0iw-ZrCnAcFuXOlWro6ei0RQA4uQW3uchSIvR1Dq_Eo7LMaTC3OWWajNe6QmG80xS93hv9ATHvwd1pNZSzH7Lfv45ebffTfQBf6w93rJPvrelEtfTZb5qO__tnK3B_jkv9XdeQHsICVquw1JuvvK_CHUsV1eM1-HKMVTEYXZz_siQ9Y--zju-IiZKoXqT579MemZ8Dupn53-zEBY59Wwmm4LAvJwSWfZLUJMVZR9GdrcNR9-3nvf1gfkJDoJkIkyBTZvhZxjoRXKNxtIrbJU9SYTKDQh4WBWtHiMYDKMsoUSEvNWoVphpTVsgiY49gsRpU-Bh8MwzTEkmnlBcG1LWp50SDPrJYsaiUqQcvak_lQyfEkTvJ5Tg39ZXb-vJgs_ZhPo_Fcc5I0l6Ythh68Lx5bKKIlkZkhYMp2UQx7SIWkQcbzvfNW7jJayS878HLpjH86xNeW9_-3SLvHfbsxZObm27D0qdON__47uDDU1iO6Qxiy3PbhMXJaIrPDDCaqC3b_i8BIYwJgQ | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BKmg58OjTUJB5HHpxsPfhJMcKqCqkVAgRVLi4u-uxhJo6UR6C9MRP4DfyS5jZdSIKAiFxs-W1vd55fd6d_QbgGaFizrXARAotE6U0kkkZndjKyiq3ShpPktQ_yY8H6vWpPm3qnPJemMAPsZpwY8vw_poNfFxWwc83q_vi-cXkos0YOL8Oa7kmMN6CtcHJm8MPgXyTPYwvhUhBSiQE9NWSW-jne69GpN9g5i1Yn9djs_hshsOrCNaHoKM7cLbsfMg8OW_PZ7btLn_hdfyPr7sLtxt4Gh8GfboH17DehJv9ZgF-E274jFE33YKP77EuR5PvX7_5XD1qH8uXcchPNJzxxdT_MW-V-TLik0X8yc9f4DT240A3jodmxpg5ZmZNJp4NmbqLbRgcvXr34jhpCjUkTuo0T3qW_kIr4XKtHJK8rehUKu9qchAWVVqWspMhkkDQVFluU1U5dDbtOuzK0pQ9uQOtelTjHsQkJGeQ6UpVSdiuwwEUCYT0hJVZZboRPFkKqxgHPo4iMC-Lgsar8OMVwf5SjEVjktNCMrO9JpVMI3i8ukzGxCskpsbRnNtkgjcT6yyC3SD-1VsUuTfm34_g6Uof_taFAy_eP7co-m_7_uD-Pz3wAWwILj3s09v2oTWbzPEh4aGZfdTo_A-XgQo_ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vendor%E2%80%90agnostic+3D+multiparametric+relaxometry+improves+cross%E2%80%90platform+reproducibility&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Fujita%2C+Shohei&rft.au=Gagoski%2C+Borjan&rft.au=Nielsen%2C+Jon%E2%80%90Fredrik&rft.au=Zaitsev%2C+Maxim&rft.date=2025-09-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=94&rft.issue=3&rft.spage=937&rft.epage=948&rft_id=info:doi/10.1002%2Fmrm.30566&rft.externalDBID=10.1002%252Fmrm.30566&rft.externalDocID=MRM30566 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |