An Automatic Subject-Adaptable Heartbeat Classifier Based on Multiview Learning
In this paper, a novel subject-adaptable heartbeat classification model is presented, in order to address the significant interperson variations in ECG signals. A multiview learning approach is proposed to automate subject adaptation using a small amount of unlabeled personal data, without requiring...
Saved in:
| Published in | IEEE journal of biomedical and health informatics Vol. 20; no. 6; pp. 1485 - 1492 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.11.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2168-2194 2168-2208 |
| DOI | 10.1109/JBHI.2015.2468224 |
Cover
| Abstract | In this paper, a novel subject-adaptable heartbeat classification model is presented, in order to address the significant interperson variations in ECG signals. A multiview learning approach is proposed to automate subject adaptation using a small amount of unlabeled personal data, without requiring manual labeling. The designed subject-customized models consist of two models, namely, general classification model and specific classification model. The general model is trained using similar subjects out of a population dataset, where a pattern matching based algorithm is developed to select the subjects that are "similar" to the particular test subject for model training. In contrast, the specific model is trained mainly on a small amount of high-confidence personal dataset, resulting from multiview-based learning. The learned general model represents the population knowledge, providing an interperson perspective for classification, while the specific model corresponds to the specific knowledge of the subject, offering an intraperson perspective for classification. The two models supplement each other and are combined to achieve improved personalized ECG analysis. The proposed methods have been validated on the MIT-BIH Arrhythmia Database, yielding an average classification accuracy of 99.4% for ventricular ectopic beat class and 98.3% for supraventricular ectopic beat class, which corresponds to a significant improvement over other published results. |
|---|---|
| AbstractList | In this paper, a novel subject-adaptable heartbeat classification model is presented, in order to address the significant interperson variations in ECG signals. A multiview learning approach is proposed to automate subject adaptation using a small amount of unlabeled personal data, without requiring manual labeling. The designed subject-customized models consist of two models, namely, general classification model and specific classification model . The general model is trained using similar subjects out of a population dataset, where a pattern matching based algorithm is developed to select the subjects that are “similar” to the particular test subject for model training. In contrast, the specific model is trained mainly on a small amount of high-confidence personal dataset, resulting from multiview-based learning. The learned general model represents the population knowledge, providing an interperson perspective for classification, while the specific model corresponds to the specific knowledge of the subject, offering an intraperson perspective for classification. The two models supplement each other and are combined to achieve improved personalized ECG analysis. The proposed methods have been validated on the MIT-BIH Arrhythmia Database, yielding an average classification accuracy of 99.4% for ventricular ectopic beat class and 98.3% for supraventricular ectopic beat class, which corresponds to a significant improvement over other published results. |
| Author | Vijaya Kumar, B. V. K. Can Ye Tavares Coimbra, Miguel |
| Author_xml | – sequence: 1 surname: Can Ye fullname: Can Ye email: cany@ece.cmu.edu organization: Dept. of Electr. & Comput. Eng., Carnegie Mellon Univ., Pittsburgh, PA, USA – sequence: 2 givenname: B. V. K. surname: Vijaya Kumar fullname: Vijaya Kumar, B. V. K. email: kumar@ece.cmu.edu organization: Dept. of Electr. & Comput. Eng., Carnegie Mellon Univ., Pittsburgh, PA, USA – sequence: 3 givenname: Miguel surname: Tavares Coimbra fullname: Tavares Coimbra, Miguel email: mcoimbra@dcc.fc.up.pt organization: Inst. de Telecomun., Univ. do Porto, Porto, Portugal |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26285228$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kcFOGzEQhq0KVCjlASoktFIvXDbYs47XPoYIGqogDrRny-udRY423mB7qXh7HCXhwKG-jDX6_tFovm_kyA8eCfnB6IQxqq5_3yzuJ0DZdAJcSAD-hZwCE7IEoPLo8GeKn5DzGFc0P5lbSnwlJyBATgHkKXmc-WI2pmFtkrPF09is0KZy1ppNMk2PxQJNSA2aVMx7E6PrHIbixkRsi8EXD2Of3KvDf8Uyc9755-_kuDN9xPN9PSN_727_zBfl8vHX_Xy2LG3FVSpRSWs7IRnrqBFcUYTGSt7I2ihBsZOM16Zqp2BVS1XDO8pqIyyVjWTYWazOyNVu7iYMLyPGpNcuWux743EYo2YShAAKfJrRn5_Q1TAGn7fLFK9FVdUgM3W5p8Zmja3eBLc24U0fTpWBegfYMMQYsNPWpXy1wadgXK8Z1VsveutFb73ovZecZJ-Sh-H_y1zsMg4RP_g666w5r94BWv-WNA |
| CODEN | IJBHA9 |
| CitedBy_id | crossref_primary_10_3390_fi17030130 crossref_primary_10_1007_s11760_022_02300_5 crossref_primary_10_1016_j_artmed_2019_101788 crossref_primary_10_3390_app9040702 crossref_primary_10_1007_s42452_021_04621_5 crossref_primary_10_1109_JBHI_2020_3035191 crossref_primary_10_1016_j_knosys_2022_109021 crossref_primary_10_1007_s00521_021_05820_2 crossref_primary_10_1016_j_bspc_2023_104697 crossref_primary_10_1016_j_ins_2022_05_070 crossref_primary_10_1007_s11063_022_10949_9 crossref_primary_10_1109_ACCESS_2019_2940921 crossref_primary_10_1016_j_eswa_2023_119711 crossref_primary_10_1109_JBHI_2018_2871510 crossref_primary_10_1109_JSEN_2018_2877055 crossref_primary_10_3390_bioengineering10040429 crossref_primary_10_1038_s41380_023_02047_6 crossref_primary_10_1109_RBME_2018_2810957 crossref_primary_10_1109_LSP_2021_3066068 crossref_primary_10_1109_JBHI_2018_2881155 crossref_primary_10_1007_s12204_021_2371_8 crossref_primary_10_1016_j_eswa_2021_114809 crossref_primary_10_1109_ACCESS_2019_2960116 crossref_primary_10_1109_TBME_2021_3090051 crossref_primary_10_1109_JBHI_2019_2942938 crossref_primary_10_3390_app14167227 crossref_primary_10_1016_j_bbe_2021_02_007 crossref_primary_10_1016_j_eswa_2020_113911 crossref_primary_10_1016_j_cmpb_2018_11_005 crossref_primary_10_1109_JBHI_2019_2919732 crossref_primary_10_3390_app12052716 crossref_primary_10_1016_j_bspc_2024_106602 crossref_primary_10_1016_j_eswa_2020_113411 crossref_primary_10_1002_ima_22940 crossref_primary_10_1016_j_eswa_2022_118410 crossref_primary_10_1007_s11760_024_03057_9 crossref_primary_10_1007_s00034_024_02941_6 crossref_primary_10_3389_fphy_2019_00103 crossref_primary_10_1109_ACCESS_2022_3183968 crossref_primary_10_3390_s21248174 crossref_primary_10_1109_ACCESS_2021_3095248 crossref_primary_10_1109_TAI_2021_3083689 crossref_primary_10_1016_j_artmed_2020_101843 crossref_primary_10_3390_app13148551 crossref_primary_10_1016_j_compbiomed_2023_107275 crossref_primary_10_1016_j_ins_2018_06_062 crossref_primary_10_1016_j_neucom_2021_04_104 crossref_primary_10_3390_e23010119 |
| Cites_doi | 10.1049/cp:19950597 10.1109/TBME.2006.883802 10.1109/TBME.2012.2213253 10.1109/TASSP.1978.1163055 10.1109/TBME.2012.2202662 10.1109/TBME.2009.2013934 10.1109/10.623058 10.1109/TNN.2007.900239 10.7551/mitpress/9780262033589.001.0001 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 |
| DOI | 10.1109/JBHI.2015.2468224 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Statistics |
| EISSN | 2168-2208 |
| EndPage | 1492 |
| ExternalDocumentID | 26285228 10_1109_JBHI_2015_2468224 7194744 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: Portuguese Foundation for Science and Technology grantid: SFRH/BD/33519/2008 |
| GroupedDBID | 0R~ 4.4 6IF 6IH 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION 6IL ADZIZ CGR CHZPO CUY CVF ECM EIF NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 |
| ID | FETCH-LOGICAL-c349t-e98ccf6811f0a6490e2bc84b87a960ef8147a3d52c9d09b4f017a6c08b81efce3 |
| IEDL.DBID | RIE |
| ISSN | 2168-2194 |
| IngestDate | Sun Sep 28 02:05:31 EDT 2025 Mon Jun 30 05:12:16 EDT 2025 Wed Feb 19 02:44:13 EST 2025 Wed Oct 01 03:39:55 EDT 2025 Thu Apr 24 22:56:48 EDT 2025 Tue Aug 26 16:43:01 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c349t-e98ccf6811f0a6490e2bc84b87a960ef8147a3d52c9d09b4f017a6c08b81efce3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 26285228 |
| PQID | 1847633728 |
| PQPubID | 85417 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_1826620245 crossref_primary_10_1109_JBHI_2015_2468224 pubmed_primary_26285228 ieee_primary_7194744 proquest_journals_1847633728 crossref_citationtrail_10_1109_JBHI_2015_2468224 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2016-Nov. 2016-11-00 2016-Nov 20161101 |
| PublicationDateYYYYMMDD | 2016-11-01 |
| PublicationDate_xml | – month: 11 year: 2016 text: 2016-Nov. |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE journal of biomedical and health informatics |
| PublicationTitleAbbrev | JBHI |
| PublicationTitleAlternate | IEEE J Biomed Health Inform |
| PublicationYear | 2016 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | (ref18) 0 blum (ref11) 0 ye (ref7) 0 robert (ref1) 2006 ref10 dasgupta (ref19) 0 ref17 ref16 ye (ref13) 2013 hu (ref2) 1997; 44 ref9 ref4 ref3 ref6 xu (ref12) 2013 ref5 dinh (ref15) 0 (ref8) 1998 podrid (ref14) 2001 |
| References_xml | – ident: ref17 doi: 10.1049/cp:19950597 – ident: ref3 doi: 10.1109/TBME.2006.883802 – start-page: 2428 year: 0 ident: ref7 article-title: Combining general multi-class and specific two-class classifiers for improved customized ECG heartbeat classification publication-title: Proc 21st Int Conf Pattern Recog – ident: ref9 doi: 10.1109/TBME.2012.2213253 – ident: ref16 doi: 10.1109/TASSP.1978.1163055 – start-page: 92 year: 0 ident: ref11 article-title: Combining label and unlabeled data with co-training publication-title: Proc 11th Annu Conf Comput Learn Theory – ident: ref6 doi: 10.1109/TBME.2012.2202662 – year: 2001 ident: ref14 publication-title: Cardiac Arrhythmia Mechanisms Diagnosis and Management – start-page: 375 year: 0 ident: ref19 article-title: PAC generalization bounds for co-training publication-title: Proc Adv Neural Inf Process Syst – ident: ref5 doi: 10.1109/TBME.2009.2013934 – year: 1998 ident: ref8 publication-title: Testing and Reporting Performance Results of Cardiac Rhythm and ST Segment Measurement Algorithms – volume: 44 start-page: 891 year: 1997 ident: ref2 article-title: A patient-adaptable ECG beat classifier using a mixture of experts approach publication-title: IEEE Trans Biomed Eng doi: 10.1109/10.623058 – year: 2013 ident: ref13 article-title: Advanced heartbeat classification models for reliable electrocardiogram analysis in ambulatory health monitoring – start-page: 161 year: 0 ident: ref15 article-title: Training data selection for cancer detection in multispectral endoscopy images publication-title: Proc 21st Int Conf Pattern Recog – year: 2013 ident: ref12 publication-title: A Survey on Multi-view Learning – year: 0 ident: ref18 – ident: ref4 doi: 10.1109/TNN.2007.900239 – year: 2006 ident: ref1 publication-title: Basis and Treatment of Cardiac Arrhythmias – ident: ref10 doi: 10.7551/mitpress/9780262033589.001.0001 |
| SSID | ssj0000816896 |
| Score | 2.4050965 |
| Snippet | In this paper, a novel subject-adaptable heartbeat classification model is presented, in order to address the significant interperson variations in ECG... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1485 |
| SubjectTerms | Adaptation models Algorithms Arrhythmia Arrhythmias, Cardiac - physiopathology Automatic subject adaptation Classification Databases, Factual ECG heartbeat classification Echocardiography Electrocardiography Electrocardiography - methods Heart beat Heart Rate - physiology Humans Indexing Machine Learning Model testing multiview learning Pattern analysis Pattern matching Pattern Recognition, Automated - methods Signal Processing, Computer-Assisted similar training data selection Statistics Training Ventricle |
| Title | An Automatic Subject-Adaptable Heartbeat Classifier Based on Multiview Learning |
| URI | https://ieeexplore.ieee.org/document/7194744 https://www.ncbi.nlm.nih.gov/pubmed/26285228 https://www.proquest.com/docview/1847633728 https://www.proquest.com/docview/1826620245 |
| Volume | 20 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2168-2208 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816896 issn: 2168-2194 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9UwDLe2HdAufGx8FAYKEidE35I2r02Ob4jpMWlwYdJuVZK6CA21E7QX_nrsNK9CCBC3Sk3bNLZjO7Z_BnilvFurUOtcua7MiUN8btDZ3DrSdm3wusWYbfGh2l7pi-v19R68WWphEDEmn-GKL2Msvx3CxEdlpzV53LXW-7Bfm2qu1VrOU2IDidiOq6CLnARRpyCmkvb04mz7nvO41qtCV5w4ySDAXD1YcBv2XzRSbLHyd2szap3ze3C5m--cbHKzmka_Cj9-g3L83x-6D3eT-Sk2M788gD3sj-DOZQqwH8EhG58zdvMxfNz0YjONQ0R1FbTF8JlNvmnd7cgFV2JLUjJ62sxFbK35pSMVK85ILbZi6EUs7eXAg0gYrp8fwtX5u09vt3lqwJCHUtsxR2tC6CqjVCddpa3EwgejvakdOT7YGaVrV7brIthWWq87Em9XBWm8UdgFLB_BQT_0-ASEcc4EKT1pStRWBdPVxBLeWl0aRFNmIHdEaEJCJ-cmGV-b6KVI2zAJGyZhk0iYwevlkdsZmuNfg495-ZeBaeUzONlRuknC-70hp5d23bIuTAYvl9skdhxLcT0OE48hy6bguHUGj2cOWd69Y6ynf_7mMzikmVVzQeMJHIzfJnxOls3oX0SW_glXYPB- |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Bb9UwDLbGkGCXARuMbgOCxAmRt6RN2-T4hpi6sTcum7RblaTphEDtNNoLvx4nzasmBIhbpaZtGtuxHdufAd5xo3NuS0G5bjOKHGKodFpRpVHbNdaIxoVsi4uiuhJn1_n1BnyYa2GccyH5zC38ZYjlN70d_VHZUYkedynEA3iYCyHyqVprPlEJLSRCQ64ULyiKoohhTM7U0dlxdeozufJFKgqfOulhgH39YOobsd_TSaHJyt_tzaB3Tp7Aaj3jKd3k22IczML-_A3M8X9_6SlsRwOULCeOeQYbrtuBR6sYYt-BLW9-TujNu_Bl2ZHlOPQB15XgJuNPbeiy0beDL7kiFcrJYHA7J6G55tcWlSw5RsXYkL4jobjXhx5IRHG9eQ5XJ58uP1Y0tmCgNhNqoE5Ja9tCct4yXQjFXGqsFEaWGl0f10ouSp01eWpVw5QRLQq4LiyTRnLXWpe9gM2u79xLIFJraRkzqCudUNzKtkSmMEqJTDonswTYmgi1jfjkvk3G9zr4KUzVnoS1J2EdSZjA-_mR2wmc41-Dd_3yzwPjyidwuKZ0HcX3R41uL-67WZnKBN7Ot1HwfDRFd64f_Ri0bVIfuU5gb-KQ-d1rxtr_8zffwOPqcnVen59efD6ALZxlMZU3HsLmcDe6V2jnDOZ1YO9fGCfzyw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Automatic+Subject-Adaptable+Heartbeat+Classifier+Based+on+Multiview+Learning&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Ye%2C+Can&rft.au=Kumar%2C+B.V.+K.+Vijaya&rft.au=Coimbra%2C+Miguel+Tavares&rft.date=2016-11-01&rft.issn=2168-2194&rft.eissn=2168-2208&rft.volume=20&rft.issue=6&rft.spage=1485&rft.epage=1492&rft_id=info:doi/10.1109%2FJBHI.2015.2468224&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JBHI_2015_2468224 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon |