Vendor‐agnostic 3D multiparametric relaxometry improves cross‐platform reproducibility

Purpose To address the unmet need for a cross‐platform, multiparametric relaxometry technique to facilitate data harmonization across different sites. Methods A simultaneous T1 and T2 mapping technique, 3D quantification using an interleaved Look–Locker acquisition sequence with a T2 preparation pul...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 94; no. 3; pp. 937 - 948
Main Authors Fujita, Shohei, Gagoski, Borjan, Nielsen, Jon‐Fredrik, Zaitsev, Maxim, Jun, Yohan, Cho, Jaejin, Yong, Xingwang, Uhl, Quentin, Xu, Pengcheng, Milshteyn, Eugene, Shaik, Imam Ahmed, Liu, Qiang, Chen, Qingping, Afacan, Onur, Kirsch, John E., Rathi, Yogesh, Bilgic, Berkin
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.09.2025
Subjects
Online AccessGet full text
ISSN0740-3194
1522-2594
1522-2594
DOI10.1002/mrm.30566

Cover

Abstract Purpose To address the unmet need for a cross‐platform, multiparametric relaxometry technique to facilitate data harmonization across different sites. Methods A simultaneous T1 and T2 mapping technique, 3D quantification using an interleaved Look–Locker acquisition sequence with a T2 preparation pulse (3D‐QALAS), was implemented using the open‐source vendor‐agnostic Pulseq platform. The technique was tested on four 3 T scanners from two vendors across two sites, evaluating cross‐scanner, cross‐software version, cross‐site, and cross‐vendor variability. The cross‐vendor reproducibility was assessed using both the vendor‐native and Pulseq‐based implementations. A National Institute of Standards and Technology/International Society for Magnetic Resonance in Medicine system phantom and three human subjects were evaluated. The acquired T1 and T2 maps from the different 3D‐QALAS runs were compared using linear regression, Bland–Altman plots, coefficient of variation (CV), and intraclass correlation coefficient (ICC). Results Pulseq‐QALAS demonstrated high linearity (R2 = 0.994 for T1, R2 = 0.999 for T2) and correlation (ICC = 0.99 [0.98–0.99]) against temperature‐corrected NMR reference values in the system phantom. Compared to vendor‐native sequences, the Pulseq implementation showed significantly higher reproducibility in phantom T2 values (CV, 2.3% vs. 17%; p < 0.001), and improved T1 reproducibility (CV, 3.4% vs. 4.9%; p = 0.71, not significant). The Pulseq implementation reduced cross‐vendor variability to a level comparable to cross‐scanner (within‐vendor) variability. In vivo, Pulseq‐QALAS exhibited reduced cross‐vendor variability, particularly for T2 values in gray matter with a twofold reduction in variability (CV, 2.3 vs. 5.9%; p < 0.001). Conclusion An identical implementation across different scanners and vendors, combined with consistent reconstruction and fitting pipelines, can improve relaxometry measurement reproducibility across platforms.
AbstractList To address the unmet need for a cross-platform, multiparametric relaxometry technique to facilitate data harmonization across different sites.PURPOSETo address the unmet need for a cross-platform, multiparametric relaxometry technique to facilitate data harmonization across different sites.A simultaneous T1 and T2 mapping technique, 3D quantification using an interleaved Look-Locker acquisition sequence with a T2 preparation pulse (3D-QALAS), was implemented using the open-source vendor-agnostic Pulseq platform. The technique was tested on four 3 T scanners from two vendors across two sites, evaluating cross-scanner, cross-software version, cross-site, and cross-vendor variability. The cross-vendor reproducibility was assessed using both the vendor-native and Pulseq-based implementations. A National Institute of Standards and Technology/International Society for Magnetic Resonance in Medicine system phantom and three human subjects were evaluated. The acquired T1 and T2 maps from the different 3D-QALAS runs were compared using linear regression, Bland-Altman plots, coefficient of variation (CV), and intraclass correlation coefficient (ICC).METHODSA simultaneous T1 and T2 mapping technique, 3D quantification using an interleaved Look-Locker acquisition sequence with a T2 preparation pulse (3D-QALAS), was implemented using the open-source vendor-agnostic Pulseq platform. The technique was tested on four 3 T scanners from two vendors across two sites, evaluating cross-scanner, cross-software version, cross-site, and cross-vendor variability. The cross-vendor reproducibility was assessed using both the vendor-native and Pulseq-based implementations. A National Institute of Standards and Technology/International Society for Magnetic Resonance in Medicine system phantom and three human subjects were evaluated. The acquired T1 and T2 maps from the different 3D-QALAS runs were compared using linear regression, Bland-Altman plots, coefficient of variation (CV), and intraclass correlation coefficient (ICC).Pulseq-QALAS demonstrated high linearity (R2 = 0.994 for T1, R2 = 0.999 for T2) and correlation (ICC = 0.99 [0.98-0.99]) against temperature-corrected NMR reference values in the system phantom. Compared to vendor-native sequences, the Pulseq implementation showed significantly higher reproducibility in phantom T2 values (CV, 2.3% vs. 17%; p < 0.001), and improved T1 reproducibility (CV, 3.4% vs. 4.9%; p = 0.71, not significant). The Pulseq implementation reduced cross-vendor variability to a level comparable to cross-scanner (within-vendor) variability. In vivo, Pulseq-QALAS exhibited reduced cross-vendor variability, particularly for T2 values in gray matter with a twofold reduction in variability (CV, 2.3 vs. 5.9%; p < 0.001).RESULTSPulseq-QALAS demonstrated high linearity (R2 = 0.994 for T1, R2 = 0.999 for T2) and correlation (ICC = 0.99 [0.98-0.99]) against temperature-corrected NMR reference values in the system phantom. Compared to vendor-native sequences, the Pulseq implementation showed significantly higher reproducibility in phantom T2 values (CV, 2.3% vs. 17%; p < 0.001), and improved T1 reproducibility (CV, 3.4% vs. 4.9%; p = 0.71, not significant). The Pulseq implementation reduced cross-vendor variability to a level comparable to cross-scanner (within-vendor) variability. In vivo, Pulseq-QALAS exhibited reduced cross-vendor variability, particularly for T2 values in gray matter with a twofold reduction in variability (CV, 2.3 vs. 5.9%; p < 0.001).An identical implementation across different scanners and vendors, combined with consistent reconstruction and fitting pipelines, can improve relaxometry measurement reproducibility across platforms.CONCLUSIONAn identical implementation across different scanners and vendors, combined with consistent reconstruction and fitting pipelines, can improve relaxometry measurement reproducibility across platforms.
To address the unmet need for a cross-platform, multiparametric relaxometry technique to facilitate data harmonization across different sites. A simultaneous T and T mapping technique, 3D quantification using an interleaved Look-Locker acquisition sequence with a T preparation pulse (3D-QALAS), was implemented using the open-source vendor-agnostic Pulseq platform. The technique was tested on four 3 T scanners from two vendors across two sites, evaluating cross-scanner, cross-software version, cross-site, and cross-vendor variability. The cross-vendor reproducibility was assessed using both the vendor-native and Pulseq-based implementations. A National Institute of Standards and Technology/International Society for Magnetic Resonance in Medicine system phantom and three human subjects were evaluated. The acquired T and T maps from the different 3D-QALAS runs were compared using linear regression, Bland-Altman plots, coefficient of variation (CV), and intraclass correlation coefficient (ICC). Pulseq-QALAS demonstrated high linearity (R  = 0.994 for T , R  = 0.999 for T ) and correlation (ICC = 0.99 [0.98-0.99]) against temperature-corrected NMR reference values in the system phantom. Compared to vendor-native sequences, the Pulseq implementation showed significantly higher reproducibility in phantom T values (CV, 2.3% vs. 17%; p < 0.001), and improved T reproducibility (CV, 3.4% vs. 4.9%; p = 0.71, not significant). The Pulseq implementation reduced cross-vendor variability to a level comparable to cross-scanner (within-vendor) variability. In vivo, Pulseq-QALAS exhibited reduced cross-vendor variability, particularly for T values in gray matter with a twofold reduction in variability (CV, 2.3 vs. 5.9%; p < 0.001). An identical implementation across different scanners and vendors, combined with consistent reconstruction and fitting pipelines, can improve relaxometry measurement reproducibility across platforms.
Purpose To address the unmet need for a cross‐platform, multiparametric relaxometry technique to facilitate data harmonization across different sites. Methods A simultaneous T1 and T2 mapping technique, 3D quantification using an interleaved Look–Locker acquisition sequence with a T2 preparation pulse (3D‐QALAS), was implemented using the open‐source vendor‐agnostic Pulseq platform. The technique was tested on four 3 T scanners from two vendors across two sites, evaluating cross‐scanner, cross‐software version, cross‐site, and cross‐vendor variability. The cross‐vendor reproducibility was assessed using both the vendor‐native and Pulseq‐based implementations. A National Institute of Standards and Technology/International Society for Magnetic Resonance in Medicine system phantom and three human subjects were evaluated. The acquired T1 and T2 maps from the different 3D‐QALAS runs were compared using linear regression, Bland–Altman plots, coefficient of variation (CV), and intraclass correlation coefficient (ICC). Results Pulseq‐QALAS demonstrated high linearity (R2 = 0.994 for T1, R2 = 0.999 for T2) and correlation (ICC = 0.99 [0.98–0.99]) against temperature‐corrected NMR reference values in the system phantom. Compared to vendor‐native sequences, the Pulseq implementation showed significantly higher reproducibility in phantom T2 values (CV, 2.3% vs. 17%; p < 0.001), and improved T1 reproducibility (CV, 3.4% vs. 4.9%; p = 0.71, not significant). The Pulseq implementation reduced cross‐vendor variability to a level comparable to cross‐scanner (within‐vendor) variability. In vivo, Pulseq‐QALAS exhibited reduced cross‐vendor variability, particularly for T2 values in gray matter with a twofold reduction in variability (CV, 2.3 vs. 5.9%; p < 0.001). Conclusion An identical implementation across different scanners and vendors, combined with consistent reconstruction and fitting pipelines, can improve relaxometry measurement reproducibility across platforms.
Purpose To address the unmet need for a cross‐platform, multiparametric relaxometry technique to facilitate data harmonization across different sites. Methods A simultaneous T1 and T2 mapping technique, 3D quantification using an interleaved Look–Locker acquisition sequence with a T2 preparation pulse (3D‐QALAS), was implemented using the open‐source vendor‐agnostic Pulseq platform. The technique was tested on four 3 T scanners from two vendors across two sites, evaluating cross‐scanner, cross‐software version, cross‐site, and cross‐vendor variability. The cross‐vendor reproducibility was assessed using both the vendor‐native and Pulseq‐based implementations. A National Institute of Standards and Technology/International Society for Magnetic Resonance in Medicine system phantom and three human subjects were evaluated. The acquired T1 and T2 maps from the different 3D‐QALAS runs were compared using linear regression, Bland–Altman plots, coefficient of variation (CV), and intraclass correlation coefficient (ICC). Results Pulseq‐QALAS demonstrated high linearity (R2 = 0.994 for T1, R2 = 0.999 for T2) and correlation (ICC = 0.99 [0.98–0.99]) against temperature‐corrected NMR reference values in the system phantom. Compared to vendor‐native sequences, the Pulseq implementation showed significantly higher reproducibility in phantom T2 values (CV, 2.3% vs. 17%; p < 0.001), and improved T1 reproducibility (CV, 3.4% vs. 4.9%; p = 0.71, not significant). The Pulseq implementation reduced cross‐vendor variability to a level comparable to cross‐scanner (within‐vendor) variability. In vivo, Pulseq‐QALAS exhibited reduced cross‐vendor variability, particularly for T2 values in gray matter with a twofold reduction in variability (CV, 2.3 vs. 5.9%; p < 0.001). Conclusion An identical implementation across different scanners and vendors, combined with consistent reconstruction and fitting pipelines, can improve relaxometry measurement reproducibility across platforms.
Author Fujita, Shohei
Jun, Yohan
Afacan, Onur
Bilgic, Berkin
Liu, Qiang
Yong, Xingwang
Milshteyn, Eugene
Uhl, Quentin
Chen, Qingping
Rathi, Yogesh
Shaik, Imam Ahmed
Nielsen, Jon‐Fredrik
Cho, Jaejin
Gagoski, Borjan
Zaitsev, Maxim
Kirsch, John E.
Xu, Pengcheng
Author_xml – sequence: 1
  givenname: Shohei
  orcidid: 0000-0003-4276-6226
  surname: Fujita
  fullname: Fujita, Shohei
  email: sfujita@mgh.harvard.edu
  organization: The University of Tokyo
– sequence: 2
  givenname: Borjan
  orcidid: 0000-0003-3777-2621
  surname: Gagoski
  fullname: Gagoski, Borjan
  organization: Boston Children's Hospital
– sequence: 3
  givenname: Jon‐Fredrik
  surname: Nielsen
  fullname: Nielsen, Jon‐Fredrik
  organization: University of Michigan
– sequence: 4
  givenname: Maxim
  surname: Zaitsev
  fullname: Zaitsev, Maxim
  organization: University of Freiburg
– sequence: 5
  givenname: Yohan
  orcidid: 0000-0003-4787-4760
  surname: Jun
  fullname: Jun, Yohan
  organization: Harvard Medical School
– sequence: 6
  givenname: Jaejin
  orcidid: 0000-0001-5672-6765
  surname: Cho
  fullname: Cho, Jaejin
  organization: Sejong University
– sequence: 7
  givenname: Xingwang
  surname: Yong
  fullname: Yong, Xingwang
  organization: Zhejiang University
– sequence: 8
  givenname: Quentin
  surname: Uhl
  fullname: Uhl, Quentin
  organization: Lausanne University Hospital (CHUV) and University of Lausanne
– sequence: 9
  givenname: Pengcheng
  surname: Xu
  fullname: Xu, Pengcheng
  organization: Harvard Medical School
– sequence: 10
  givenname: Eugene
  surname: Milshteyn
  fullname: Milshteyn, Eugene
  organization: GE HealthCare
– sequence: 11
  givenname: Imam Ahmed
  surname: Shaik
  fullname: Shaik, Imam Ahmed
  organization: Harvard Medical School
– sequence: 12
  givenname: Qiang
  orcidid: 0009-0007-6818-0115
  surname: Liu
  fullname: Liu, Qiang
  organization: Harvard Medical School
– sequence: 13
  givenname: Qingping
  surname: Chen
  fullname: Chen, Qingping
  organization: University of Freiburg
– sequence: 14
  givenname: Onur
  orcidid: 0000-0003-2112-3205
  surname: Afacan
  fullname: Afacan, Onur
  organization: Boston Children's Hospital
– sequence: 15
  givenname: John E.
  surname: Kirsch
  fullname: Kirsch, John E.
  organization: Massachusetts General Hospital
– sequence: 16
  givenname: Yogesh
  surname: Rathi
  fullname: Rathi, Yogesh
  organization: Harvard Medical School
– sequence: 17
  givenname: Berkin
  orcidid: 0000-0002-9080-7865
  surname: Bilgic
  fullname: Bilgic, Berkin
  organization: Harvard/MIT Health Sciences and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40420483$$D View this record in MEDLINE/PubMed
BookMark eNp90M1KHTEUB_Agil6tC1-gXHCjwujJ19w7S7FWBUUo2kU3QyZzpkSSyZjMaGfXR-gz9kmMju1CULIISX5JzvlvktXWt0jIDoVDCsCOXHCHHGSer5AZlYxlTBZilcxgISDjtBAbZDPGOwAoioVYJxsCBAOx5DPy4zu2tQ9_f_9RP1sfe6Pn_MvcDbY3nQrKYR_SVkCrfvnnxTg3rgv-AeNcBx9juthZ1Tc-uKTSST1oUxlr-vETWWuUjbj9Om-R26-nNyfn2eX12cXJ8WWmuYQ8KyoBrGE6l0KjELJii0bkSwkCKhRQ13xBEVMrqBqaVyAajbqCpcYlr1Vd8C1yML07tJ0aH5W1ZReMU2EsKZTPAZUpoPIloIT3JpxKvR8w9qUzUaO1qkU_xJIzmgYUkia6-4be-SG0qZWkWAGSMwlJfX5VQ-Ww_v_1v4gT2J_AS14Bmw-rO5rso7E4vg_Lq29X040nKnSdaA
Cites_doi 10.1016/j.media.2023.102789
10.1002/mrm.28779
10.1097/WCO.0b013e32832d92de
10.1002/mrm.1910030217
10.1016/j.jmr.2004.05.021
10.1002/mrm.28020
10.1002/mrm.28825
10.1002/mrm.26235
10.1002/mrm.25640
10.1016/j.mri.2019.08.031
10.1148/radiol.2019182360
10.1002/mrm.29084
10.1016/j.neuroimage.2010.04.255
10.1002/mrm.30281
10.1002/alz.14162
10.1177/0962280214537344
10.1002/mrm.29059
10.1002/mrm.21391
10.1002/mrm.25421
10.1016/j.neuroimage.2020.117573
10.1002/jmri.25692
10.1038/nature11971
10.1016/j.neuroimage.2022.118963
10.1002/mrm.29939
10.1002/mrm.24389
10.1016/j.neuroimage.2012.01.021
10.1002/mrm.29710
10.1002/mrm.22357
10.1002/mrm.29854
10.1002/mrm.20310
10.1016/j.neuroimage.2019.03.047
10.1016/j.neuroimage.2018.09.062
10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
10.1038/s41592-022-01737-3
10.1002/mrm.27939
10.1002/mrm.29661
10.1002/jmri.25106
10.1002/mrm.26990
10.1002/mrm.22497
10.1016/j.neuroimage.2005.09.046
10.1002/mrm.22423
10.1002/mrm.29384
10.1002/mrm.24564
10.1002/mrm.30062
10.1016/j.dcn.2017.10.002
10.1002/mrm.29292
10.1093/cercor/bhac096
10.1186/1532‐429X‐16‐S1‐O82
10.1007/s10334‐024‐01211‐5
10.1002/mrm.29865
10.1002/mrm.29224
10.1002/mrm.21237
10.1016/j.mri.2021.11.014
10.1038/s41551-018-0217-y
10.1002/mrm.28224
10.1016/j.neuroimage.2019.116364
ContentType Journal Article
Copyright 2025 International Society for Magnetic Resonance in Medicine.
Copyright_xml – notice: 2025 International Society for Magnetic Resonance in Medicine.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
ADTOC
UNPAY
DOI 10.1002/mrm.30566
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Biochemistry Abstracts 1
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 948
ExternalDocumentID 10.1002/mrm.30566
40420483
10_1002_mrm_30566
MRM30566
Genre rapidPublication
Journal Article
GrantInformation_xml – fundername: NIH
  funderid: P41 EB030006; R01 EB028797; R01 EB032378; R01 EB034757; R03 EB031175; U01 DA055353; U01 EB025162; U01 EB026996; UG3 EB034875
– fundername: JSPS
– fundername: NVidia Corporation
– fundername: NIDA NIH HHS
  grantid: U01 DA055353
– fundername: NIH HHS
  grantid: UG3 EB034875
– fundername: NIH HHS
  grantid: U01 EB026996
– fundername: NIH HHS
  grantid: P41 EB030006
– fundername: NIH HHS
  grantid: R01 EB032378
– fundername: NIH HHS
  grantid: R01 EB034757
– fundername: NIH HHS
  grantid: U01 DA055353
– fundername: NIBIB NIH HHS
  grantid: R01 EB032378
– fundername: NIBIB NIH HHS
  grantid: R03 EB031175
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
AIQQE
CITATION
AAHHS
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c3506-9b402f2c654ce445b27f4685040be40dd371ee074eaf16b04fcecb08ce83dad93
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Tue Aug 19 23:29:46 EDT 2025
Fri Sep 05 16:00:07 EDT 2025
Tue Oct 07 06:36:59 EDT 2025
Mon Jun 30 02:54:32 EDT 2025
Wed Oct 01 05:48:13 EDT 2025
Thu Jul 03 09:30:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords data pooling
quantitative magnetic resonance imaging
relaxometry
relaxation time
multiparametric mapping
cross‐vendor technique
Language English
License 2025 International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3506-9b402f2c654ce445b27f4685040be40dd371ee074eaf16b04fcecb08ce83dad93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4276-6226
0000-0003-2112-3205
0000-0003-4787-4760
0000-0001-5672-6765
0000-0002-9080-7865
0000-0003-3777-2621
0009-0007-6818-0115
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.30566
PMID 40420483
PQID 3229053250
PQPubID 1016391
PageCount 12
ParticipantIDs unpaywall_primary_10_1002_mrm_30566
proquest_miscellaneous_3212120951
proquest_journals_3229053250
pubmed_primary_40420483
crossref_primary_10_1002_mrm_30566
wiley_primary_10_1002_mrm_30566_MRM30566
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2025
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: September 2025
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2022; 250
2006; 30
2013; 69
2015; 74
2017; 46
2016; 75
2013; 70
1999; 42
2024
2010; 63
2020; 207
2023; 20
2010; 64
2018; 2
2019; 63
2017; 77
1986; 3
2014; 16
2016; 43
2024; 20
2022; 33
2019; 195
2018; 32
2018; 79
2012; 62
2009; 22
2021; 86
170
2020; 84
2020; 83
2021; 226
2005
2022; 87
2022; 88
2019; 184
2007; 57
2007; 58
2025; 93
2023; 86
2015; 24
2019; 82
2021
2020
2024; 91
2024; 92
2005; 53
2015
2013; 495
2023; 90
2019; 292
2010; 52
2023; 91
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_54_1
Child Mind Institute (e_1_2_9_4_1) 2015
Fuderer M (e_1_2_9_53_1) 2025; 93
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
Tofts P (e_1_2_9_11_1) 2005
e_1_2_9_30_1
e_1_2_9_51_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
Seiberlich N (e_1_2_9_12_1) 2020
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
National Institute on Drug Abuse (e_1_2_9_3_1) 2021
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 87
  start-page: 7
  year: 2022
  end-page: 18
  article-title: A framework for validating open‐source pulse sequences
  publication-title: Magn Reson Imaging
– volume: 93
  start-page: 490
  year: 2025
  end-page: 506
  article-title: Color‐map recommendation for MR relaxometry maps
  publication-title: arXiv [physics.med‐ph]
– volume: 91
  start-page: 344
  year: 2024
  end-page: 356
  article-title: mcLARO: multi‐contrast learned acquisition and reconstruction optimization for simultaneous quantitative multi‐parametric mapping
  publication-title: Magn Reson Med
– volume: 24
  start-page: 27
  year: 2015
  end-page: 67
  article-title: Quantitative imaging bio‐markers: a review of statistical methods for technical performance assessment
  publication-title: Stat Methods Med Res
– year: 2005
– volume: 74
  start-page: 489
  year: 2015
  end-page: 498
  article-title: Accelerated MR parameter mapping with low‐rank and sparsity constraints
  publication-title: Magn Reson Med
– volume: 88
  start-page: 651
  year: 2022
  end-page: 662
  article-title: Single shot spiral TSE with annulated segmentation
  publication-title: Magn Reson Med
– year: 2021
– volume: 86
  start-page: 1194
  year: 2021
  end-page: 1211
  article-title: A standard system phantom for magnetic resonance imaging
  publication-title: Magn Reson Med
– volume: 64
  start-page: 439
  year: 2010
  end-page: 446
  article-title: Rapid B1+ mapping using a preconditioning RF pulse with TurboFLASH readout
  publication-title: Magn Reson Med
– volume: 91
  start-page: 630
  year: 2023
  end-page: 639
  article-title: Time‐efficient, high‐resolution 3T whole‐brain relaxometry using 3D‐QALAS with wave‐CAIPI readouts
  publication-title: Magn Reson Med
– volume: 79
  start-page: 3128
  year: 2018
  end-page: 3134
  article-title: TOPPE: a framework for rapid prototyping of MR pulse sequences
  publication-title: Magn Reson Med
– volume: 64
  start-page: 1057
  year: 2010
  end-page: 1067
  article-title: A robust methodology for in vivo T mapping
  publication-title: Magn Reson Med
– volume: 90
  start-page: 1345
  year: 2023
  end-page: 1362
  article-title: MR‐zero meets RARE MRI: joint optimization of refocusing flip angles and neural networks to minimize T ‐induced blurring in spin echo sequences
  publication-title: Magn Reson Med
– volume: 43
  start-page: 1355
  year: 2016
  end-page: 1368
  article-title: Comprehensive motion‐compensated highly accelerated 4D flow MRI with ferumoxytol enhancement for pediatric congenital heart disease
  publication-title: J Magn Reson Imaging
– volume: 22
  start-page: 370
  year: 2009
  end-page: 378
  article-title: Multisite neuroimaging trials
  publication-title: Curr Opin Neurol
– volume: 33
  start-page: 729
  year: 2022
  end-page: 739
  article-title: Simultaneous relaxometry and morphometry of human brain structures with 3D magnetic resonance fingerprinting: a multicenter, multiplatform, multifield‐strength study
  publication-title: Cereb Cortex
– volume: 57
  start-page: 1131
  year: 2007
  end-page: 1139
  article-title: Array compression for MRI with large coil arrays
  publication-title: Magn Reson Med
– volume: 58
  start-page: 1182
  year: 2007
  end-page: 1195
  article-title: Sparse MRI: the application of compressed sensing for rapid MR imaging
  publication-title: Magn Reson Med
– volume: 84
  start-page: 1552
  year: 2020
  end-page: 1563
  article-title: MRI‐visible liquid crystal thermometer
  publication-title: Magn Reson Med
– volume: 63
  start-page: 1315
  year: 2010
  end-page: 1322
  article-title: B1 mapping by Bloch‐Siegert shift
  publication-title: Magn Reson Med
– volume: 16
  year: 2014
  article-title: 3D‐quantification using an interleaved look‐locker acquisition sequence with T ‐prep pulse (3D‐QALAS)
  publication-title: J Cardiovasc Magn Reson
– volume: 69
  start-page: 1768
  year: 2013
  end-page: 1776
  article-title: Gadgetron: an open source framework for medical image reconstruction
  publication-title: Magn Reson Med
– volume: 495
  start-page: 187
  year: 2013
  end-page: 192
  article-title: Magnetic resonance fingerprinting
  publication-title: Nature
– volume: 88
  start-page: 1212
  year: 2022
  end-page: 1228
  article-title: Vendor‐neutral sequences and fully transparent workflows improve inter‐vendor reproducibility of quantitative MRI
  publication-title: Magn Reson Med
– year: 2024
  article-title: Repeatability of 3D MR fingerprinting during scanner software upgrades
  publication-title: MAGMA
– volume: 63
  start-page: 235
  year: 2019
  end-page: 243
  article-title: Three‐dimensional high‐resolution simultaneous quantitative mapping of the whole brain with 3D‐QALAS: an accuracy and repeatability study
  publication-title: Magn Reson Imaging
– volume: 70
  start-page: 1360
  year: 2013
  end-page: 1368
  article-title: Motion and flow insensitive adiabatic T ‐preparation module for cardiac MR imaging at 3 tesla
  publication-title: Magn Reson Med
– volume: 292
  start-page: 429
  year: 2019
  end-page: 437
  article-title: Reproducibility and repeatability of MR fingerprinting relaxometry in the human brain
  publication-title: Radiology
– volume: 90
  start-page: 539
  year: 2023
  end-page: 551
  article-title: Open‐source myocardial T mapping with simultaneous multi‐slice acceleration: combining an auto‐calibrated blipped‐bSSFP readout with VERSE‐MB pulses
  publication-title: Magn Reson Med
– year: 2015
– volume: 184
  start-page: 555
  year: 2019
  end-page: 565
  article-title: Estimating and accounting for the effect of MRI scanner changes on longitudinal whole‐brain volume change measurements
  publication-title: Neuroimage
– volume: 87
  start-page: 1375
  year: 2022
  end-page: 1389
  article-title: Three‐dimensional simultaneous brain mapping of T , T , and magnetic susceptibility with MR multitasking
  publication-title: Magn Reson Med
– volume: 86
  start-page: 1845
  year: 2021
  end-page: 1858
  article-title: Pulseq‐CEST: towards multi‐site multi‐vendor compatibility and reproducibility of CEST experiments using an open‐source sequence standard
  publication-title: Magn Reson Med
– volume: 207
  year: 2020
  article-title: How stable is quantitative MRI? – assessment of intra‐ and inter‐scanner‐model reproducibility using identical acquisition sequences and data analysis programs
  publication-title: Neuroimage
– volume: 170
  start-page: 67
  end-page: 78
  article-title: ODIN – object‐oriented development Interface for NMR
  publication-title: J Magn Reson
– volume: 32
  start-page: 4
  year: 2018
  end-page: 7
  article-title: The conception of the ABCD study: from substance use to a broad NIH collaboration
  publication-title: Dev Cogn Neurosci
– volume: 195
  start-page: 362
  year: 2019
  end-page: 372
  article-title: Multi‐site repeatability and reproducibility of MR fingerprinting of the healthy brain at 1.5 and 3.0 T
  publication-title: Neuroimage
– volume: 2
  start-page: 215
  year: 2018
  end-page: 226
  article-title: Magnetic resonance multitasking for motion‐resolved quantitative cardiovascular imaging
  publication-title: Nat Biomed Eng
– volume: 92
  start-page: 246
  year: 2024
  end-page: 256
  article-title: Reduced cross‐scanner variability using vendor‐agnostic sequences for single‐shell diffusion MRI
  publication-title: Magn Reson Med
– volume: 82
  start-page: 1981
  year: 2019
  end-page: 1983
  article-title: Reproducibility and the future of MRI research
  publication-title: Magn Reson Med
– volume: 93
  start-page: 289
  year: 2025
  end-page: 300
  article-title: T and T measurements across multiple 0.55T MRI systems using open‐source vendor‐neutral sequences
  publication-title: Magn Reson Med
– volume: 226
  year: 2021
  article-title: Three dimensional MRF obtains highly repeatable and reproducible multi‐parametric estimations in the healthy human brain at 1.5T and 3T
  publication-title: Neuroimage
– volume: 87
  start-page: 1184
  year: 2022
  end-page: 1206
  article-title: Development, validation, qualification, and dissemination of quantitative MR methods: overview and recommendations by the ISMRM quantitative MR study group
  publication-title: Magn Reson Med
– volume: 83
  start-page: 1277
  year: 2020
  end-page: 1290
  article-title: Portable and platform‐independent MR pulse sequence programs
  publication-title: Magn Reson Med
– volume: 62
  start-page: 774
  year: 2012
  end-page: 781
  article-title: FreeSurfer
  publication-title: Neuroimage
– volume: 52
  start-page: 508
  year: 2010
  end-page: 514
  article-title: Whole brain quantitative T MRI across multiple scanners with dual echo FSE: applications to AD, MCI, and normal aging
  publication-title: Neuroimage
– volume: 20
  start-page: 6615
  year: 2024
  end-page: 6621
  article-title: Design and validation of the ADNI MR protocol
  publication-title: Alzheimers Dement
– volume: 46
  start-page: 1673
  year: 2017
  end-page: 1682
  article-title: B mapping for bias‐correction in quantitative T imaging of the brain at 3T using standard pulse sequences
  publication-title: J Magn Reson Imaging
– volume: 42
  start-page: 952
  year: 1999
  end-page: 962
  article-title: SENSE: sensitivity encoding for fast MRI
  publication-title: Magn Reson Med
– volume: 20
  start-page: 34
  year: 2023
  article-title: Reproducibility in MRI
  publication-title: Nat Methods
– volume: 3
  start-page: 321
  year: 1986
  end-page: 327
  article-title: Rapid NMR imaging of dynamic processes using the FLASH technique
  publication-title: Magn Reson Med
– volume: 30
  start-page: 436
  year: 2006
  end-page: 443
  article-title: Reliability in multi‐site structural MRI studies: effects of gradient non‐linearity correction on phantom and human data
  publication-title: Neuroimage
– volume: 53
  start-page: 134
  year: 2005
  end-page: 140
  article-title: Assessment and correction ofB1‐induced errors in magnetization transfer ratio measurements
  publication-title: Magn Reson Med
– volume: 75
  start-page: 257
  year: 2016
  end-page: 265
  article-title: Pulse sequence programming in a dynamic visual environment: SequenceTree
  publication-title: Magn Reson Med
– year: 2020
– volume: 86
  year: 2023
  article-title: SynthSeg: segmentation of brain MRI scans of any contrast and resolution without retraining
  publication-title: Med Image Anal
– volume: 91
  start-page: 1863
  year: 2024
  end-page: 1875
  article-title: Cross‐vendor multiparametric mapping of the human brain using 3D‐QALAS: a multicenter and multivendor study
  publication-title: Magn Reson Med
– volume: 77
  start-page: 1544
  year: 2017
  end-page: 1552
  article-title: Pulseq: a rapid and hardware‐independent pulse sequence prototyping framework
  publication-title: Magn Reson Med
– volume: 88
  start-page: 2395
  year: 2022
  end-page: 2407
  article-title: Open‐source MR imaging and reconstruction workflow
  publication-title: Magn Reson Med
– volume: 250
  year: 2022
  article-title: 3D Echo planar time‐resolved imaging (3D‐EPTI) for ultrafast multi‐parametric quantitative MRI
  publication-title: Neuroimage
– ident: e_1_2_9_49_1
  doi: 10.1016/j.media.2023.102789
– volume-title: Magnetic Resonance Imaging of Healthy and Diseased Brain Networks
  year: 2015
  ident: e_1_2_9_4_1
– ident: e_1_2_9_37_1
  doi: 10.1002/mrm.28779
– ident: e_1_2_9_5_1
  doi: 10.1097/WCO.0b013e32832d92de
– ident: e_1_2_9_38_1
  doi: 10.1002/mrm.1910030217
– ident: e_1_2_9_25_1
  doi: 10.1016/j.jmr.2004.05.021
– ident: e_1_2_9_29_1
  doi: 10.1002/mrm.28020
– ident: e_1_2_9_30_1
  doi: 10.1002/mrm.28825
– ident: e_1_2_9_27_1
  doi: 10.1002/mrm.26235
– ident: e_1_2_9_26_1
  doi: 10.1002/mrm.25640
– ident: e_1_2_9_19_1
  doi: 10.1016/j.mri.2019.08.031
– volume: 93
  start-page: 490
  year: 2025
  ident: e_1_2_9_53_1
  article-title: Color‐map recommendation for MR relaxometry maps
  publication-title: arXiv [physics.med‐ph]
– ident: e_1_2_9_20_1
  doi: 10.1148/radiol.2019182360
– ident: e_1_2_9_54_1
  doi: 10.1002/mrm.29084
– ident: e_1_2_9_56_1
  doi: 10.1016/j.neuroimage.2010.04.255
– ident: e_1_2_9_36_1
  doi: 10.1002/mrm.30281
– ident: e_1_2_9_43_1
  doi: 10.1002/alz.14162
– ident: e_1_2_9_55_1
  doi: 10.1177/0962280214537344
– ident: e_1_2_9_16_1
  doi: 10.1002/mrm.29059
– ident: e_1_2_9_46_1
  doi: 10.1002/mrm.21391
– ident: e_1_2_9_52_1
  doi: 10.1002/mrm.25421
– ident: e_1_2_9_22_1
  doi: 10.1016/j.neuroimage.2020.117573
– ident: e_1_2_9_62_1
  doi: 10.1002/jmri.25692
– ident: e_1_2_9_13_1
  doi: 10.1038/nature11971
– ident: e_1_2_9_14_1
  doi: 10.1016/j.neuroimage.2022.118963
– ident: e_1_2_9_24_1
  doi: 10.1002/mrm.29939
– ident: e_1_2_9_59_1
  doi: 10.1002/mrm.24389
– volume-title: Quantitative Magnetic Resonance Imaging
  year: 2020
  ident: e_1_2_9_12_1
– ident: e_1_2_9_50_1
  doi: 10.1016/j.neuroimage.2012.01.021
– ident: e_1_2_9_34_1
  doi: 10.1002/mrm.29710
– ident: e_1_2_9_42_1
  doi: 10.1002/mrm.22357
– ident: e_1_2_9_15_1
  doi: 10.1002/mrm.29854
– ident: e_1_2_9_57_1
  doi: 10.1002/mrm.20310
– ident: e_1_2_9_23_1
  doi: 10.1016/j.neuroimage.2019.03.047
– ident: e_1_2_9_7_1
  doi: 10.1016/j.neuroimage.2018.09.062
– ident: e_1_2_9_47_1
  doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
– ident: e_1_2_9_10_1
  doi: 10.1038/s41592-022-01737-3
– ident: e_1_2_9_8_1
  doi: 10.1002/mrm.27939
– ident: e_1_2_9_33_1
  doi: 10.1002/mrm.29661
– ident: e_1_2_9_44_1
  doi: 10.1002/jmri.25106
– ident: e_1_2_9_28_1
  doi: 10.1002/mrm.26990
– ident: e_1_2_9_51_1
  doi: 10.1002/mrm.22497
– volume-title: Quantitative MRI of the Brain: Measuring Changes Caused by Disease
  year: 2005
  ident: e_1_2_9_11_1
– ident: e_1_2_9_63_1
  doi: 10.1016/j.neuroimage.2005.09.046
– ident: e_1_2_9_41_1
  doi: 10.1002/mrm.22423
– ident: e_1_2_9_60_1
  doi: 10.1002/mrm.29384
– ident: e_1_2_9_39_1
  doi: 10.1002/mrm.24564
– ident: e_1_2_9_35_1
  doi: 10.1002/mrm.30062
– ident: e_1_2_9_2_1
  doi: 10.1016/j.dcn.2017.10.002
– ident: e_1_2_9_9_1
  doi: 10.1002/mrm.29292
– volume-title: National Institute on Drug Abuse
  year: 2021
  ident: e_1_2_9_3_1
– ident: e_1_2_9_21_1
  doi: 10.1093/cercor/bhac096
– ident: e_1_2_9_18_1
  doi: 10.1186/1532‐429X‐16‐S1‐O82
– ident: e_1_2_9_58_1
  doi: 10.1007/s10334‐024‐01211‐5
– ident: e_1_2_9_48_1
  doi: 10.1002/mrm.29865
– ident: e_1_2_9_32_1
  doi: 10.1002/mrm.29224
– ident: e_1_2_9_45_1
  doi: 10.1002/mrm.21237
– ident: e_1_2_9_31_1
  doi: 10.1016/j.mri.2021.11.014
– ident: e_1_2_9_17_1
  doi: 10.1038/s41551-018-0217-y
– ident: e_1_2_9_40_1
  doi: 10.1002/mrm.28224
– ident: e_1_2_9_6_1
  doi: 10.1016/j.neuroimage.2019.116364
– ident: e_1_2_9_61_1
SSID ssj0009974
Score 2.485853
Snippet Purpose To address the unmet need for a cross‐platform, multiparametric relaxometry technique to facilitate data harmonization across different sites. Methods...
To address the unmet need for a cross-platform, multiparametric relaxometry technique to facilitate data harmonization across different sites. A simultaneous T...
Purpose To address the unmet need for a cross‐platform, multiparametric relaxometry technique to facilitate data harmonization across different sites. Methods...
To address the unmet need for a cross-platform, multiparametric relaxometry technique to facilitate data harmonization across different sites.PURPOSETo address...
SourceID unpaywall
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 937
SubjectTerms Adult
Algorithms
Brain - diagnostic imaging
Coefficient of variation
Correlation coefficients
cross‐vendor technique
data pooling
Evaluation
Humans
Image Processing, Computer-Assisted - methods
Imaging, Three-Dimensional - methods
Linearity
Magnetic Resonance Imaging - methods
Male
Multiparametric Magnetic Resonance Imaging - methods
multiparametric mapping
NMR
Nuclear magnetic resonance
Phantoms, Imaging
quantitative magnetic resonance imaging
relaxation time
relaxometry
Reproducibility
Reproducibility of Results
Scanners
Sequences
Software
Substantia grisea
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BKmg58OjTUJB5HHpxsPfhJMcKqCqkVAgRVLi4u-uxhJo6UR6C9MRP4DfyS5jZdSIKAiFxs-W1vd55fd6d_QbgGaFizrXARAotE6U0kkkZndjKyiq3ShpPktQ_yY8H6vWpPm3qnPJemMAPsZpwY8vw_poNfFxWwc83q_vi-cXkos0YOL8Oa7kmMN6CtcHJm8MPgXyTPYwvhUhBSiQE9NWSW-jne69GpN9g5i1Yn9djs_hshsOrCNaHoKM7cLbsfMg8OW_PZ7btLn_hdfyPr7sLtxt4Gh8GfboH17DehJv9ZgF-E274jFE33YKP77EuR5PvX7_5XD1qH8uXcchPNJzxxdT_MW-V-TLik0X8yc9f4DT240A3jodmxpg5ZmZNJp4NmbqLbRgcvXr34jhpCjUkTuo0T3qW_kIr4XKtHJK8rehUKu9qchAWVVqWspMhkkDQVFluU1U5dDbtOuzK0pQ9uQOtelTjHsQkJGeQ6UpVSdiuwwEUCYT0hJVZZboRPFkKqxgHPo4iMC-Lgsar8OMVwf5SjEVjktNCMrO9JpVMI3i8ukzGxCskpsbRnNtkgjcT6yyC3SD-1VsUuTfm34_g6Uof_taFAy_eP7co-m_7_uD-Pz3wAWwILj3s09v2oTWbzPEh4aGZfdTo_A-XgQo_
  priority: 102
  providerName: Unpaywall
Title Vendor‐agnostic 3D multiparametric relaxometry improves cross‐platform reproducibility
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.30566
https://www.ncbi.nlm.nih.gov/pubmed/40420483
https://www.proquest.com/docview/3229053250
https://www.proquest.com/docview/3212120951
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.30566
UnpaywallVersion publishedVersion
Volume 94
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1522-2594
  databaseCode: DR2
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bTtwwEB0hKmj7wK3QplAUaB_6kiWJ7exGfUJchJAWIcRWtKoU2c5EQl2yq72oXZ74hH4jX1KPvQmCqgjxlihjJfF4xsf28THAJ4OKiWuBAYsFCzgXaEJKikAVihWJ4kxakaT2SXLU4ccX4mIGvlR7YZw-RD3hRpFh8zUFuFTDnTvR0KvBVYPwL8ltRyyxw6mzO-moNHUKzE1OeSbllapQGO_UJe_3Rf8AzNfwclz25eSX7HbvY1fb-Rwuwo_qsx3n5GdjPFINff1A0fGZ_7UEC1NQ6u-6VrQMM1iuwHx7uuy-AnOWJ6qHb-D7Vyzz3uD25o9l6Bl7n-37jpUoiedFgv8-bZD53aObiX9pZy1w6Ns6MAX7XTkipOyTnibJzTp-7mQVOocH53tHwfR4hkAzESZBqszYs4h1IrhG42UVNwuetIRJCwp5mOesGSEaB6AsokSFvNCoVdjS2GK5zFO2BrNlr8R34JsxmJZIIqU8N4iuSd0mGuiRxopFhWx5sF05Kus7FY7M6S3HmamvzNaXBxuVC7NpIA4zRnr2wjTE0IOt-rEJIVoXkSX2xmQTxbSFWEQevHWur9_CTVIj1X0PPtZt4bFP-Gxd-3-LrH3Wthfvn266Dq9iOnXYMts2YHY0GOMHA4VGatO2-U140Tk53f32F2BoB4w
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIigceJRXoEB4HLhkm8R2diNxQUC1QNND1aKqEopsZyIhttnVPgTLiZ_Ab-SXMGNvUhUEQtwSZawkHs_4s_35M8BTQsXMtcBIpEpEUiqkkNIqMrURdWak0E4kqdjLhofy7ZE6WoPn7V4Yrw_RTbhxZLh8zQHOE9Lbp6qhJ9OTHgPg7ByclxmNUxgS7Z-KR-W512DuS840uWx1heJ0uyt6tjf6DWJeho1FM9HLz3o0OoteXfezcxU-tB_uWSefeou56dmvv2g6_u-fXYMrK1wavvAN6TqsYbMJF4vVyvsmXHBUUTu7AcfvsanG0x_fvjuSHtmH4lXoiYmaqV6s-R_yHpkvY75Zhh_dxAXOQlcJVHAy0nMGyyFLarLirKfoLm_C4c7rg5fDaHVCQ2SFirMoNzT8rFObKWmRHG3Sfi2zgaLMYFDGVSX6CSJ5AHWdZCaWtUVr4oHFgah0lYtbsN6MG7wDIQ3DrEbWKZUVgbo-95xI6CNPjUhqPQjgceupcuKFOEovuZyWVF-lq68AtloflqtYnJWCJe0VtcU4gEfdY4oiXhrRDY4XbJOkvItYJQHc9r7v3iIpr7HwfgBPusbwt0945nz7Z4uy2C_cxd1_N30IG8ODYrfcfbP37h5cSvkQYkd024L1-XSB9wkZzc0DFwA_AYVoCf0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwEB2VIkp5gNKWEihtuDzwkm0S29lE4qXqsiqXrVBFqwoJRbYzkRDb7Govgu1TP4Fv7JfUY29SFQSqeEuUsZJ4PONj-_gY4JVBxcS1wIDFggWcCzQhJUWgSsXKRHEmrUhS7yDZP-LvT8TJAryp98I4fYhmwo0iw-ZrCnAcFuXOlWro6ei0RQA4uQW3uchSIvR1Dq_Eo7LMaTC3OWWajNe6QmG80xS93hv9ATHvwd1pNZSzH7Lfv45ebffTfQBf6w93rJPvrelEtfTZb5qO__tnK3B_jkv9XdeQHsICVquw1JuvvK_CHUsV1eM1-HKMVTEYXZz_siQ9Y--zju-IiZKoXqT579MemZ8Dupn53-zEBY59Wwmm4LAvJwSWfZLUJMVZR9GdrcNR9-3nvf1gfkJDoJkIkyBTZvhZxjoRXKNxtIrbJU9SYTKDQh4WBWtHiMYDKMsoUSEvNWoVphpTVsgiY49gsRpU-Bh8MwzTEkmnlBcG1LWp50SDPrJYsaiUqQcvak_lQyfEkTvJ5Tg39ZXb-vJgs_ZhPo_Fcc5I0l6Ythh68Lx5bKKIlkZkhYMp2UQx7SIWkQcbzvfNW7jJayS878HLpjH86xNeW9_-3SLvHfbsxZObm27D0qdON__47uDDU1iO6Qxiy3PbhMXJaIrPDDCaqC3b_i8BIYwJgQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BKmg58OjTUJB5HHpxsPfhJMcKqCqkVAgRVLi4u-uxhJo6UR6C9MRP4DfyS5jZdSIKAiFxs-W1vd55fd6d_QbgGaFizrXARAotE6U0kkkZndjKyiq3ShpPktQ_yY8H6vWpPm3qnPJemMAPsZpwY8vw_poNfFxWwc83q_vi-cXkos0YOL8Oa7kmMN6CtcHJm8MPgXyTPYwvhUhBSiQE9NWSW-jne69GpN9g5i1Yn9djs_hshsOrCNaHoKM7cLbsfMg8OW_PZ7btLn_hdfyPr7sLtxt4Gh8GfboH17DehJv9ZgF-E274jFE33YKP77EuR5PvX7_5XD1qH8uXcchPNJzxxdT_MW-V-TLik0X8yc9f4DT240A3jodmxpg5ZmZNJp4NmbqLbRgcvXr34jhpCjUkTuo0T3qW_kIr4XKtHJK8rehUKu9qchAWVVqWspMhkkDQVFluU1U5dDbtOuzK0pQ9uQOtelTjHsQkJGeQ6UpVSdiuwwEUCYT0hJVZZboRPFkKqxgHPo4iMC-Lgsar8OMVwf5SjEVjktNCMrO9JpVMI3i8ukzGxCskpsbRnNtkgjcT6yyC3SD-1VsUuTfm34_g6Uof_taFAy_eP7co-m_7_uD-Pz3wAWwILj3s09v2oTWbzPEh4aGZfdTo_A-XgQo_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vendor%E2%80%90agnostic+3D+multiparametric+relaxometry+improves+cross%E2%80%90platform+reproducibility&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Fujita%2C+Shohei&rft.au=Gagoski%2C+Borjan&rft.au=Nielsen%2C+Jon%E2%80%90Fredrik&rft.au=Zaitsev%2C+Maxim&rft.date=2025-09-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=94&rft.issue=3&rft.spage=937&rft.epage=948&rft_id=info:doi/10.1002%2Fmrm.30566&rft.externalDBID=10.1002%252Fmrm.30566&rft.externalDocID=MRM30566
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon