High‐Performance Composite Lithium Anodes Enabled by Electronic/Ionic Dual‐Conductive Paths for Solid‐State Li Metal Batteries
Solid‐state lithium metal batteries (SSLMBs) promise high energy density and high safety by employing high‐capacity Li metal anode and solid‐state electrolytes. However, the construction of the composite Li metal electrode is a neglected but important subject when the extensive research focuses on t...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 18; no. 31; pp. e2202911 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.08.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1613-6810 1613-6829 1613-6829 |
DOI | 10.1002/smll.202202911 |
Cover
Abstract | Solid‐state lithium metal batteries (SSLMBs) promise high energy density and high safety by employing high‐capacity Li metal anode and solid‐state electrolytes. However, the construction of the composite Li metal electrode is a neglected but important subject when the extensive research focuses on the interface between the solid electrolyte Li6.4La3Zr1.4Ta0.6O12 and Li metal anode. Here, an electronic–ionic conducting composite Li metal anode consisting of Li–Al alloy and LiF is constructed to achieve the stable electronic–ionic transport channel and the intimate interface contact, which can realize the uniform Li deposition and the efficiency utilization of lithium in composite Li metal electrode. Therefore, the symmetric battery with composite Li metal electrode exhibits the high critical current density with 1.2 mA cm−2 and stable cycle for 1500 h at 0.3 mA cm−2, 25 °C. Moreover, the SSLMBs matched with LiFePO4 and LiNi0.8Co0.1Mn0.1O2 achieve the outstanding electrochemical performance, verifying the feasibility of composite Li metal electrode in various SSLMBs systems.
The electronic–ionic conducting composite Li metal anode consisting of Li–Al alloy and LiF is constructed, which can establish the stable electronic–ionic transport channel enhancing the utilization efficiency of internal lithium in Li metal electrode, promoting the homogeneous Li metal deposition, as well as improving the wettability of molten Li. |
---|---|
AbstractList | Solid-state lithium metal batteries (SSLMBs) promise high energy density and high safety by employing high-capacity Li metal anode and solid-state electrolytes. However, the construction of the composite Li metal electrode is a neglected but important subject when the extensive research focuses on the interface between the solid electrolyte Li6.4 La3 Zr1.4 Ta0.6 O12 and Li metal anode. Here, an electronic-ionic conducting composite Li metal anode consisting of Li-Al alloy and LiF is constructed to achieve the stable electronic-ionic transport channel and the intimate interface contact, which can realize the uniform Li deposition and the efficiency utilization of lithium in composite Li metal electrode. Therefore, the symmetric battery with composite Li metal electrode exhibits the high critical current density with 1.2 mA cm-2 and stable cycle for 1500 h at 0.3 mA cm-2 , 25 °C. Moreover, the SSLMBs matched with LiFePO4 and LiNi0.8 Co0.1 Mn0.1 O2 achieve the outstanding electrochemical performance, verifying the feasibility of composite Li metal electrode in various SSLMBs systems.Solid-state lithium metal batteries (SSLMBs) promise high energy density and high safety by employing high-capacity Li metal anode and solid-state electrolytes. However, the construction of the composite Li metal electrode is a neglected but important subject when the extensive research focuses on the interface between the solid electrolyte Li6.4 La3 Zr1.4 Ta0.6 O12 and Li metal anode. Here, an electronic-ionic conducting composite Li metal anode consisting of Li-Al alloy and LiF is constructed to achieve the stable electronic-ionic transport channel and the intimate interface contact, which can realize the uniform Li deposition and the efficiency utilization of lithium in composite Li metal electrode. Therefore, the symmetric battery with composite Li metal electrode exhibits the high critical current density with 1.2 mA cm-2 and stable cycle for 1500 h at 0.3 mA cm-2 , 25 °C. Moreover, the SSLMBs matched with LiFePO4 and LiNi0.8 Co0.1 Mn0.1 O2 achieve the outstanding electrochemical performance, verifying the feasibility of composite Li metal electrode in various SSLMBs systems. Solid‐state lithium metal batteries (SSLMBs) promise high energy density and high safety by employing high‐capacity Li metal anode and solid‐state electrolytes. However, the construction of the composite Li metal electrode is a neglected but important subject when the extensive research focuses on the interface between the solid electrolyte Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12 and Li metal anode. Here, an electronic–ionic conducting composite Li metal anode consisting of Li–Al alloy and LiF is constructed to achieve the stable electronic–ionic transport channel and the intimate interface contact, which can realize the uniform Li deposition and the efficiency utilization of lithium in composite Li metal electrode. Therefore, the symmetric battery with composite Li metal electrode exhibits the high critical current density with 1.2 mA cm −2 and stable cycle for 1500 h at 0.3 mA cm −2 , 25 °C. Moreover, the SSLMBs matched with LiFePO 4 and LiNi 0.8 Co 0.1 Mn 0.1 O 2 achieve the outstanding electrochemical performance, verifying the feasibility of composite Li metal electrode in various SSLMBs systems. Solid‐state lithium metal batteries (SSLMBs) promise high energy density and high safety by employing high‐capacity Li metal anode and solid‐state electrolytes. However, the construction of the composite Li metal electrode is a neglected but important subject when the extensive research focuses on the interface between the solid electrolyte Li6.4La3Zr1.4Ta0.6O12 and Li metal anode. Here, an electronic–ionic conducting composite Li metal anode consisting of Li–Al alloy and LiF is constructed to achieve the stable electronic–ionic transport channel and the intimate interface contact, which can realize the uniform Li deposition and the efficiency utilization of lithium in composite Li metal electrode. Therefore, the symmetric battery with composite Li metal electrode exhibits the high critical current density with 1.2 mA cm−2 and stable cycle for 1500 h at 0.3 mA cm−2, 25 °C. Moreover, the SSLMBs matched with LiFePO4 and LiNi0.8Co0.1Mn0.1O2 achieve the outstanding electrochemical performance, verifying the feasibility of composite Li metal electrode in various SSLMBs systems. Solid‐state lithium metal batteries (SSLMBs) promise high energy density and high safety by employing high‐capacity Li metal anode and solid‐state electrolytes. However, the construction of the composite Li metal electrode is a neglected but important subject when the extensive research focuses on the interface between the solid electrolyte Li6.4La3Zr1.4Ta0.6O12 and Li metal anode. Here, an electronic–ionic conducting composite Li metal anode consisting of Li–Al alloy and LiF is constructed to achieve the stable electronic–ionic transport channel and the intimate interface contact, which can realize the uniform Li deposition and the efficiency utilization of lithium in composite Li metal electrode. Therefore, the symmetric battery with composite Li metal electrode exhibits the high critical current density with 1.2 mA cm−2 and stable cycle for 1500 h at 0.3 mA cm−2, 25 °C. Moreover, the SSLMBs matched with LiFePO4 and LiNi0.8Co0.1Mn0.1O2 achieve the outstanding electrochemical performance, verifying the feasibility of composite Li metal electrode in various SSLMBs systems. The electronic–ionic conducting composite Li metal anode consisting of Li–Al alloy and LiF is constructed, which can establish the stable electronic–ionic transport channel enhancing the utilization efficiency of internal lithium in Li metal electrode, promoting the homogeneous Li metal deposition, as well as improving the wettability of molten Li. |
Author | Li, Penghua Li, Min Wei, Jie Lu, Guanjie Hu, Xiaolin Wang, Yumei Yang, Zuguang Xu, Chaohe Li, Zongyang |
Author_xml | – sequence: 1 givenname: Zuguang surname: Yang fullname: Yang, Zuguang email: zuguangyang@cqu.edu.cn organization: Chongqing University – sequence: 2 givenname: Min surname: Li fullname: Li, Min organization: Chongqing University – sequence: 3 givenname: Guanjie surname: Lu fullname: Lu, Guanjie organization: Chongqing University – sequence: 4 givenname: Yumei surname: Wang fullname: Wang, Yumei organization: National University of Singapore (Chongqing) Research Institute – sequence: 5 givenname: Jie surname: Wei fullname: Wei, Jie organization: Chongqing University – sequence: 6 givenname: Xiaolin surname: Hu fullname: Hu, Xiaolin organization: Chongqing University – sequence: 7 givenname: Zongyang surname: Li fullname: Li, Zongyang organization: Chongqing University – sequence: 8 givenname: Penghua surname: Li fullname: Li, Penghua email: liph@cqupt.edu.cn organization: Chongqing University of Posts and Telecommunications – sequence: 9 givenname: Chaohe orcidid: 0000-0002-1345-1420 surname: Xu fullname: Xu, Chaohe email: xche@cqu.edu.cn organization: Chongqing University |
BookMark | eNqFkU1rFDEch4NUsK1ePQe8eNltXmYyk2NdV1uYYmH1PGQy_7gpmWRNMpW9efAD-Bn9JGZdqVAQIW-Q5_mR8DtDJz54QOglJUtKCLtIk3NLRlgZktIn6JQKyheiZfLk4UzJM3SW0h0hnLKqOUXfr-zn7c9vP24hmhAn5TXgVZh2IdkMuLN5a-cJX_owQsJrrwYHIx72eO1A5xi81RfXhxW_nZUrOavgx1lnew_4VuVtwiUVb4KzY7ncZPU7FN9AVg6_UTlDtJCeo6dGuQQv_uzn6NO79cfV1aL78P56ddktNK8JXTAxiJFwxSujqKFljlWlNWMt45IQYaBuW8qpbGRbj5IbMzYDqaSRA-O8mOfo9TF3F8OXGVLuJ5s0OKc8hDn1TLRNQ2vBeUFfPULvwhx9eV2hZFMLQUhVqOpI6RhSimB6bcsfbfA5Kut6SvpDNf2hmv6hmqItH2m7aCcV9_8W5FH4ah3s_0P3m5uu--v-Apm8ptA |
CitedBy_id | crossref_primary_10_1002_smll_202304290 crossref_primary_10_1016_j_nanoen_2023_108573 crossref_primary_10_1002_adfm_202426002 crossref_primary_10_1039_D2EE03709B crossref_primary_10_1016_j_compscitech_2024_110822 crossref_primary_10_1002_adfm_202213648 crossref_primary_10_1039_D4TA05312E crossref_primary_10_1016_j_est_2024_112539 crossref_primary_10_1002_smll_202407983 crossref_primary_10_1002_smll_202304747 crossref_primary_10_1039_D3TA04229D crossref_primary_10_1002_smll_202207093 crossref_primary_10_1021_acsenergylett_4c01983 crossref_primary_10_1680_jsuin_23_00049 crossref_primary_10_1002_adfm_202503266 crossref_primary_10_1016_j_jpcs_2024_111871 crossref_primary_10_1016_j_nanoen_2025_110749 crossref_primary_10_1021_acsami_3c16268 crossref_primary_10_1016_j_cej_2023_146153 |
Cites_doi | 10.1038/s41560-020-0575-z 10.1149/1.1505636 10.1021/acsnano.9b08803 10.1002/adma.202004157 10.1002/adfm.202008301 10.1021/acsenergylett.0c00383 10.1126/science.aaz7681 10.1016/j.scib.2021.04.034 10.1002/adfm.201101798 10.1021/acsami.0c15692 10.1038/s41467-020-17493-x 10.1039/C9EE01903K 10.1039/D1EE03604A 10.1002/adma.202100726 10.1002/adma.202000575 10.1002/adfm.202101556 10.1002/anie.202003177 10.1021/jacs.8b03106 10.1021/acs.jpcc.9b00436 10.1149/2.0191915jes 10.1021/acs.chemrev.9b00427 10.1039/C8TA07241H 10.1038/s41578-019-0165-5 10.1126/sciadv.1701301 10.1002/adma.202000030 10.1002/anie.201914417 10.1002/aenm.202002360 10.1021/cm010528i 10.1016/j.cej.2020.127727 10.1021/acsenergylett.8b00249 10.1021/acs.nanolett.6b03223 10.1021/acsami.8b18356 10.1021/acsenergylett.9b02660 10.1021/acs.chemrev.9b00268 10.1002/adma.202105329 10.1039/D0EE02062A 10.1016/j.nanoen.2019.04.058 10.1039/D1CC02932K 10.1002/adfm.202007815 10.1002/sstr.202000118 10.1002/adfm.202008165 10.1002/anie.202000547 10.1038/s41560-021-00782-0 10.1021/acsami.9b21359 10.1038/s41586-021-03486-3 10.1002/aelm.201500246 10.1002/aenm.202100046 10.1021/acsenergylett.1c02332 10.1002/ange.202014265 10.1002/adma.201606042 10.1002/adfm.201605989 10.1016/j.ensm.2018.06.022 10.1021/acsenergylett.0c02336 10.1038/s41467-020-20463-y 10.1002/adma.202107415 10.1002/adfm.202009925 10.1016/j.apsusc.2014.07.105 10.1021/acsami.0c18674 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202202911 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 10_1002_smll_202202911 SMLL202202911 |
Genre | article |
GrantInformation_xml | – fundername: China Postdoctoral Science Foundation funderid: 2020M683246 – fundername: National Natural Science Foundation of China funderid: 22179014 – fundername: Fundamental Research Funds for the Central Universities funderid: 2021CDJQY‐051 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AASGY AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 LH4 |
ID | FETCH-LOGICAL-c3501-26b6d03a34fa1f1a1fd44cc228239006fe58813197985d93ffd7b049f9b233d03 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Thu Sep 04 21:46:41 EDT 2025 Sun Jul 13 03:37:55 EDT 2025 Thu Apr 24 23:09:04 EDT 2025 Tue Jul 01 02:54:15 EDT 2025 Wed Jan 22 16:25:12 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 31 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3501-26b6d03a34fa1f1a1fd44cc228239006fe58813197985d93ffd7b049f9b233d03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1345-1420 |
PQID | 2697566004 |
PQPubID | 1046358 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2687715633 proquest_journals_2697566004 crossref_citationtrail_10_1002_smll_202202911 crossref_primary_10_1002_smll_202202911 wiley_primary_10_1002_smll_202202911_SMLL202202911 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2002; 14 2021; 7 2021; 6 2014; 315 2018; 140 2017; 3 2021; 66 2021; 2 2020; 120 2019; 11 2021; 125 2017; 27 2019; 12 2019; 16 2020; 59 2020; 13 2020; 386 2020; 12 2017; 29 2020; 11 2020; 32 2020; 421 2016; 16 2019; 166 2019; 123 2018; 6 2021; 57 2020; 5 2018; 3 2021; 31 2021; 12 2016; 2 2021; 33 2019; 61 2021; 11 2020; 31 2022; 34 2022; 14 2022; 15 2002; 149 2021; 593 2021; 133 2012; 22 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 Shan X. Y. (e_1_2_8_3_1) 2021; 125 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 Wang C. H. (e_1_2_8_5_1) 2022; 14 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 14 year: 2022 publication-title: ACS Appl. Mater. Interfaces – volume: 14 start-page: 1091 year: 2002 publication-title: Chem. Mater. – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 6 start-page: 445 year: 2021 publication-title: ACS Energy Lett. – volume: 11 start-page: 898 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 421 year: 2020 publication-title: Chem. Eng. J. – volume: 11 year: 2020 publication-title: Adv. Energy Mater. – volume: 61 start-page: 119 year: 2019 publication-title: Nano Energy – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 229 year: 2020 publication-title: Nat. Rev. Mater. – volume: 3 start-page: 1056 year: 2018 publication-title: ACS Energy Lett. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 120 start-page: 4257 year: 2020 publication-title: Chem. Rev. – volume: 120 start-page: 6820 year: 2020 publication-title: Chem. Rev. – volume: 31 year: 2020 publication-title: Adv. Funct. Mater. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 2 year: 2016 publication-title: Adv. Electron. Mater. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 12 start-page: 176 year: 2021 publication-title: Nat. Commun. – volume: 3 year: 2017 publication-title: Sci. Adv. – volume: 315 start-page: 104 year: 2014 publication-title: Appl. Surf. Sci. – volume: 125 start-page: 229 year: 2021 publication-title: J. Phys. Chem. C – volume: 12 year: 2019 publication-title: ACS Nano – volume: 57 year: 2021 publication-title: Chem. Commun. – volume: 11 start-page: 3716 year: 2020 publication-title: Nat. Commun. – volume: 593 start-page: 218 year: 2021 publication-title: Nature – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 16 start-page: 411 year: 2019 publication-title: Energy Storage Mater. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 2 year: 2021 publication-title: Small Struct. – volume: 16 start-page: 7030 year: 2016 publication-title: Nano Lett. – volume: 59 year: 2020 publication-title: Angew. Chem. Int. Ed. – volume: 133 start-page: 3825 year: 2021 publication-title: Angew. Chem. Int. Ed. – volume: 386 start-page: 521 year: 2020 publication-title: Science – volume: 59 start-page: 3699 year: 2020 publication-title: Angew. Chem. Int. Ed. – volume: 13 start-page: 4930 year: 2020 publication-title: Energy Environ. Sci. – volume: 66 start-page: 1746 year: 2021 publication-title: Sci. Bull. – volume: 7 start-page: 381 year: 2021 publication-title: ACS Energy Lett. – volume: 13 start-page: 127 year: 2020 publication-title: Energy Environ. Sci. – volume: 5 start-page: 833 year: 2020 publication-title: ACS Energy Lett. – volume: 149 year: 2002 publication-title: J. Electrochem. Soc. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 299 year: 2020 publication-title: Nat. Energy – volume: 140 start-page: 6448 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 362 year: 2021 publication-title: Nat. Energy – volume: 22 start-page: 1145 year: 2012 publication-title: Adv. Funct. Mater. – volume: 123 year: 2019 publication-title: J. Phys. Chem. C – volume: 5 start-page: 1167 year: 2020 publication-title: ACS Energy Lett. – volume: 166 year: 2019 publication-title: J. Electrochem. Soc. – volume: 15 start-page: 1325 year: 2022 publication-title: Energy Environ. Sci. – ident: e_1_2_8_6_1 doi: 10.1038/s41560-020-0575-z – ident: e_1_2_8_52_1 doi: 10.1149/1.1505636 – ident: e_1_2_8_33_1 doi: 10.1021/acsnano.9b08803 – ident: e_1_2_8_43_1 doi: 10.1002/adma.202004157 – ident: e_1_2_8_59_1 doi: 10.1002/adfm.202008301 – ident: e_1_2_8_32_1 doi: 10.1021/acsenergylett.0c00383 – ident: e_1_2_8_7_1 doi: 10.1126/science.aaz7681 – ident: e_1_2_8_47_1 doi: 10.1016/j.scib.2021.04.034 – ident: e_1_2_8_39_1 doi: 10.1002/adfm.201101798 – ident: e_1_2_8_12_1 doi: 10.1021/acsami.0c15692 – ident: e_1_2_8_19_1 doi: 10.1038/s41467-020-17493-x – ident: e_1_2_8_28_1 doi: 10.1039/C9EE01903K – ident: e_1_2_8_45_1 doi: 10.1039/D1EE03604A – ident: e_1_2_8_16_1 doi: 10.1002/adma.202100726 – ident: e_1_2_8_20_1 doi: 10.1002/adma.202000575 – ident: e_1_2_8_35_1 doi: 10.1002/adfm.202101556 – ident: e_1_2_8_21_1 doi: 10.1002/anie.202003177 – ident: e_1_2_8_23_1 doi: 10.1021/jacs.8b03106 – ident: e_1_2_8_40_1 doi: 10.1021/acs.jpcc.9b00436 – ident: e_1_2_8_50_1 doi: 10.1149/2.0191915jes – ident: e_1_2_8_13_1 doi: 10.1021/acs.chemrev.9b00427 – ident: e_1_2_8_46_1 doi: 10.1039/C8TA07241H – ident: e_1_2_8_2_1 doi: 10.1038/s41578-019-0165-5 – ident: e_1_2_8_42_1 doi: 10.1126/sciadv.1701301 – ident: e_1_2_8_30_1 doi: 10.1002/adma.202000030 – ident: e_1_2_8_34_1 doi: 10.1002/anie.201914417 – ident: e_1_2_8_54_1 doi: 10.1002/aenm.202002360 – ident: e_1_2_8_8_1 doi: 10.1021/cm010528i – ident: e_1_2_8_27_1 doi: 10.1016/j.cej.2020.127727 – ident: e_1_2_8_58_1 doi: 10.1021/acsenergylett.8b00249 – ident: e_1_2_8_56_1 doi: 10.1021/acs.nanolett.6b03223 – ident: e_1_2_8_24_1 doi: 10.1021/acsami.8b18356 – ident: e_1_2_8_57_1 doi: 10.1021/acsenergylett.9b02660 – ident: e_1_2_8_1_1 doi: 10.1021/acs.chemrev.9b00268 – ident: e_1_2_8_9_1 doi: 10.1002/adma.202105329 – ident: e_1_2_8_15_1 doi: 10.1039/D0EE02062A – ident: e_1_2_8_22_1 doi: 10.1016/j.nanoen.2019.04.058 – ident: e_1_2_8_48_1 doi: 10.1039/D1CC02932K – ident: e_1_2_8_18_1 doi: 10.1002/adfm.202007815 – ident: e_1_2_8_55_1 doi: 10.1002/sstr.202000118 – volume: 125 start-page: 229 year: 2021 ident: e_1_2_8_3_1 publication-title: J. Phys. Chem. C – ident: e_1_2_8_14_1 doi: 10.1002/adfm.202008165 – ident: e_1_2_8_49_1 doi: 10.1002/anie.202000547 – ident: e_1_2_8_60_1 doi: 10.1038/s41560-021-00782-0 – ident: e_1_2_8_31_1 doi: 10.1021/acsami.9b21359 – ident: e_1_2_8_10_1 doi: 10.1038/s41586-021-03486-3 – volume: 14 year: 2022 ident: e_1_2_8_5_1 publication-title: ACS Appl. Mater. Interfaces – ident: e_1_2_8_37_1 doi: 10.1002/aelm.201500246 – ident: e_1_2_8_38_1 doi: 10.1002/aenm.202100046 – ident: e_1_2_8_44_1 doi: 10.1021/acsenergylett.1c02332 – ident: e_1_2_8_17_1 doi: 10.1002/ange.202014265 – ident: e_1_2_8_29_1 doi: 10.1002/adma.201606042 – ident: e_1_2_8_36_1 doi: 10.1002/adfm.201605989 – ident: e_1_2_8_41_1 doi: 10.1016/j.ensm.2018.06.022 – ident: e_1_2_8_11_1 doi: 10.1021/acsenergylett.0c02336 – ident: e_1_2_8_25_1 doi: 10.1038/s41467-020-20463-y – ident: e_1_2_8_4_1 doi: 10.1002/adma.202107415 – ident: e_1_2_8_53_1 doi: 10.1002/adfm.202009925 – ident: e_1_2_8_51_1 doi: 10.1016/j.apsusc.2014.07.105 – ident: e_1_2_8_26_1 doi: 10.1021/acsami.0c18674 |
SSID | ssj0031247 |
Score | 2.4900467 |
Snippet | Solid‐state lithium metal batteries (SSLMBs) promise high energy density and high safety by employing high‐capacity Li metal anode and solid‐state... Solid-state lithium metal batteries (SSLMBs) promise high energy density and high safety by employing high-capacity Li metal anode and solid-state... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e2202911 |
SubjectTerms | Aluminum base alloys Anodes composite Li metal anodes Critical current density Electrochemical analysis Electrodes Lithium Lithium batteries lithium deposition lithium utilization efficiency Molten salt electrolytes Nanotechnology phase field simulations Solid electrolytes solid‐state lithium metal batteries |
Title | High‐Performance Composite Lithium Anodes Enabled by Electronic/Ionic Dual‐Conductive Paths for Solid‐State Li Metal Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202202911 https://www.proquest.com/docview/2697566004 https://www.proquest.com/docview/2687715633 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1613-6810 databaseCode: DR2 dateStart: 20050101 customDbUrl: isFulltext: true eissn: 1613-6829 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0031247 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9swFLYmntjDgI2Jbmwy0iSeTBvbcZpHBK26qZ0QDIm3yLeIipJMS_PAnvawH7DfuF_COU6bFqQJiUlJlMjX2D4-3_HlMyGfAKJaLX3CrFGCSdUzzGirmVUxt9KiiscB_clXNbqUX67iq7Vd_A0_RDvghpIR-msUcG2q7oo0tLqd4dQBhysNm3sjEYd52vOWP0qA8gqnq4DOYki8tWRt7PHuw-APtdIKaq4D1qBxhltEL_PaLDS5Oarn5sj-fETj-D8_s01eLeAoPW7azw554YvX5OUaSeEb8huXgvz99edstcWAYi-Cq708HU_n19P6lh4XpfMVHYStWI6aOzpoD9jpfsYnPa31DOI5KQvkmIVelp4B_KwoxEovytnUgWPAvhApnXiwCmjD_gnG_C65HA6-nYzY4uwGZnGqknFllOsJLWSuozyC20lpLQcLT6Qg6bmP-_0I5D9J-7FLRZ67xIC1kqeGCwEh35KNoiz8HqFapJGzsY1knEsHPjjAHKW1T3rKgfnZIWxZd5ldEJvj-RqzrKFk5hmWbtaWbocctv6_N5Qe__S5v2wK2UK0q4yrFJIHnCg75KB1BqHEmRZd-LJGP_0kgawJ0SE81PsTKWUXk_G4_Xr3nEDvySa-N4sT98nG_EftPwBgmpuPQSjuASdCEFk |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6hcgAOvBGBAouExGmbeHe9jo9VmyoFp6poK3Gz9mURkdpVEx_gxIEfwG_klzBjx06LhJBAsi3Z3pcfM_PN7uy3AG8QojqjQsKd1ZIrPbLcGme407FwypGJpw792ZGenql3H-MumpDmwrT8EH2HG0lGo69JwKlDerhhDV2eL2jsQOCW0uzemzRIR7K5_6FnkJJovpr1VdBqcaLe6ngbR2J4Pf91u7QBm1cha2NzDu6B7Vrbhpp83qlXdsd9_Y3I8b8e5z7cXSNSttv-Qg_gRigfwp0rPIWP4DtFg_z89uN4M8uAkSKhgK_Asvnq07w-Z7tl5cOSTZrZWJ7ZL2zSr7EzPKQj26_NAsvZq0qimUVFy44RgS4ZlspOqsXc480G_mKhbBbQMWAtASj684_h7GByujfl6-UbuKPRSi601X4kjVSFiYoId6-UcwKdPJmisBchHo8jVAFJOo59KovCJxYdliK1QkrM-QS2yqoMT4EZmUbexS5ScaE8phCIdLQxIRlpjx7oAHj38XK35janJTYWecvKLHJ6u3n_dgfwtk9_0bJ6_DHldvcv5GvpXuZCp1g9QkU1gNf9bZRLGmwxZahqSjNOEmyalAMQzYf_S035ySzL-rNn_5LpFdyans6yPDs8ev8cbtP1NlZxG7ZWl3V4gfhpZV82EvILIKQUdQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD5CQ0LwwB3RMcBISDx5bWzHaR6ntdUG7VQxJu0t8i1aRZdMtHkYTzzwA_iN_BLOSdq0Q0JIICWREl9j-_h8x5fPAG8RojqjQsKd1ZIr3bPcGme407FwypGKpwH9yYk-OlPvz-PzrV38DT9EO-BGklH31yTgVz7vbkhDF5dzmjoQeKW0ufc2JiTI_Bp8bAmkJGqv-ngVVFqcmLfWtI090b0Z_qZa2mDNbcRaq5zRAzDrzDYrTT7vV0u7777-xuP4P3_zEO6v8Cg7aBrQI7gVisdwb4ul8Al8p7UgP7_9mG72GDDqRmi5V2Dj2fJiVl2yg6L0YcGG9V4sz-w1G7Yn7HSP6ckGlZljPIdlQSSz2M2yKeLPBcNY2Wk5n3l0rMEvRsomAc0C1tB_ojX_FM5Gw0-HR3x1eAN3NFfJhbba96SRKjdRHuHtlXJOoIknUxT1PMT9foQdQJL2Y5_KPPeJRXMlT62QEkM-g52iLMJzYEamkXexi1ScK48-BOIcbUxIetqj_dkBvq67zK2YzemAjXnWcDKLjEo3a0u3A-9a_1cNp8cffe6tm0K2ku1FJnSKySNQVB140zqjVNJUiylCWZGffpJg1qTsgKjr_S8pZaeT8bh92_2XQK_hznQwysbHJx9ewF363CxU3IOd5ZcqvETwtLSvavn4BdUrEyQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High%E2%80%90Performance+Composite+Lithium+Anodes+Enabled+by+Electronic%2FIonic+Dual%E2%80%90Conductive+Paths+for+Solid%E2%80%90State+Li+Metal+Batteries&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Yang%2C+Zuguang&rft.au=Li%2C+Min&rft.au=Lu%2C+Guanjie&rft.au=Wang%2C+Yumei&rft.date=2022-08-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=18&rft.issue=31&rft_id=info:doi/10.1002%2Fsmll.202202911&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_smll_202202911 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |