Methylphosphonium Tin Bromide: A 3D Perovskite Molecular Ferroelectric Semiconductor

3D ABX3 organic–inorganic halide perovskite (OIHP) semiconductors like [CH3NH3]PbI3 have received great attention because of their various properties for wide applications. However, although a number of low‐dimensional lead‐based OIHP ferroelectric semiconductors have been documented, obtaining 3D A...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 32; no. 47; pp. e2005213 - n/a
Main Authors Zhang, Han‐Yue, Chen, Xiao‐Gang, Zhang, Zhi‐Xu, Song, Xian‐Jiang, Zhang, Tie, Pan, Qiang, Zhang, Yi, Xiong, Ren‐Gen
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.11.2020
Subjects
Online AccessGet full text
ISSN0935-9648
1521-4095
1521-4095
DOI10.1002/adma.202005213

Cover

Abstract 3D ABX3 organic–inorganic halide perovskite (OIHP) semiconductors like [CH3NH3]PbI3 have received great attention because of their various properties for wide applications. However, although a number of low‐dimensional lead‐based OIHP ferroelectric semiconductors have been documented, obtaining 3D ABX3 OIHP ferroelectric semiconductors is challenging. Herein, an A‐site cation [CH3PH3]+ (methylphosphonium, MP) is employed to successfully obtain a lead‐free 3D ABX3 OIHP ferroelectric semiconductor MPSnBr3, which shows clear above‐room‐temperature ferroelectricity and a direct bandgap of 2.62 eV. It is emphasized that MPSnBr3 is a multiaxial molecular ferroelectric with the number of ferroelectric polar axes being as many as 12, which is far more than those of the other OIHP ferroelectric semiconductors and even the classical inorganic perovskite ferroelectric semiconductors BiFeO3 (4 polar axes) and BaTiO3 (3 polar axes). MPSnBr3 is the first MP‐based 3D ABX3 OIHP ferroelectric semiconductor. This finding throws light on the exploration of other excellent 3D ABX3 OIHP ferroelectric semiconductors with great application prospects. MPSnBr3 (MP = methylphosphonium) is the first MP‐based 3D ABX3 hybrid perovskite ferroelectric semiconductor. MPSnBr3 is lead‐free and shows clear ferroelectricity with the number of ferroelectric polar axes up to 12, much more than that of other hybrid perovskite ferroelectric semiconductors. MPSnBr3 also exhibits a direct bandgap of 2.62 eV.
AbstractList 3D ABX3 organic-inorganic halide perovskite (OIHP) semiconductors like [CH3 NH3 ]PbI3 have received great attention because of their various properties for wide applications. However, although a number of low-dimensional lead-based OIHP ferroelectric semiconductors have been documented, obtaining 3D ABX3 OIHP ferroelectric semiconductors is challenging. Herein, an A-site cation [CH3 PH3 ]+ (methylphosphonium, MP) is employed to successfully obtain a lead-free 3D ABX3 OIHP ferroelectric semiconductor MPSnBr3 , which shows clear above-room-temperature ferroelectricity and a direct bandgap of 2.62 eV. It is emphasized that MPSnBr3 is a multiaxial molecular ferroelectric with the number of ferroelectric polar axes being as many as 12, which is far more than those of the other OIHP ferroelectric semiconductors and even the classical inorganic perovskite ferroelectric semiconductors BiFeO3 (4 polar axes) and BaTiO3 (3 polar axes). MPSnBr3 is the first MP-based 3D ABX3 OIHP ferroelectric semiconductor. This finding throws light on the exploration of other excellent 3D ABX3 OIHP ferroelectric semiconductors with great application prospects.3D ABX3 organic-inorganic halide perovskite (OIHP) semiconductors like [CH3 NH3 ]PbI3 have received great attention because of their various properties for wide applications. However, although a number of low-dimensional lead-based OIHP ferroelectric semiconductors have been documented, obtaining 3D ABX3 OIHP ferroelectric semiconductors is challenging. Herein, an A-site cation [CH3 PH3 ]+ (methylphosphonium, MP) is employed to successfully obtain a lead-free 3D ABX3 OIHP ferroelectric semiconductor MPSnBr3 , which shows clear above-room-temperature ferroelectricity and a direct bandgap of 2.62 eV. It is emphasized that MPSnBr3 is a multiaxial molecular ferroelectric with the number of ferroelectric polar axes being as many as 12, which is far more than those of the other OIHP ferroelectric semiconductors and even the classical inorganic perovskite ferroelectric semiconductors BiFeO3 (4 polar axes) and BaTiO3 (3 polar axes). MPSnBr3 is the first MP-based 3D ABX3 OIHP ferroelectric semiconductor. This finding throws light on the exploration of other excellent 3D ABX3 OIHP ferroelectric semiconductors with great application prospects.
3D ABX3 organic–inorganic halide perovskite (OIHP) semiconductors like [CH3NH3]PbI3 have received great attention because of their various properties for wide applications. However, although a number of low‐dimensional lead‐based OIHP ferroelectric semiconductors have been documented, obtaining 3D ABX3 OIHP ferroelectric semiconductors is challenging. Herein, an A‐site cation [CH3PH3]+ (methylphosphonium, MP) is employed to successfully obtain a lead‐free 3D ABX3 OIHP ferroelectric semiconductor MPSnBr3, which shows clear above‐room‐temperature ferroelectricity and a direct bandgap of 2.62 eV. It is emphasized that MPSnBr3 is a multiaxial molecular ferroelectric with the number of ferroelectric polar axes being as many as 12, which is far more than those of the other OIHP ferroelectric semiconductors and even the classical inorganic perovskite ferroelectric semiconductors BiFeO3 (4 polar axes) and BaTiO3 (3 polar axes). MPSnBr3 is the first MP‐based 3D ABX3 OIHP ferroelectric semiconductor. This finding throws light on the exploration of other excellent 3D ABX3 OIHP ferroelectric semiconductors with great application prospects.
3D ABX 3 organic–inorganic halide perovskite (OIHP) semiconductors like [CH 3 NH 3 ]PbI 3 have received great attention because of their various properties for wide applications. However, although a number of low‐dimensional lead‐based OIHP ferroelectric semiconductors have been documented, obtaining 3D ABX 3 OIHP ferroelectric semiconductors is challenging. Herein, an A‐site cation [CH 3 PH 3 ] + (methylphosphonium, MP) is employed to successfully obtain a lead‐free 3D ABX 3 OIHP ferroelectric semiconductor MPSnBr 3 , which shows clear above‐room‐temperature ferroelectricity and a direct bandgap of 2.62 eV. It is emphasized that MPSnBr 3 is a multiaxial molecular ferroelectric with the number of ferroelectric polar axes being as many as 12, which is far more than those of the other OIHP ferroelectric semiconductors and even the classical inorganic perovskite ferroelectric semiconductors BiFeO 3 (4 polar axes) and BaTiO 3 (3 polar axes). MPSnBr 3 is the first MP‐based 3D ABX 3 OIHP ferroelectric semiconductor. This finding throws light on the exploration of other excellent 3D ABX 3 OIHP ferroelectric semiconductors with great application prospects.
3D ABX3 organic–inorganic halide perovskite (OIHP) semiconductors like [CH3NH3]PbI3 have received great attention because of their various properties for wide applications. However, although a number of low‐dimensional lead‐based OIHP ferroelectric semiconductors have been documented, obtaining 3D ABX3 OIHP ferroelectric semiconductors is challenging. Herein, an A‐site cation [CH3PH3]+ (methylphosphonium, MP) is employed to successfully obtain a lead‐free 3D ABX3 OIHP ferroelectric semiconductor MPSnBr3, which shows clear above‐room‐temperature ferroelectricity and a direct bandgap of 2.62 eV. It is emphasized that MPSnBr3 is a multiaxial molecular ferroelectric with the number of ferroelectric polar axes being as many as 12, which is far more than those of the other OIHP ferroelectric semiconductors and even the classical inorganic perovskite ferroelectric semiconductors BiFeO3 (4 polar axes) and BaTiO3 (3 polar axes). MPSnBr3 is the first MP‐based 3D ABX3 OIHP ferroelectric semiconductor. This finding throws light on the exploration of other excellent 3D ABX3 OIHP ferroelectric semiconductors with great application prospects. MPSnBr3 (MP = methylphosphonium) is the first MP‐based 3D ABX3 hybrid perovskite ferroelectric semiconductor. MPSnBr3 is lead‐free and shows clear ferroelectricity with the number of ferroelectric polar axes up to 12, much more than that of other hybrid perovskite ferroelectric semiconductors. MPSnBr3 also exhibits a direct bandgap of 2.62 eV.
Author Song, Xian‐Jiang
Xiong, Ren‐Gen
Chen, Xiao‐Gang
Pan, Qiang
Zhang, Han‐Yue
Zhang, Zhi‐Xu
Zhang, Yi
Zhang, Tie
Author_xml – sequence: 1
  givenname: Han‐Yue
  surname: Zhang
  fullname: Zhang, Han‐Yue
  email: zhanghanyue@seu.edu.cn
  organization: Southeast University
– sequence: 2
  givenname: Xiao‐Gang
  surname: Chen
  fullname: Chen, Xiao‐Gang
  organization: Southeast University
– sequence: 3
  givenname: Zhi‐Xu
  surname: Zhang
  fullname: Zhang, Zhi‐Xu
  organization: Southeast University
– sequence: 4
  givenname: Xian‐Jiang
  surname: Song
  fullname: Song, Xian‐Jiang
  organization: Southeast University
– sequence: 5
  givenname: Tie
  surname: Zhang
  fullname: Zhang, Tie
  organization: Southeast University
– sequence: 6
  givenname: Qiang
  surname: Pan
  fullname: Pan, Qiang
  organization: Southeast University
– sequence: 7
  givenname: Yi
  surname: Zhang
  fullname: Zhang, Yi
  organization: Southeast University
– sequence: 8
  givenname: Ren‐Gen
  orcidid: 0000-0003-2364-0193
  surname: Xiong
  fullname: Xiong, Ren‐Gen
  email: xiongrg@seu.edu.cn
  organization: Southeast University
BookMark eNqFkN9LwzAQx4NMcP549bngiy-daa5pE9_mdCo4FJzPJUuuLLNtZtIq--_tmCgI4sNxHHw-d8f3kAwa1yAhpwkdJZSyC2VqNWKUUcpZAntkmPQ9TqnkAzKkEngss1QckMMQVpRSmdFsSOYzbJebar10oa_GdnU0t0105V1tDV5G4wiuoyf07j282hajmatQd5Xy0RS9d9hPrbc6esbaateYTrfOH5P9UlUBT776EXmZ3swnd_HD4-39ZPwQa-AU4hxTTXHBUZlFbjAvBaSgpRI54yLHXAIalpYIpUQDUuRiYYxKJIN8kSgEOCLnu71r7946DG1R26CxqlSDrgsFSzlkAkTCe_TsF7pynW_673oqAw5CsKynRjtKexeCx7JYe1srvykSWmxDLrYhF98h90L6S9C2Va11TeuVrf7W5E77sBVu_jlSjK9n4x_3E8UDk7A
CitedBy_id crossref_primary_10_1021_acs_jpclett_3c02248
crossref_primary_10_1039_D2QI00964A
crossref_primary_10_1002_smll_202203882
crossref_primary_10_1002_adma_202314292
crossref_primary_10_1039_D2TC03497B
crossref_primary_10_1002_ifm2_10
crossref_primary_10_1002_ange_202407102
crossref_primary_10_1039_D2NJ00642A
crossref_primary_10_1002_adma_202205410
crossref_primary_10_1002_ejic_202100671
crossref_primary_10_1021_acs_chemmater_1c01699
crossref_primary_10_1039_D1SC07045B
crossref_primary_10_1039_D2DT00592A
crossref_primary_10_1039_D1QI00736J
crossref_primary_10_1039_D2CP01123A
crossref_primary_10_1039_D1NJ04448F
crossref_primary_10_1039_D3CS00262D
crossref_primary_10_1002_adma_202108556
crossref_primary_10_1002_anie_202214984
crossref_primary_10_1002_anie_202218429
crossref_primary_10_1002_apxr_202400087
crossref_primary_10_1021_acs_cgd_2c00219
crossref_primary_10_1016_j_nantod_2020_101062
crossref_primary_10_1002_aelm_202200415
crossref_primary_10_1021_acs_cgd_3c00519
crossref_primary_10_1039_D3MA00202K
crossref_primary_10_1039_D2SC05857J
crossref_primary_10_1002_ange_202210809
crossref_primary_10_1002_smll_202412284
crossref_primary_10_1016_j_mtphys_2021_100459
crossref_primary_10_1039_D0DT04415F
crossref_primary_10_1021_acs_jpclett_4c02708
crossref_primary_10_1002_anie_202407102
crossref_primary_10_1002_chem_202303415
crossref_primary_10_1039_D3DT01260C
crossref_primary_10_1021_acs_cgd_4c00228
crossref_primary_10_1039_D4QI00303A
crossref_primary_10_1039_D4NJ04595E
crossref_primary_10_1039_D3NR06373A
crossref_primary_10_1021_acs_jpcc_3c04343
crossref_primary_10_1039_D2NJ03330E
crossref_primary_10_1002_adma_202104107
crossref_primary_10_1021_acs_jpclett_1c01939
crossref_primary_10_1021_acs_jpcc_2c06818
crossref_primary_10_1002_anie_202210809
crossref_primary_10_1016_j_nanoen_2025_110774
crossref_primary_10_1021_jacs_4c01882
crossref_primary_10_1039_D2DT01413K
crossref_primary_10_1021_acs_jpcc_2c07306
crossref_primary_10_1021_acs_chemmater_4c02043
crossref_primary_10_1039_D0CP06090A
crossref_primary_10_1515_ntrev_2022_0494
crossref_primary_10_35848_1882_0786_acc569
crossref_primary_10_1002_cphc_202400801
crossref_primary_10_1002_smll_202407843
crossref_primary_10_1002_anie_202401221
crossref_primary_10_1039_D2CC06408A
crossref_primary_10_1016_j_jlumin_2024_120753
crossref_primary_10_1039_D1TC05195D
crossref_primary_10_1039_D2QM01340A
crossref_primary_10_1093_nsr_nwac240
crossref_primary_10_3390_nano14231920
crossref_primary_10_1021_jacs_2c03443
crossref_primary_10_1002_adma_202305471
crossref_primary_10_1088_2515_7655_ac01bf
crossref_primary_10_1103_PhysRevMaterials_6_104603
crossref_primary_10_1002_advs_202102614
crossref_primary_10_1021_jacs_5c01725
crossref_primary_10_1039_D2DT03889G
crossref_primary_10_1021_acs_chemmater_4c01665
crossref_primary_10_1021_acsmaterialslett_3c00539
crossref_primary_10_1039_D1NJ04470B
crossref_primary_10_1021_acs_inorgchem_2c02497
crossref_primary_10_1002_ange_202401221
crossref_primary_10_1021_acs_chemmater_1c03605
crossref_primary_10_1002_ange_202214984
crossref_primary_10_1021_acs_inorgchem_4c04763
crossref_primary_10_1039_D2DT00991A
crossref_primary_10_1063_5_0051129
crossref_primary_10_1063_5_0077414
crossref_primary_10_1002_ejic_202200172
crossref_primary_10_1021_jacs_2c07535
crossref_primary_10_1002_ange_202218429
crossref_primary_10_1021_acs_cgd_3c00693
Cites_doi 10.1002/adma.201600265
10.1143/JPSJ.27.387
10.1021/acs.chemrev.5b00715
10.1039/C6MH00519E
10.1016/0927-0256(96)00008-0
10.1002/adma.201901843
10.1021/acs.chemmater.9b05273
10.1002/anie.201914874
10.1002/adma.201808088
10.1021/jacs.9b02558
10.1126/sciadv.aay4213
10.1002/adma.201505224
10.1021/jacs.8b04014
10.1002/adma.202002972
10.1002/adma.201807376
10.1021/jacs.9b10048
10.1002/anie.201803716
10.1039/C7TA08992A
10.1002/adma.201700831
10.1021/jacs.8b04600
10.1002/anie.201910599
10.1002/zaac.19865360515
10.1039/C5SC00961H
10.1021/acs.chemmater.0c00973
10.1021/ja408283a
10.1103/PhysRevB.54.11169
10.1038/natrevmats.2016.99
10.1002/adfm.201908657
10.1039/C5CS00308C
10.1021/acs.accounts.8b00677
10.1038/s41563-017-0006-0
10.1038/ncomms8338
10.1107/S0108768110014734
10.1021/acs.jpcc.7b03091
10.1021/jacs.0c00375
10.1021/jacs.9b12368
10.1016/S0021-9614(05)80179-X
10.1016/j.jssc.2012.05.010
10.1002/adma.201903830
10.1002/anie.201915094
10.1126/science.aaa6442
10.1021/acs.chemrev.6b00136
10.1055/s-1977-24435
10.1002/adma.201903937
10.1021/jacs.8b08286
10.1016/j.nanoen.2018.02.049
10.1002/adma.201505215
10.1103/PhysRevLett.77.3865
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
2020 Wiley-VCH GmbH.
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
– notice: 2020 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202005213
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 10_1002_adma_202005213
ADMA202005213
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21991142; 21831004
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c3503-7e4c0eb5eadb7de7f8343c9a872587e793ed24fe3f9ed39878bdda19237b1ae33
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Thu Jul 10 19:22:59 EDT 2025
Sun Jul 13 04:36:27 EDT 2025
Thu Apr 24 23:03:54 EDT 2025
Tue Jul 01 02:32:54 EDT 2025
Wed Jan 22 16:31:19 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 47
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3503-7e4c0eb5eadb7de7f8343c9a872587e793ed24fe3f9ed39878bdda19237b1ae33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2364-0193
PQID 2463538826
PQPubID 2045203
PageCount 8
ParticipantIDs proquest_miscellaneous_2453683815
proquest_journals_2463538826
crossref_primary_10_1002_adma_202005213
crossref_citationtrail_10_1002_adma_202005213
wiley_primary_10_1002_adma_202005213_ADMA202005213
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-01
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2016 2017 2016; 116 2 28
2019; 31
2019; 52
2020; 142
2015 2018; 6 6
2018 2017; 48 121
2015; 349
1977 1986; 1977 536
1996 1996; 54 6
1996; 77
2018 2017; 140 29
2010; 66
2012; 195
2018; 17
2019 2016; 31 28
1991; 23
2018 2018 2016 2015 2019 2018; 140 57 28 6 141 140
2020 2019 2019 2020; 6 31 141 59
2013; 135
2020 2019 2020 2020; 32 31 59 142
2020 2020; 32 32
1969; 27
2017 2016 2020; 4 116 32
2020 2020; 59 30
2016; 45
e_1_2_5_24_2
e_1_2_5_25_1
e_1_2_5_23_1
e_1_2_5_23_2
e_1_2_5_24_1
e_1_2_5_21_1
e_1_2_5_22_1
e_1_2_5_20_1
e_1_2_5_7_6
e_1_2_5_14_2
e_1_2_5_15_1
e_1_2_5_7_5
e_1_2_5_14_1
e_1_2_5_7_4
e_1_2_5_8_3
e_1_2_5_9_2
e_1_2_5_17_1
e_1_2_5_7_3
e_1_2_5_8_2
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_7_2
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_4_4
e_1_2_5_6_2
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_4_3
e_1_2_5_5_2
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_2_4
e_1_2_5_4_2
e_1_2_5_5_1
e_1_2_5_11_2
e_1_2_5_12_1
e_1_2_5_2_3
e_1_2_5_3_2
e_1_2_5_4_1
e_1_2_5_1_3
e_1_2_5_2_2
e_1_2_5_3_1
e_1_2_5_1_2
e_1_2_5_2_1
e_1_2_5_1_1
e_1_2_5_19_1
e_1_2_5_18_1
References_xml – volume: 59 30
  start-page: 424
  year: 2020 2020
  publication-title: Angew. Chem., Int. Ed. Adv. Funct. Mater.
– volume: 48 121
  start-page: 20
  year: 2018 2017
  publication-title: Nano Energy J. Phys. Chem. C
– volume: 6 31 141 59
  start-page: 7693 3933
  year: 2020 2019 2019 2020
  publication-title: Sci. Adv. Adv. Mater. J. Am. Chem. Soc. Angew. Chem., Int. Ed.
– volume: 140 29
  start-page: 8051
  year: 2018 2017
  publication-title: J. Am. Chem. Soc. Adv. Mater.
– volume: 140 57 28 6 141 140
  start-page: 8140 2579 7338 6806
  year: 2018 2018 2016 2015 2019 2018
  publication-title: J. Am. Chem. Soc. Angew. Chem., Int. Ed. Adv. Mater. Nat. Commun. J. Am. Chem. Soc. J. Am. Chem. Soc.
– volume: 45
  start-page: 3811
  year: 2016
  publication-title: Chem. Soc. Rev.
– volume: 27
  start-page: 387
  year: 1969
  publication-title: J. Phys. Soc. Jpn.
– volume: 142
  start-page: 4604
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 52
  start-page: 1928
  year: 2019
  publication-title: Acc. Chem. Res.
– volume: 1977 536
  start-page: 450 129
  year: 1977 1986
  publication-title: Synthesis Z. Anorg. Allg. Chem.
– volume: 4 116 32
  start-page: 206
  year: 2017 2016 2020
  publication-title: Mater. Horiz. Chem. Rev. Adv. Mater.
– volume: 32 31 59 142
  start-page: 1 1077
  year: 2020 2019 2020 2020
  publication-title: Adv. Mater. Adv. Mater. Angew. Chem., Int. Ed. J. Am. Chem. Soc.
– volume: 77
  start-page: 3865
  year: 1996
  publication-title: Phys. Rev. Lett.
– volume: 23
  start-page: 987
  year: 1991
  publication-title: J. Chem. Thermodyn.
– volume: 116 2 28
  start-page: 4558 5778
  year: 2016 2017 2016
  publication-title: Chem. Rev. Nat. Rev. Mater. Adv. Mater.
– volume: 17
  start-page: 261
  year: 2018
  publication-title: Nat. Mater.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 135
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 349
  start-page: 1314
  year: 2015
  publication-title: Science
– volume: 31 28
  start-page: 5153
  year: 2019 2016
  publication-title: Adv. Mater. Adv. Mater.
– volume: 32 32
  start-page: 1667 4072
  year: 2020 2020
  publication-title: Chem. Mater. Chem. Mater.
– volume: 6 6
  start-page: 3430 6463
  year: 2015 2018
  publication-title: Chem. Sci. J. Mater. Chem. A
– volume: 195
  start-page: 2
  year: 2012
  publication-title: J. Solid State Chem.
– volume: 54 6
  start-page: 15
  year: 1996 1996
  publication-title: Phys. Rev. B Comput. Mater. Sci.
– volume: 66
  start-page: 422
  year: 2010
  publication-title: Acta Crystallogr., Sect. B
– ident: e_1_2_5_1_3
  doi: 10.1002/adma.201600265
– ident: e_1_2_5_18_1
  doi: 10.1143/JPSJ.27.387
– ident: e_1_2_5_1_1
  doi: 10.1021/acs.chemrev.5b00715
– ident: e_1_2_5_8_1
  doi: 10.1039/C6MH00519E
– ident: e_1_2_5_24_2
  doi: 10.1016/0927-0256(96)00008-0
– ident: e_1_2_5_4_2
  doi: 10.1002/adma.201901843
– ident: e_1_2_5_11_1
  doi: 10.1021/acs.chemmater.9b05273
– ident: e_1_2_5_2_3
  doi: 10.1002/anie.201914874
– ident: e_1_2_5_2_2
  doi: 10.1002/adma.201808088
– ident: e_1_2_5_4_3
  doi: 10.1021/jacs.9b02558
– ident: e_1_2_5_4_1
  doi: 10.1126/sciadv.aay4213
– ident: e_1_2_5_7_3
  doi: 10.1002/adma.201505224
– ident: e_1_2_5_7_6
  doi: 10.1021/jacs.8b04014
– ident: e_1_2_5_2_1
  doi: 10.1002/adma.202002972
– ident: e_1_2_5_3_1
  doi: 10.1002/adma.201807376
– ident: e_1_2_5_7_5
  doi: 10.1021/jacs.9b10048
– ident: e_1_2_5_7_2
  doi: 10.1002/anie.201803716
– ident: e_1_2_5_9_2
  doi: 10.1039/C7TA08992A
– ident: e_1_2_5_14_2
  doi: 10.1002/adma.201700831
– ident: e_1_2_5_14_1
  doi: 10.1021/jacs.8b04600
– ident: e_1_2_5_6_1
  doi: 10.1002/anie.201910599
– ident: e_1_2_5_23_2
  doi: 10.1002/zaac.19865360515
– ident: e_1_2_5_9_1
  doi: 10.1039/C5SC00961H
– ident: e_1_2_5_11_2
  doi: 10.1021/acs.chemmater.0c00973
– ident: e_1_2_5_20_1
  doi: 10.1021/ja408283a
– ident: e_1_2_5_24_1
  doi: 10.1103/PhysRevB.54.11169
– ident: e_1_2_5_1_2
  doi: 10.1038/natrevmats.2016.99
– ident: e_1_2_5_6_2
  doi: 10.1002/adfm.201908657
– ident: e_1_2_5_15_1
  doi: 10.1039/C5CS00308C
– ident: e_1_2_5_12_1
  doi: 10.1021/acs.accounts.8b00677
– ident: e_1_2_5_22_1
  doi: 10.1038/s41563-017-0006-0
– ident: e_1_2_5_7_4
  doi: 10.1038/ncomms8338
– ident: e_1_2_5_16_1
  doi: 10.1107/S0108768110014734
– ident: e_1_2_5_5_2
  doi: 10.1021/acs.jpcc.7b03091
– ident: e_1_2_5_13_1
  doi: 10.1021/jacs.0c00375
– ident: e_1_2_5_2_4
  doi: 10.1021/jacs.9b12368
– ident: e_1_2_5_17_1
  doi: 10.1016/S0021-9614(05)80179-X
– ident: e_1_2_5_21_1
  doi: 10.1016/j.jssc.2012.05.010
– ident: e_1_2_5_10_1
  doi: 10.1002/adma.201903830
– ident: e_1_2_5_4_4
  doi: 10.1002/anie.201915094
– ident: e_1_2_5_19_1
  doi: 10.1126/science.aaa6442
– ident: e_1_2_5_8_2
  doi: 10.1021/acs.chemrev.6b00136
– ident: e_1_2_5_23_1
  doi: 10.1055/s-1977-24435
– ident: e_1_2_5_8_3
  doi: 10.1002/adma.201903937
– ident: e_1_2_5_7_1
  doi: 10.1021/jacs.8b08286
– ident: e_1_2_5_5_1
  doi: 10.1016/j.nanoen.2018.02.049
– ident: e_1_2_5_3_2
  doi: 10.1002/adma.201505215
– ident: e_1_2_5_25_1
  doi: 10.1103/PhysRevLett.77.3865
SSID ssj0009606
Score 2.6105423
Snippet 3D ABX3 organic–inorganic halide perovskite (OIHP) semiconductors like [CH3NH3]PbI3 have received great attention because of their various properties for wide...
3D ABX 3 organic–inorganic halide perovskite (OIHP) semiconductors like [CH 3 NH 3 ]PbI 3 have received great attention because of their various properties for...
3D ABX3 organic-inorganic halide perovskite (OIHP) semiconductors like [CH3 NH3 ]PbI3 have received great attention because of their various properties for...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e2005213
SubjectTerms 3D hybrid perovskites
Axes (reference lines)
Barium titanates
Bismuth compounds
Ferroelectric materials
Ferroelectricity
Materials science
methylphosphonium
molecular ferroelectrics
multiaxial ferroelectric nature
Perovskites
Semiconductors
Title Methylphosphonium Tin Bromide: A 3D Perovskite Molecular Ferroelectric Semiconductor
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202005213
https://www.proquest.com/docview/2463538826
https://www.proquest.com/docview/2453683815
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3Pa9swFMfF6Gk9rN26saxZ0WDQk9pEv91bWBrKIGN0CfRmJOsJwlp7OEkP_esrybGTDkphu9lYwrKkJ30lP30eQl9lkEJKyoIopyzhwhtiOPVEU698puKUmhxkf8irOf9-I252TvE3fIhuwy1aRhqvo4EbuzzfQkONS9ygRA5KYWuHTEZ4_vh6y4-K8jzB9pggmeS6pTYO6PnT7E9npa3U3BWsacaZHCDTlrVxNPl9tl7Zs-LhL4zj_3zMIXqzkaN41PSft-gVlO_Q_g6k8AjNphAaM_qwL6Mf-2J9h2eLEof1-93CwQUeYTbGP6Gu7pdxJxhP24C7eAJ1XTVxdhYF_hXd8Ksy8mWr-j2aTy5n367IJhYDKZgYMKKAFwOwInQ8qxworxlnRWa0okIrCFYOjnIPzGfgWKaVts6ZKB-VHRpg7APaK6sSPiIshsqFkUVrryx31OkCjNYCnPTWm6HoIdK2RV5sQOUxXsZt3iCWaR5rK-9qq4dOu_R_GkTHsyn7bdPmG1Nd5pQHzcXCQkP20JfucTCy-OfElFCtYxrBpA7iJhSOpnZ84U35aDwddXef_iXTMXodr5tzj320t6rX8DkIoJU9SZ38ERZa_Lw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfQeAAe-EbrNsBISDx5a_0RO3urGFWBdULQSbxFdnyWKliC0nYP--vnc5p0Q0JI8JjEVmzfne9n-_w7Qt5mEQrpLCuZ9toxqYJlVvLADA865BpdagqQPcum5_LTd9VFE-JdmJYfot9wQ8tI8zUaOG5IH21ZQ61PxEGJOgjz1t6VEW2kk9qvWwYpBOiJbk8olmfSdLyNQ350u_5tv7QFmzcha_I5k0fEda1tQ01-HK5X7rC8-o3I8b-685g83CBSOm5V6Am5A9VT8uAGT-EzMp9BlCeGsS8xlH2xvqDzRUXjEv5i4eGYjqk4oV-gqS-XuBlMZ13OXTqBpqnbVDuLkn7DSPy6QorZunlOzicf5u-nbJOOgZVCDQXTIMshOBV1z2kPOhghRZlbo7kyGqKhg-cygAg5eJEbbZz3FhGkdiMLQrwgO1VdwS6haqR9nFyMCdpJz70pwRqjwGfBBTtSA8I6YRTlhqscU2b8LFqWZV7gaBX9aA3Iu778r5al448lDzrZFhtrXRZcRtgl4lojG5A3_edoZ3h4Yiuo11hGicxEfBMbx5Mg__KnYnwyG_dPe_9S6TW5N53PTovTj2ef98l9fN9egzwgO6tmDS8jHlq5V0njrwHwSQDp
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfQkBA88I1WGGAkJJ68tf4ObxWlGh-dJuikvUV2fJYqWDKl7R721-NLmrRDQkjwmOSsOL4738_O-XeEvNUJChmtC2aC8Uyq6JiTPDLLo4mZwZDaJMie6OMz-flcne-c4m_5IfoNN_SMZr5GB78M8WhLGupCwxvUMAdh2drbUqdwhrDo25ZACvF5w7YnFMu0tB1t45Af3Wx_MyxtseYuYm1CzvQBcV1n20yTH4frlT8srn_jcfyfr3lI7m_wKB23BvSI3ILyMbm3w1L4hMxnkLSJSexLTGRfrC_ofFHStIC_WAR4T8dUTOgp1NXVEreC6ayruEunUNdVW2hnUdDvmIdflUgwW9VPydn04_zDMdsUY2CFUEPBDMhiCF4ly_MmgIlWSFFkzhqurIHk5hC4jCBiBkFk1lgfgkP8aPzIgRDPyF5ZlbBPqBqZkKYWa6PxMvBgC3DWKgg6-uhGakBYp4u82DCVY8GMn3nLscxzHK28H60BedfLX7YcHX-UPOhUm298dZlzmUCXSCsNPSBv-sfJy_DXiSuhWqOMEtomdJM6xxs9_uVN-XgyG_dXz_-l0Wty53Qyzb9-OvnygtzF2-0ZyAOyt6rX8DKBoZV_1dj7L-dl_4k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Methylphosphonium+Tin+Bromide%3A+A+3D+Perovskite+Molecular+Ferroelectric+Semiconductor&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhang%2C+Han-Yue&rft.au=Chen%2C+Xiao-Gang&rft.au=Zhang%2C+Zhi-Xu&rft.au=Song%2C+Xian-Jiang&rft.date=2020-11-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=32&rft.issue=47&rft.spage=e2005213&rft_id=info:doi/10.1002%2Fadma.202005213&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon