An Automatic Subject-Adaptable Heartbeat Classifier Based on Multiview Learning

In this paper, a novel subject-adaptable heartbeat classification model is presented, in order to address the significant interperson variations in ECG signals. A multiview learning approach is proposed to automate subject adaptation using a small amount of unlabeled personal data, without requiring...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 20; no. 6; pp. 1485 - 1492
Main Authors Can Ye, Vijaya Kumar, B. V. K., Tavares Coimbra, Miguel
Format Journal Article
LanguageEnglish
Published United States IEEE 01.11.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2194
2168-2208
DOI10.1109/JBHI.2015.2468224

Cover

Abstract In this paper, a novel subject-adaptable heartbeat classification model is presented, in order to address the significant interperson variations in ECG signals. A multiview learning approach is proposed to automate subject adaptation using a small amount of unlabeled personal data, without requiring manual labeling. The designed subject-customized models consist of two models, namely, general classification model and specific classification model. The general model is trained using similar subjects out of a population dataset, where a pattern matching based algorithm is developed to select the subjects that are "similar" to the particular test subject for model training. In contrast, the specific model is trained mainly on a small amount of high-confidence personal dataset, resulting from multiview-based learning. The learned general model represents the population knowledge, providing an interperson perspective for classification, while the specific model corresponds to the specific knowledge of the subject, offering an intraperson perspective for classification. The two models supplement each other and are combined to achieve improved personalized ECG analysis. The proposed methods have been validated on the MIT-BIH Arrhythmia Database, yielding an average classification accuracy of 99.4% for ventricular ectopic beat class and 98.3% for supraventricular ectopic beat class, which corresponds to a significant improvement over other published results.
AbstractList In this paper, a novel subject-adaptable heartbeat classification model is presented, in order to address the significant interperson variations in ECG signals. A multiview learning approach is proposed to automate subject adaptation using a small amount of unlabeled personal data, without requiring manual labeling. The designed subject-customized models consist of two models, namely, general classification model and specific classification model . The general model is trained using similar subjects out of a population dataset, where a pattern matching based algorithm is developed to select the subjects that are “similar” to the particular test subject for model training. In contrast, the specific model is trained mainly on a small amount of high-confidence personal dataset, resulting from multiview-based learning. The learned general model represents the population knowledge, providing an interperson perspective for classification, while the specific model corresponds to the specific knowledge of the subject, offering an intraperson perspective for classification. The two models supplement each other and are combined to achieve improved personalized ECG analysis. The proposed methods have been validated on the MIT-BIH Arrhythmia Database, yielding an average classification accuracy of 99.4% for ventricular ectopic beat class and 98.3% for supraventricular ectopic beat class, which corresponds to a significant improvement over other published results.
Author Vijaya Kumar, B. V. K.
Can Ye
Tavares Coimbra, Miguel
Author_xml – sequence: 1
  surname: Can Ye
  fullname: Can Ye
  email: cany@ece.cmu.edu
  organization: Dept. of Electr. & Comput. Eng., Carnegie Mellon Univ., Pittsburgh, PA, USA
– sequence: 2
  givenname: B. V. K.
  surname: Vijaya Kumar
  fullname: Vijaya Kumar, B. V. K.
  email: kumar@ece.cmu.edu
  organization: Dept. of Electr. & Comput. Eng., Carnegie Mellon Univ., Pittsburgh, PA, USA
– sequence: 3
  givenname: Miguel
  surname: Tavares Coimbra
  fullname: Tavares Coimbra, Miguel
  email: mcoimbra@dcc.fc.up.pt
  organization: Inst. de Telecomun., Univ. do Porto, Porto, Portugal
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26285228$$D View this record in MEDLINE/PubMed
BookMark eNp9kcFOGzEQhq0KVCjlASoktFIvXDbYs47XPoYIGqogDrRny-udRY423mB7qXh7HCXhwKG-jDX6_tFovm_kyA8eCfnB6IQxqq5_3yzuJ0DZdAJcSAD-hZwCE7IEoPLo8GeKn5DzGFc0P5lbSnwlJyBATgHkKXmc-WI2pmFtkrPF09is0KZy1ppNMk2PxQJNSA2aVMx7E6PrHIbixkRsi8EXD2Of3KvDf8Uyc9755-_kuDN9xPN9PSN_727_zBfl8vHX_Xy2LG3FVSpRSWs7IRnrqBFcUYTGSt7I2ihBsZOM16Zqp2BVS1XDO8pqIyyVjWTYWazOyNVu7iYMLyPGpNcuWux743EYo2YShAAKfJrRn5_Q1TAGn7fLFK9FVdUgM3W5p8Zmja3eBLc24U0fTpWBegfYMMQYsNPWpXy1wadgXK8Z1VsveutFb73ovZecZJ-Sh-H_y1zsMg4RP_g666w5r94BWv-WNA
CODEN IJBHA9
CitedBy_id crossref_primary_10_3390_fi17030130
crossref_primary_10_1007_s11760_022_02300_5
crossref_primary_10_1016_j_artmed_2019_101788
crossref_primary_10_3390_app9040702
crossref_primary_10_1007_s42452_021_04621_5
crossref_primary_10_1109_JBHI_2020_3035191
crossref_primary_10_1016_j_knosys_2022_109021
crossref_primary_10_1007_s00521_021_05820_2
crossref_primary_10_1016_j_bspc_2023_104697
crossref_primary_10_1016_j_ins_2022_05_070
crossref_primary_10_1007_s11063_022_10949_9
crossref_primary_10_1109_ACCESS_2019_2940921
crossref_primary_10_1016_j_eswa_2023_119711
crossref_primary_10_1109_JBHI_2018_2871510
crossref_primary_10_1109_JSEN_2018_2877055
crossref_primary_10_3390_bioengineering10040429
crossref_primary_10_1038_s41380_023_02047_6
crossref_primary_10_1109_RBME_2018_2810957
crossref_primary_10_1109_LSP_2021_3066068
crossref_primary_10_1109_JBHI_2018_2881155
crossref_primary_10_1007_s12204_021_2371_8
crossref_primary_10_1016_j_eswa_2021_114809
crossref_primary_10_1109_ACCESS_2019_2960116
crossref_primary_10_1109_TBME_2021_3090051
crossref_primary_10_1109_JBHI_2019_2942938
crossref_primary_10_3390_app14167227
crossref_primary_10_1016_j_bbe_2021_02_007
crossref_primary_10_1016_j_eswa_2020_113911
crossref_primary_10_1016_j_cmpb_2018_11_005
crossref_primary_10_1109_JBHI_2019_2919732
crossref_primary_10_3390_app12052716
crossref_primary_10_1016_j_bspc_2024_106602
crossref_primary_10_1016_j_eswa_2020_113411
crossref_primary_10_1002_ima_22940
crossref_primary_10_1016_j_eswa_2022_118410
crossref_primary_10_1007_s11760_024_03057_9
crossref_primary_10_1007_s00034_024_02941_6
crossref_primary_10_3389_fphy_2019_00103
crossref_primary_10_1109_ACCESS_2022_3183968
crossref_primary_10_3390_s21248174
crossref_primary_10_1109_ACCESS_2021_3095248
crossref_primary_10_1109_TAI_2021_3083689
crossref_primary_10_1016_j_artmed_2020_101843
crossref_primary_10_3390_app13148551
crossref_primary_10_1016_j_compbiomed_2023_107275
crossref_primary_10_1016_j_ins_2018_06_062
crossref_primary_10_1016_j_neucom_2021_04_104
crossref_primary_10_3390_e23010119
Cites_doi 10.1049/cp:19950597
10.1109/TBME.2006.883802
10.1109/TBME.2012.2213253
10.1109/TASSP.1978.1163055
10.1109/TBME.2012.2202662
10.1109/TBME.2009.2013934
10.1109/10.623058
10.1109/TNN.2007.900239
10.7551/mitpress/9780262033589.001.0001
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/JBHI.2015.2468224
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
EISSN 2168-2208
EndPage 1492
ExternalDocumentID 26285228
10_1109_JBHI_2015_2468224
7194744
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Portuguese Foundation for Science and Technology
  grantid: SFRH/BD/33519/2008
GroupedDBID 0R~
4.4
6IF
6IH
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
6IL
ADZIZ
CGR
CHZPO
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c349t-e98ccf6811f0a6490e2bc84b87a960ef8147a3d52c9d09b4f017a6c08b81efce3
IEDL.DBID RIE
ISSN 2168-2194
IngestDate Sun Sep 28 02:05:31 EDT 2025
Mon Jun 30 05:12:16 EDT 2025
Wed Feb 19 02:44:13 EST 2025
Wed Oct 01 03:39:55 EDT 2025
Thu Apr 24 22:56:48 EDT 2025
Tue Aug 26 16:43:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-e98ccf6811f0a6490e2bc84b87a960ef8147a3d52c9d09b4f017a6c08b81efce3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 26285228
PQID 1847633728
PQPubID 85417
PageCount 8
ParticipantIDs proquest_miscellaneous_1826620245
crossref_primary_10_1109_JBHI_2015_2468224
pubmed_primary_26285228
ieee_primary_7194744
proquest_journals_1847633728
crossref_citationtrail_10_1109_JBHI_2015_2468224
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-Nov.
2016-11-00
2016-Nov
20161101
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-Nov.
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE journal of biomedical and health informatics
PublicationTitleAbbrev JBHI
PublicationTitleAlternate IEEE J Biomed Health Inform
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References (ref18) 0
blum (ref11) 0
ye (ref7) 0
robert (ref1) 2006
ref10
dasgupta (ref19) 0
ref17
ref16
ye (ref13) 2013
hu (ref2) 1997; 44
ref9
ref4
ref3
ref6
xu (ref12) 2013
ref5
dinh (ref15) 0
(ref8) 1998
podrid (ref14) 2001
References_xml – ident: ref17
  doi: 10.1049/cp:19950597
– ident: ref3
  doi: 10.1109/TBME.2006.883802
– start-page: 2428
  year: 0
  ident: ref7
  article-title: Combining general multi-class and specific two-class classifiers for improved customized ECG heartbeat classification
  publication-title: Proc 21st Int Conf Pattern Recog
– ident: ref9
  doi: 10.1109/TBME.2012.2213253
– ident: ref16
  doi: 10.1109/TASSP.1978.1163055
– start-page: 92
  year: 0
  ident: ref11
  article-title: Combining label and unlabeled data with co-training
  publication-title: Proc 11th Annu Conf Comput Learn Theory
– ident: ref6
  doi: 10.1109/TBME.2012.2202662
– year: 2001
  ident: ref14
  publication-title: Cardiac Arrhythmia Mechanisms Diagnosis and Management
– start-page: 375
  year: 0
  ident: ref19
  article-title: PAC generalization bounds for co-training
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref5
  doi: 10.1109/TBME.2009.2013934
– year: 1998
  ident: ref8
  publication-title: Testing and Reporting Performance Results of Cardiac Rhythm and ST Segment Measurement Algorithms
– volume: 44
  start-page: 891
  year: 1997
  ident: ref2
  article-title: A patient-adaptable ECG beat classifier using a mixture of experts approach
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/10.623058
– year: 2013
  ident: ref13
  article-title: Advanced heartbeat classification models for reliable electrocardiogram analysis in ambulatory health monitoring
– start-page: 161
  year: 0
  ident: ref15
  article-title: Training data selection for cancer detection in multispectral endoscopy images
  publication-title: Proc 21st Int Conf Pattern Recog
– year: 2013
  ident: ref12
  publication-title: A Survey on Multi-view Learning
– year: 0
  ident: ref18
– ident: ref4
  doi: 10.1109/TNN.2007.900239
– year: 2006
  ident: ref1
  publication-title: Basis and Treatment of Cardiac Arrhythmias
– ident: ref10
  doi: 10.7551/mitpress/9780262033589.001.0001
SSID ssj0000816896
Score 2.4050965
Snippet In this paper, a novel subject-adaptable heartbeat classification model is presented, in order to address the significant interperson variations in ECG...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1485
SubjectTerms Adaptation models
Algorithms
Arrhythmia
Arrhythmias, Cardiac - physiopathology
Automatic subject adaptation
Classification
Databases, Factual
ECG heartbeat classification
Echocardiography
Electrocardiography
Electrocardiography - methods
Heart beat
Heart Rate - physiology
Humans
Indexing
Machine Learning
Model testing
multiview learning
Pattern analysis
Pattern matching
Pattern Recognition, Automated - methods
Signal Processing, Computer-Assisted
similar training data selection
Statistics
Training
Ventricle
Title An Automatic Subject-Adaptable Heartbeat Classifier Based on Multiview Learning
URI https://ieeexplore.ieee.org/document/7194744
https://www.ncbi.nlm.nih.gov/pubmed/26285228
https://www.proquest.com/docview/1847633728
https://www.proquest.com/docview/1826620245
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2208
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816896
  issn: 2168-2194
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9UwDLe2HdAufGx8FAYKEidE35I2r02Ob4jpMWlwYdJuVZK6CA21E7QX_nrsNK9CCBC3Sk3bNLZjO7Z_BnilvFurUOtcua7MiUN8btDZ3DrSdm3wusWYbfGh2l7pi-v19R68WWphEDEmn-GKL2Msvx3CxEdlpzV53LXW-7Bfm2qu1VrOU2IDidiOq6CLnARRpyCmkvb04mz7nvO41qtCV5w4ySDAXD1YcBv2XzRSbLHyd2szap3ze3C5m--cbHKzmka_Cj9-g3L83x-6D3eT-Sk2M788gD3sj-DOZQqwH8EhG58zdvMxfNz0YjONQ0R1FbTF8JlNvmnd7cgFV2JLUjJ62sxFbK35pSMVK85ILbZi6EUs7eXAg0gYrp8fwtX5u09vt3lqwJCHUtsxR2tC6CqjVCddpa3EwgejvakdOT7YGaVrV7brIthWWq87Em9XBWm8UdgFLB_BQT_0-ASEcc4EKT1pStRWBdPVxBLeWl0aRFNmIHdEaEJCJ-cmGV-b6KVI2zAJGyZhk0iYwevlkdsZmuNfg495-ZeBaeUzONlRuknC-70hp5d23bIuTAYvl9skdhxLcT0OE48hy6bguHUGj2cOWd69Y6ynf_7mMzikmVVzQeMJHIzfJnxOls3oX0SW_glXYPB-
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Bb9UwDLbGkGCXARuMbgOCxAmRt6RN2-T4hpi6sTcum7RblaTphEDtNNoLvx4nzasmBIhbpaZtGtuxHdufAd5xo3NuS0G5bjOKHGKodFpRpVHbNdaIxoVsi4uiuhJn1_n1BnyYa2GccyH5zC38ZYjlN70d_VHZUYkedynEA3iYCyHyqVprPlEJLSRCQ64ULyiKoohhTM7U0dlxdeozufJFKgqfOulhgH39YOobsd_TSaHJyt_tzaB3Tp7Aaj3jKd3k22IczML-_A3M8X9_6SlsRwOULCeOeQYbrtuBR6sYYt-BLW9-TujNu_Bl2ZHlOPQB15XgJuNPbeiy0beDL7kiFcrJYHA7J6G55tcWlSw5RsXYkL4jobjXhx5IRHG9eQ5XJ58uP1Y0tmCgNhNqoE5Ja9tCct4yXQjFXGqsFEaWGl0f10ouSp01eWpVw5QRLQq4LiyTRnLXWpe9gM2u79xLIFJraRkzqCudUNzKtkSmMEqJTDonswTYmgi1jfjkvk3G9zr4KUzVnoS1J2EdSZjA-_mR2wmc41-Dd_3yzwPjyidwuKZ0HcX3R41uL-67WZnKBN7Ot1HwfDRFd64f_Ri0bVIfuU5gb-KQ-d1rxtr_8zffwOPqcnVen59efD6ALZxlMZU3HsLmcDe6V2jnDOZ1YO9fGCfzyw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Automatic+Subject-Adaptable+Heartbeat+Classifier+Based+on+Multiview+Learning&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Ye%2C+Can&rft.au=Kumar%2C+B.V.+K.+Vijaya&rft.au=Coimbra%2C+Miguel+Tavares&rft.date=2016-11-01&rft.issn=2168-2194&rft.eissn=2168-2208&rft.volume=20&rft.issue=6&rft.spage=1485&rft.epage=1492&rft_id=info:doi/10.1109%2FJBHI.2015.2468224&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JBHI_2015_2468224
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon