Comparison of parameter uncertainty analysis techniques for a TOPMODEL application

Parameter uncertainty in hydrologic modeling is crucial to the flood simulation and forecasting. The Bayesian approach allows one to estimate parameters according to prior expert knowledge as well as observational data about model parameter values. This study assesses the performance of two popular...

Full description

Saved in:
Bibliographic Details
Published inStochastic environmental research and risk assessment Vol. 31; no. 5; pp. 1045 - 1059
Main Authors Li, Binquan, Liang, Zhongmin, He, Yingqing, Hu, Lin, Zhao, Weimin, Acharya, Kumud
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2017
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1436-3240
1436-3259
DOI10.1007/s00477-016-1319-2

Cover

Abstract Parameter uncertainty in hydrologic modeling is crucial to the flood simulation and forecasting. The Bayesian approach allows one to estimate parameters according to prior expert knowledge as well as observational data about model parameter values. This study assesses the performance of two popular uncertainty analysis (UA) techniques, i.e., generalized likelihood uncertainty estimation (GLUE) and Bayesian method implemented with the Markov chain Monte Carlo sampling algorithm, in evaluating model parameter uncertainty in flood simulations. These two methods were applied to the semi-distributed Topographic hydrologic model (TOPMODEL) that includes five parameters. A case study was carried out for a small humid catchment in the southeastern China. The performance assessment of the GLUE and Bayesian methods were conducted with advanced tools suited for probabilistic simulations of continuous variables such as streamflow. Graphical tools and scalar metrics were used to test several attributes of the simulation quality of selected flood events: deterministic accuracy and the accuracy of 95 % prediction probability uncertainty band (95PPU). Sensitivity analysis was conducted to identify sensitive parameters that largely affect the model output results. Subsequently, the GLUE and Bayesian methods were used to analyze the uncertainty of sensitive parameters and further to produce their posterior distributions. Based on their posterior parameter samples, TOPMODEL’s simulations and the corresponding UA results were conducted. Results show that the form of exponential decline in conductivity and the overland flow routing velocity were sensitive parameters in TOPMODEL in our case. Small changes in these two parameters would lead to large differences in flood simulation results. Results also suggest that, for both UA techniques, most of streamflow observations were bracketed by 95PPU with the containing ratio value larger than 80 %. In comparison, GLUE gave narrower prediction uncertainty bands than the Bayesian method. It was found that the mode estimates of parameter posterior distributions are suitable to result in better performance of deterministic outputs than the 50 % percentiles for both the GLUE and Bayesian analyses. In addition, the simulation results calibrated with Rosenbrock optimization algorithm show a better agreement with the observations than the UA’s 50 % percentiles but slightly worse than the hydrographs from the mode estimates. The results clearly emphasize the importance of using model uncertainty diagnostic approaches in flood simulations.
AbstractList Parameter uncertainty in hydrologic modeling is crucial to the flood simulation and forecasting. The Bayesian approach allows one to estimate parameters according to prior expert knowledge as well as observational data about model parameter values. This study assesses the performance of two popular uncertainty analysis (UA) techniques, i.e., generalized likelihood uncertainty estimation (GLUE) and Bayesian method implemented with the Markov chain Monte Carlo sampling algorithm, in evaluating model parameter uncertainty in flood simulations. These two methods were applied to the semi-distributed Topographic hydrologic model (TOPMODEL) that includes five parameters. A case study was carried out for a small humid catchment in the southeastern China. The performance assessment of the GLUE and Bayesian methods were conducted with advanced tools suited for probabilistic simulations of continuous variables such as streamflow. Graphical tools and scalar metrics were used to test several attributes of the simulation quality of selected flood events: deterministic accuracy and the accuracy of 95 % prediction probability uncertainty band (95PPU). Sensitivity analysis was conducted to identify sensitive parameters that largely affect the model output results. Subsequently, the GLUE and Bayesian methods were used to analyze the uncertainty of sensitive parameters and further to produce their posterior distributions. Based on their posterior parameter samples, TOPMODEL’s simulations and the corresponding UA results were conducted. Results show that the form of exponential decline in conductivity and the overland flow routing velocity were sensitive parameters in TOPMODEL in our case. Small changes in these two parameters would lead to large differences in flood simulation results. Results also suggest that, for both UA techniques, most of streamflow observations were bracketed by 95PPU with the containing ratio value larger than 80 %. In comparison, GLUE gave narrower prediction uncertainty bands than the Bayesian method. It was found that the mode estimates of parameter posterior distributions are suitable to result in better performance of deterministic outputs than the 50 % percentiles for both the GLUE and Bayesian analyses. In addition, the simulation results calibrated with Rosenbrock optimization algorithm show a better agreement with the observations than the UA’s 50 % percentiles but slightly worse than the hydrographs from the mode estimates. The results clearly emphasize the importance of using model uncertainty diagnostic approaches in flood simulations.
Parameter uncertainty in hydrologic modeling is crucial to the flood simulation and forecasting. The Bayesian approach allows one to estimate parameters according to prior expert knowledge as well as observational data about model parameter values. This study assesses the performance of two popular uncertainty analysis (UA) techniques, i.e., generalized likelihood uncertainty estimation (GLUE) and Bayesian method implemented with the Markov chain Monte Carlo sampling algorithm, in evaluating model parameter uncertainty in flood simulations. These two methods were applied to the semi-distributed Topographic hydrologic model (TOPMODEL) that includes five parameters. A case study was carried out for a small humid catchment in the southeastern China. The performance assessment of the GLUE and Bayesian methods were conducted with advanced tools suited for probabilistic simulations of continuous variables such as streamflow. Graphical tools and scalar metrics were used to test several attributes of the simulation quality of selected flood events: deterministic accuracy and the accuracy of 95 % prediction probability uncertainty band (95PPU). Sensitivity analysis was conducted to identify sensitive parameters that largely affect the model output results. Subsequently, the GLUE and Bayesian methods were used to analyze the uncertainty of sensitive parameters and further to produce their posterior distributions. Based on their posterior parameter samples, TOPMODEL's simulations and the corresponding UA results were conducted. Results show that the form of exponential decline in conductivity and the overland flow routing velocity were sensitive parameters in TOPMODEL in our case. Small changes in these two parameters would lead to large differences in flood simulation results. Results also suggest that, for both UA techniques, most of streamflow observations were bracketed by 95PPU with the containing ratio value larger than 80 %. In comparison, GLUE gave narrower prediction uncertainty bands than the Bayesian method. It was found that the mode estimates of parameter posterior distributions are suitable to result in better performance of deterministic outputs than the 50 % percentiles for both the GLUE and Bayesian analyses. In addition, the simulation results calibrated with Rosenbrock optimization algorithm show a better agreement with the observations than the UA's 50 % percentiles but slightly worse than the hydrographs from the mode estimates. The results clearly emphasize the importance of using model uncertainty diagnostic approaches in flood simulations.
Author Liang, Zhongmin
He, Yingqing
Zhao, Weimin
Hu, Lin
Acharya, Kumud
Li, Binquan
Author_xml – sequence: 1
  givenname: Binquan
  orcidid: 0000-0002-9958-0396
  surname: Li
  fullname: Li, Binquan
  email: libinquan@hhu.edu.cn
  organization: College of Hydrology and Water Resources, Hohai University, Nanjing Hydraulic Research Institute
– sequence: 2
  givenname: Zhongmin
  surname: Liang
  fullname: Liang, Zhongmin
  organization: College of Hydrology and Water Resources, Hohai University
– sequence: 3
  givenname: Yingqing
  surname: He
  fullname: He, Yingqing
  organization: Jiangsu Province Hydrology and Water Resources Investigation Bureau
– sequence: 4
  givenname: Lin
  surname: Hu
  fullname: Hu, Lin
  organization: College of Hydrology and Water Resources, Hohai University, Zhejiang Provincial Hydrology Bureau
– sequence: 5
  givenname: Weimin
  surname: Zhao
  fullname: Zhao, Weimin
  organization: Hydrology Bureau, Yellow River Conservancy Commission
– sequence: 6
  givenname: Kumud
  surname: Acharya
  fullname: Acharya, Kumud
  organization: Division of Hydrologic Sciences, Desert Research Institute
BookMark eNp9kM1KAzEYRYNUsK0-gLuA69H8TJKZpdT6A5WK1HVIZhJNaZMxSRd9e6eOiAi6-u7ino_DnYCRD94AcI7RJUZIXCWESiEKhHmBKa4LcgTGuKS8oITVo-9cohMwSWmNEBaClWPwPAvbTkWXgofBwj6qrckmwp1vTMzK-byHyqvNPrkEs2nevHvfmQRtiFDB1fLpcXkzX0DVdRvXqOyCPwXHVm2SOfu6U_ByO1_N7ovF8u5hdr0oGlrWuTCVZkw3HBnCCTOatpaXtql0S6g2tuIcVbZuKdXaoLau2pJbojAT2grTUkWn4GL428VwUMpyHXaxV00S16hmFcOE9i0xtJoYUorGysblT88cldtIjORhQDkMKPsB5WFASXoS_yK76LYq7v9lyMCkvutfTfzh9Cf0AUqIhbs
CitedBy_id crossref_primary_10_1007_s00477_020_01814_z
crossref_primary_10_1016_j_jhydrol_2021_127221
crossref_primary_10_3390_su12198268
crossref_primary_10_1007_s11356_023_27556_3
crossref_primary_10_1061__ASCE_HE_1943_5584_0001861
crossref_primary_10_3390_w8110486
crossref_primary_10_2166_wcc_2017_137
crossref_primary_10_1007_s00477_019_01694_y
crossref_primary_10_1007_s11069_017_2909_0
crossref_primary_10_1016_j_jenvman_2020_111765
crossref_primary_10_1007_s00477_018_1600_7
crossref_primary_10_3390_w10111662
crossref_primary_10_1007_s11356_017_0030_2
crossref_primary_10_1029_2019WR025477
crossref_primary_10_3390_app13042245
crossref_primary_10_1007_s10661_018_7145_x
crossref_primary_10_2166_nh_2018_110
crossref_primary_10_1007_s00477_017_1424_x
crossref_primary_10_1038_s41598_024_77978_3
crossref_primary_10_5194_nhess_19_2027_2019
Cites_doi 10.1016/j.gloplacha.2014.04.006
10.1007/s00477-008-0274-y
10.1061/(ASCE)HE.1943-5584.0000868
10.1016/j.jhydrol.2011.12.022
10.2307/3318737
10.1029/2003WR002378
10.1029/2004WR003826
10.1002/wrcr.20087
10.1016/0309-1708(93)90028-E
10.1029/94WR01732
10.1093/biomet/57.1.97
10.1029/91WR02985
10.1002/hyp.10082
10.1016/j.jhydrol.2006.04.046
10.1007/s00477-014-0855-x
10.1007/s00477-011-0552-y
10.1016/j.jhydrol.2004.09.005
10.1093/comjnl/3.3.175
10.1029/2000WR900363
10.1080/02626667909491834
10.1016/j.jhydrol.2008.02.007
10.1002/hyp.3360060305
10.1016/S0022-1694(98)00198-X
10.1063/1.1699114
10.1016/j.jhydrol.2007.12.026
10.1214/ss/1177011136
10.1029/2007WR005940
10.1029/2007WR006720
10.1029/2005WR004368
10.1111/j.2517-6161.1993.tb01466.x
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2016
Stochastic Environmental Research and Risk Assessment is a copyright of Springer, 2017.
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2016
– notice: Stochastic Environmental Research and Risk Assessment is a copyright of Springer, 2017.
DBID AAYXX
CITATION
3V.
7ST
7XB
88I
8AO
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
KR7
L6V
M2P
M7S
PATMY
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
S0W
SOI
DOI 10.1007/s00477-016-1319-2
DatabaseName CrossRef
ProQuest Central (Corporate)
Environment Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central (NIESG)
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Science Database
Engineering Database (Proquest)
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
Environmental Science Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
Environment Abstracts
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
ProQuest Central Student
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Physics
Computer Science
Environmental Sciences
EISSN 1436-3259
EndPage 1059
ExternalDocumentID 10_1007_s00477_016_1319_2
GrantInformation_xml – fundername: Project Funded by China Postdoctoral Science Foundation
  grantid: 2015M580450
– fundername: Special Fund for Public Welfare Industry of the Ministry of Water Resources of China
  grantid: 201501004
– fundername: Fundamental Research Funds for the Central Universities of China
  grantid: 2015B00114
– fundername: National Natural Science Foundation of China
  grantid: 51509067
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -5A
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
2.D
203
29Q
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
5VS
67M
67Z
6NX
7XC
88I
8AO
8FE
8FG
8FH
8FW
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDH
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FIL
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
L6V
L8X
LAS
LLZTM
M2P
M4Y
M7S
MA-
ML.
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O93
O9G
O9J
OAM
P19
P2P
PATMY
PF0
PQQKQ
PROAC
PT4
PT5
PTHSS
PYCSY
Q2X
QOS
R89
R9I
RIG
RNS
ROL
RPX
RSV
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
Y6R
YLTOR
Z45
Z5O
Z7R
Z7Y
Z7Z
Z81
Z83
Z86
Z8M
Z8S
Z8T
Z8U
Z8W
ZMTXR
~02
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7ST
7XB
8FD
8FK
C1K
FR3
KR7
PKEHL
PQEST
PQUKI
PRINS
Q9U
SOI
ID FETCH-LOGICAL-c349t-e8b55bc60e2625eb3df64fc8bd23bef86608f9d33bbe0d98d46f2a157bf7ed3a3
IEDL.DBID AGYKE
ISSN 1436-3240
IngestDate Sat Aug 23 13:24:15 EDT 2025
Wed Oct 01 01:50:43 EDT 2025
Thu Apr 24 23:03:59 EDT 2025
Fri Feb 21 02:25:50 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords TOPMODEL
Parameter uncertainty analysis
Sensitivity analysis
GLUE
Bayesian method
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-e8b55bc60e2625eb3df64fc8bd23bef86608f9d33bbe0d98d46f2a157bf7ed3a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9958-0396
PQID 1909585123
PQPubID 31669
PageCount 15
ParticipantIDs proquest_journals_1909585123
crossref_citationtrail_10_1007_s00477_016_1319_2
crossref_primary_10_1007_s00477_016_1319_2
springer_journals_10_1007_s00477_016_1319_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20170700
2017-7-00
20170701
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 7
  year: 2017
  text: 20170700
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Stochastic environmental research and risk assessment
PublicationTitleAbbrev Stoch Environ Res Risk Assess
PublicationYear 2017
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Vrugt, ter Braak, Gupta, Robinson (CR35) 2009; 23
Renard, Kochanek, Lang, Garavaglia, Paquet, Neppel, Najib, Carreau, Arnaud, Aubert (CR28) 2013; 49
Beven, Binley (CR6) 2014; 28
Kavetski, Kuczra, Franks (CR17) 2006; 42
Spear, Grieb, Shang (CR33) 1994; 30
Liang, Chang, Li (CR22) 2012; 26
Mantovan, Todini (CR23) 2006; 330
CR39
Beven, Binley (CR4) 1992; 6
Beven, Smith, Freer (CR8) 2008; 354
CR38
CR37
Yan, Tao, Li, Mazzetti (CR36) 2009; 2
CR34
Haario, Saksman, Tamminem (CR14) 2001; 7
Hornberger, Spear (CR16) 1981; 12
Shafii, Tolson, Matott (CR31) 2014; 28
Freer, Beven (CR12) 2001; 249
Bates, Campbell (CR1) 2001; 37
Muleta, Nicklow (CR27) 2005; 306
Rosenbrock (CR30) 1960; 3
Beven, Kirkby (CR7) 1979; 24
Metropolis, Rosenbluth, Rosenbluth, Teller, Teller (CR25) 1953; 21
Smith, Robert (CR32) 1993; 55
Li, Yu, Liang, Song, Li, Wang, Zhang, Acharya (CR20) 2014; 19
Liang, Li, Yu, Hua, Liu (CR21) 2009; 37
Li, Yu, Liang, Acharya (CR19) 2014; 118
Gelman, Rubin (CR13) 1992; 7
Beven (CR3) 2008
Beven (CR2) 1993; 16
Reusser, Zehe (CR29) 2011; 47
Duan, Sorooshian, Gupa (CR11) 1992; 28
Montanari (CR26) 2005; 41
Blasone, Madsen, Rosbjerg (CR9) 2008; 353
Beven, Binley (CR5) 1992; 6
Kuczera, Parent (CR18) 1998; 211
Marshall, Nott, Sharma (CR24) 2004; 40
Hastings (CR15) 1970; 57
Chen, Wu (CR10) 2012; 420–421
KJ Beven (1319_CR5) 1992; 6
1319_CR34
M Shafii (1319_CR31) 2014; 28
J Chen (1319_CR10) 2012; 420–421
D Kavetski (1319_CR17) 2006; 42
K Beven (1319_CR6) 2014; 28
P Mantovan (1319_CR23) 2006; 330
Z Liang (1319_CR21) 2009; 37
A Montanari (1319_CR26) 2005; 41
K Beven (1319_CR8) 2008; 354
1319_CR38
WK Hastings (1319_CR15) 1970; 57
1319_CR37
K Beven (1319_CR3) 2008
1319_CR39
RC Spear (1319_CR33) 1994; 30
B Li (1319_CR20) 2014; 19
BC Bates (1319_CR1) 2001; 37
L Marshall (1319_CR24) 2004; 40
Y Yan (1319_CR36) 2009; 2
Q Duan (1319_CR11) 1992; 28
R-S Blasone (1319_CR9) 2008; 353
JE Freer (1319_CR12) 2001; 249
A Gelman (1319_CR13) 1992; 7
G Kuczera (1319_CR18) 1998; 211
K Beven (1319_CR4) 1992; 6
B Li (1319_CR19) 2014; 118
KJ Beven (1319_CR7) 1979; 24
N Metropolis (1319_CR25) 1953; 21
DE Reusser (1319_CR29) 2011; 47
GM Hornberger (1319_CR16) 1981; 12
JA Vrugt (1319_CR35) 2009; 23
H Haario (1319_CR14) 2001; 7
B Renard (1319_CR28) 2013; 49
AFM Smith (1319_CR32) 1993; 55
HH Rosenbrock (1319_CR30) 1960; 3
MK Muleta (1319_CR27) 2005; 306
Z Liang (1319_CR22) 2012; 26
KJ Beven (1319_CR2) 1993; 16
References_xml – volume: 12
  start-page: 7
  year: 1981
  end-page: 18
  ident: CR16
  article-title: An approach to the preliminary analysis of environmental systems
  publication-title: J Environ Manag
– volume: 118
  start-page: 69
  year: 2014
  end-page: 84
  ident: CR19
  article-title: Hydrologic response of a high altitude glacierized basin in the central Tibetan Plateau
  publication-title: Glob Planet Change
  doi: 10.1016/j.gloplacha.2014.04.006
– volume: 23
  start-page: 1011
  issue: 7
  year: 2009
  end-page: 1026
  ident: CR35
  article-title: Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling?
  publication-title: Stoch Environ Res Risk Assess
  doi: 10.1007/s00477-008-0274-y
– volume: 19
  start-page: 1026
  issue: 5
  year: 2014
  end-page: 1035
  ident: CR20
  article-title: Effects of climate variations and human activities on runoff in the Zoige alpine wetland in the eastern edge of the Tibetan Plateau
  publication-title: J Hydrol Eng
  doi: 10.1061/(ASCE)HE.1943-5584.0000868
– year: 2008
  ident: CR3
  publication-title: Environmental modelling: an uncertain future?
– ident: CR39
– volume: 420–421
  start-page: 319
  year: 2012
  end-page: 328
  ident: CR10
  article-title: Advancing representation of hydrologic processes in the soil and water assessment tool (SWAT) through integration of the TOPographic MODEL (TOPMODEL) features
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2011.12.022
– ident: CR37
– volume: 7
  start-page: 223
  issue: 2
  year: 2001
  end-page: 242
  ident: CR14
  article-title: An adaptive Metropolis algorithm
  publication-title: Bernoulli
  doi: 10.2307/3318737
– volume: 40
  start-page: W02501
  year: 2004
  ident: CR24
  article-title: A comparative study of Markov chain Monte Carlo methods for conceptual rainfall-runoff modeling
  publication-title: Water Resour Res
  doi: 10.1029/2003WR002378
– volume: 41
  start-page: W08406
  year: 2005
  ident: CR26
  article-title: Large sample behaviors of the generalized likelihood uncertainty estimation (GLUE) in assessing the uncertainty of rainfall-runoff simulations
  publication-title: Water Resour Res
  doi: 10.1029/2004WR003826
– volume: 49
  start-page: 825
  issue: 2
  year: 2013
  end-page: 843
  ident: CR28
  article-title: Data-based comparison of frequency analysis methods: a general framework
  publication-title: Water Resour Res
  doi: 10.1002/wrcr.20087
– volume: 16
  start-page: 41
  year: 1993
  end-page: 51
  ident: CR2
  article-title: Prophecy, reality and uncertainty in distributed hydrological modeling
  publication-title: Adv Water Resour
  doi: 10.1016/0309-1708(93)90028-E
– volume: 37
  start-page: 129
  issue: 2
  year: 2009
  end-page: 132
  ident: CR21
  article-title: Parametric uncertainty analysis for TOPMODEL based on Bayesian theory
  publication-title: J Hohai Univ (Nat Sci)
– volume: 30
  start-page: 3159
  year: 1994
  end-page: 3170
  ident: CR33
  article-title: Parameter uncertainty and interaction in complex environmental models
  publication-title: Water Resour Res
  doi: 10.1029/94WR01732
– volume: 57
  start-page: 97
  year: 1970
  end-page: 109
  ident: CR15
  article-title: Monte Carlo sampling methods using Markov chains and their applications
  publication-title: Biometrika
  doi: 10.1093/biomet/57.1.97
– volume: 28
  start-page: 265
  issue: 4
  year: 1992
  end-page: 284
  ident: CR11
  article-title: Effective and efficient global optimization for conceptual rainfall-runoff models
  publication-title: Water Resour Res
  doi: 10.1029/91WR02985
– volume: 28
  start-page: 5897
  year: 2014
  end-page: 5918
  ident: CR6
  article-title: GLUE: 20 years on
  publication-title: Hydrol Process
  doi: 10.1002/hyp.10082
– volume: 330
  start-page: 368
  year: 2006
  end-page: 381
  ident: CR23
  article-title: Hydrological forecasting uncertainty assessment: incoherence of the GLUE methodology
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2006.04.046
– volume: 2
  start-page: 28
  issue: 4
  year: 2009
  end-page: 39
  ident: CR36
  article-title: Application of hydrometeorological coupled European flood forecasting operational real time system in Yellow River Basin
  publication-title: Water Sci Eng
– volume: 28
  start-page: 1493
  issue: 6
  year: 2014
  end-page: 1510
  ident: CR31
  article-title: Uncertainty-based multi-criteria calibration of rainfall-runoff models: a comparative study
  publication-title: Stoch Environ Res Risk Assess
  doi: 10.1007/s00477-014-0855-x
– volume: 26
  start-page: 721
  issue: 5
  year: 2012
  end-page: 730
  ident: CR22
  article-title: Bayesian flood frequency analysis in the light of model and parameter uncertainties
  publication-title: Stoch Environ Res Risk Assess
  doi: 10.1007/s00477-011-0552-y
– volume: 306
  start-page: 127
  year: 2005
  end-page: 145
  ident: CR27
  article-title: Sensitivity and uncertainty analysis coupled with automatic calibration for a distribution watershed model
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2004.09.005
– ident: CR38
– volume: 3
  start-page: 175
  year: 1960
  end-page: 184
  ident: CR30
  article-title: An automatic method for finding the greatest or least value of a function
  publication-title: Comput J
  doi: 10.1093/comjnl/3.3.175
– volume: 37
  start-page: 937
  issue: 4
  year: 2001
  end-page: 947
  ident: CR1
  article-title: A Markov chain Monte Carlo scheme for parameter estimation and inference in conceptual rainfall-runoff modeling
  publication-title: Water Resour Res
  doi: 10.1029/2000WR900363
– volume: 24
  start-page: 43
  year: 1979
  end-page: 69
  ident: CR7
  article-title: A physically based, variable contributing area model of basin hydrology
  publication-title: Hydrol Sci Bull
  doi: 10.1080/02626667909491834
– volume: 354
  start-page: 15
  year: 2008
  end-page: 32
  ident: CR8
  article-title: So just why would a modeller choose to be incoherent?
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2008.02.007
– volume: 47
  start-page: W07550
  year: 2011
  ident: CR29
  article-title: Inferring model structural deficits by analyzing temporal dynamics of model performance and parameter sensitivity
  publication-title: Water Resour Res
– volume: 6
  start-page: 279
  year: 1992
  end-page: 298
  ident: CR4
  article-title: The future of distributed models: model calibration and uncertainty prediction
  publication-title: Hydrol Process
  doi: 10.1002/hyp.3360060305
– volume: 6
  start-page: 272
  issue: 3
  year: 1992
  end-page: 298
  ident: CR5
  article-title: The future of distributed models: model calibration and uncertainty prediction
  publication-title: Hydrol Process
– volume: 55
  start-page: 3
  year: 1993
  end-page: 23
  ident: CR32
  article-title: Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods
  publication-title: J R Stat Soc Ser B
– ident: CR34
– volume: 211
  start-page: 69
  year: 1998
  end-page: 85
  ident: CR18
  article-title: Monte Carlo assessment of parameter uncertainty in conceptual catchment models—the Metropolis algorithm
  publication-title: J Hydrol
  doi: 10.1016/S0022-1694(98)00198-X
– volume: 21
  start-page: 1087
  issue: 6
  year: 1953
  end-page: 1092
  ident: CR25
  article-title: Equation of state calculations by fast computing machines
  publication-title: J Chem Phys
  doi: 10.1063/1.1699114
– volume: 249
  start-page: 11
  issue: 1–4
  year: 2001
  end-page: 29
  ident: CR12
  article-title: Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology
  publication-title: J Hydrol
– volume: 353
  start-page: 18
  year: 2008
  end-page: 32
  ident: CR9
  article-title: Uncertainty assessment of integrated distributed hydrological models using GLUE with Markov chain Monte Carlo sampling
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2007.12.026
– volume: 42
  start-page: W03407
  year: 2006
  ident: CR17
  article-title: Bayesian analysis of input uncertainty in hydrological modeling:1. Theory
  publication-title: Water Resour Res
– volume: 7
  start-page: 457
  issue: 4
  year: 1992
  end-page: 472
  ident: CR13
  article-title: Inference from iterative simulation using multiple sequences
  publication-title: Stat Sci
  doi: 10.1214/ss/1177011136
– volume: 28
  start-page: 265
  issue: 4
  year: 1992
  ident: 1319_CR11
  publication-title: Water Resour Res
  doi: 10.1029/91WR02985
– volume: 16
  start-page: 41
  year: 1993
  ident: 1319_CR2
  publication-title: Adv Water Resour
  doi: 10.1016/0309-1708(93)90028-E
– volume: 306
  start-page: 127
  year: 2005
  ident: 1319_CR27
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2004.09.005
– volume: 354
  start-page: 15
  year: 2008
  ident: 1319_CR8
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2008.02.007
– volume: 118
  start-page: 69
  year: 2014
  ident: 1319_CR19
  publication-title: Glob Planet Change
  doi: 10.1016/j.gloplacha.2014.04.006
– ident: 1319_CR39
– volume: 21
  start-page: 1087
  issue: 6
  year: 1953
  ident: 1319_CR25
  publication-title: J Chem Phys
  doi: 10.1063/1.1699114
– volume: 12
  start-page: 7
  year: 1981
  ident: 1319_CR16
  publication-title: J Environ Manag
– volume: 37
  start-page: 129
  issue: 2
  year: 2009
  ident: 1319_CR21
  publication-title: J Hohai Univ (Nat Sci)
– ident: 1319_CR37
– volume: 30
  start-page: 3159
  year: 1994
  ident: 1319_CR33
  publication-title: Water Resour Res
  doi: 10.1029/94WR01732
– volume: 28
  start-page: 5897
  year: 2014
  ident: 1319_CR6
  publication-title: Hydrol Process
  doi: 10.1002/hyp.10082
– volume: 49
  start-page: 825
  issue: 2
  year: 2013
  ident: 1319_CR28
  publication-title: Water Resour Res
  doi: 10.1002/wrcr.20087
– volume: 37
  start-page: 937
  issue: 4
  year: 2001
  ident: 1319_CR1
  publication-title: Water Resour Res
  doi: 10.1029/2000WR900363
– volume: 353
  start-page: 18
  year: 2008
  ident: 1319_CR9
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2007.12.026
– volume: 23
  start-page: 1011
  issue: 7
  year: 2009
  ident: 1319_CR35
  publication-title: Stoch Environ Res Risk Assess
  doi: 10.1007/s00477-008-0274-y
– ident: 1319_CR38
  doi: 10.1029/2007WR005940
– volume: 41
  start-page: W08406
  year: 2005
  ident: 1319_CR26
  publication-title: Water Resour Res
  doi: 10.1029/2004WR003826
– volume: 420–421
  start-page: 319
  year: 2012
  ident: 1319_CR10
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2011.12.022
– volume: 3
  start-page: 175
  year: 1960
  ident: 1319_CR30
  publication-title: Comput J
  doi: 10.1093/comjnl/3.3.175
– volume-title: Environmental modelling: an uncertain future?
  year: 2008
  ident: 1319_CR3
– volume: 6
  start-page: 272
  issue: 3
  year: 1992
  ident: 1319_CR5
  publication-title: Hydrol Process
– volume: 19
  start-page: 1026
  issue: 5
  year: 2014
  ident: 1319_CR20
  publication-title: J Hydrol Eng
  doi: 10.1061/(ASCE)HE.1943-5584.0000868
– volume: 6
  start-page: 279
  year: 1992
  ident: 1319_CR4
  publication-title: Hydrol Process
  doi: 10.1002/hyp.3360060305
– volume: 7
  start-page: 457
  issue: 4
  year: 1992
  ident: 1319_CR13
  publication-title: Stat Sci
  doi: 10.1214/ss/1177011136
– ident: 1319_CR34
  doi: 10.1029/2007WR006720
– volume: 42
  start-page: W03407
  year: 2006
  ident: 1319_CR17
  publication-title: Water Resour Res
  doi: 10.1029/2005WR004368
– volume: 26
  start-page: 721
  issue: 5
  year: 2012
  ident: 1319_CR22
  publication-title: Stoch Environ Res Risk Assess
  doi: 10.1007/s00477-011-0552-y
– volume: 211
  start-page: 69
  year: 1998
  ident: 1319_CR18
  publication-title: J Hydrol
  doi: 10.1016/S0022-1694(98)00198-X
– volume: 2
  start-page: 28
  issue: 4
  year: 2009
  ident: 1319_CR36
  publication-title: Water Sci Eng
– volume: 47
  start-page: W07550
  year: 2011
  ident: 1319_CR29
  publication-title: Water Resour Res
– volume: 55
  start-page: 3
  year: 1993
  ident: 1319_CR32
  publication-title: J R Stat Soc Ser B
  doi: 10.1111/j.2517-6161.1993.tb01466.x
– volume: 57
  start-page: 97
  year: 1970
  ident: 1319_CR15
  publication-title: Biometrika
  doi: 10.1093/biomet/57.1.97
– volume: 7
  start-page: 223
  issue: 2
  year: 2001
  ident: 1319_CR14
  publication-title: Bernoulli
  doi: 10.2307/3318737
– volume: 24
  start-page: 43
  year: 1979
  ident: 1319_CR7
  publication-title: Hydrol Sci Bull
  doi: 10.1080/02626667909491834
– volume: 28
  start-page: 1493
  issue: 6
  year: 2014
  ident: 1319_CR31
  publication-title: Stoch Environ Res Risk Assess
  doi: 10.1007/s00477-014-0855-x
– volume: 330
  start-page: 368
  year: 2006
  ident: 1319_CR23
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2006.04.046
– volume: 40
  start-page: W02501
  year: 2004
  ident: 1319_CR24
  publication-title: Water Resour Res
  doi: 10.1029/2003WR002378
– volume: 249
  start-page: 11
  issue: 1–4
  year: 2001
  ident: 1319_CR12
  publication-title: J Hydrol
SSID ssj0017754
ssib007539910
ssib057179955
ssib001127189
Score 2.2376382
Snippet Parameter uncertainty in hydrologic modeling is crucial to the flood simulation and forecasting. The Bayesian approach allows one to estimate parameters...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1045
SubjectTerms Algorithms
Aquatic Pollution
Bayesian analysis
Calibration
Chains
Chemistry and Earth Sciences
Computational Intelligence
Computer Science
Computer simulation
Conductivity
Continuity (mathematics)
Data processing
Diagnostic software
Diagnostic systems
Earth and Environmental Science
Earth Sciences
Economic models
Environment
Estimates
Flood forecasting
Flood predictions
Floods
Forecasting
Hydrologic models
Hydrology
Markov chains
Math. Appl. in Environmental Science
Mathematical models
Methods
Monte Carlo simulation
Optimization
Original Paper
Overland flow
Parameter identification
Performance assessment
Physics
Probability theory
Probability Theory and Stochastic Processes
Sampling
Sensitivity analysis
Statistics for Engineering
Stream discharge
Stream flow
Velocity
Waste Water Technology
Water Management
Water Pollution Control
SummonAdditionalLinks – databaseName: ProQuest Central (NIESG)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED6VdoAFQQHxKMgDE8gisZ00GRCC0qpCtCAEElsUv8QALdAy9N_jS50UkOgWybGHO9t357v7PoBj5VxaoXRAtZERFQkzVKaBoIjOlZrQ6bxoFB4M4_6TuHmOnmswLHthsKyyvBOLi1qPFb6RnznDlWIKi_GL9w-KrFGYXS0pNHJPraDPC4ixFWgwRMaqQ-OqO7x_qPIKiPdW9BvxmCIUXZnnDOawom0sw0RcvjCl7LelWriffzKmhSHqbcC69yDJ5Vzlm1AzoybsdBcNa27Qn9hJE1Y9y_nLbAseOhXpIBlbgqjfb1gNQ5xtm1cGTGck9yglpEJ3nRDn2JKcPN7dD-6uu7fkR9J7G5563cdOn3pOBaq4SKfUJDKKpIoDw1zk4yJpbWNhVSI149LYJI6DxKaacylNoNNEi9iyPIza0raN5jnfgfpoPDK7QNwknre1CJNACe6-cxu6paWLWHgSSbYHQSm_THnAceS9eM0qqORC5BkWmaHIMzflpJryPkfbWPZzq1RK5g_eJFtskz04LRX1Y_i_xfaXL3YAawzteVGn24L69PPLHDpvZCqP_Bb7Blry27g
  priority: 102
  providerName: ProQuest
Title Comparison of parameter uncertainty analysis techniques for a TOPMODEL application
URI https://link.springer.com/article/10.1007/s00477-016-1319-2
https://www.proquest.com/docview/1909585123
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1436-3259
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017754
  issn: 1436-3240
  databaseCode: AFBBN
  dateStart: 19970201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1436-3259
  dateEnd: 20171231
  omitProxy: true
  ssIdentifier: ssj0017754
  issn: 1436-3240
  databaseCode: BENPR
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1436-3259
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0017754
  issn: 1436-3240
  databaseCode: 8FG
  dateStart: 20020201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1436-3259
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017754
  issn: 1436-3240
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1436-3259
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017754
  issn: 1436-3240
  databaseCode: U2A
  dateStart: 19990404
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFH7oiOjFZVTcycGTEmmbtJMeR-0o7sgM6Kk0SxHUUWw96K_3pZPWBRU8taRJSLN-4X3vewBbCiEtV9qj2siQchEYKmOPU6vOFRsfx7xyFD47j44G_Pg6vHZ-3EXNdq9NktVO3Ti7WWFDS5O0unl-THHfnajktlow0T28OUka44EVdaucilhErd5cbcz8qZKvx9EHxvxmFq1Om94s9Ot2jkgmd7svpdxVb98kHP_5I3Mw49An6Y6myzyMmWEbZuvIDsQt9DYsJR_-b5jfpRdtmHJB029f2zBZsUdVsQBX-000Q_KYEysn_mBpNgQPzRHloHwlmZM_IY1sbEEQMZOM9C8uzy4OklPyyZq-CINe0t8_oi5YA1WMxyU1QoahVJFnArxS4RVd5xHPlZA6YNLkIoo8kceaMSmNp2OheZQHmR92ZN4xmmVsCVrDx6FZBoKFWNbR3Bee4gzfs9zHqiVehZgIZbACXj1mqXJK5jagxn3aaDBXXZxa9prt4hSLbDdFnkYyHn9lXq8nQupWdJEicIqtCTVgK7BTj-unz79Vtvqv3GswHVjcUPGB16FVPr-YDUQ9pdyEcdE73HRzHZ97yfnlFaYOgu475Gz7Lw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTsMwDLbGdoALggHiZ0AOcAFFtEnatQeEgA0N2AZCQ-JWmiYVB9iADaG9HM-G06UdIMGNW6XUPthubNf2Z4CdBENakSiHKi09KgKmqQwdQQ06V6hd1Hk2KNzp-q1bcXHn3ZXgI5-FMW2V-Z2YXdRqkJh_5AfouEJTwmL86PmFmq1Rprqar9CI7WoFdZhBjNnBjks9fscUbnh43kB97zJ21uydtqjdMkATLsIR1YH0PJn4jmaYC2BuqVJfpEkgFeNSp4HvO0EaKs6l1I4KAyX8lMWuV5dpXSsec-Q7AxWBzDD5q5w0u9c3RR3D4Mtl803cpwb6Lq-rOhMY07pp-zQ4gG5I2XfPOA13f1RoM8d3tgDzNmIlxxMTW4SS7ldhpTkdkMNDe0MMqzBrt6o_jJfg5rRYckgGKTEo40-m-4agL510IozGJLaoKKRAkx0SDKRJTHpX152rRrNNvhTZl-H2X6S7AuX-oK9XgSARj-tKuIGTCI7Pceoia4kZEg88ydbAyeUXJRbg3OzZeIwKaOZM5JFpajMij5BkryB5nqB7_PVyLVdKZD_0YTQ1yzXYzxX15fg3Zut_M9uG2Vav047a593LDZhjJpbIeoRrUB69vulNjIRGcsuaG4H7_7bwT-9wGuc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxtBDLYCSKWXqlAQr8Ic6KVoxO7M7OuAqookDSQ8hEDituzszKiHNgGSCuWv8euw9xVAKjduK83aB9s7ttf2Z4DdHENalRuPG6sDrmJhuU48xQmdK7E-6rwYFD45DXtX6vg6uG7BYz0LQ22V9Z1YXNRmlNM_8n10XAmVsITcd1VbxHm7--P2jtMGKaq01us0ShPp2-kDpm_jg6M26vqbEN3O5WGPVxsGeC5VMuE21kGg89CzAvMAzCuNC5XLY22E1NbFYejFLjFSam09k8RGhU5kfhBpF1kjM4l852AhIhR3mlLv_moqGIQsV0w2yZAT6F1dUfVKANOIGj4JAdBPuHjpE2eB7qvabOHyup_hUxWrsp-lcS1Byw6XYbUzG43Dw-puGC_DYrVP_ff0C1wcNusN2cgxwhf_S303DL1o2YMwmbKswkNhDY7smGEIzTJ2eXZ-ctbuDNiz8voKXL2LbFdhfjga2jVgSCSzyCg_9nIl8TlzPrLWmBvJONBiHbxafmleQZvTho0_aQPKXIg8pXY2EnmKJN8bktsS1-Otl7dqpaTVJz5OZwa5Dnu1op4d_4_ZxtvMduAD2nU6ODrtb8JHQUFE0Ry8BfOT-3_2K4ZAE71d2BqDm_c27ic1aRiB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+parameter+uncertainty+analysis+techniques+for+a+TOPMODEL+application&rft.jtitle=Stochastic+environmental+research+and+risk+assessment&rft.au=Li%2C+Binquan&rft.au=Liang%2C+Zhongmin&rft.au=He%2C+Yingqing&rft.au=Hu%2C+Lin&rft.date=2017-07-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1436-3240&rft.eissn=1436-3259&rft.volume=31&rft.issue=5&rft.spage=1045&rft.epage=1059&rft_id=info:doi/10.1007%2Fs00477-016-1319-2&rft.externalDocID=10_1007_s00477_016_1319_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1436-3240&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1436-3240&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1436-3240&client=summon