Directed-Graph-Learning-Based Diagnosis of Multiple Faults for High Speed Train With Switched Dynamics

This article addresses the distributed multiple fault isolation, modeling, and the closed-loop fault estimation under asynchronous switching for high speed train (HST) with switched dynamics, which is composed of traction, coasting, and braking. First, directed-graph-quantum-learning-based multiple-...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 53; no. 3; pp. 1712 - 1724
Main Authors Zhang, Kunpeng, Jiang, Bin, Chen, Fuyang, Yang, Hui
Format Journal Article
LanguageEnglish
Published United States IEEE 01.03.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2267
2168-2275
2168-2275
DOI10.1109/TCYB.2021.3108773

Cover

More Information
Summary:This article addresses the distributed multiple fault isolation, modeling, and the closed-loop fault estimation under asynchronous switching for high speed train (HST) with switched dynamics, which is composed of traction, coasting, and braking. First, directed-graph-quantum-learning-based multiple-agent system (MAS) classifiers are introduced to characterize the joints effects of multiple faults. Some sufficient conditions are derived under the condition that the multiple fault topology contains a directed spanning tree and cycle edge, and these conditions guarantee that the multiple fault isolation problem can be solved under randomized learning techniques. Then, single-integrator agents are employed to capture the time-varying topology of multiple fault modeling, in which edge agreement and persistence condition are used to guarantee asymptotic consensus. After that, a novel robust fault estimation design along with the switched Lyapunov function and average dwell time is proposed for the possible power actuator faults subject to asynchronous switching and electromagnetic interferences. In addition, switched estimators are designed such that the closed-loop system is asymptotically stable. A multiple fault isolation and estimation case is investigated to validate the application of this methodology.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2267
2168-2275
2168-2275
DOI:10.1109/TCYB.2021.3108773