High‐Performance Composite Lithium Anodes Enabled by Electronic/Ionic Dual‐Conductive Paths for Solid‐State Li Metal Batteries

Solid‐state lithium metal batteries (SSLMBs) promise high energy density and high safety by employing high‐capacity Li metal anode and solid‐state electrolytes. However, the construction of the composite Li metal electrode is a neglected but important subject when the extensive research focuses on t...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 18; no. 31; pp. e2202911 - n/a
Main Authors Yang, Zuguang, Li, Min, Lu, Guanjie, Wang, Yumei, Wei, Jie, Hu, Xiaolin, Li, Zongyang, Li, Penghua, Xu, Chaohe
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.08.2022
Subjects
Online AccessGet full text
ISSN1613-6810
1613-6829
1613-6829
DOI10.1002/smll.202202911

Cover

Abstract Solid‐state lithium metal batteries (SSLMBs) promise high energy density and high safety by employing high‐capacity Li metal anode and solid‐state electrolytes. However, the construction of the composite Li metal electrode is a neglected but important subject when the extensive research focuses on the interface between the solid electrolyte Li6.4La3Zr1.4Ta0.6O12 and Li metal anode. Here, an electronic–ionic conducting composite Li metal anode consisting of Li–Al alloy and LiF is constructed to achieve the stable electronic–ionic transport channel and the intimate interface contact, which can realize the uniform Li deposition and the efficiency utilization of lithium in composite Li metal electrode. Therefore, the symmetric battery with composite Li metal electrode exhibits the high critical current density with 1.2 mA cm−2 and stable cycle for 1500 h at 0.3 mA cm−2, 25 °C. Moreover, the SSLMBs matched with LiFePO4 and LiNi0.8Co0.1Mn0.1O2 achieve the outstanding electrochemical performance, verifying the feasibility of composite Li metal electrode in various SSLMBs systems. The electronic–ionic conducting composite Li metal anode consisting of Li–Al alloy and LiF is constructed, which can establish the stable electronic–ionic transport channel enhancing the utilization efficiency of internal lithium in Li metal electrode, promoting the homogeneous Li metal deposition, as well as improving the wettability of molten Li.
AbstractList Solid-state lithium metal batteries (SSLMBs) promise high energy density and high safety by employing high-capacity Li metal anode and solid-state electrolytes. However, the construction of the composite Li metal electrode is a neglected but important subject when the extensive research focuses on the interface between the solid electrolyte Li6.4 La3 Zr1.4 Ta0.6 O12 and Li metal anode. Here, an electronic-ionic conducting composite Li metal anode consisting of Li-Al alloy and LiF is constructed to achieve the stable electronic-ionic transport channel and the intimate interface contact, which can realize the uniform Li deposition and the efficiency utilization of lithium in composite Li metal electrode. Therefore, the symmetric battery with composite Li metal electrode exhibits the high critical current density with 1.2 mA cm-2 and stable cycle for 1500 h at 0.3 mA cm-2 , 25 °C. Moreover, the SSLMBs matched with LiFePO4 and LiNi0.8 Co0.1 Mn0.1 O2 achieve the outstanding electrochemical performance, verifying the feasibility of composite Li metal electrode in various SSLMBs systems.Solid-state lithium metal batteries (SSLMBs) promise high energy density and high safety by employing high-capacity Li metal anode and solid-state electrolytes. However, the construction of the composite Li metal electrode is a neglected but important subject when the extensive research focuses on the interface between the solid electrolyte Li6.4 La3 Zr1.4 Ta0.6 O12 and Li metal anode. Here, an electronic-ionic conducting composite Li metal anode consisting of Li-Al alloy and LiF is constructed to achieve the stable electronic-ionic transport channel and the intimate interface contact, which can realize the uniform Li deposition and the efficiency utilization of lithium in composite Li metal electrode. Therefore, the symmetric battery with composite Li metal electrode exhibits the high critical current density with 1.2 mA cm-2 and stable cycle for 1500 h at 0.3 mA cm-2 , 25 °C. Moreover, the SSLMBs matched with LiFePO4 and LiNi0.8 Co0.1 Mn0.1 O2 achieve the outstanding electrochemical performance, verifying the feasibility of composite Li metal electrode in various SSLMBs systems.
Solid‐state lithium metal batteries (SSLMBs) promise high energy density and high safety by employing high‐capacity Li metal anode and solid‐state electrolytes. However, the construction of the composite Li metal electrode is a neglected but important subject when the extensive research focuses on the interface between the solid electrolyte Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12 and Li metal anode. Here, an electronic–ionic conducting composite Li metal anode consisting of Li–Al alloy and LiF is constructed to achieve the stable electronic–ionic transport channel and the intimate interface contact, which can realize the uniform Li deposition and the efficiency utilization of lithium in composite Li metal electrode. Therefore, the symmetric battery with composite Li metal electrode exhibits the high critical current density with 1.2 mA cm −2 and stable cycle for 1500 h at 0.3 mA cm −2 , 25 °C. Moreover, the SSLMBs matched with LiFePO 4 and LiNi 0.8 Co 0.1 Mn 0.1 O 2 achieve the outstanding electrochemical performance, verifying the feasibility of composite Li metal electrode in various SSLMBs systems.
Solid‐state lithium metal batteries (SSLMBs) promise high energy density and high safety by employing high‐capacity Li metal anode and solid‐state electrolytes. However, the construction of the composite Li metal electrode is a neglected but important subject when the extensive research focuses on the interface between the solid electrolyte Li6.4La3Zr1.4Ta0.6O12 and Li metal anode. Here, an electronic–ionic conducting composite Li metal anode consisting of Li–Al alloy and LiF is constructed to achieve the stable electronic–ionic transport channel and the intimate interface contact, which can realize the uniform Li deposition and the efficiency utilization of lithium in composite Li metal electrode. Therefore, the symmetric battery with composite Li metal electrode exhibits the high critical current density with 1.2 mA cm−2 and stable cycle for 1500 h at 0.3 mA cm−2, 25 °C. Moreover, the SSLMBs matched with LiFePO4 and LiNi0.8Co0.1Mn0.1O2 achieve the outstanding electrochemical performance, verifying the feasibility of composite Li metal electrode in various SSLMBs systems.
Solid‐state lithium metal batteries (SSLMBs) promise high energy density and high safety by employing high‐capacity Li metal anode and solid‐state electrolytes. However, the construction of the composite Li metal electrode is a neglected but important subject when the extensive research focuses on the interface between the solid electrolyte Li6.4La3Zr1.4Ta0.6O12 and Li metal anode. Here, an electronic–ionic conducting composite Li metal anode consisting of Li–Al alloy and LiF is constructed to achieve the stable electronic–ionic transport channel and the intimate interface contact, which can realize the uniform Li deposition and the efficiency utilization of lithium in composite Li metal electrode. Therefore, the symmetric battery with composite Li metal electrode exhibits the high critical current density with 1.2 mA cm−2 and stable cycle for 1500 h at 0.3 mA cm−2, 25 °C. Moreover, the SSLMBs matched with LiFePO4 and LiNi0.8Co0.1Mn0.1O2 achieve the outstanding electrochemical performance, verifying the feasibility of composite Li metal electrode in various SSLMBs systems. The electronic–ionic conducting composite Li metal anode consisting of Li–Al alloy and LiF is constructed, which can establish the stable electronic–ionic transport channel enhancing the utilization efficiency of internal lithium in Li metal electrode, promoting the homogeneous Li metal deposition, as well as improving the wettability of molten Li.
Author Li, Penghua
Li, Min
Wei, Jie
Lu, Guanjie
Hu, Xiaolin
Wang, Yumei
Yang, Zuguang
Xu, Chaohe
Li, Zongyang
Author_xml – sequence: 1
  givenname: Zuguang
  surname: Yang
  fullname: Yang, Zuguang
  email: zuguangyang@cqu.edu.cn
  organization: Chongqing University
– sequence: 2
  givenname: Min
  surname: Li
  fullname: Li, Min
  organization: Chongqing University
– sequence: 3
  givenname: Guanjie
  surname: Lu
  fullname: Lu, Guanjie
  organization: Chongqing University
– sequence: 4
  givenname: Yumei
  surname: Wang
  fullname: Wang, Yumei
  organization: National University of Singapore (Chongqing) Research Institute
– sequence: 5
  givenname: Jie
  surname: Wei
  fullname: Wei, Jie
  organization: Chongqing University
– sequence: 6
  givenname: Xiaolin
  surname: Hu
  fullname: Hu, Xiaolin
  organization: Chongqing University
– sequence: 7
  givenname: Zongyang
  surname: Li
  fullname: Li, Zongyang
  organization: Chongqing University
– sequence: 8
  givenname: Penghua
  surname: Li
  fullname: Li, Penghua
  email: liph@cqupt.edu.cn
  organization: Chongqing University of Posts and Telecommunications
– sequence: 9
  givenname: Chaohe
  orcidid: 0000-0002-1345-1420
  surname: Xu
  fullname: Xu, Chaohe
  email: xche@cqu.edu.cn
  organization: Chongqing University
BookMark eNqFkU1rFDEch4NUsK1ePQe8eNltXmYyk2NdV1uYYmH1PGQy_7gpmWRNMpW9efAD-Bn9JGZdqVAQIW-Q5_mR8DtDJz54QOglJUtKCLtIk3NLRlgZktIn6JQKyheiZfLk4UzJM3SW0h0hnLKqOUXfr-zn7c9vP24hmhAn5TXgVZh2IdkMuLN5a-cJX_owQsJrrwYHIx72eO1A5xi81RfXhxW_nZUrOavgx1lnew_4VuVtwiUVb4KzY7ncZPU7FN9AVg6_UTlDtJCeo6dGuQQv_uzn6NO79cfV1aL78P56ddktNK8JXTAxiJFwxSujqKFljlWlNWMt45IQYaBuW8qpbGRbj5IbMzYDqaSRA-O8mOfo9TF3F8OXGVLuJ5s0OKc8hDn1TLRNQ2vBeUFfPULvwhx9eV2hZFMLQUhVqOpI6RhSimB6bcsfbfA5Kut6SvpDNf2hmv6hmqItH2m7aCcV9_8W5FH4ah3s_0P3m5uu--v-Apm8ptA
CitedBy_id crossref_primary_10_1002_smll_202304290
crossref_primary_10_1016_j_nanoen_2023_108573
crossref_primary_10_1002_adfm_202426002
crossref_primary_10_1039_D2EE03709B
crossref_primary_10_1016_j_compscitech_2024_110822
crossref_primary_10_1002_adfm_202213648
crossref_primary_10_1039_D4TA05312E
crossref_primary_10_1016_j_est_2024_112539
crossref_primary_10_1002_smll_202407983
crossref_primary_10_1002_smll_202304747
crossref_primary_10_1039_D3TA04229D
crossref_primary_10_1002_smll_202207093
crossref_primary_10_1021_acsenergylett_4c01983
crossref_primary_10_1680_jsuin_23_00049
crossref_primary_10_1002_adfm_202503266
crossref_primary_10_1016_j_jpcs_2024_111871
crossref_primary_10_1016_j_nanoen_2025_110749
crossref_primary_10_1021_acsami_3c16268
crossref_primary_10_1016_j_cej_2023_146153
Cites_doi 10.1038/s41560-020-0575-z
10.1149/1.1505636
10.1021/acsnano.9b08803
10.1002/adma.202004157
10.1002/adfm.202008301
10.1021/acsenergylett.0c00383
10.1126/science.aaz7681
10.1016/j.scib.2021.04.034
10.1002/adfm.201101798
10.1021/acsami.0c15692
10.1038/s41467-020-17493-x
10.1039/C9EE01903K
10.1039/D1EE03604A
10.1002/adma.202100726
10.1002/adma.202000575
10.1002/adfm.202101556
10.1002/anie.202003177
10.1021/jacs.8b03106
10.1021/acs.jpcc.9b00436
10.1149/2.0191915jes
10.1021/acs.chemrev.9b00427
10.1039/C8TA07241H
10.1038/s41578-019-0165-5
10.1126/sciadv.1701301
10.1002/adma.202000030
10.1002/anie.201914417
10.1002/aenm.202002360
10.1021/cm010528i
10.1016/j.cej.2020.127727
10.1021/acsenergylett.8b00249
10.1021/acs.nanolett.6b03223
10.1021/acsami.8b18356
10.1021/acsenergylett.9b02660
10.1021/acs.chemrev.9b00268
10.1002/adma.202105329
10.1039/D0EE02062A
10.1016/j.nanoen.2019.04.058
10.1039/D1CC02932K
10.1002/adfm.202007815
10.1002/sstr.202000118
10.1002/adfm.202008165
10.1002/anie.202000547
10.1038/s41560-021-00782-0
10.1021/acsami.9b21359
10.1038/s41586-021-03486-3
10.1002/aelm.201500246
10.1002/aenm.202100046
10.1021/acsenergylett.1c02332
10.1002/ange.202014265
10.1002/adma.201606042
10.1002/adfm.201605989
10.1016/j.ensm.2018.06.022
10.1021/acsenergylett.0c02336
10.1038/s41467-020-20463-y
10.1002/adma.202107415
10.1002/adfm.202009925
10.1016/j.apsusc.2014.07.105
10.1021/acsami.0c18674
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202202911
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 10_1002_smll_202202911
SMLL202202911
Genre article
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  funderid: 2020M683246
– fundername: National Natural Science Foundation of China
  funderid: 22179014
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 2021CDJQY‐051
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AASGY
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
LH4
ID FETCH-LOGICAL-c3501-26b6d03a34fa1f1a1fd44cc228239006fe58813197985d93ffd7b049f9b233d03
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Thu Sep 04 21:46:41 EDT 2025
Sun Jul 13 03:37:55 EDT 2025
Thu Apr 24 23:09:04 EDT 2025
Tue Jul 01 02:54:15 EDT 2025
Wed Jan 22 16:25:12 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 31
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3501-26b6d03a34fa1f1a1fd44cc228239006fe58813197985d93ffd7b049f9b233d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1345-1420
PQID 2697566004
PQPubID 1046358
PageCount 9
ParticipantIDs proquest_miscellaneous_2687715633
proquest_journals_2697566004
crossref_citationtrail_10_1002_smll_202202911
crossref_primary_10_1002_smll_202202911
wiley_primary_10_1002_smll_202202911_SMLL202202911
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2002; 14
2021; 7
2021; 6
2014; 315
2018; 140
2017; 3
2021; 66
2021; 2
2020; 120
2019; 11
2021; 125
2017; 27
2019; 12
2019; 16
2020; 59
2020; 13
2020; 386
2020; 12
2017; 29
2020; 11
2020; 32
2020; 421
2016; 16
2019; 166
2019; 123
2018; 6
2021; 57
2020; 5
2018; 3
2021; 31
2021; 12
2016; 2
2021; 33
2019; 61
2021; 11
2020; 31
2022; 34
2022; 14
2022; 15
2002; 149
2021; 593
2021; 133
2012; 22
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
Shan X. Y. (e_1_2_8_3_1) 2021; 125
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
Wang C. H. (e_1_2_8_5_1) 2022; 14
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 14
  year: 2022
  publication-title: ACS Appl. Mater. Interfaces
– volume: 14
  start-page: 1091
  year: 2002
  publication-title: Chem. Mater.
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 445
  year: 2021
  publication-title: ACS Energy Lett.
– volume: 11
  start-page: 898
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 421
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 11
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 61
  start-page: 119
  year: 2019
  publication-title: Nano Energy
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 229
  year: 2020
  publication-title: Nat. Rev. Mater.
– volume: 3
  start-page: 1056
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 120
  start-page: 4257
  year: 2020
  publication-title: Chem. Rev.
– volume: 120
  start-page: 6820
  year: 2020
  publication-title: Chem. Rev.
– volume: 31
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 2
  year: 2016
  publication-title: Adv. Electron. Mater.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 12
  start-page: 176
  year: 2021
  publication-title: Nat. Commun.
– volume: 3
  year: 2017
  publication-title: Sci. Adv.
– volume: 315
  start-page: 104
  year: 2014
  publication-title: Appl. Surf. Sci.
– volume: 125
  start-page: 229
  year: 2021
  publication-title: J. Phys. Chem. C
– volume: 12
  year: 2019
  publication-title: ACS Nano
– volume: 57
  year: 2021
  publication-title: Chem. Commun.
– volume: 11
  start-page: 3716
  year: 2020
  publication-title: Nat. Commun.
– volume: 593
  start-page: 218
  year: 2021
  publication-title: Nature
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 16
  start-page: 411
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 2
  year: 2021
  publication-title: Small Struct.
– volume: 16
  start-page: 7030
  year: 2016
  publication-title: Nano Lett.
– volume: 59
  year: 2020
  publication-title: Angew. Chem. Int. Ed.
– volume: 133
  start-page: 3825
  year: 2021
  publication-title: Angew. Chem. Int. Ed.
– volume: 386
  start-page: 521
  year: 2020
  publication-title: Science
– volume: 59
  start-page: 3699
  year: 2020
  publication-title: Angew. Chem. Int. Ed.
– volume: 13
  start-page: 4930
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 66
  start-page: 1746
  year: 2021
  publication-title: Sci. Bull.
– volume: 7
  start-page: 381
  year: 2021
  publication-title: ACS Energy Lett.
– volume: 13
  start-page: 127
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 833
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 149
  year: 2002
  publication-title: J. Electrochem. Soc.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 299
  year: 2020
  publication-title: Nat. Energy
– volume: 140
  start-page: 6448
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 362
  year: 2021
  publication-title: Nat. Energy
– volume: 22
  start-page: 1145
  year: 2012
  publication-title: Adv. Funct. Mater.
– volume: 123
  year: 2019
  publication-title: J. Phys. Chem. C
– volume: 5
  start-page: 1167
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 166
  year: 2019
  publication-title: J. Electrochem. Soc.
– volume: 15
  start-page: 1325
  year: 2022
  publication-title: Energy Environ. Sci.
– ident: e_1_2_8_6_1
  doi: 10.1038/s41560-020-0575-z
– ident: e_1_2_8_52_1
  doi: 10.1149/1.1505636
– ident: e_1_2_8_33_1
  doi: 10.1021/acsnano.9b08803
– ident: e_1_2_8_43_1
  doi: 10.1002/adma.202004157
– ident: e_1_2_8_59_1
  doi: 10.1002/adfm.202008301
– ident: e_1_2_8_32_1
  doi: 10.1021/acsenergylett.0c00383
– ident: e_1_2_8_7_1
  doi: 10.1126/science.aaz7681
– ident: e_1_2_8_47_1
  doi: 10.1016/j.scib.2021.04.034
– ident: e_1_2_8_39_1
  doi: 10.1002/adfm.201101798
– ident: e_1_2_8_12_1
  doi: 10.1021/acsami.0c15692
– ident: e_1_2_8_19_1
  doi: 10.1038/s41467-020-17493-x
– ident: e_1_2_8_28_1
  doi: 10.1039/C9EE01903K
– ident: e_1_2_8_45_1
  doi: 10.1039/D1EE03604A
– ident: e_1_2_8_16_1
  doi: 10.1002/adma.202100726
– ident: e_1_2_8_20_1
  doi: 10.1002/adma.202000575
– ident: e_1_2_8_35_1
  doi: 10.1002/adfm.202101556
– ident: e_1_2_8_21_1
  doi: 10.1002/anie.202003177
– ident: e_1_2_8_23_1
  doi: 10.1021/jacs.8b03106
– ident: e_1_2_8_40_1
  doi: 10.1021/acs.jpcc.9b00436
– ident: e_1_2_8_50_1
  doi: 10.1149/2.0191915jes
– ident: e_1_2_8_13_1
  doi: 10.1021/acs.chemrev.9b00427
– ident: e_1_2_8_46_1
  doi: 10.1039/C8TA07241H
– ident: e_1_2_8_2_1
  doi: 10.1038/s41578-019-0165-5
– ident: e_1_2_8_42_1
  doi: 10.1126/sciadv.1701301
– ident: e_1_2_8_30_1
  doi: 10.1002/adma.202000030
– ident: e_1_2_8_34_1
  doi: 10.1002/anie.201914417
– ident: e_1_2_8_54_1
  doi: 10.1002/aenm.202002360
– ident: e_1_2_8_8_1
  doi: 10.1021/cm010528i
– ident: e_1_2_8_27_1
  doi: 10.1016/j.cej.2020.127727
– ident: e_1_2_8_58_1
  doi: 10.1021/acsenergylett.8b00249
– ident: e_1_2_8_56_1
  doi: 10.1021/acs.nanolett.6b03223
– ident: e_1_2_8_24_1
  doi: 10.1021/acsami.8b18356
– ident: e_1_2_8_57_1
  doi: 10.1021/acsenergylett.9b02660
– ident: e_1_2_8_1_1
  doi: 10.1021/acs.chemrev.9b00268
– ident: e_1_2_8_9_1
  doi: 10.1002/adma.202105329
– ident: e_1_2_8_15_1
  doi: 10.1039/D0EE02062A
– ident: e_1_2_8_22_1
  doi: 10.1016/j.nanoen.2019.04.058
– ident: e_1_2_8_48_1
  doi: 10.1039/D1CC02932K
– ident: e_1_2_8_18_1
  doi: 10.1002/adfm.202007815
– ident: e_1_2_8_55_1
  doi: 10.1002/sstr.202000118
– volume: 125
  start-page: 229
  year: 2021
  ident: e_1_2_8_3_1
  publication-title: J. Phys. Chem. C
– ident: e_1_2_8_14_1
  doi: 10.1002/adfm.202008165
– ident: e_1_2_8_49_1
  doi: 10.1002/anie.202000547
– ident: e_1_2_8_60_1
  doi: 10.1038/s41560-021-00782-0
– ident: e_1_2_8_31_1
  doi: 10.1021/acsami.9b21359
– ident: e_1_2_8_10_1
  doi: 10.1038/s41586-021-03486-3
– volume: 14
  year: 2022
  ident: e_1_2_8_5_1
  publication-title: ACS Appl. Mater. Interfaces
– ident: e_1_2_8_37_1
  doi: 10.1002/aelm.201500246
– ident: e_1_2_8_38_1
  doi: 10.1002/aenm.202100046
– ident: e_1_2_8_44_1
  doi: 10.1021/acsenergylett.1c02332
– ident: e_1_2_8_17_1
  doi: 10.1002/ange.202014265
– ident: e_1_2_8_29_1
  doi: 10.1002/adma.201606042
– ident: e_1_2_8_36_1
  doi: 10.1002/adfm.201605989
– ident: e_1_2_8_41_1
  doi: 10.1016/j.ensm.2018.06.022
– ident: e_1_2_8_11_1
  doi: 10.1021/acsenergylett.0c02336
– ident: e_1_2_8_25_1
  doi: 10.1038/s41467-020-20463-y
– ident: e_1_2_8_4_1
  doi: 10.1002/adma.202107415
– ident: e_1_2_8_53_1
  doi: 10.1002/adfm.202009925
– ident: e_1_2_8_51_1
  doi: 10.1016/j.apsusc.2014.07.105
– ident: e_1_2_8_26_1
  doi: 10.1021/acsami.0c18674
SSID ssj0031247
Score 2.4900467
Snippet Solid‐state lithium metal batteries (SSLMBs) promise high energy density and high safety by employing high‐capacity Li metal anode and solid‐state...
Solid-state lithium metal batteries (SSLMBs) promise high energy density and high safety by employing high-capacity Li metal anode and solid-state...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e2202911
SubjectTerms Aluminum base alloys
Anodes
composite Li metal anodes
Critical current density
Electrochemical analysis
Electrodes
Lithium
Lithium batteries
lithium deposition
lithium utilization efficiency
Molten salt electrolytes
Nanotechnology
phase field simulations
Solid electrolytes
solid‐state lithium metal batteries
Title High‐Performance Composite Lithium Anodes Enabled by Electronic/Ionic Dual‐Conductive Paths for Solid‐State Li Metal Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202202911
https://www.proquest.com/docview/2697566004
https://www.proquest.com/docview/2687715633
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1613-6810
  databaseCode: DR2
  dateStart: 20050101
  customDbUrl:
  isFulltext: true
  eissn: 1613-6829
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0031247
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9swFLYmntjDgI2Jbmwy0iSeTBvbcZpHBK26qZ0QDIm3yLeIipJMS_PAnvawH7DfuF_COU6bFqQJiUlJlMjX2D4-3_HlMyGfAKJaLX3CrFGCSdUzzGirmVUxt9KiiscB_clXNbqUX67iq7Vd_A0_RDvghpIR-msUcG2q7oo0tLqd4dQBhysNm3sjEYd52vOWP0qA8gqnq4DOYki8tWRt7PHuw-APtdIKaq4D1qBxhltEL_PaLDS5Oarn5sj-fETj-D8_s01eLeAoPW7azw554YvX5OUaSeEb8huXgvz99edstcWAYi-Cq708HU_n19P6lh4XpfMVHYStWI6aOzpoD9jpfsYnPa31DOI5KQvkmIVelp4B_KwoxEovytnUgWPAvhApnXiwCmjD_gnG_C65HA6-nYzY4uwGZnGqknFllOsJLWSuozyC20lpLQcLT6Qg6bmP-_0I5D9J-7FLRZ67xIC1kqeGCwEh35KNoiz8HqFapJGzsY1knEsHPjjAHKW1T3rKgfnZIWxZd5ldEJvj-RqzrKFk5hmWbtaWbocctv6_N5Qe__S5v2wK2UK0q4yrFJIHnCg75KB1BqHEmRZd-LJGP_0kgawJ0SE81PsTKWUXk_G4_Xr3nEDvySa-N4sT98nG_EftPwBgmpuPQSjuASdCEFk
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6hcgAOvBGBAouExGmbeHe9jo9VmyoFp6poK3Gz9mURkdpVEx_gxIEfwG_klzBjx06LhJBAsi3Z3pcfM_PN7uy3AG8QojqjQsKd1ZIrPbLcGme407FwypGJpw792ZGenql3H-MumpDmwrT8EH2HG0lGo69JwKlDerhhDV2eL2jsQOCW0uzemzRIR7K5_6FnkJJovpr1VdBqcaLe6ngbR2J4Pf91u7QBm1cha2NzDu6B7Vrbhpp83qlXdsd9_Y3I8b8e5z7cXSNSttv-Qg_gRigfwp0rPIWP4DtFg_z89uN4M8uAkSKhgK_Asvnq07w-Z7tl5cOSTZrZWJ7ZL2zSr7EzPKQj26_NAsvZq0qimUVFy44RgS4ZlspOqsXc480G_mKhbBbQMWAtASj684_h7GByujfl6-UbuKPRSi601X4kjVSFiYoId6-UcwKdPJmisBchHo8jVAFJOo59KovCJxYdliK1QkrM-QS2yqoMT4EZmUbexS5ScaE8phCIdLQxIRlpjx7oAHj38XK35janJTYWecvKLHJ6u3n_dgfwtk9_0bJ6_DHldvcv5GvpXuZCp1g9QkU1gNf9bZRLGmwxZahqSjNOEmyalAMQzYf_S035ySzL-rNn_5LpFdyans6yPDs8ev8cbtP1NlZxG7ZWl3V4gfhpZV82EvILIKQUdQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD5CQ0LwwB3RMcBISDx5bWzHaR6ntdUG7VQxJu0t8i1aRZdMtHkYTzzwA_iN_BLOSdq0Q0JIICWREl9j-_h8x5fPAG8RojqjQsKd1ZIr3bPcGme407FwypGKpwH9yYk-OlPvz-PzrV38DT9EO-BGklH31yTgVz7vbkhDF5dzmjoQeKW0ufc2JiTI_Bp8bAmkJGqv-ngVVFqcmLfWtI090b0Z_qZa2mDNbcRaq5zRAzDrzDYrTT7vV0u7777-xuP4P3_zEO6v8Cg7aBrQI7gVisdwb4ul8Al8p7UgP7_9mG72GDDqRmi5V2Dj2fJiVl2yg6L0YcGG9V4sz-w1G7Yn7HSP6ckGlZljPIdlQSSz2M2yKeLPBcNY2Wk5n3l0rMEvRsomAc0C1tB_ojX_FM5Gw0-HR3x1eAN3NFfJhbba96SRKjdRHuHtlXJOoIknUxT1PMT9foQdQJL2Y5_KPPeJRXMlT62QEkM-g52iLMJzYEamkXexi1ScK48-BOIcbUxIetqj_dkBvq67zK2YzemAjXnWcDKLjEo3a0u3A-9a_1cNp8cffe6tm0K2ku1FJnSKySNQVB140zqjVNJUiylCWZGffpJg1qTsgKjr_S8pZaeT8bh92_2XQK_hznQwysbHJx9ewF363CxU3IOd5ZcqvETwtLSvavn4BdUrEyQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High%E2%80%90Performance+Composite+Lithium+Anodes+Enabled+by+Electronic%2FIonic+Dual%E2%80%90Conductive+Paths+for+Solid%E2%80%90State+Li+Metal+Batteries&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Yang%2C+Zuguang&rft.au=Li%2C+Min&rft.au=Lu%2C+Guanjie&rft.au=Wang%2C+Yumei&rft.date=2022-08-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=18&rft.issue=31&rft_id=info:doi/10.1002%2Fsmll.202202911&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_smll_202202911
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon