Ultrastable Anti‐Acid “Shield” in Layered Silver Coordination Polymers
Surface passivation technology provides noble‐metal materials with limited chemical stability, especially under highly acidic condition. To design effective strategy to enhance stability of noble‐metal particles, an understanding of their surface anticorrosion mechanism at the atomic level is desira...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 61; no. 44; pp. e202209971 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
02.11.2022
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
ISSN | 1433-7851 1521-3773 1521-3773 |
DOI | 10.1002/anie.202209971 |
Cover
Abstract | Surface passivation technology provides noble‐metal materials with limited chemical stability, especially under highly acidic condition. To design effective strategy to enhance stability of noble‐metal particles, an understanding of their surface anticorrosion mechanism at the atomic level is desirable by using two‐dimensional (2D) noble‐metal coordination polymer (CP) as an ideal model for their interfacial region. With the protection of 2‐thiobenzimidazole (TBI), we isolated two Ag‐based 2D CPs, {Ag14(TBI)12X2}n (S−X, where S denotes sheet and X=Cl or Br). These compounds exhibited excellent chemical stability upon immersion in various common solvents, boiling water, boiling ethanol, 10 % hydrogen peroxide, concentrated acid (12 M HCl), and concentrated alkali (19 M NaOH). Systematic characterization and DFT analyses demonstrate that the superior stability of S−X was attributed to the hydrophobic organic shell and dynamic proton buffer layer acting as a double protective “shield”.
Acid resistance (12 M HCl) was made possible for two isomorphic two‐dimensional silver‐based coordination polymers. Protection is provided by a hydrophobic organic shell and a dynamic proton buffer layer via a thiolate‐thione tautomerism of 2‐thiobenzimidazole ligands. Thus, these ligands are promising surface inhibitors, acting as a dual protective shield against metal corrosion. |
---|---|
AbstractList | Surface passivation technology provides noble‐metal materials with limited chemical stability, especially under highly acidic condition. To design effective strategy to enhance stability of noble‐metal particles, an understanding of their surface anticorrosion mechanism at the atomic level is desirable by using two‐dimensional (2D) noble‐metal coordination polymer (CP) as an ideal model for their interfacial region. With the protection of 2‐thiobenzimidazole (TBI), we isolated two Ag‐based 2D CPs, {Ag14(TBI)12X2}n (S−X, where S denotes sheet and X=Cl or Br). These compounds exhibited excellent chemical stability upon immersion in various common solvents, boiling water, boiling ethanol, 10 % hydrogen peroxide, concentrated acid (12 M HCl), and concentrated alkali (19 M NaOH). Systematic characterization and DFT analyses demonstrate that the superior stability of S−X was attributed to the hydrophobic organic shell and dynamic proton buffer layer acting as a double protective “shield”.
Acid resistance (12 M HCl) was made possible for two isomorphic two‐dimensional silver‐based coordination polymers. Protection is provided by a hydrophobic organic shell and a dynamic proton buffer layer via a thiolate‐thione tautomerism of 2‐thiobenzimidazole ligands. Thus, these ligands are promising surface inhibitors, acting as a dual protective shield against metal corrosion. Surface passivation technology provides noble-metal materials with limited chemical stability, especially under highly acidic condition. To design effective strategy to enhance stability of noble-metal particles, an understanding of their surface anticorrosion mechanism at the atomic level is desirable by using two-dimensional (2D) noble-metal coordination polymer (CP) as an ideal model for their interfacial region. With the protection of 2-thiobenzimidazole (TBI), we isolated two Ag-based 2D CPs, {Ag14 (TBI)12 X2 }n (S-X, where S denotes sheet and X=Cl or Br). These compounds exhibited excellent chemical stability upon immersion in various common solvents, boiling water, boiling ethanol, 10 % hydrogen peroxide, concentrated acid (12 M HCl), and concentrated alkali (19 M NaOH). Systematic characterization and DFT analyses demonstrate that the superior stability of S-X was attributed to the hydrophobic organic shell and dynamic proton buffer layer acting as a double protective "shield".Surface passivation technology provides noble-metal materials with limited chemical stability, especially under highly acidic condition. To design effective strategy to enhance stability of noble-metal particles, an understanding of their surface anticorrosion mechanism at the atomic level is desirable by using two-dimensional (2D) noble-metal coordination polymer (CP) as an ideal model for their interfacial region. With the protection of 2-thiobenzimidazole (TBI), we isolated two Ag-based 2D CPs, {Ag14 (TBI)12 X2 }n (S-X, where S denotes sheet and X=Cl or Br). These compounds exhibited excellent chemical stability upon immersion in various common solvents, boiling water, boiling ethanol, 10 % hydrogen peroxide, concentrated acid (12 M HCl), and concentrated alkali (19 M NaOH). Systematic characterization and DFT analyses demonstrate that the superior stability of S-X was attributed to the hydrophobic organic shell and dynamic proton buffer layer acting as a double protective "shield". Surface passivation technology provides noble‐metal materials with limited chemical stability, especially under highly acidic condition. To design effective strategy to enhance stability of noble‐metal particles, an understanding of their surface anticorrosion mechanism at the atomic level is desirable by using two‐dimensional (2D) noble‐metal coordination polymer (CP) as an ideal model for their interfacial region. With the protection of 2‐thiobenzimidazole (TBI), we isolated two Ag‐based 2D CPs, {Ag14(TBI)12X2}n (S−X, where S denotes sheet and X=Cl or Br). These compounds exhibited excellent chemical stability upon immersion in various common solvents, boiling water, boiling ethanol, 10 % hydrogen peroxide, concentrated acid (12 M HCl), and concentrated alkali (19 M NaOH). Systematic characterization and DFT analyses demonstrate that the superior stability of S−X was attributed to the hydrophobic organic shell and dynamic proton buffer layer acting as a double protective “shield”. Surface passivation technology provides noble‐metal materials with limited chemical stability, especially under highly acidic condition. To design effective strategy to enhance stability of noble‐metal particles, an understanding of their surface anticorrosion mechanism at the atomic level is desirable by using two‐dimensional (2D) noble‐metal coordination polymer (CP) as an ideal model for their interfacial region. With the protection of 2‐thiobenzimidazole (TBI), we isolated two Ag‐based 2D CPs, {Ag 14 (TBI) 12 X 2 } n ( S−X , where S denotes sheet and X=Cl or Br). These compounds exhibited excellent chemical stability upon immersion in various common solvents, boiling water, boiling ethanol, 10 % hydrogen peroxide, concentrated acid (12 M HCl), and concentrated alkali (19 M NaOH). Systematic characterization and DFT analyses demonstrate that the superior stability of S−X was attributed to the hydrophobic organic shell and dynamic proton buffer layer acting as a double protective “shield”. |
Author | Wu, Tao Li, Dan Zhang, Lin‐Mei Yuan, Shang‐Fu Li, Dong‐Sheng Liu, Jia‐Xing Sun, Peipei Wu, Jin Xie, Mo |
Author_xml | – sequence: 1 givenname: Peipei surname: Sun fullname: Sun, Peipei organization: Soochow University – sequence: 2 givenname: Mo orcidid: 0000-0001-6721-3711 surname: Xie fullname: Xie, Mo organization: Jinan University – sequence: 3 givenname: Lin‐Mei surname: Zhang fullname: Zhang, Lin‐Mei organization: Jinan University – sequence: 4 givenname: Jia‐Xing surname: Liu fullname: Liu, Jia‐Xing organization: Jinan University – sequence: 5 givenname: Jin surname: Wu fullname: Wu, Jin organization: Soochow University – sequence: 6 givenname: Dong‐Sheng orcidid: 0000-0003-1283-6334 surname: Li fullname: Li, Dong‐Sheng organization: China Three Gorges University – sequence: 7 givenname: Shang‐Fu orcidid: 0000-0003-2993-8839 surname: Yuan fullname: Yuan, Shang‐Fu email: sfyuan@jnu.edu.cn organization: Jinan University – sequence: 8 givenname: Tao orcidid: 0000-0003-4443-1227 surname: Wu fullname: Wu, Tao email: wutao@jnu.edu.cn organization: Soochow University – sequence: 9 givenname: Dan orcidid: 0000-0002-4936-4599 surname: Li fullname: Li, Dan email: danli@jnu.edu.cn organization: Jinan University |
BookMark | eNqFkMtKAzEUQINUsK1uXQ-4cTM1j2YysyylaqGoULseMjN3MCVNajJVuusn-AH6c_0SUysKBXGTZHHO5eZ0UMtYAwidE9wjGNMraRT0KKYUZ5kgR6hNOCUxE4K1wrvPWCxSTk5Qx_t54NMUJ200menGSd_IQkM0MI3abt4Gpaqi7eZ9-qRAV9vNR6RMNJFrcFBFU6VfwEVDa12ljGyUNdGD1esFOH-KjmupPZx93100ux49Dm_jyf3NeDiYxCXjmMRcJkmdyBJwLRPKgGDBa04yLmqW9cNBQRS0YBhAFoIzUdEixQUDwUUiacW66HI_d-ns8wp8ky-UL0FracCufE4FwVmShRYBvThA53blTNguUDRllGUpC1R_T5XOeu-gzkvVfP0txFE6JzjfJc53ifOfxEHrHWhLpxbSrf8Wsr3wqjSs_6Hzwd149Ot-AnnSkrY |
CitedBy_id | crossref_primary_10_1016_j_ccr_2023_215424 crossref_primary_10_1039_D3TB00537B crossref_primary_10_1002_ange_202313648 crossref_primary_10_1002_anie_202313648 crossref_primary_10_1016_j_isci_2023_106016 crossref_primary_10_1039_D4NR01411A crossref_primary_10_1016_j_molliq_2024_125972 |
Cites_doi | 10.1021/acs.chemrev.5b00703 10.1002/anie.202206742 10.1002/ange.201801122 10.1021/nl303220x 10.1021/ar200260p 10.1021/jacs.2c00614 10.1002/anie.202201093 10.1016/j.ccr.2020.213576 10.1002/ange.202100006 10.1080/00387019408000849 10.1080/00387019108018125 10.1039/b905559b 10.1038/nchem.1891 10.1038/s41586-021-04218-3 10.1016/j.molstruc.2014.06.034 10.1039/D1QI01015H 10.1039/C7DT01856H 10.1016/j.jcis.2020.06.127 10.1021/ja406844r 10.1002/anie.201801122 10.1039/C4CC00659C 10.1021/acs.chemrev.5b00074 10.1021/acs.inorgchem.8b01257 10.1021/acs.jpclett.8b02130 10.1038/nature07194 10.1149/1945-7111/abcc36 10.1002/ange.201907557 10.1016/j.ccr.2017.12.005 10.1038/nchem.2718 10.1016/j.corsci.2014.04.044 10.1038/s41467-020-17200-w 10.1021/ja510525s 10.1002/anie.201702357 10.1016/j.corsci.2020.108840 10.1039/c1sc00136a 10.1016/j.corsci.2020.109082 10.1021/acs.chemrev.6b00596 10.1039/C4DT03594A 10.1016/S0584-8539(89)80280-6 10.1016/j.apsusc.2020.146814 10.1039/D2RA00269H 10.1002/anie.201907557 10.1021/jacs.6b09065 10.1126/science.1148624 10.1002/ange.202201093 10.1021/acs.accounts.8b00349 10.1021/jacs.6b10978 10.1016/S1452-3981(23)07933-6 10.1002/anie.202203151 10.1039/C4RA04659E 10.1002/anie.200902045 10.1021/acs.inorgchem.2c00900 10.1002/ange.201702357 10.1016/j.scib.2019.05.011 10.1038/nmat2811 10.1002/smll.201902703 10.1021/acs.inorgchem.5b01020 10.1002/anie.201702522 10.1039/C9NR09742B 10.1016/j.cclet.2020.09.013 10.1016/j.ccr.2022.214425 10.1002/chem.201600447 10.1039/C7CS00023E 10.1039/c3cs60232j 10.1021/ja507333c 10.1002/ange.202206742 10.1038/s41467-019-14136-8 10.1016/S0020-1693(03)00344-X 10.1149/1945-7111/abcd4f 10.1021/acs.accounts.5b00007 10.1039/D0NR07409H 10.1038/ncomms3422 10.1002/ange.202203151 10.1002/anie.202100006 10.1038/s41586-020-2783-x 10.1002/ange.200902045 10.1002/ange.201702522 10.1021/cr0300789 10.1038/s41467-019-11988-y |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7TM K9. 7X8 |
DOI | 10.1002/anie.202209971 |
DatabaseName | CrossRef Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 10_1002_anie_202209971 ANIE202209971 |
Genre | article |
GrantInformation_xml | – fundername: the 111 Project funderid: D20015 – fundername: National Natural Science Foundation of China funderid: 22071165; 21731002; 21975104; 22150004 – fundername: Guangdong Major Project of Basic and Applied Research funderid: 2019B030302009 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3501-5a66f6ace0fa623e1075f51957f3947f32e7b2b30eeab7537d2b80b3e7576a2d3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 08:04:30 EDT 2025 Fri Jul 25 10:36:31 EDT 2025 Wed Oct 01 02:04:56 EDT 2025 Thu Apr 24 23:00:04 EDT 2025 Wed Jan 22 16:22:47 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 44 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3501-5a66f6ace0fa623e1075f51957f3947f32e7b2b30eeab7537d2b80b3e7576a2d3 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6721-3711 0000-0003-2993-8839 0000-0002-4936-4599 0000-0003-1283-6334 0000-0003-4443-1227 |
PQID | 2728323983 |
PQPubID | 946352 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2710969202 proquest_journals_2728323983 crossref_citationtrail_10_1002_anie_202209971 crossref_primary_10_1002_anie_202209971 wiley_primary_10_1002_anie_202209971_ANIE202209971 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2, 2022 |
PublicationDateYYYYMMDD | 2022-11-02 |
PublicationDate_xml | – month: 11 year: 2022 text: November 2, 2022 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2013; 4 1989; 45 2009 2009; 48 121 2019; 10 2017; 46 2019; 15 2019; 58 1994; 27 2020; 167 2020; 12 2020; 11 2022; 458 2003; 355 2012; 12 2017; 9 2020; 527 2014; 136 2017; 117 2015; 48 2018; 9 2022 2022; 61 134 2021; 32 2014; 4 2019; 64 2020; 174 2018 2018; 57 130 2005; 105 2015; 44 2014; 1074 2020; 579 2016; 116 2014; 9 2022; 601 2014; 50 2014; 6 2010; 9 2021; 8 2011; 2 2021; 427 2013; 42 2015; 54 2021; 182 2020; 586 2017 2017; 56 129 2019 2019; 58 131 2017; 139 2014; 86 2022; 144 2009; 33 2021; 13 2015; 115 1991; 24 2022; 61 2022; 12 2021 2021; 60 133 2019; 378 2013; 135 2018; 51 2016; 138 2008; 454 2007; 318 2012; 45 2016; 22 e_1_2_7_5_2 e_1_2_7_3_2 e_1_2_7_9_2 e_1_2_7_7_2 e_1_2_7_19_2 e_1_2_7_83_2 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_2 e_1_2_7_60_2 e_1_2_7_81_2 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_41_2 e_1_2_7_11_2 e_1_2_7_43_2 e_1_2_7_64_2 e_1_2_7_85_2 e_1_2_7_45_2 e_1_2_7_66_2 e_1_2_7_47_1 e_1_2_7_68_3 e_1_2_7_26_1 e_1_2_7_68_2 e_1_2_7_49_1 e_1_2_7_28_2 e_1_2_7_71_2 e_1_2_7_73_1 e_1_2_7_50_2 e_1_2_7_52_2 e_1_2_7_25_1 e_1_2_7_77_1 e_1_2_7_23_2 e_1_2_7_31_2 e_1_2_7_54_1 e_1_2_7_75_1 e_1_2_7_33_2 e_1_2_7_56_2 e_1_2_7_21_1 e_1_2_7_33_3 e_1_2_7_35_2 e_1_2_7_58_1 e_1_2_7_79_1 e_1_2_7_37_2 e_1_2_7_39_2 e_1_2_7_6_1 e_1_2_7_4_2 e_1_2_7_2_2 e_1_2_7_8_2 e_1_2_7_80_1 e_1_2_7_18_3 e_1_2_7_18_2 e_1_2_7_82_2 e_1_2_7_16_2 e_1_2_7_61_2 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_14_2 e_1_2_7_63_2 e_1_2_7_42_2 e_1_2_7_65_2 e_1_2_7_84_2 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_84_3 e_1_2_7_10_2 e_1_2_7_67_2 e_1_2_7_65_3 e_1_2_7_46_2 e_1_2_7_69_2 e_1_2_7_48_1 e_1_2_7_27_2 e_1_2_7_27_3 e_1_2_7_29_2 e_1_2_7_72_2 e_1_2_7_70_2 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_24_2 e_1_2_7_30_2 e_1_2_7_51_2 e_1_2_7_72_3 e_1_2_7_74_1 e_1_2_7_22_2 e_1_2_7_32_2 e_1_2_7_32_3 e_1_2_7_34_1 e_1_2_7_20_2 e_1_2_7_55_2 e_1_2_7_78_1 e_1_2_7_36_2 e_1_2_7_57_2 e_1_2_7_38_2 e_1_2_7_59_2 |
References_xml | – volume: 105 start-page: 1103 year: 2005 end-page: 1170 publication-title: Chem. Rev. – volume: 378 start-page: 595 year: 2019 end-page: 617 publication-title: Coord. Chem. Rev. – volume: 4 start-page: 2422 year: 2013 publication-title: Nat. Commun. – volume: 33 start-page: 1837 year: 2009 end-page: 1840 publication-title: New J. Chem. – volume: 54 start-page: 8348 year: 2015 end-page: 8355 publication-title: Inorg. Chem. – volume: 2 start-page: 1311 year: 2011 publication-title: Chem. Sci. – volume: 24 start-page: 69 year: 1991 end-page: 80 publication-title: Spectrosc. Lett. – volume: 50 start-page: 4711 year: 2014 end-page: 4713 publication-title: Chem. Commun. – volume: 51 start-page: 2475 year: 2018 end-page: 2483 publication-title: Acc. Chem. Res. – volume: 22 start-page: 6268 year: 2016 end-page: 6276 publication-title: Chem. Eur. J. – volume: 32 start-page: 1215 year: 2021 end-page: 1219 publication-title: Chin. Chem. Lett. – volume: 64 start-page: 964 year: 2019 end-page: 967 publication-title: Sci. Bull. – volume: 27 start-page: 341 year: 1994 end-page: 351 publication-title: Spectrosc. Lett. – volume: 117 start-page: 5002 year: 2017 end-page: 5069 publication-title: Chem. Rev. – volume: 86 start-page: 17 year: 2014 end-page: 41 publication-title: Corros. Sci. – volume: 318 start-page: 430 year: 2007 end-page: 433 publication-title: Science – volume: 527 year: 2020 publication-title: Appl. Surf. Sci. – volume: 6 start-page: 409 year: 2014 end-page: 414 publication-title: Nat. Chem. – volume: 355 start-page: 49 year: 2003 end-page: 56 publication-title: Inorg. Chim. Acta – volume: 9 start-page: 5303 year: 2018 end-page: 5310 publication-title: J. Phys. Chem. Lett. – volume: 167 year: 2020 publication-title: J. Electrochem. Soc. – volume: 586 start-page: 390 year: 2020 end-page: 394 publication-title: Nature – volume: 427 year: 2021 publication-title: Coord. Chem. Rev. – volume: 58 131 start-page: 16610 16763 year: 2019 2019 end-page: 16616 16769 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 139 start-page: 2122 year: 2017 end-page: 2131 publication-title: J. Am. Chem. Soc. – volume: 57 130 start-page: 4657 4747 year: 2018 2018 end-page: 4662 4752 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 174 year: 2020 publication-title: Corros. Sci. – volume: 42 start-page: 9232 year: 2013 end-page: 9242 publication-title: Chem. Soc. Rev. – volume: 454 start-page: 981 year: 2008 end-page: 983 publication-title: Nature – volume: 9 start-page: 2367 year: 2014 end-page: 2378 publication-title: Int. J. Electrochem. Sci. – volume: 61 134 year: 2022 2022 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 136 start-page: 17714 year: 2014 end-page: 17717 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 689 year: 2017 end-page: 697 publication-title: Nat. Chem. – volume: 579 start-page: 842 year: 2020 end-page: 852 publication-title: J. Colloid Interface Sci. – volume: 48 121 start-page: 6476 6598 year: 2009 2009 end-page: 6479 6601 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 10 start-page: 4032 year: 2019 publication-title: Nat. Commun. – volume: 182 year: 2021 publication-title: Corros. Sci. – volume: 11 start-page: 261 year: 2020 publication-title: Nat. Commun. – volume: 11 start-page: 3678 year: 2020 publication-title: Nat. Commun. – volume: 116 start-page: 10346 year: 2016 end-page: 10413 publication-title: Chem. Rev. – volume: 458 year: 2022 publication-title: Coord. Chem. Rev. – volume: 45 start-page: 299 year: 1989 end-page: 305 publication-title: Spectrochim. Acta Part A – volume: 12 start-page: 3623 year: 2020 end-page: 3629 publication-title: Nanoscale – volume: 48 start-page: 1570 year: 2015 end-page: 1579 publication-title: Acc. Chem. Res. – volume: 46 start-page: 8367 year: 2017 end-page: 8371 publication-title: Dalton Trans. – volume: 1074 start-page: 527 year: 2014 end-page: 533 publication-title: J. Mol. Struct. – volume: 45 start-page: 1183 year: 2012 end-page: 1192 publication-title: Acc. Chem. Res. – volume: 56 129 start-page: 7117 7223 year: 2017 2017 end-page: 7120 7226 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 46 start-page: 2057 year: 2017 end-page: 2075 publication-title: Chem. Soc. Rev. – volume: 138 start-page: 14844 year: 2016 end-page: 14847 publication-title: J. Am. Chem. Soc. – volume: 15 year: 2019 publication-title: Small – volume: 135 start-page: 13934 year: 2013 end-page: 13938 publication-title: J. Am. Chem. Soc. – volume: 60 133 start-page: 8505 8586 year: 2021 2021 end-page: 8509 8590 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 61 start-page: 9251 year: 2022 end-page: 9256 publication-title: Inorg. Chem. – volume: 136 start-page: 12253 year: 2014 end-page: 12256 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 27730 year: 2014 end-page: 27754 publication-title: RSC Adv. – volume: 601 start-page: 360 year: 2022 end-page: 365 publication-title: Nature – volume: 44 start-page: 2893 year: 2015 end-page: 2896 publication-title: Dalton Trans. – volume: 58 start-page: 99 year: 2019 end-page: 105 publication-title: Inorg. Chem. – volume: 144 start-page: 5583 year: 2022 end-page: 5593 publication-title: J. Am. Chem. Soc. – volume: 56 129 start-page: 10676 10816 year: 2017 2017 end-page: 10680 10820 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 8 start-page: 4820 year: 2021 end-page: 4827 publication-title: Inorg. Chem. Front. – volume: 12 start-page: 3716 year: 2022 end-page: 3720 publication-title: RSC Adv. – volume: 12 start-page: 5861 year: 2012 end-page: 5866 publication-title: Nano Lett. – volume: 9 start-page: 676 year: 2010 end-page: 684 publication-title: Nat. Mater. – volume: 115 start-page: 7589 year: 2015 end-page: 7728 publication-title: Chem. Rev. – volume: 13 start-page: 233 year: 2021 end-page: 241 publication-title: Nanoscale – ident: e_1_2_7_35_2 doi: 10.1021/acs.chemrev.5b00703 – ident: e_1_2_7_34_1 – ident: e_1_2_7_33_2 doi: 10.1002/anie.202206742 – ident: e_1_2_7_65_3 doi: 10.1002/ange.201801122 – ident: e_1_2_7_79_1 doi: 10.1021/nl303220x – ident: e_1_2_7_37_2 doi: 10.1021/ar200260p – ident: e_1_2_7_71_2 doi: 10.1021/jacs.2c00614 – ident: e_1_2_7_27_2 doi: 10.1002/anie.202201093 – ident: e_1_2_7_8_2 doi: 10.1016/j.ccr.2020.213576 – ident: e_1_2_7_18_3 doi: 10.1002/ange.202100006 – ident: e_1_2_7_73_1 doi: 10.1080/00387019408000849 – ident: e_1_2_7_75_1 doi: 10.1080/00387019108018125 – ident: e_1_2_7_17_1 – ident: e_1_2_7_23_2 doi: 10.1039/b905559b – ident: e_1_2_7_14_2 doi: 10.1038/nchem.1891 – ident: e_1_2_7_59_2 doi: 10.1038/s41586-021-04218-3 – ident: e_1_2_7_77_1 doi: 10.1016/j.molstruc.2014.06.034 – ident: e_1_2_7_38_2 doi: 10.1039/D1QI01015H – ident: e_1_2_7_46_2 doi: 10.1039/C7DT01856H – ident: e_1_2_7_67_2 doi: 10.1016/j.jcis.2020.06.127 – ident: e_1_2_7_83_2 doi: 10.1021/ja406844r – ident: e_1_2_7_65_2 doi: 10.1002/anie.201801122 – ident: e_1_2_7_21_1 – ident: e_1_2_7_69_2 doi: 10.1039/C4CC00659C – ident: e_1_2_7_13_2 doi: 10.1021/acs.chemrev.5b00074 – ident: e_1_2_7_60_2 doi: 10.1021/acs.inorgchem.8b01257 – ident: e_1_2_7_85_2 doi: 10.1021/acs.jpclett.8b02130 – ident: e_1_2_7_2_2 doi: 10.1038/nature07194 – ident: e_1_2_7_51_2 doi: 10.1149/1945-7111/abcc36 – ident: e_1_2_7_72_3 doi: 10.1002/ange.201907557 – ident: e_1_2_7_9_2 doi: 10.1016/j.ccr.2017.12.005 – ident: e_1_2_7_31_2 doi: 10.1038/nchem.2718 – ident: e_1_2_7_42_2 doi: 10.1016/j.corsci.2014.04.044 – ident: e_1_2_7_49_1 – ident: e_1_2_7_30_2 doi: 10.1038/s41467-020-17200-w – ident: e_1_2_7_54_1 – ident: e_1_2_7_66_2 doi: 10.1021/ja510525s – ident: e_1_2_7_68_2 doi: 10.1002/anie.201702357 – ident: e_1_2_7_43_2 doi: 10.1016/j.corsci.2020.108840 – ident: e_1_2_7_63_2 doi: 10.1039/c1sc00136a – ident: e_1_2_7_52_2 doi: 10.1016/j.corsci.2020.109082 – ident: e_1_2_7_3_2 doi: 10.1021/acs.chemrev.6b00596 – ident: e_1_2_7_64_2 doi: 10.1039/C4DT03594A – ident: e_1_2_7_74_1 doi: 10.1016/S0584-8539(89)80280-6 – ident: e_1_2_7_41_2 doi: 10.1016/j.apsusc.2020.146814 – ident: e_1_2_7_62_1 – ident: e_1_2_7_22_2 doi: 10.1039/D2RA00269H – ident: e_1_2_7_72_2 doi: 10.1002/anie.201907557 – ident: e_1_2_7_40_1 – ident: e_1_2_7_29_2 doi: 10.1021/jacs.6b09065 – ident: e_1_2_7_4_2 doi: 10.1126/science.1148624 – ident: e_1_2_7_27_3 doi: 10.1002/ange.202201093 – ident: e_1_2_7_11_2 doi: 10.1021/acs.accounts.8b00349 – ident: e_1_2_7_36_2 doi: 10.1021/jacs.6b10978 – ident: e_1_2_7_50_2 doi: 10.1016/S1452-3981(23)07933-6 – ident: e_1_2_7_16_1 doi: 10.1002/anie.202203151 – ident: e_1_2_7_15_2 doi: 10.1039/C4RA04659E – ident: e_1_2_7_84_2 doi: 10.1002/anie.200902045 – ident: e_1_2_7_48_1 doi: 10.1021/acs.inorgchem.2c00900 – ident: e_1_2_7_1_1 – ident: e_1_2_7_68_3 doi: 10.1002/ange.201702357 – ident: e_1_2_7_56_2 doi: 10.1016/j.scib.2019.05.011 – ident: e_1_2_7_82_2 doi: 10.1038/nmat2811 – ident: e_1_2_7_39_2 doi: 10.1002/smll.201902703 – ident: e_1_2_7_76_1 doi: 10.1021/acs.inorgchem.5b01020 – ident: e_1_2_7_32_2 doi: 10.1002/anie.201702522 – ident: e_1_2_7_44_1 – ident: e_1_2_7_55_2 doi: 10.1039/C9NR09742B – ident: e_1_2_7_5_2 doi: 10.1016/j.cclet.2020.09.013 – ident: e_1_2_7_7_2 doi: 10.1016/j.ccr.2022.214425 – ident: e_1_2_7_70_2 doi: 10.1002/chem.201600447 – ident: e_1_2_7_28_2 doi: 10.1039/C7CS00023E – ident: e_1_2_7_78_1 doi: 10.1039/c3cs60232j – ident: e_1_2_7_81_2 doi: 10.1021/ja507333c – ident: e_1_2_7_33_3 doi: 10.1002/ange.202206742 – ident: e_1_2_7_57_2 doi: 10.1038/s41467-019-14136-8 – ident: e_1_2_7_45_2 doi: 10.1016/S0020-1693(03)00344-X – ident: e_1_2_7_47_1 doi: 10.1149/1945-7111/abcd4f – ident: e_1_2_7_58_1 – ident: e_1_2_7_10_2 doi: 10.1021/acs.accounts.5b00007 – ident: e_1_2_7_61_2 doi: 10.1039/D0NR07409H – ident: e_1_2_7_80_1 – ident: e_1_2_7_19_2 doi: 10.1038/ncomms3422 – ident: e_1_2_7_16_2 doi: 10.1002/ange.202203151 – ident: e_1_2_7_53_1 – ident: e_1_2_7_6_1 – ident: e_1_2_7_18_2 doi: 10.1002/anie.202100006 – ident: e_1_2_7_25_1 doi: 10.1038/s41586-020-2783-x – ident: e_1_2_7_84_3 doi: 10.1002/ange.200902045 – ident: e_1_2_7_32_3 doi: 10.1002/ange.201702522 – ident: e_1_2_7_24_2 doi: 10.1021/cr0300789 – ident: e_1_2_7_26_1 – ident: e_1_2_7_12_1 – ident: e_1_2_7_20_2 doi: 10.1038/s41467-019-11988-y |
SSID | ssj0028806 |
Score | 2.6075408 |
Snippet | Surface passivation technology provides noble‐metal materials with limited chemical stability, especially under highly acidic condition. To design effective... Surface passivation technology provides noble-metal materials with limited chemical stability, especially under highly acidic condition. To design effective... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e202209971 |
SubjectTerms | 2D Coordination Polymers Anti-Acid Boiling Buffer layers Chemical compounds Coordination polymers Corrosion prevention Corrosion resistance Ethanol Hydrogen peroxide Hydrophobicity Interfacial Structures Metal Nanomaterials Metal particles Polymers Silver Sodium hydroxide Stability analysis |
Title | Ultrastable Anti‐Acid “Shield” in Layered Silver Coordination Polymers |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202209971 https://www.proquest.com/docview/2728323983 https://www.proquest.com/docview/2710969202 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1521-3773 dateEnd: 20241003 omitProxy: true ssIdentifier: ssj0028806 issn: 1433-7851 databaseCode: ABDBF dateStart: 20120604 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1433-7851 databaseCode: DR2 dateStart: 19980101 customDbUrl: isFulltext: true eissn: 1521-3773 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028806 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsNAFB3EjW58i9UqIwiuRtOZpkmWobSoaBG14C7MKxAMqbTpoq76CX6A_ly_xLmTJlVBBN2EPGbymEfm3Llzz0HoxJyVQONCmBYuaSoVEMFiQQKpDLz3YqmtJMtNr3XRb149uo-fovgLfohqwg16hv1fQwfnYnS-IA2FCGxj31Eb-wn2T4O51k97V_FHUdM4i_Aixgio0JesjQ49_5r966i0gJqfAasdcbrriJfvWiw0eTob5-JMvnyjcfzPx2ygtTkcxWHRfjbRks620Eq7VIHbRtf9NB9yAyFFqnGY5cls-hrKROHZ9A10tFM1m77jJMPXfAKyn_g-gbXWuD0wVm1STDXi20E6gfnxHdTvdh7aF2SuwEAkOByJy1utuMWldmJucJI2tqIbAx-NF7OgaTZUe4IK5mjNhTF8PEWF7wimPWPGcKrYLlrOBpneQ1gw5YOT0GOeZXH3HckasSOoq33FeVBDpKyBSM7pyUElI40KYmUaQRlFVRnV0GmV_rkg5vgxZb2s0GjeQUcR9UCjiQU-q6Hj6rIpW_CX8EwPxpCmYQy8wNyohqitvV-eFIW9y051tP-XTAdoFfZttCOto-V8ONaHBvbk4sg27Q9scfuH |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsQwFL2ILnTjWxyfEQRX0ZpMp-1yGJVRx0HUAXclr0KxdEQ7C13NJ_gB-nPzJea20_oAEXRTaJr0keQ295F7DsCuLVUI40K5kS6tax1QySNJA6Wteu9FyuSULBfdRrtXP7t1y92EmAtT4ENUDjeUjPx_jQKODumDD9RQTMG2Bh7Lkz-tATSFQTqUzaOrCkGK2elZJBhxTpGHvsRtdNjB1_Zf16UPZfOzypqvOSdzIMu3Lbaa3O0PMrmvnr8BOf7rc-ZhdqyRkmYxhRZgwqSLMN0qieCWoNNLsgdhtUiZGNJMs3g0fGmqWJPR8BWptBM9Gr6ROCUd8YTMn-Q6xu3WpNW3hm1ceBvJZT95Qhf5MvROjm9abTomYaAKY47UFY1G1BDKOJGwqpKx5qIbISSNF_Ggbg_MeJJJ7hgjpLV9PM2k70huPGvJCKb5Ckym_dSsApFc-xgn9LiXA7n7juKHkSOZa3wtRFADWg5BqMYI5UiUkYQFtjILsY_Cqo9qsFfVvy-wOX6suVGOaDiW0ceQeUjTxAOf12Cnumz7FkMmIjX9AdY5tDZeYG9UA5YP3y9PCpvd0-PqbO0vjbZhun1z0Qk7p93zdZjB8jz5kW3AZPYwMJtWC8rkVj7P3wEpaf-j |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTttAFL2qQGrZtLQFNS3QqVSJ1YCZiV_LKBBBm0aoJRI7a16WLCwHUWcBq3wCHwA_ly_hXjs2D6lCohtLHs_4MQ_7nBnfcwC-Y6ohGRcunfZ519qYa5lqHhuL8D5MjassWX6NgsNx98epf_ogir_Wh2gn3GhkVO9rGuDnNt29Fw2lCGzkd6KK_UT-s9wNkGIRLPrdCkgJ7J11fJGUnGzoG9lGT-w-Lv_4s3SPNR8i1uqTM3gHqrnZ-k-Ts51pqXfM1RMdx_95mlV4u8CjrFd3oPfwyhUf4E2_sYH7CMNxXl4oxJA6d6xXlNl8dt0zmWXz2Q0Zaed2PrtlWcGG6pJ8P9mfjH62Zv0J0tqsnmtkx5P8kibI12A8ODjpH_KFBQM3tOLIfRUEaaCM81KFQMkhWfRTEqQJUxl3cSNcqIWWnnNKI_MJrdCRp6ULkccoYeU6LBWTwn0CpqWNaJUwlGEl4x55Ru6lnha-i6xScQd40wKJWeiTk01GntTKyiKhOkraOurAdpv_vFbm-GfOjaZBk8UI_ZuIkEyaZBzJDnxrD2Pd0oKJKtxkSnn2kOHFeKIOiKr1nrlS0hsdHbR7n19S6Cu8Pt4fJMOj0c8vsELJVeSj2ICl8mLqNhEClXqr6uV3KPr-Ug |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrastable+Anti%E2%80%90Acid+%E2%80%9CShield%E2%80%9D+in+Layered+Silver+Coordination+Polymers&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Sun%2C+Peipei&rft.au=Xie%2C+Mo&rft.au=Lin%E2%80%90Mei+Zhang&rft.au=Jia%E2%80%90Xing+Liu&rft.date=2022-11-02&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=44&rft_id=info:doi/10.1002%2Fanie.202209971&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |