Methylphosphonium Tin Bromide: A 3D Perovskite Molecular Ferroelectric Semiconductor
3D ABX3 organic–inorganic halide perovskite (OIHP) semiconductors like [CH3NH3]PbI3 have received great attention because of their various properties for wide applications. However, although a number of low‐dimensional lead‐based OIHP ferroelectric semiconductors have been documented, obtaining 3D A...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 32; no. 47; pp. e2005213 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.11.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0935-9648 1521-4095 1521-4095 |
DOI | 10.1002/adma.202005213 |
Cover
Abstract | 3D ABX3 organic–inorganic halide perovskite (OIHP) semiconductors like [CH3NH3]PbI3 have received great attention because of their various properties for wide applications. However, although a number of low‐dimensional lead‐based OIHP ferroelectric semiconductors have been documented, obtaining 3D ABX3 OIHP ferroelectric semiconductors is challenging. Herein, an A‐site cation [CH3PH3]+ (methylphosphonium, MP) is employed to successfully obtain a lead‐free 3D ABX3 OIHP ferroelectric semiconductor MPSnBr3, which shows clear above‐room‐temperature ferroelectricity and a direct bandgap of 2.62 eV. It is emphasized that MPSnBr3 is a multiaxial molecular ferroelectric with the number of ferroelectric polar axes being as many as 12, which is far more than those of the other OIHP ferroelectric semiconductors and even the classical inorganic perovskite ferroelectric semiconductors BiFeO3 (4 polar axes) and BaTiO3 (3 polar axes). MPSnBr3 is the first MP‐based 3D ABX3 OIHP ferroelectric semiconductor. This finding throws light on the exploration of other excellent 3D ABX3 OIHP ferroelectric semiconductors with great application prospects.
MPSnBr3 (MP = methylphosphonium) is the first MP‐based 3D ABX3 hybrid perovskite ferroelectric semiconductor. MPSnBr3 is lead‐free and shows clear ferroelectricity with the number of ferroelectric polar axes up to 12, much more than that of other hybrid perovskite ferroelectric semiconductors. MPSnBr3 also exhibits a direct bandgap of 2.62 eV. |
---|---|
AbstractList | 3D ABX3 organic-inorganic halide perovskite (OIHP) semiconductors like [CH3 NH3 ]PbI3 have received great attention because of their various properties for wide applications. However, although a number of low-dimensional lead-based OIHP ferroelectric semiconductors have been documented, obtaining 3D ABX3 OIHP ferroelectric semiconductors is challenging. Herein, an A-site cation [CH3 PH3 ]+ (methylphosphonium, MP) is employed to successfully obtain a lead-free 3D ABX3 OIHP ferroelectric semiconductor MPSnBr3 , which shows clear above-room-temperature ferroelectricity and a direct bandgap of 2.62 eV. It is emphasized that MPSnBr3 is a multiaxial molecular ferroelectric with the number of ferroelectric polar axes being as many as 12, which is far more than those of the other OIHP ferroelectric semiconductors and even the classical inorganic perovskite ferroelectric semiconductors BiFeO3 (4 polar axes) and BaTiO3 (3 polar axes). MPSnBr3 is the first MP-based 3D ABX3 OIHP ferroelectric semiconductor. This finding throws light on the exploration of other excellent 3D ABX3 OIHP ferroelectric semiconductors with great application prospects.3D ABX3 organic-inorganic halide perovskite (OIHP) semiconductors like [CH3 NH3 ]PbI3 have received great attention because of their various properties for wide applications. However, although a number of low-dimensional lead-based OIHP ferroelectric semiconductors have been documented, obtaining 3D ABX3 OIHP ferroelectric semiconductors is challenging. Herein, an A-site cation [CH3 PH3 ]+ (methylphosphonium, MP) is employed to successfully obtain a lead-free 3D ABX3 OIHP ferroelectric semiconductor MPSnBr3 , which shows clear above-room-temperature ferroelectricity and a direct bandgap of 2.62 eV. It is emphasized that MPSnBr3 is a multiaxial molecular ferroelectric with the number of ferroelectric polar axes being as many as 12, which is far more than those of the other OIHP ferroelectric semiconductors and even the classical inorganic perovskite ferroelectric semiconductors BiFeO3 (4 polar axes) and BaTiO3 (3 polar axes). MPSnBr3 is the first MP-based 3D ABX3 OIHP ferroelectric semiconductor. This finding throws light on the exploration of other excellent 3D ABX3 OIHP ferroelectric semiconductors with great application prospects. 3D ABX3 organic–inorganic halide perovskite (OIHP) semiconductors like [CH3NH3]PbI3 have received great attention because of their various properties for wide applications. However, although a number of low‐dimensional lead‐based OIHP ferroelectric semiconductors have been documented, obtaining 3D ABX3 OIHP ferroelectric semiconductors is challenging. Herein, an A‐site cation [CH3PH3]+ (methylphosphonium, MP) is employed to successfully obtain a lead‐free 3D ABX3 OIHP ferroelectric semiconductor MPSnBr3, which shows clear above‐room‐temperature ferroelectricity and a direct bandgap of 2.62 eV. It is emphasized that MPSnBr3 is a multiaxial molecular ferroelectric with the number of ferroelectric polar axes being as many as 12, which is far more than those of the other OIHP ferroelectric semiconductors and even the classical inorganic perovskite ferroelectric semiconductors BiFeO3 (4 polar axes) and BaTiO3 (3 polar axes). MPSnBr3 is the first MP‐based 3D ABX3 OIHP ferroelectric semiconductor. This finding throws light on the exploration of other excellent 3D ABX3 OIHP ferroelectric semiconductors with great application prospects. 3D ABX 3 organic–inorganic halide perovskite (OIHP) semiconductors like [CH 3 NH 3 ]PbI 3 have received great attention because of their various properties for wide applications. However, although a number of low‐dimensional lead‐based OIHP ferroelectric semiconductors have been documented, obtaining 3D ABX 3 OIHP ferroelectric semiconductors is challenging. Herein, an A‐site cation [CH 3 PH 3 ] + (methylphosphonium, MP) is employed to successfully obtain a lead‐free 3D ABX 3 OIHP ferroelectric semiconductor MPSnBr 3 , which shows clear above‐room‐temperature ferroelectricity and a direct bandgap of 2.62 eV. It is emphasized that MPSnBr 3 is a multiaxial molecular ferroelectric with the number of ferroelectric polar axes being as many as 12, which is far more than those of the other OIHP ferroelectric semiconductors and even the classical inorganic perovskite ferroelectric semiconductors BiFeO 3 (4 polar axes) and BaTiO 3 (3 polar axes). MPSnBr 3 is the first MP‐based 3D ABX 3 OIHP ferroelectric semiconductor. This finding throws light on the exploration of other excellent 3D ABX 3 OIHP ferroelectric semiconductors with great application prospects. 3D ABX3 organic–inorganic halide perovskite (OIHP) semiconductors like [CH3NH3]PbI3 have received great attention because of their various properties for wide applications. However, although a number of low‐dimensional lead‐based OIHP ferroelectric semiconductors have been documented, obtaining 3D ABX3 OIHP ferroelectric semiconductors is challenging. Herein, an A‐site cation [CH3PH3]+ (methylphosphonium, MP) is employed to successfully obtain a lead‐free 3D ABX3 OIHP ferroelectric semiconductor MPSnBr3, which shows clear above‐room‐temperature ferroelectricity and a direct bandgap of 2.62 eV. It is emphasized that MPSnBr3 is a multiaxial molecular ferroelectric with the number of ferroelectric polar axes being as many as 12, which is far more than those of the other OIHP ferroelectric semiconductors and even the classical inorganic perovskite ferroelectric semiconductors BiFeO3 (4 polar axes) and BaTiO3 (3 polar axes). MPSnBr3 is the first MP‐based 3D ABX3 OIHP ferroelectric semiconductor. This finding throws light on the exploration of other excellent 3D ABX3 OIHP ferroelectric semiconductors with great application prospects. MPSnBr3 (MP = methylphosphonium) is the first MP‐based 3D ABX3 hybrid perovskite ferroelectric semiconductor. MPSnBr3 is lead‐free and shows clear ferroelectricity with the number of ferroelectric polar axes up to 12, much more than that of other hybrid perovskite ferroelectric semiconductors. MPSnBr3 also exhibits a direct bandgap of 2.62 eV. |
Author | Song, Xian‐Jiang Xiong, Ren‐Gen Chen, Xiao‐Gang Pan, Qiang Zhang, Han‐Yue Zhang, Zhi‐Xu Zhang, Yi Zhang, Tie |
Author_xml | – sequence: 1 givenname: Han‐Yue surname: Zhang fullname: Zhang, Han‐Yue email: zhanghanyue@seu.edu.cn organization: Southeast University – sequence: 2 givenname: Xiao‐Gang surname: Chen fullname: Chen, Xiao‐Gang organization: Southeast University – sequence: 3 givenname: Zhi‐Xu surname: Zhang fullname: Zhang, Zhi‐Xu organization: Southeast University – sequence: 4 givenname: Xian‐Jiang surname: Song fullname: Song, Xian‐Jiang organization: Southeast University – sequence: 5 givenname: Tie surname: Zhang fullname: Zhang, Tie organization: Southeast University – sequence: 6 givenname: Qiang surname: Pan fullname: Pan, Qiang organization: Southeast University – sequence: 7 givenname: Yi surname: Zhang fullname: Zhang, Yi organization: Southeast University – sequence: 8 givenname: Ren‐Gen orcidid: 0000-0003-2364-0193 surname: Xiong fullname: Xiong, Ren‐Gen email: xiongrg@seu.edu.cn organization: Southeast University |
BookMark | eNqFkN9LwzAQx4NMcP549bngiy-daa5pE9_mdCo4FJzPJUuuLLNtZtIq--_tmCgI4sNxHHw-d8f3kAwa1yAhpwkdJZSyC2VqNWKUUcpZAntkmPQ9TqnkAzKkEngss1QckMMQVpRSmdFsSOYzbJebar10oa_GdnU0t0105V1tDV5G4wiuoyf07j282hajmatQd5Xy0RS9d9hPrbc6esbaateYTrfOH5P9UlUBT776EXmZ3swnd_HD4-39ZPwQa-AU4hxTTXHBUZlFbjAvBaSgpRI54yLHXAIalpYIpUQDUuRiYYxKJIN8kSgEOCLnu71r7946DG1R26CxqlSDrgsFSzlkAkTCe_TsF7pynW_673oqAw5CsKynRjtKexeCx7JYe1srvykSWmxDLrYhF98h90L6S9C2Va11TeuVrf7W5E77sBVu_jlSjK9n4x_3E8UDk7A |
CitedBy_id | crossref_primary_10_1021_acs_jpclett_3c02248 crossref_primary_10_1039_D2QI00964A crossref_primary_10_1002_smll_202203882 crossref_primary_10_1002_adma_202314292 crossref_primary_10_1039_D2TC03497B crossref_primary_10_1002_ifm2_10 crossref_primary_10_1002_ange_202407102 crossref_primary_10_1039_D2NJ00642A crossref_primary_10_1002_adma_202205410 crossref_primary_10_1002_ejic_202100671 crossref_primary_10_1021_acs_chemmater_1c01699 crossref_primary_10_1039_D1SC07045B crossref_primary_10_1039_D2DT00592A crossref_primary_10_1039_D1QI00736J crossref_primary_10_1039_D2CP01123A crossref_primary_10_1039_D1NJ04448F crossref_primary_10_1039_D3CS00262D crossref_primary_10_1002_adma_202108556 crossref_primary_10_1002_anie_202214984 crossref_primary_10_1002_anie_202218429 crossref_primary_10_1002_apxr_202400087 crossref_primary_10_1021_acs_cgd_2c00219 crossref_primary_10_1016_j_nantod_2020_101062 crossref_primary_10_1002_aelm_202200415 crossref_primary_10_1021_acs_cgd_3c00519 crossref_primary_10_1039_D3MA00202K crossref_primary_10_1039_D2SC05857J crossref_primary_10_1002_ange_202210809 crossref_primary_10_1002_smll_202412284 crossref_primary_10_1016_j_mtphys_2021_100459 crossref_primary_10_1039_D0DT04415F crossref_primary_10_1021_acs_jpclett_4c02708 crossref_primary_10_1002_anie_202407102 crossref_primary_10_1002_chem_202303415 crossref_primary_10_1039_D3DT01260C crossref_primary_10_1021_acs_cgd_4c00228 crossref_primary_10_1039_D4QI00303A crossref_primary_10_1039_D4NJ04595E crossref_primary_10_1039_D3NR06373A crossref_primary_10_1021_acs_jpcc_3c04343 crossref_primary_10_1039_D2NJ03330E crossref_primary_10_1002_adma_202104107 crossref_primary_10_1021_acs_jpclett_1c01939 crossref_primary_10_1021_acs_jpcc_2c06818 crossref_primary_10_1002_anie_202210809 crossref_primary_10_1016_j_nanoen_2025_110774 crossref_primary_10_1021_jacs_4c01882 crossref_primary_10_1039_D2DT01413K crossref_primary_10_1021_acs_jpcc_2c07306 crossref_primary_10_1021_acs_chemmater_4c02043 crossref_primary_10_1039_D0CP06090A crossref_primary_10_1515_ntrev_2022_0494 crossref_primary_10_35848_1882_0786_acc569 crossref_primary_10_1002_cphc_202400801 crossref_primary_10_1002_smll_202407843 crossref_primary_10_1002_anie_202401221 crossref_primary_10_1039_D2CC06408A crossref_primary_10_1016_j_jlumin_2024_120753 crossref_primary_10_1039_D1TC05195D crossref_primary_10_1039_D2QM01340A crossref_primary_10_1093_nsr_nwac240 crossref_primary_10_3390_nano14231920 crossref_primary_10_1021_jacs_2c03443 crossref_primary_10_1002_adma_202305471 crossref_primary_10_1088_2515_7655_ac01bf crossref_primary_10_1103_PhysRevMaterials_6_104603 crossref_primary_10_1002_advs_202102614 crossref_primary_10_1021_jacs_5c01725 crossref_primary_10_1039_D2DT03889G crossref_primary_10_1021_acs_chemmater_4c01665 crossref_primary_10_1021_acsmaterialslett_3c00539 crossref_primary_10_1039_D1NJ04470B crossref_primary_10_1021_acs_inorgchem_2c02497 crossref_primary_10_1002_ange_202401221 crossref_primary_10_1021_acs_chemmater_1c03605 crossref_primary_10_1002_ange_202214984 crossref_primary_10_1021_acs_inorgchem_4c04763 crossref_primary_10_1039_D2DT00991A crossref_primary_10_1063_5_0051129 crossref_primary_10_1063_5_0077414 crossref_primary_10_1002_ejic_202200172 crossref_primary_10_1021_jacs_2c07535 crossref_primary_10_1002_ange_202218429 crossref_primary_10_1021_acs_cgd_3c00693 |
Cites_doi | 10.1002/adma.201600265 10.1143/JPSJ.27.387 10.1021/acs.chemrev.5b00715 10.1039/C6MH00519E 10.1016/0927-0256(96)00008-0 10.1002/adma.201901843 10.1021/acs.chemmater.9b05273 10.1002/anie.201914874 10.1002/adma.201808088 10.1021/jacs.9b02558 10.1126/sciadv.aay4213 10.1002/adma.201505224 10.1021/jacs.8b04014 10.1002/adma.202002972 10.1002/adma.201807376 10.1021/jacs.9b10048 10.1002/anie.201803716 10.1039/C7TA08992A 10.1002/adma.201700831 10.1021/jacs.8b04600 10.1002/anie.201910599 10.1002/zaac.19865360515 10.1039/C5SC00961H 10.1021/acs.chemmater.0c00973 10.1021/ja408283a 10.1103/PhysRevB.54.11169 10.1038/natrevmats.2016.99 10.1002/adfm.201908657 10.1039/C5CS00308C 10.1021/acs.accounts.8b00677 10.1038/s41563-017-0006-0 10.1038/ncomms8338 10.1107/S0108768110014734 10.1021/acs.jpcc.7b03091 10.1021/jacs.0c00375 10.1021/jacs.9b12368 10.1016/S0021-9614(05)80179-X 10.1016/j.jssc.2012.05.010 10.1002/adma.201903830 10.1002/anie.201915094 10.1126/science.aaa6442 10.1021/acs.chemrev.6b00136 10.1055/s-1977-24435 10.1002/adma.201903937 10.1021/jacs.8b08286 10.1016/j.nanoen.2018.02.049 10.1002/adma.201505215 10.1103/PhysRevLett.77.3865 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH 2020 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH – notice: 2020 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202005213 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adma_202005213 ADMA202005213 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21991142; 21831004 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c3503-7e4c0eb5eadb7de7f8343c9a872587e793ed24fe3f9ed39878bdda19237b1ae33 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Thu Jul 10 19:22:59 EDT 2025 Sun Jul 13 04:36:27 EDT 2025 Thu Apr 24 23:03:54 EDT 2025 Tue Jul 01 02:32:54 EDT 2025 Wed Jan 22 16:31:19 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 47 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3503-7e4c0eb5eadb7de7f8343c9a872587e793ed24fe3f9ed39878bdda19237b1ae33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2364-0193 |
PQID | 2463538826 |
PQPubID | 2045203 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2453683815 proquest_journals_2463538826 crossref_primary_10_1002_adma_202005213 crossref_citationtrail_10_1002_adma_202005213 wiley_primary_10_1002_adma_202005213_ADMA202005213 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-01 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2016 2017 2016; 116 2 28 2019; 31 2019; 52 2020; 142 2015 2018; 6 6 2018 2017; 48 121 2015; 349 1977 1986; 1977 536 1996 1996; 54 6 1996; 77 2018 2017; 140 29 2010; 66 2012; 195 2018; 17 2019 2016; 31 28 1991; 23 2018 2018 2016 2015 2019 2018; 140 57 28 6 141 140 2020 2019 2019 2020; 6 31 141 59 2013; 135 2020 2019 2020 2020; 32 31 59 142 2020 2020; 32 32 1969; 27 2017 2016 2020; 4 116 32 2020 2020; 59 30 2016; 45 e_1_2_5_24_2 e_1_2_5_25_1 e_1_2_5_23_1 e_1_2_5_23_2 e_1_2_5_24_1 e_1_2_5_21_1 e_1_2_5_22_1 e_1_2_5_20_1 e_1_2_5_7_6 e_1_2_5_14_2 e_1_2_5_15_1 e_1_2_5_7_5 e_1_2_5_14_1 e_1_2_5_7_4 e_1_2_5_8_3 e_1_2_5_9_2 e_1_2_5_17_1 e_1_2_5_7_3 e_1_2_5_8_2 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_7_2 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_4_4 e_1_2_5_6_2 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_4_3 e_1_2_5_5_2 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_2_4 e_1_2_5_4_2 e_1_2_5_5_1 e_1_2_5_11_2 e_1_2_5_12_1 e_1_2_5_2_3 e_1_2_5_3_2 e_1_2_5_4_1 e_1_2_5_1_3 e_1_2_5_2_2 e_1_2_5_3_1 e_1_2_5_1_2 e_1_2_5_2_1 e_1_2_5_1_1 e_1_2_5_19_1 e_1_2_5_18_1 |
References_xml | – volume: 59 30 start-page: 424 year: 2020 2020 publication-title: Angew. Chem., Int. Ed. Adv. Funct. Mater. – volume: 48 121 start-page: 20 year: 2018 2017 publication-title: Nano Energy J. Phys. Chem. C – volume: 6 31 141 59 start-page: 7693 3933 year: 2020 2019 2019 2020 publication-title: Sci. Adv. Adv. Mater. J. Am. Chem. Soc. Angew. Chem., Int. Ed. – volume: 140 29 start-page: 8051 year: 2018 2017 publication-title: J. Am. Chem. Soc. Adv. Mater. – volume: 140 57 28 6 141 140 start-page: 8140 2579 7338 6806 year: 2018 2018 2016 2015 2019 2018 publication-title: J. Am. Chem. Soc. Angew. Chem., Int. Ed. Adv. Mater. Nat. Commun. J. Am. Chem. Soc. J. Am. Chem. Soc. – volume: 45 start-page: 3811 year: 2016 publication-title: Chem. Soc. Rev. – volume: 27 start-page: 387 year: 1969 publication-title: J. Phys. Soc. Jpn. – volume: 142 start-page: 4604 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 52 start-page: 1928 year: 2019 publication-title: Acc. Chem. Res. – volume: 1977 536 start-page: 450 129 year: 1977 1986 publication-title: Synthesis Z. Anorg. Allg. Chem. – volume: 4 116 32 start-page: 206 year: 2017 2016 2020 publication-title: Mater. Horiz. Chem. Rev. Adv. Mater. – volume: 32 31 59 142 start-page: 1 1077 year: 2020 2019 2020 2020 publication-title: Adv. Mater. Adv. Mater. Angew. Chem., Int. Ed. J. Am. Chem. Soc. – volume: 77 start-page: 3865 year: 1996 publication-title: Phys. Rev. Lett. – volume: 23 start-page: 987 year: 1991 publication-title: J. Chem. Thermodyn. – volume: 116 2 28 start-page: 4558 5778 year: 2016 2017 2016 publication-title: Chem. Rev. Nat. Rev. Mater. Adv. Mater. – volume: 17 start-page: 261 year: 2018 publication-title: Nat. Mater. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 135 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 349 start-page: 1314 year: 2015 publication-title: Science – volume: 31 28 start-page: 5153 year: 2019 2016 publication-title: Adv. Mater. Adv. Mater. – volume: 32 32 start-page: 1667 4072 year: 2020 2020 publication-title: Chem. Mater. Chem. Mater. – volume: 6 6 start-page: 3430 6463 year: 2015 2018 publication-title: Chem. Sci. J. Mater. Chem. A – volume: 195 start-page: 2 year: 2012 publication-title: J. Solid State Chem. – volume: 54 6 start-page: 15 year: 1996 1996 publication-title: Phys. Rev. B Comput. Mater. Sci. – volume: 66 start-page: 422 year: 2010 publication-title: Acta Crystallogr., Sect. B – ident: e_1_2_5_1_3 doi: 10.1002/adma.201600265 – ident: e_1_2_5_18_1 doi: 10.1143/JPSJ.27.387 – ident: e_1_2_5_1_1 doi: 10.1021/acs.chemrev.5b00715 – ident: e_1_2_5_8_1 doi: 10.1039/C6MH00519E – ident: e_1_2_5_24_2 doi: 10.1016/0927-0256(96)00008-0 – ident: e_1_2_5_4_2 doi: 10.1002/adma.201901843 – ident: e_1_2_5_11_1 doi: 10.1021/acs.chemmater.9b05273 – ident: e_1_2_5_2_3 doi: 10.1002/anie.201914874 – ident: e_1_2_5_2_2 doi: 10.1002/adma.201808088 – ident: e_1_2_5_4_3 doi: 10.1021/jacs.9b02558 – ident: e_1_2_5_4_1 doi: 10.1126/sciadv.aay4213 – ident: e_1_2_5_7_3 doi: 10.1002/adma.201505224 – ident: e_1_2_5_7_6 doi: 10.1021/jacs.8b04014 – ident: e_1_2_5_2_1 doi: 10.1002/adma.202002972 – ident: e_1_2_5_3_1 doi: 10.1002/adma.201807376 – ident: e_1_2_5_7_5 doi: 10.1021/jacs.9b10048 – ident: e_1_2_5_7_2 doi: 10.1002/anie.201803716 – ident: e_1_2_5_9_2 doi: 10.1039/C7TA08992A – ident: e_1_2_5_14_2 doi: 10.1002/adma.201700831 – ident: e_1_2_5_14_1 doi: 10.1021/jacs.8b04600 – ident: e_1_2_5_6_1 doi: 10.1002/anie.201910599 – ident: e_1_2_5_23_2 doi: 10.1002/zaac.19865360515 – ident: e_1_2_5_9_1 doi: 10.1039/C5SC00961H – ident: e_1_2_5_11_2 doi: 10.1021/acs.chemmater.0c00973 – ident: e_1_2_5_20_1 doi: 10.1021/ja408283a – ident: e_1_2_5_24_1 doi: 10.1103/PhysRevB.54.11169 – ident: e_1_2_5_1_2 doi: 10.1038/natrevmats.2016.99 – ident: e_1_2_5_6_2 doi: 10.1002/adfm.201908657 – ident: e_1_2_5_15_1 doi: 10.1039/C5CS00308C – ident: e_1_2_5_12_1 doi: 10.1021/acs.accounts.8b00677 – ident: e_1_2_5_22_1 doi: 10.1038/s41563-017-0006-0 – ident: e_1_2_5_7_4 doi: 10.1038/ncomms8338 – ident: e_1_2_5_16_1 doi: 10.1107/S0108768110014734 – ident: e_1_2_5_5_2 doi: 10.1021/acs.jpcc.7b03091 – ident: e_1_2_5_13_1 doi: 10.1021/jacs.0c00375 – ident: e_1_2_5_2_4 doi: 10.1021/jacs.9b12368 – ident: e_1_2_5_17_1 doi: 10.1016/S0021-9614(05)80179-X – ident: e_1_2_5_21_1 doi: 10.1016/j.jssc.2012.05.010 – ident: e_1_2_5_10_1 doi: 10.1002/adma.201903830 – ident: e_1_2_5_4_4 doi: 10.1002/anie.201915094 – ident: e_1_2_5_19_1 doi: 10.1126/science.aaa6442 – ident: e_1_2_5_8_2 doi: 10.1021/acs.chemrev.6b00136 – ident: e_1_2_5_23_1 doi: 10.1055/s-1977-24435 – ident: e_1_2_5_8_3 doi: 10.1002/adma.201903937 – ident: e_1_2_5_7_1 doi: 10.1021/jacs.8b08286 – ident: e_1_2_5_5_1 doi: 10.1016/j.nanoen.2018.02.049 – ident: e_1_2_5_3_2 doi: 10.1002/adma.201505215 – ident: e_1_2_5_25_1 doi: 10.1103/PhysRevLett.77.3865 |
SSID | ssj0009606 |
Score | 2.6105423 |
Snippet | 3D ABX3 organic–inorganic halide perovskite (OIHP) semiconductors like [CH3NH3]PbI3 have received great attention because of their various properties for wide... 3D ABX 3 organic–inorganic halide perovskite (OIHP) semiconductors like [CH 3 NH 3 ]PbI 3 have received great attention because of their various properties for... 3D ABX3 organic-inorganic halide perovskite (OIHP) semiconductors like [CH3 NH3 ]PbI3 have received great attention because of their various properties for... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e2005213 |
SubjectTerms | 3D hybrid perovskites Axes (reference lines) Barium titanates Bismuth compounds Ferroelectric materials Ferroelectricity Materials science methylphosphonium molecular ferroelectrics multiaxial ferroelectric nature Perovskites Semiconductors |
Title | Methylphosphonium Tin Bromide: A 3D Perovskite Molecular Ferroelectric Semiconductor |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202005213 https://www.proquest.com/docview/2463538826 https://www.proquest.com/docview/2453683815 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3Pa9swFMfF6Gk9rN26saxZ0WDQk9pEv91bWBrKIGN0CfRmJOsJwlp7OEkP_esrybGTDkphu9lYwrKkJ30lP30eQl9lkEJKyoIopyzhwhtiOPVEU698puKUmhxkf8irOf9-I252TvE3fIhuwy1aRhqvo4EbuzzfQkONS9ygRA5KYWuHTEZ4_vh6y4-K8jzB9pggmeS6pTYO6PnT7E9npa3U3BWsacaZHCDTlrVxNPl9tl7Zs-LhL4zj_3zMIXqzkaN41PSft-gVlO_Q_g6k8AjNphAaM_qwL6Mf-2J9h2eLEof1-93CwQUeYTbGP6Gu7pdxJxhP24C7eAJ1XTVxdhYF_hXd8Ksy8mWr-j2aTy5n367IJhYDKZgYMKKAFwOwInQ8qxworxlnRWa0okIrCFYOjnIPzGfgWKaVts6ZKB-VHRpg7APaK6sSPiIshsqFkUVrryx31OkCjNYCnPTWm6HoIdK2RV5sQOUxXsZt3iCWaR5rK-9qq4dOu_R_GkTHsyn7bdPmG1Nd5pQHzcXCQkP20JfucTCy-OfElFCtYxrBpA7iJhSOpnZ84U35aDwddXef_iXTMXodr5tzj320t6rX8DkIoJU9SZ38ERZa_Lw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfQeAAe-EbrNsBISDx5a_0RO3urGFWBdULQSbxFdnyWKliC0nYP--vnc5p0Q0JI8JjEVmzfne9n-_w7Qt5mEQrpLCuZ9toxqYJlVvLADA865BpdagqQPcum5_LTd9VFE-JdmJYfot9wQ8tI8zUaOG5IH21ZQ61PxEGJOgjz1t6VEW2kk9qvWwYpBOiJbk8olmfSdLyNQ350u_5tv7QFmzcha_I5k0fEda1tQ01-HK5X7rC8-o3I8b-685g83CBSOm5V6Am5A9VT8uAGT-EzMp9BlCeGsS8xlH2xvqDzRUXjEv5i4eGYjqk4oV-gqS-XuBlMZ13OXTqBpqnbVDuLkn7DSPy6QorZunlOzicf5u-nbJOOgZVCDQXTIMshOBV1z2kPOhghRZlbo7kyGqKhg-cygAg5eJEbbZz3FhGkdiMLQrwgO1VdwS6haqR9nFyMCdpJz70pwRqjwGfBBTtSA8I6YRTlhqscU2b8LFqWZV7gaBX9aA3Iu778r5al448lDzrZFhtrXRZcRtgl4lojG5A3_edoZ3h4Yiuo11hGicxEfBMbx5Mg__KnYnwyG_dPe_9S6TW5N53PTovTj2ef98l9fN9egzwgO6tmDS8jHlq5V0njrwHwSQDp |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfQkBA88I1WGGAkJJ68tf4ObxWlGh-dJuikvUV2fJYqWDKl7R721-NLmrRDQkjwmOSsOL4738_O-XeEvNUJChmtC2aC8Uyq6JiTPDLLo4mZwZDaJMie6OMz-flcne-c4m_5IfoNN_SMZr5GB78M8WhLGupCwxvUMAdh2drbUqdwhrDo25ZACvF5w7YnFMu0tB1t45Af3Wx_MyxtseYuYm1CzvQBcV1n20yTH4frlT8srn_jcfyfr3lI7m_wKB23BvSI3ILyMbm3w1L4hMxnkLSJSexLTGRfrC_ofFHStIC_WAR4T8dUTOgp1NXVEreC6ayruEunUNdVW2hnUdDvmIdflUgwW9VPydn04_zDMdsUY2CFUEPBDMhiCF4ly_MmgIlWSFFkzhqurIHk5hC4jCBiBkFk1lgfgkP8aPzIgRDPyF5ZlbBPqBqZkKYWa6PxMvBgC3DWKgg6-uhGakBYp4u82DCVY8GMn3nLscxzHK28H60BedfLX7YcHX-UPOhUm298dZlzmUCXSCsNPSBv-sfJy_DXiSuhWqOMEtomdJM6xxs9_uVN-XgyG_dXz_-l0Wty53Qyzb9-OvnygtzF2-0ZyAOyt6rX8DKBoZV_1dj7L-dl_4k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Methylphosphonium+Tin+Bromide%3A+A+3D+Perovskite+Molecular+Ferroelectric+Semiconductor&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhang%2C+Han-Yue&rft.au=Chen%2C+Xiao-Gang&rft.au=Zhang%2C+Zhi-Xu&rft.au=Song%2C+Xian-Jiang&rft.date=2020-11-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=32&rft.issue=47&rft.spage=e2005213&rft_id=info:doi/10.1002%2Fadma.202005213&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |