Ultrastable Anti‐Acid “Shield” in Layered Silver Coordination Polymers

Surface passivation technology provides noble‐metal materials with limited chemical stability, especially under highly acidic condition. To design effective strategy to enhance stability of noble‐metal particles, an understanding of their surface anticorrosion mechanism at the atomic level is desira...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 61; no. 44; pp. e202209971 - n/a
Main Authors Sun, Peipei, Xie, Mo, Zhang, Lin‐Mei, Liu, Jia‐Xing, Wu, Jin, Li, Dong‐Sheng, Yuan, Shang‐Fu, Wu, Tao, Li, Dan
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 02.11.2022
EditionInternational ed. in English
Subjects
Online AccessGet full text
ISSN1433-7851
1521-3773
1521-3773
DOI10.1002/anie.202209971

Cover

Abstract Surface passivation technology provides noble‐metal materials with limited chemical stability, especially under highly acidic condition. To design effective strategy to enhance stability of noble‐metal particles, an understanding of their surface anticorrosion mechanism at the atomic level is desirable by using two‐dimensional (2D) noble‐metal coordination polymer (CP) as an ideal model for their interfacial region. With the protection of 2‐thiobenzimidazole (TBI), we isolated two Ag‐based 2D CPs, {Ag14(TBI)12X2}n (S−X, where S denotes sheet and X=Cl or Br). These compounds exhibited excellent chemical stability upon immersion in various common solvents, boiling water, boiling ethanol, 10 % hydrogen peroxide, concentrated acid (12 M HCl), and concentrated alkali (19 M NaOH). Systematic characterization and DFT analyses demonstrate that the superior stability of S−X was attributed to the hydrophobic organic shell and dynamic proton buffer layer acting as a double protective “shield”. Acid resistance (12 M HCl) was made possible for two isomorphic two‐dimensional silver‐based coordination polymers. Protection is provided by a hydrophobic organic shell and a dynamic proton buffer layer via a thiolate‐thione tautomerism of 2‐thiobenzimidazole ligands. Thus, these ligands are promising surface inhibitors, acting as a dual protective shield against metal corrosion.
AbstractList Surface passivation technology provides noble‐metal materials with limited chemical stability, especially under highly acidic condition. To design effective strategy to enhance stability of noble‐metal particles, an understanding of their surface anticorrosion mechanism at the atomic level is desirable by using two‐dimensional (2D) noble‐metal coordination polymer (CP) as an ideal model for their interfacial region. With the protection of 2‐thiobenzimidazole (TBI), we isolated two Ag‐based 2D CPs, {Ag14(TBI)12X2}n (S−X, where S denotes sheet and X=Cl or Br). These compounds exhibited excellent chemical stability upon immersion in various common solvents, boiling water, boiling ethanol, 10 % hydrogen peroxide, concentrated acid (12 M HCl), and concentrated alkali (19 M NaOH). Systematic characterization and DFT analyses demonstrate that the superior stability of S−X was attributed to the hydrophobic organic shell and dynamic proton buffer layer acting as a double protective “shield”. Acid resistance (12 M HCl) was made possible for two isomorphic two‐dimensional silver‐based coordination polymers. Protection is provided by a hydrophobic organic shell and a dynamic proton buffer layer via a thiolate‐thione tautomerism of 2‐thiobenzimidazole ligands. Thus, these ligands are promising surface inhibitors, acting as a dual protective shield against metal corrosion.
Surface passivation technology provides noble-metal materials with limited chemical stability, especially under highly acidic condition. To design effective strategy to enhance stability of noble-metal particles, an understanding of their surface anticorrosion mechanism at the atomic level is desirable by using two-dimensional (2D) noble-metal coordination polymer (CP) as an ideal model for their interfacial region. With the protection of 2-thiobenzimidazole (TBI), we isolated two Ag-based 2D CPs, {Ag14 (TBI)12 X2 }n (S-X, where S denotes sheet and X=Cl or Br). These compounds exhibited excellent chemical stability upon immersion in various common solvents, boiling water, boiling ethanol, 10 % hydrogen peroxide, concentrated acid (12 M HCl), and concentrated alkali (19 M NaOH). Systematic characterization and DFT analyses demonstrate that the superior stability of S-X was attributed to the hydrophobic organic shell and dynamic proton buffer layer acting as a double protective "shield".Surface passivation technology provides noble-metal materials with limited chemical stability, especially under highly acidic condition. To design effective strategy to enhance stability of noble-metal particles, an understanding of their surface anticorrosion mechanism at the atomic level is desirable by using two-dimensional (2D) noble-metal coordination polymer (CP) as an ideal model for their interfacial region. With the protection of 2-thiobenzimidazole (TBI), we isolated two Ag-based 2D CPs, {Ag14 (TBI)12 X2 }n (S-X, where S denotes sheet and X=Cl or Br). These compounds exhibited excellent chemical stability upon immersion in various common solvents, boiling water, boiling ethanol, 10 % hydrogen peroxide, concentrated acid (12 M HCl), and concentrated alkali (19 M NaOH). Systematic characterization and DFT analyses demonstrate that the superior stability of S-X was attributed to the hydrophobic organic shell and dynamic proton buffer layer acting as a double protective "shield".
Surface passivation technology provides noble‐metal materials with limited chemical stability, especially under highly acidic condition. To design effective strategy to enhance stability of noble‐metal particles, an understanding of their surface anticorrosion mechanism at the atomic level is desirable by using two‐dimensional (2D) noble‐metal coordination polymer (CP) as an ideal model for their interfacial region. With the protection of 2‐thiobenzimidazole (TBI), we isolated two Ag‐based 2D CPs, {Ag14(TBI)12X2}n (S−X, where S denotes sheet and X=Cl or Br). These compounds exhibited excellent chemical stability upon immersion in various common solvents, boiling water, boiling ethanol, 10 % hydrogen peroxide, concentrated acid (12 M HCl), and concentrated alkali (19 M NaOH). Systematic characterization and DFT analyses demonstrate that the superior stability of S−X was attributed to the hydrophobic organic shell and dynamic proton buffer layer acting as a double protective “shield”.
Surface passivation technology provides noble‐metal materials with limited chemical stability, especially under highly acidic condition. To design effective strategy to enhance stability of noble‐metal particles, an understanding of their surface anticorrosion mechanism at the atomic level is desirable by using two‐dimensional (2D) noble‐metal coordination polymer (CP) as an ideal model for their interfacial region. With the protection of 2‐thiobenzimidazole (TBI), we isolated two Ag‐based 2D CPs, {Ag 14 (TBI) 12 X 2 } n ( S−X , where S denotes sheet and X=Cl or Br). These compounds exhibited excellent chemical stability upon immersion in various common solvents, boiling water, boiling ethanol, 10 % hydrogen peroxide, concentrated acid (12 M HCl), and concentrated alkali (19 M NaOH). Systematic characterization and DFT analyses demonstrate that the superior stability of S−X was attributed to the hydrophobic organic shell and dynamic proton buffer layer acting as a double protective “shield”.
Author Wu, Tao
Li, Dan
Zhang, Lin‐Mei
Yuan, Shang‐Fu
Li, Dong‐Sheng
Liu, Jia‐Xing
Sun, Peipei
Wu, Jin
Xie, Mo
Author_xml – sequence: 1
  givenname: Peipei
  surname: Sun
  fullname: Sun, Peipei
  organization: Soochow University
– sequence: 2
  givenname: Mo
  orcidid: 0000-0001-6721-3711
  surname: Xie
  fullname: Xie, Mo
  organization: Jinan University
– sequence: 3
  givenname: Lin‐Mei
  surname: Zhang
  fullname: Zhang, Lin‐Mei
  organization: Jinan University
– sequence: 4
  givenname: Jia‐Xing
  surname: Liu
  fullname: Liu, Jia‐Xing
  organization: Jinan University
– sequence: 5
  givenname: Jin
  surname: Wu
  fullname: Wu, Jin
  organization: Soochow University
– sequence: 6
  givenname: Dong‐Sheng
  orcidid: 0000-0003-1283-6334
  surname: Li
  fullname: Li, Dong‐Sheng
  organization: China Three Gorges University
– sequence: 7
  givenname: Shang‐Fu
  orcidid: 0000-0003-2993-8839
  surname: Yuan
  fullname: Yuan, Shang‐Fu
  email: sfyuan@jnu.edu.cn
  organization: Jinan University
– sequence: 8
  givenname: Tao
  orcidid: 0000-0003-4443-1227
  surname: Wu
  fullname: Wu, Tao
  email: wutao@jnu.edu.cn
  organization: Soochow University
– sequence: 9
  givenname: Dan
  orcidid: 0000-0002-4936-4599
  surname: Li
  fullname: Li, Dan
  email: danli@jnu.edu.cn
  organization: Jinan University
BookMark eNqFkMtKAzEUQINUsK1uXQ-4cTM1j2YysyylaqGoULseMjN3MCVNajJVuusn-AH6c_0SUysKBXGTZHHO5eZ0UMtYAwidE9wjGNMraRT0KKYUZ5kgR6hNOCUxE4K1wrvPWCxSTk5Qx_t54NMUJ200menGSd_IQkM0MI3abt4Gpaqi7eZ9-qRAV9vNR6RMNJFrcFBFU6VfwEVDa12ljGyUNdGD1esFOH-KjmupPZx93100ux49Dm_jyf3NeDiYxCXjmMRcJkmdyBJwLRPKgGDBa04yLmqW9cNBQRS0YBhAFoIzUdEixQUDwUUiacW66HI_d-ns8wp8ky-UL0FracCufE4FwVmShRYBvThA53blTNguUDRllGUpC1R_T5XOeu-gzkvVfP0txFE6JzjfJc53ifOfxEHrHWhLpxbSrf8Wsr3wqjSs_6Hzwd149Ot-AnnSkrY
CitedBy_id crossref_primary_10_1016_j_ccr_2023_215424
crossref_primary_10_1039_D3TB00537B
crossref_primary_10_1002_ange_202313648
crossref_primary_10_1002_anie_202313648
crossref_primary_10_1016_j_isci_2023_106016
crossref_primary_10_1039_D4NR01411A
crossref_primary_10_1016_j_molliq_2024_125972
Cites_doi 10.1021/acs.chemrev.5b00703
10.1002/anie.202206742
10.1002/ange.201801122
10.1021/nl303220x
10.1021/ar200260p
10.1021/jacs.2c00614
10.1002/anie.202201093
10.1016/j.ccr.2020.213576
10.1002/ange.202100006
10.1080/00387019408000849
10.1080/00387019108018125
10.1039/b905559b
10.1038/nchem.1891
10.1038/s41586-021-04218-3
10.1016/j.molstruc.2014.06.034
10.1039/D1QI01015H
10.1039/C7DT01856H
10.1016/j.jcis.2020.06.127
10.1021/ja406844r
10.1002/anie.201801122
10.1039/C4CC00659C
10.1021/acs.chemrev.5b00074
10.1021/acs.inorgchem.8b01257
10.1021/acs.jpclett.8b02130
10.1038/nature07194
10.1149/1945-7111/abcc36
10.1002/ange.201907557
10.1016/j.ccr.2017.12.005
10.1038/nchem.2718
10.1016/j.corsci.2014.04.044
10.1038/s41467-020-17200-w
10.1021/ja510525s
10.1002/anie.201702357
10.1016/j.corsci.2020.108840
10.1039/c1sc00136a
10.1016/j.corsci.2020.109082
10.1021/acs.chemrev.6b00596
10.1039/C4DT03594A
10.1016/S0584-8539(89)80280-6
10.1016/j.apsusc.2020.146814
10.1039/D2RA00269H
10.1002/anie.201907557
10.1021/jacs.6b09065
10.1126/science.1148624
10.1002/ange.202201093
10.1021/acs.accounts.8b00349
10.1021/jacs.6b10978
10.1016/S1452-3981(23)07933-6
10.1002/anie.202203151
10.1039/C4RA04659E
10.1002/anie.200902045
10.1021/acs.inorgchem.2c00900
10.1002/ange.201702357
10.1016/j.scib.2019.05.011
10.1038/nmat2811
10.1002/smll.201902703
10.1021/acs.inorgchem.5b01020
10.1002/anie.201702522
10.1039/C9NR09742B
10.1016/j.cclet.2020.09.013
10.1016/j.ccr.2022.214425
10.1002/chem.201600447
10.1039/C7CS00023E
10.1039/c3cs60232j
10.1021/ja507333c
10.1002/ange.202206742
10.1038/s41467-019-14136-8
10.1016/S0020-1693(03)00344-X
10.1149/1945-7111/abcd4f
10.1021/acs.accounts.5b00007
10.1039/D0NR07409H
10.1038/ncomms3422
10.1002/ange.202203151
10.1002/anie.202100006
10.1038/s41586-020-2783-x
10.1002/ange.200902045
10.1002/ange.201702522
10.1021/cr0300789
10.1038/s41467-019-11988-y
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7TM
K9.
7X8
DOI 10.1002/anie.202209971
DatabaseName CrossRef
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 10_1002_anie_202209971
ANIE202209971
Genre article
GrantInformation_xml – fundername: the 111 Project
  funderid: D20015
– fundername: National Natural Science Foundation of China
  funderid: 22071165; 21731002; 21975104; 22150004
– fundername: Guangdong Major Project of Basic and Applied Research
  funderid: 2019B030302009
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
7TM
K9.
7X8
ID FETCH-LOGICAL-c3501-5a66f6ace0fa623e1075f51957f3947f32e7b2b30eeab7537d2b80b3e7576a2d3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 08:04:30 EDT 2025
Fri Jul 25 10:36:31 EDT 2025
Wed Oct 01 02:04:56 EDT 2025
Thu Apr 24 23:00:04 EDT 2025
Wed Jan 22 16:22:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 44
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3501-5a66f6ace0fa623e1075f51957f3947f32e7b2b30eeab7537d2b80b3e7576a2d3
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6721-3711
0000-0003-2993-8839
0000-0002-4936-4599
0000-0003-1283-6334
0000-0003-4443-1227
PQID 2728323983
PQPubID 946352
PageCount 8
ParticipantIDs proquest_miscellaneous_2710969202
proquest_journals_2728323983
crossref_citationtrail_10_1002_anie_202209971
crossref_primary_10_1002_anie_202209971
wiley_primary_10_1002_anie_202209971_ANIE202209971
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2, 2022
PublicationDateYYYYMMDD 2022-11-02
PublicationDate_xml – month: 11
  year: 2022
  text: November 2, 2022
  day: 02
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2013; 4
1989; 45
2009 2009; 48 121
2019; 10
2017; 46
2019; 15
2019; 58
1994; 27
2020; 167
2020; 12
2020; 11
2022; 458
2003; 355
2012; 12
2017; 9
2020; 527
2014; 136
2017; 117
2015; 48
2018; 9
2022 2022; 61 134
2021; 32
2014; 4
2019; 64
2020; 174
2018 2018; 57 130
2005; 105
2015; 44
2014; 1074
2020; 579
2016; 116
2014; 9
2022; 601
2014; 50
2014; 6
2010; 9
2021; 8
2011; 2
2021; 427
2013; 42
2015; 54
2021; 182
2020; 586
2017 2017; 56 129
2019 2019; 58 131
2017; 139
2014; 86
2022; 144
2009; 33
2021; 13
2015; 115
1991; 24
2022; 61
2022; 12
2021 2021; 60 133
2019; 378
2013; 135
2018; 51
2016; 138
2008; 454
2007; 318
2012; 45
2016; 22
e_1_2_7_5_2
e_1_2_7_3_2
e_1_2_7_9_2
e_1_2_7_7_2
e_1_2_7_19_2
e_1_2_7_83_2
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_2
e_1_2_7_60_2
e_1_2_7_81_2
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_41_2
e_1_2_7_11_2
e_1_2_7_43_2
e_1_2_7_64_2
e_1_2_7_85_2
e_1_2_7_45_2
e_1_2_7_66_2
e_1_2_7_47_1
e_1_2_7_68_3
e_1_2_7_26_1
e_1_2_7_68_2
e_1_2_7_49_1
e_1_2_7_28_2
e_1_2_7_71_2
e_1_2_7_73_1
e_1_2_7_50_2
e_1_2_7_52_2
e_1_2_7_25_1
e_1_2_7_77_1
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_33_2
e_1_2_7_56_2
e_1_2_7_21_1
e_1_2_7_33_3
e_1_2_7_35_2
e_1_2_7_58_1
e_1_2_7_79_1
e_1_2_7_37_2
e_1_2_7_39_2
e_1_2_7_6_1
e_1_2_7_4_2
e_1_2_7_2_2
e_1_2_7_8_2
e_1_2_7_80_1
e_1_2_7_18_3
e_1_2_7_18_2
e_1_2_7_82_2
e_1_2_7_16_2
e_1_2_7_61_2
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_14_2
e_1_2_7_63_2
e_1_2_7_42_2
e_1_2_7_65_2
e_1_2_7_84_2
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_84_3
e_1_2_7_10_2
e_1_2_7_67_2
e_1_2_7_65_3
e_1_2_7_46_2
e_1_2_7_69_2
e_1_2_7_48_1
e_1_2_7_27_2
e_1_2_7_27_3
e_1_2_7_29_2
e_1_2_7_72_2
e_1_2_7_70_2
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_51_2
e_1_2_7_72_3
e_1_2_7_74_1
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_32_3
e_1_2_7_34_1
e_1_2_7_20_2
e_1_2_7_55_2
e_1_2_7_78_1
e_1_2_7_36_2
e_1_2_7_57_2
e_1_2_7_38_2
e_1_2_7_59_2
References_xml – volume: 105
  start-page: 1103
  year: 2005
  end-page: 1170
  publication-title: Chem. Rev.
– volume: 378
  start-page: 595
  year: 2019
  end-page: 617
  publication-title: Coord. Chem. Rev.
– volume: 4
  start-page: 2422
  year: 2013
  publication-title: Nat. Commun.
– volume: 33
  start-page: 1837
  year: 2009
  end-page: 1840
  publication-title: New J. Chem.
– volume: 54
  start-page: 8348
  year: 2015
  end-page: 8355
  publication-title: Inorg. Chem.
– volume: 2
  start-page: 1311
  year: 2011
  publication-title: Chem. Sci.
– volume: 24
  start-page: 69
  year: 1991
  end-page: 80
  publication-title: Spectrosc. Lett.
– volume: 50
  start-page: 4711
  year: 2014
  end-page: 4713
  publication-title: Chem. Commun.
– volume: 51
  start-page: 2475
  year: 2018
  end-page: 2483
  publication-title: Acc. Chem. Res.
– volume: 22
  start-page: 6268
  year: 2016
  end-page: 6276
  publication-title: Chem. Eur. J.
– volume: 32
  start-page: 1215
  year: 2021
  end-page: 1219
  publication-title: Chin. Chem. Lett.
– volume: 64
  start-page: 964
  year: 2019
  end-page: 967
  publication-title: Sci. Bull.
– volume: 27
  start-page: 341
  year: 1994
  end-page: 351
  publication-title: Spectrosc. Lett.
– volume: 117
  start-page: 5002
  year: 2017
  end-page: 5069
  publication-title: Chem. Rev.
– volume: 86
  start-page: 17
  year: 2014
  end-page: 41
  publication-title: Corros. Sci.
– volume: 318
  start-page: 430
  year: 2007
  end-page: 433
  publication-title: Science
– volume: 527
  year: 2020
  publication-title: Appl. Surf. Sci.
– volume: 6
  start-page: 409
  year: 2014
  end-page: 414
  publication-title: Nat. Chem.
– volume: 355
  start-page: 49
  year: 2003
  end-page: 56
  publication-title: Inorg. Chim. Acta
– volume: 9
  start-page: 5303
  year: 2018
  end-page: 5310
  publication-title: J. Phys. Chem. Lett.
– volume: 167
  year: 2020
  publication-title: J. Electrochem. Soc.
– volume: 586
  start-page: 390
  year: 2020
  end-page: 394
  publication-title: Nature
– volume: 427
  year: 2021
  publication-title: Coord. Chem. Rev.
– volume: 58 131
  start-page: 16610 16763
  year: 2019 2019
  end-page: 16616 16769
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 139
  start-page: 2122
  year: 2017
  end-page: 2131
  publication-title: J. Am. Chem. Soc.
– volume: 57 130
  start-page: 4657 4747
  year: 2018 2018
  end-page: 4662 4752
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 174
  year: 2020
  publication-title: Corros. Sci.
– volume: 42
  start-page: 9232
  year: 2013
  end-page: 9242
  publication-title: Chem. Soc. Rev.
– volume: 454
  start-page: 981
  year: 2008
  end-page: 983
  publication-title: Nature
– volume: 9
  start-page: 2367
  year: 2014
  end-page: 2378
  publication-title: Int. J. Electrochem. Sci.
– volume: 61 134
  year: 2022 2022
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 136
  start-page: 17714
  year: 2014
  end-page: 17717
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 689
  year: 2017
  end-page: 697
  publication-title: Nat. Chem.
– volume: 579
  start-page: 842
  year: 2020
  end-page: 852
  publication-title: J. Colloid Interface Sci.
– volume: 48 121
  start-page: 6476 6598
  year: 2009 2009
  end-page: 6479 6601
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 10
  start-page: 4032
  year: 2019
  publication-title: Nat. Commun.
– volume: 182
  year: 2021
  publication-title: Corros. Sci.
– volume: 11
  start-page: 261
  year: 2020
  publication-title: Nat. Commun.
– volume: 11
  start-page: 3678
  year: 2020
  publication-title: Nat. Commun.
– volume: 116
  start-page: 10346
  year: 2016
  end-page: 10413
  publication-title: Chem. Rev.
– volume: 458
  year: 2022
  publication-title: Coord. Chem. Rev.
– volume: 45
  start-page: 299
  year: 1989
  end-page: 305
  publication-title: Spectrochim. Acta Part A
– volume: 12
  start-page: 3623
  year: 2020
  end-page: 3629
  publication-title: Nanoscale
– volume: 48
  start-page: 1570
  year: 2015
  end-page: 1579
  publication-title: Acc. Chem. Res.
– volume: 46
  start-page: 8367
  year: 2017
  end-page: 8371
  publication-title: Dalton Trans.
– volume: 1074
  start-page: 527
  year: 2014
  end-page: 533
  publication-title: J. Mol. Struct.
– volume: 45
  start-page: 1183
  year: 2012
  end-page: 1192
  publication-title: Acc. Chem. Res.
– volume: 56 129
  start-page: 7117 7223
  year: 2017 2017
  end-page: 7120 7226
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 46
  start-page: 2057
  year: 2017
  end-page: 2075
  publication-title: Chem. Soc. Rev.
– volume: 138
  start-page: 14844
  year: 2016
  end-page: 14847
  publication-title: J. Am. Chem. Soc.
– volume: 15
  year: 2019
  publication-title: Small
– volume: 135
  start-page: 13934
  year: 2013
  end-page: 13938
  publication-title: J. Am. Chem. Soc.
– volume: 60 133
  start-page: 8505 8586
  year: 2021 2021
  end-page: 8509 8590
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 61
  start-page: 9251
  year: 2022
  end-page: 9256
  publication-title: Inorg. Chem.
– volume: 136
  start-page: 12253
  year: 2014
  end-page: 12256
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 27730
  year: 2014
  end-page: 27754
  publication-title: RSC Adv.
– volume: 601
  start-page: 360
  year: 2022
  end-page: 365
  publication-title: Nature
– volume: 44
  start-page: 2893
  year: 2015
  end-page: 2896
  publication-title: Dalton Trans.
– volume: 58
  start-page: 99
  year: 2019
  end-page: 105
  publication-title: Inorg. Chem.
– volume: 144
  start-page: 5583
  year: 2022
  end-page: 5593
  publication-title: J. Am. Chem. Soc.
– volume: 56 129
  start-page: 10676 10816
  year: 2017 2017
  end-page: 10680 10820
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 8
  start-page: 4820
  year: 2021
  end-page: 4827
  publication-title: Inorg. Chem. Front.
– volume: 12
  start-page: 3716
  year: 2022
  end-page: 3720
  publication-title: RSC Adv.
– volume: 12
  start-page: 5861
  year: 2012
  end-page: 5866
  publication-title: Nano Lett.
– volume: 9
  start-page: 676
  year: 2010
  end-page: 684
  publication-title: Nat. Mater.
– volume: 115
  start-page: 7589
  year: 2015
  end-page: 7728
  publication-title: Chem. Rev.
– volume: 13
  start-page: 233
  year: 2021
  end-page: 241
  publication-title: Nanoscale
– ident: e_1_2_7_35_2
  doi: 10.1021/acs.chemrev.5b00703
– ident: e_1_2_7_34_1
– ident: e_1_2_7_33_2
  doi: 10.1002/anie.202206742
– ident: e_1_2_7_65_3
  doi: 10.1002/ange.201801122
– ident: e_1_2_7_79_1
  doi: 10.1021/nl303220x
– ident: e_1_2_7_37_2
  doi: 10.1021/ar200260p
– ident: e_1_2_7_71_2
  doi: 10.1021/jacs.2c00614
– ident: e_1_2_7_27_2
  doi: 10.1002/anie.202201093
– ident: e_1_2_7_8_2
  doi: 10.1016/j.ccr.2020.213576
– ident: e_1_2_7_18_3
  doi: 10.1002/ange.202100006
– ident: e_1_2_7_73_1
  doi: 10.1080/00387019408000849
– ident: e_1_2_7_75_1
  doi: 10.1080/00387019108018125
– ident: e_1_2_7_17_1
– ident: e_1_2_7_23_2
  doi: 10.1039/b905559b
– ident: e_1_2_7_14_2
  doi: 10.1038/nchem.1891
– ident: e_1_2_7_59_2
  doi: 10.1038/s41586-021-04218-3
– ident: e_1_2_7_77_1
  doi: 10.1016/j.molstruc.2014.06.034
– ident: e_1_2_7_38_2
  doi: 10.1039/D1QI01015H
– ident: e_1_2_7_46_2
  doi: 10.1039/C7DT01856H
– ident: e_1_2_7_67_2
  doi: 10.1016/j.jcis.2020.06.127
– ident: e_1_2_7_83_2
  doi: 10.1021/ja406844r
– ident: e_1_2_7_65_2
  doi: 10.1002/anie.201801122
– ident: e_1_2_7_21_1
– ident: e_1_2_7_69_2
  doi: 10.1039/C4CC00659C
– ident: e_1_2_7_13_2
  doi: 10.1021/acs.chemrev.5b00074
– ident: e_1_2_7_60_2
  doi: 10.1021/acs.inorgchem.8b01257
– ident: e_1_2_7_85_2
  doi: 10.1021/acs.jpclett.8b02130
– ident: e_1_2_7_2_2
  doi: 10.1038/nature07194
– ident: e_1_2_7_51_2
  doi: 10.1149/1945-7111/abcc36
– ident: e_1_2_7_72_3
  doi: 10.1002/ange.201907557
– ident: e_1_2_7_9_2
  doi: 10.1016/j.ccr.2017.12.005
– ident: e_1_2_7_31_2
  doi: 10.1038/nchem.2718
– ident: e_1_2_7_42_2
  doi: 10.1016/j.corsci.2014.04.044
– ident: e_1_2_7_49_1
– ident: e_1_2_7_30_2
  doi: 10.1038/s41467-020-17200-w
– ident: e_1_2_7_54_1
– ident: e_1_2_7_66_2
  doi: 10.1021/ja510525s
– ident: e_1_2_7_68_2
  doi: 10.1002/anie.201702357
– ident: e_1_2_7_43_2
  doi: 10.1016/j.corsci.2020.108840
– ident: e_1_2_7_63_2
  doi: 10.1039/c1sc00136a
– ident: e_1_2_7_52_2
  doi: 10.1016/j.corsci.2020.109082
– ident: e_1_2_7_3_2
  doi: 10.1021/acs.chemrev.6b00596
– ident: e_1_2_7_64_2
  doi: 10.1039/C4DT03594A
– ident: e_1_2_7_74_1
  doi: 10.1016/S0584-8539(89)80280-6
– ident: e_1_2_7_41_2
  doi: 10.1016/j.apsusc.2020.146814
– ident: e_1_2_7_62_1
– ident: e_1_2_7_22_2
  doi: 10.1039/D2RA00269H
– ident: e_1_2_7_72_2
  doi: 10.1002/anie.201907557
– ident: e_1_2_7_40_1
– ident: e_1_2_7_29_2
  doi: 10.1021/jacs.6b09065
– ident: e_1_2_7_4_2
  doi: 10.1126/science.1148624
– ident: e_1_2_7_27_3
  doi: 10.1002/ange.202201093
– ident: e_1_2_7_11_2
  doi: 10.1021/acs.accounts.8b00349
– ident: e_1_2_7_36_2
  doi: 10.1021/jacs.6b10978
– ident: e_1_2_7_50_2
  doi: 10.1016/S1452-3981(23)07933-6
– ident: e_1_2_7_16_1
  doi: 10.1002/anie.202203151
– ident: e_1_2_7_15_2
  doi: 10.1039/C4RA04659E
– ident: e_1_2_7_84_2
  doi: 10.1002/anie.200902045
– ident: e_1_2_7_48_1
  doi: 10.1021/acs.inorgchem.2c00900
– ident: e_1_2_7_1_1
– ident: e_1_2_7_68_3
  doi: 10.1002/ange.201702357
– ident: e_1_2_7_56_2
  doi: 10.1016/j.scib.2019.05.011
– ident: e_1_2_7_82_2
  doi: 10.1038/nmat2811
– ident: e_1_2_7_39_2
  doi: 10.1002/smll.201902703
– ident: e_1_2_7_76_1
  doi: 10.1021/acs.inorgchem.5b01020
– ident: e_1_2_7_32_2
  doi: 10.1002/anie.201702522
– ident: e_1_2_7_44_1
– ident: e_1_2_7_55_2
  doi: 10.1039/C9NR09742B
– ident: e_1_2_7_5_2
  doi: 10.1016/j.cclet.2020.09.013
– ident: e_1_2_7_7_2
  doi: 10.1016/j.ccr.2022.214425
– ident: e_1_2_7_70_2
  doi: 10.1002/chem.201600447
– ident: e_1_2_7_28_2
  doi: 10.1039/C7CS00023E
– ident: e_1_2_7_78_1
  doi: 10.1039/c3cs60232j
– ident: e_1_2_7_81_2
  doi: 10.1021/ja507333c
– ident: e_1_2_7_33_3
  doi: 10.1002/ange.202206742
– ident: e_1_2_7_57_2
  doi: 10.1038/s41467-019-14136-8
– ident: e_1_2_7_45_2
  doi: 10.1016/S0020-1693(03)00344-X
– ident: e_1_2_7_47_1
  doi: 10.1149/1945-7111/abcd4f
– ident: e_1_2_7_58_1
– ident: e_1_2_7_10_2
  doi: 10.1021/acs.accounts.5b00007
– ident: e_1_2_7_61_2
  doi: 10.1039/D0NR07409H
– ident: e_1_2_7_80_1
– ident: e_1_2_7_19_2
  doi: 10.1038/ncomms3422
– ident: e_1_2_7_16_2
  doi: 10.1002/ange.202203151
– ident: e_1_2_7_53_1
– ident: e_1_2_7_6_1
– ident: e_1_2_7_18_2
  doi: 10.1002/anie.202100006
– ident: e_1_2_7_25_1
  doi: 10.1038/s41586-020-2783-x
– ident: e_1_2_7_84_3
  doi: 10.1002/ange.200902045
– ident: e_1_2_7_32_3
  doi: 10.1002/ange.201702522
– ident: e_1_2_7_24_2
  doi: 10.1021/cr0300789
– ident: e_1_2_7_26_1
– ident: e_1_2_7_12_1
– ident: e_1_2_7_20_2
  doi: 10.1038/s41467-019-11988-y
SSID ssj0028806
Score 2.6075408
Snippet Surface passivation technology provides noble‐metal materials with limited chemical stability, especially under highly acidic condition. To design effective...
Surface passivation technology provides noble-metal materials with limited chemical stability, especially under highly acidic condition. To design effective...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e202209971
SubjectTerms 2D Coordination Polymers
Anti-Acid
Boiling
Buffer layers
Chemical compounds
Coordination polymers
Corrosion prevention
Corrosion resistance
Ethanol
Hydrogen peroxide
Hydrophobicity
Interfacial Structures
Metal Nanomaterials
Metal particles
Polymers
Silver
Sodium hydroxide
Stability analysis
Title Ultrastable Anti‐Acid “Shield” in Layered Silver Coordination Polymers
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202209971
https://www.proquest.com/docview/2728323983
https://www.proquest.com/docview/2710969202
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1521-3773
  dateEnd: 20241003
  omitProxy: true
  ssIdentifier: ssj0028806
  issn: 1433-7851
  databaseCode: ABDBF
  dateStart: 20120604
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1433-7851
  databaseCode: DR2
  dateStart: 19980101
  customDbUrl:
  isFulltext: true
  eissn: 1521-3773
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028806
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsNAFB3EjW58i9UqIwiuRtOZpkmWobSoaBG14C7MKxAMqbTpoq76CX6A_ly_xLmTJlVBBN2EPGbymEfm3Llzz0HoxJyVQONCmBYuaSoVEMFiQQKpDLz3YqmtJMtNr3XRb149uo-fovgLfohqwg16hv1fQwfnYnS-IA2FCGxj31Eb-wn2T4O51k97V_FHUdM4i_Aixgio0JesjQ49_5r966i0gJqfAasdcbrriJfvWiw0eTob5-JMvnyjcfzPx2ygtTkcxWHRfjbRks620Eq7VIHbRtf9NB9yAyFFqnGY5cls-hrKROHZ9A10tFM1m77jJMPXfAKyn_g-gbXWuD0wVm1STDXi20E6gfnxHdTvdh7aF2SuwEAkOByJy1utuMWldmJucJI2tqIbAx-NF7OgaTZUe4IK5mjNhTF8PEWF7wimPWPGcKrYLlrOBpneQ1gw5YOT0GOeZXH3HckasSOoq33FeVBDpKyBSM7pyUElI40KYmUaQRlFVRnV0GmV_rkg5vgxZb2s0GjeQUcR9UCjiQU-q6Hj6rIpW_CX8EwPxpCmYQy8wNyohqitvV-eFIW9y051tP-XTAdoFfZttCOto-V8ONaHBvbk4sg27Q9scfuH
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsQwFL2ILnTjWxyfEQRX0ZpMp-1yGJVRx0HUAXclr0KxdEQ7C13NJ_gB-nPzJea20_oAEXRTaJr0keQ295F7DsCuLVUI40K5kS6tax1QySNJA6Wteu9FyuSULBfdRrtXP7t1y92EmAtT4ENUDjeUjPx_jQKODumDD9RQTMG2Bh7Lkz-tATSFQTqUzaOrCkGK2elZJBhxTpGHvsRtdNjB1_Zf16UPZfOzypqvOSdzIMu3Lbaa3O0PMrmvnr8BOf7rc-ZhdqyRkmYxhRZgwqSLMN0qieCWoNNLsgdhtUiZGNJMs3g0fGmqWJPR8BWptBM9Gr6ROCUd8YTMn-Q6xu3WpNW3hm1ceBvJZT95Qhf5MvROjm9abTomYaAKY47UFY1G1BDKOJGwqpKx5qIbISSNF_Ggbg_MeJJJ7hgjpLV9PM2k70huPGvJCKb5Ckym_dSsApFc-xgn9LiXA7n7juKHkSOZa3wtRFADWg5BqMYI5UiUkYQFtjILsY_Cqo9qsFfVvy-wOX6suVGOaDiW0ceQeUjTxAOf12Cnumz7FkMmIjX9AdY5tDZeYG9UA5YP3y9PCpvd0-PqbO0vjbZhun1z0Qk7p93zdZjB8jz5kW3AZPYwMJtWC8rkVj7P3wEpaf-j
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTttAFL2qQGrZtLQFNS3QqVSJ1YCZiV_LKBBBm0aoJRI7a16WLCwHUWcBq3wCHwA_ly_hXjs2D6lCohtLHs_4MQ_7nBnfcwC-Y6ohGRcunfZ519qYa5lqHhuL8D5MjassWX6NgsNx98epf_ogir_Wh2gn3GhkVO9rGuDnNt29Fw2lCGzkd6KK_UT-s9wNkGIRLPrdCkgJ7J11fJGUnGzoG9lGT-w-Lv_4s3SPNR8i1uqTM3gHqrnZ-k-Ts51pqXfM1RMdx_95mlV4u8CjrFd3oPfwyhUf4E2_sYH7CMNxXl4oxJA6d6xXlNl8dt0zmWXz2Q0Zaed2PrtlWcGG6pJ8P9mfjH62Zv0J0tqsnmtkx5P8kibI12A8ODjpH_KFBQM3tOLIfRUEaaCM81KFQMkhWfRTEqQJUxl3cSNcqIWWnnNKI_MJrdCRp6ULkccoYeU6LBWTwn0CpqWNaJUwlGEl4x55Ru6lnha-i6xScQd40wKJWeiTk01GntTKyiKhOkraOurAdpv_vFbm-GfOjaZBk8UI_ZuIkEyaZBzJDnxrD2Pd0oKJKtxkSnn2kOHFeKIOiKr1nrlS0hsdHbR7n19S6Cu8Pt4fJMOj0c8vsELJVeSj2ICl8mLqNhEClXqr6uV3KPr-Ug
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrastable+Anti%E2%80%90Acid+%E2%80%9CShield%E2%80%9D+in+Layered+Silver+Coordination+Polymers&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Sun%2C+Peipei&rft.au=Xie%2C+Mo&rft.au=Lin%E2%80%90Mei+Zhang&rft.au=Jia%E2%80%90Xing+Liu&rft.date=2022-11-02&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=44&rft_id=info:doi/10.1002%2Fanie.202209971&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon