Comparison of parameter uncertainty analysis techniques for a TOPMODEL application
Parameter uncertainty in hydrologic modeling is crucial to the flood simulation and forecasting. The Bayesian approach allows one to estimate parameters according to prior expert knowledge as well as observational data about model parameter values. This study assesses the performance of two popular...
Saved in:
| Published in | Stochastic environmental research and risk assessment Vol. 31; no. 5; pp. 1045 - 1059 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.07.2017
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1436-3240 1436-3259 |
| DOI | 10.1007/s00477-016-1319-2 |
Cover
| Abstract | Parameter uncertainty in hydrologic modeling is crucial to the flood simulation and forecasting. The Bayesian approach allows one to estimate parameters according to prior expert knowledge as well as observational data about model parameter values. This study assesses the performance of two popular uncertainty analysis (UA) techniques, i.e., generalized likelihood uncertainty estimation (GLUE) and Bayesian method implemented with the Markov chain Monte Carlo sampling algorithm, in evaluating model parameter uncertainty in flood simulations. These two methods were applied to the semi-distributed Topographic hydrologic model (TOPMODEL) that includes five parameters. A case study was carried out for a small humid catchment in the southeastern China. The performance assessment of the GLUE and Bayesian methods were conducted with advanced tools suited for probabilistic simulations of continuous variables such as streamflow. Graphical tools and scalar metrics were used to test several attributes of the simulation quality of selected flood events: deterministic accuracy and the accuracy of 95 % prediction probability uncertainty band (95PPU). Sensitivity analysis was conducted to identify sensitive parameters that largely affect the model output results. Subsequently, the GLUE and Bayesian methods were used to analyze the uncertainty of sensitive parameters and further to produce their posterior distributions. Based on their posterior parameter samples, TOPMODEL’s simulations and the corresponding UA results were conducted. Results show that the form of exponential decline in conductivity and the overland flow routing velocity were sensitive parameters in TOPMODEL in our case. Small changes in these two parameters would lead to large differences in flood simulation results. Results also suggest that, for both UA techniques, most of streamflow observations were bracketed by 95PPU with the containing ratio value larger than 80 %. In comparison, GLUE gave narrower prediction uncertainty bands than the Bayesian method. It was found that the mode estimates of parameter posterior distributions are suitable to result in better performance of deterministic outputs than the 50 % percentiles for both the GLUE and Bayesian analyses. In addition, the simulation results calibrated with Rosenbrock optimization algorithm show a better agreement with the observations than the UA’s 50 % percentiles but slightly worse than the hydrographs from the mode estimates. The results clearly emphasize the importance of using model uncertainty diagnostic approaches in flood simulations. |
|---|---|
| AbstractList | Parameter uncertainty in hydrologic modeling is crucial to the flood simulation and forecasting. The Bayesian approach allows one to estimate parameters according to prior expert knowledge as well as observational data about model parameter values. This study assesses the performance of two popular uncertainty analysis (UA) techniques, i.e., generalized likelihood uncertainty estimation (GLUE) and Bayesian method implemented with the Markov chain Monte Carlo sampling algorithm, in evaluating model parameter uncertainty in flood simulations. These two methods were applied to the semi-distributed Topographic hydrologic model (TOPMODEL) that includes five parameters. A case study was carried out for a small humid catchment in the southeastern China. The performance assessment of the GLUE and Bayesian methods were conducted with advanced tools suited for probabilistic simulations of continuous variables such as streamflow. Graphical tools and scalar metrics were used to test several attributes of the simulation quality of selected flood events: deterministic accuracy and the accuracy of 95 % prediction probability uncertainty band (95PPU). Sensitivity analysis was conducted to identify sensitive parameters that largely affect the model output results. Subsequently, the GLUE and Bayesian methods were used to analyze the uncertainty of sensitive parameters and further to produce their posterior distributions. Based on their posterior parameter samples, TOPMODEL’s simulations and the corresponding UA results were conducted. Results show that the form of exponential decline in conductivity and the overland flow routing velocity were sensitive parameters in TOPMODEL in our case. Small changes in these two parameters would lead to large differences in flood simulation results. Results also suggest that, for both UA techniques, most of streamflow observations were bracketed by 95PPU with the containing ratio value larger than 80 %. In comparison, GLUE gave narrower prediction uncertainty bands than the Bayesian method. It was found that the mode estimates of parameter posterior distributions are suitable to result in better performance of deterministic outputs than the 50 % percentiles for both the GLUE and Bayesian analyses. In addition, the simulation results calibrated with Rosenbrock optimization algorithm show a better agreement with the observations than the UA’s 50 % percentiles but slightly worse than the hydrographs from the mode estimates. The results clearly emphasize the importance of using model uncertainty diagnostic approaches in flood simulations. Parameter uncertainty in hydrologic modeling is crucial to the flood simulation and forecasting. The Bayesian approach allows one to estimate parameters according to prior expert knowledge as well as observational data about model parameter values. This study assesses the performance of two popular uncertainty analysis (UA) techniques, i.e., generalized likelihood uncertainty estimation (GLUE) and Bayesian method implemented with the Markov chain Monte Carlo sampling algorithm, in evaluating model parameter uncertainty in flood simulations. These two methods were applied to the semi-distributed Topographic hydrologic model (TOPMODEL) that includes five parameters. A case study was carried out for a small humid catchment in the southeastern China. The performance assessment of the GLUE and Bayesian methods were conducted with advanced tools suited for probabilistic simulations of continuous variables such as streamflow. Graphical tools and scalar metrics were used to test several attributes of the simulation quality of selected flood events: deterministic accuracy and the accuracy of 95 % prediction probability uncertainty band (95PPU). Sensitivity analysis was conducted to identify sensitive parameters that largely affect the model output results. Subsequently, the GLUE and Bayesian methods were used to analyze the uncertainty of sensitive parameters and further to produce their posterior distributions. Based on their posterior parameter samples, TOPMODEL's simulations and the corresponding UA results were conducted. Results show that the form of exponential decline in conductivity and the overland flow routing velocity were sensitive parameters in TOPMODEL in our case. Small changes in these two parameters would lead to large differences in flood simulation results. Results also suggest that, for both UA techniques, most of streamflow observations were bracketed by 95PPU with the containing ratio value larger than 80 %. In comparison, GLUE gave narrower prediction uncertainty bands than the Bayesian method. It was found that the mode estimates of parameter posterior distributions are suitable to result in better performance of deterministic outputs than the 50 % percentiles for both the GLUE and Bayesian analyses. In addition, the simulation results calibrated with Rosenbrock optimization algorithm show a better agreement with the observations than the UA's 50 % percentiles but slightly worse than the hydrographs from the mode estimates. The results clearly emphasize the importance of using model uncertainty diagnostic approaches in flood simulations. |
| Author | Liang, Zhongmin He, Yingqing Zhao, Weimin Hu, Lin Acharya, Kumud Li, Binquan |
| Author_xml | – sequence: 1 givenname: Binquan orcidid: 0000-0002-9958-0396 surname: Li fullname: Li, Binquan email: libinquan@hhu.edu.cn organization: College of Hydrology and Water Resources, Hohai University, Nanjing Hydraulic Research Institute – sequence: 2 givenname: Zhongmin surname: Liang fullname: Liang, Zhongmin organization: College of Hydrology and Water Resources, Hohai University – sequence: 3 givenname: Yingqing surname: He fullname: He, Yingqing organization: Jiangsu Province Hydrology and Water Resources Investigation Bureau – sequence: 4 givenname: Lin surname: Hu fullname: Hu, Lin organization: College of Hydrology and Water Resources, Hohai University, Zhejiang Provincial Hydrology Bureau – sequence: 5 givenname: Weimin surname: Zhao fullname: Zhao, Weimin organization: Hydrology Bureau, Yellow River Conservancy Commission – sequence: 6 givenname: Kumud surname: Acharya fullname: Acharya, Kumud organization: Division of Hydrologic Sciences, Desert Research Institute |
| BookMark | eNp9kM1KAzEYRYNUsK0-gLuA69H8TJKZpdT6A5WK1HVIZhJNaZMxSRd9e6eOiAi6-u7ino_DnYCRD94AcI7RJUZIXCWESiEKhHmBKa4LcgTGuKS8oITVo-9cohMwSWmNEBaClWPwPAvbTkWXgofBwj6qrckmwp1vTMzK-byHyqvNPrkEs2nevHvfmQRtiFDB1fLpcXkzX0DVdRvXqOyCPwXHVm2SOfu6U_ByO1_N7ovF8u5hdr0oGlrWuTCVZkw3HBnCCTOatpaXtql0S6g2tuIcVbZuKdXaoLau2pJbojAT2grTUkWn4GL428VwUMpyHXaxV00S16hmFcOE9i0xtJoYUorGysblT88cldtIjORhQDkMKPsB5WFASXoS_yK76LYq7v9lyMCkvutfTfzh9Cf0AUqIhbs |
| CitedBy_id | crossref_primary_10_1007_s00477_020_01814_z crossref_primary_10_1016_j_jhydrol_2021_127221 crossref_primary_10_3390_su12198268 crossref_primary_10_1007_s11356_023_27556_3 crossref_primary_10_1061__ASCE_HE_1943_5584_0001861 crossref_primary_10_3390_w8110486 crossref_primary_10_2166_wcc_2017_137 crossref_primary_10_1007_s00477_019_01694_y crossref_primary_10_1007_s11069_017_2909_0 crossref_primary_10_1016_j_jenvman_2020_111765 crossref_primary_10_1007_s00477_018_1600_7 crossref_primary_10_3390_w10111662 crossref_primary_10_1007_s11356_017_0030_2 crossref_primary_10_1029_2019WR025477 crossref_primary_10_3390_app13042245 crossref_primary_10_1007_s10661_018_7145_x crossref_primary_10_2166_nh_2018_110 crossref_primary_10_1007_s00477_017_1424_x crossref_primary_10_1038_s41598_024_77978_3 crossref_primary_10_5194_nhess_19_2027_2019 |
| Cites_doi | 10.1016/j.gloplacha.2014.04.006 10.1007/s00477-008-0274-y 10.1061/(ASCE)HE.1943-5584.0000868 10.1016/j.jhydrol.2011.12.022 10.2307/3318737 10.1029/2003WR002378 10.1029/2004WR003826 10.1002/wrcr.20087 10.1016/0309-1708(93)90028-E 10.1029/94WR01732 10.1093/biomet/57.1.97 10.1029/91WR02985 10.1002/hyp.10082 10.1016/j.jhydrol.2006.04.046 10.1007/s00477-014-0855-x 10.1007/s00477-011-0552-y 10.1016/j.jhydrol.2004.09.005 10.1093/comjnl/3.3.175 10.1029/2000WR900363 10.1080/02626667909491834 10.1016/j.jhydrol.2008.02.007 10.1002/hyp.3360060305 10.1016/S0022-1694(98)00198-X 10.1063/1.1699114 10.1016/j.jhydrol.2007.12.026 10.1214/ss/1177011136 10.1029/2007WR005940 10.1029/2007WR006720 10.1029/2005WR004368 10.1111/j.2517-6161.1993.tb01466.x |
| ContentType | Journal Article |
| Copyright | Springer-Verlag Berlin Heidelberg 2016 Stochastic Environmental Research and Risk Assessment is a copyright of Springer, 2017. |
| Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2016 – notice: Stochastic Environmental Research and Risk Assessment is a copyright of Springer, 2017. |
| DBID | AAYXX CITATION 3V. 7ST 7XB 88I 8AO 8FD 8FE 8FG 8FK ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ KR7 L6V M2P M7S PATMY PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U S0W SOI |
| DOI | 10.1007/s00477-016-1319-2 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Environment Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central (NIESG) ProQuest Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection Civil Engineering Abstracts ProQuest Engineering Collection Science Database Engineering Database (Proquest) Environmental Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection Environmental Science Collection ProQuest Central Basic DELNET Engineering & Technology Collection Environment Abstracts |
| DatabaseTitle | CrossRef ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection Environmental Science Database Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | ProQuest Central Student |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Physics Computer Science Environmental Sciences |
| EISSN | 1436-3259 |
| EndPage | 1059 |
| ExternalDocumentID | 10_1007_s00477_016_1319_2 |
| GrantInformation_xml | – fundername: Project Funded by China Postdoctoral Science Foundation grantid: 2015M580450 – fundername: Special Fund for Public Welfare Industry of the Ministry of Water Resources of China grantid: 201501004 – fundername: Fundamental Research Funds for the Central Universities of China grantid: 2015B00114 – fundername: National Natural Science Foundation of China grantid: 51509067 funderid: http://dx.doi.org/10.13039/501100001809 |
| GroupedDBID | -5A -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 2.D 203 29Q 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 53G 5VS 67M 67Z 6NX 7XC 88I 8AO 8FE 8FG 8FH 8FW 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHIR ADINQ ADKNI ADKPE ADPHR ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BGLVJ BGNMA BHPHI BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDH EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FIL FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV L6V L8X LAS LLZTM M2P M4Y M7S MA- ML. N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O93 O9G O9J OAM P19 P2P PATMY PF0 PQQKQ PROAC PT4 PT5 PTHSS PYCSY Q2X QOS R89 R9I RIG RNS ROL RPX RSV S0W S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 Y6R YLTOR Z45 Z5O Z7R Z7Y Z7Z Z81 Z83 Z86 Z8M Z8S Z8T Z8U Z8W ZMTXR ~02 ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7ST 7XB 8FD 8FK C1K FR3 KR7 PKEHL PQEST PQUKI PRINS Q9U SOI |
| ID | FETCH-LOGICAL-c349t-e8b55bc60e2625eb3df64fc8bd23bef86608f9d33bbe0d98d46f2a157bf7ed3a3 |
| IEDL.DBID | AGYKE |
| ISSN | 1436-3240 |
| IngestDate | Sat Aug 23 13:24:15 EDT 2025 Wed Oct 01 01:50:43 EDT 2025 Thu Apr 24 23:03:59 EDT 2025 Fri Feb 21 02:25:50 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | TOPMODEL Parameter uncertainty analysis Sensitivity analysis GLUE Bayesian method |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c349t-e8b55bc60e2625eb3df64fc8bd23bef86608f9d33bbe0d98d46f2a157bf7ed3a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9958-0396 |
| PQID | 1909585123 |
| PQPubID | 31669 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_1909585123 crossref_citationtrail_10_1007_s00477_016_1319_2 crossref_primary_10_1007_s00477_016_1319_2 springer_journals_10_1007_s00477_016_1319_2 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20170700 2017-7-00 20170701 |
| PublicationDateYYYYMMDD | 2017-07-01 |
| PublicationDate_xml | – month: 7 year: 2017 text: 20170700 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Stochastic environmental research and risk assessment |
| PublicationTitleAbbrev | Stoch Environ Res Risk Assess |
| PublicationYear | 2017 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Vrugt, ter Braak, Gupta, Robinson (CR35) 2009; 23 Renard, Kochanek, Lang, Garavaglia, Paquet, Neppel, Najib, Carreau, Arnaud, Aubert (CR28) 2013; 49 Beven, Binley (CR6) 2014; 28 Kavetski, Kuczra, Franks (CR17) 2006; 42 Spear, Grieb, Shang (CR33) 1994; 30 Liang, Chang, Li (CR22) 2012; 26 Mantovan, Todini (CR23) 2006; 330 CR39 Beven, Binley (CR4) 1992; 6 Beven, Smith, Freer (CR8) 2008; 354 CR38 CR37 Yan, Tao, Li, Mazzetti (CR36) 2009; 2 CR34 Haario, Saksman, Tamminem (CR14) 2001; 7 Hornberger, Spear (CR16) 1981; 12 Shafii, Tolson, Matott (CR31) 2014; 28 Freer, Beven (CR12) 2001; 249 Bates, Campbell (CR1) 2001; 37 Muleta, Nicklow (CR27) 2005; 306 Rosenbrock (CR30) 1960; 3 Beven, Kirkby (CR7) 1979; 24 Metropolis, Rosenbluth, Rosenbluth, Teller, Teller (CR25) 1953; 21 Smith, Robert (CR32) 1993; 55 Li, Yu, Liang, Song, Li, Wang, Zhang, Acharya (CR20) 2014; 19 Liang, Li, Yu, Hua, Liu (CR21) 2009; 37 Li, Yu, Liang, Acharya (CR19) 2014; 118 Gelman, Rubin (CR13) 1992; 7 Beven (CR3) 2008 Beven (CR2) 1993; 16 Reusser, Zehe (CR29) 2011; 47 Duan, Sorooshian, Gupa (CR11) 1992; 28 Montanari (CR26) 2005; 41 Blasone, Madsen, Rosbjerg (CR9) 2008; 353 Beven, Binley (CR5) 1992; 6 Kuczera, Parent (CR18) 1998; 211 Marshall, Nott, Sharma (CR24) 2004; 40 Hastings (CR15) 1970; 57 Chen, Wu (CR10) 2012; 420–421 KJ Beven (1319_CR5) 1992; 6 1319_CR34 M Shafii (1319_CR31) 2014; 28 J Chen (1319_CR10) 2012; 420–421 D Kavetski (1319_CR17) 2006; 42 K Beven (1319_CR6) 2014; 28 P Mantovan (1319_CR23) 2006; 330 Z Liang (1319_CR21) 2009; 37 A Montanari (1319_CR26) 2005; 41 K Beven (1319_CR8) 2008; 354 1319_CR38 WK Hastings (1319_CR15) 1970; 57 1319_CR37 K Beven (1319_CR3) 2008 1319_CR39 RC Spear (1319_CR33) 1994; 30 B Li (1319_CR20) 2014; 19 BC Bates (1319_CR1) 2001; 37 L Marshall (1319_CR24) 2004; 40 Y Yan (1319_CR36) 2009; 2 Q Duan (1319_CR11) 1992; 28 R-S Blasone (1319_CR9) 2008; 353 JE Freer (1319_CR12) 2001; 249 A Gelman (1319_CR13) 1992; 7 G Kuczera (1319_CR18) 1998; 211 K Beven (1319_CR4) 1992; 6 B Li (1319_CR19) 2014; 118 KJ Beven (1319_CR7) 1979; 24 N Metropolis (1319_CR25) 1953; 21 DE Reusser (1319_CR29) 2011; 47 GM Hornberger (1319_CR16) 1981; 12 JA Vrugt (1319_CR35) 2009; 23 H Haario (1319_CR14) 2001; 7 B Renard (1319_CR28) 2013; 49 AFM Smith (1319_CR32) 1993; 55 HH Rosenbrock (1319_CR30) 1960; 3 MK Muleta (1319_CR27) 2005; 306 Z Liang (1319_CR22) 2012; 26 KJ Beven (1319_CR2) 1993; 16 |
| References_xml | – volume: 12 start-page: 7 year: 1981 end-page: 18 ident: CR16 article-title: An approach to the preliminary analysis of environmental systems publication-title: J Environ Manag – volume: 118 start-page: 69 year: 2014 end-page: 84 ident: CR19 article-title: Hydrologic response of a high altitude glacierized basin in the central Tibetan Plateau publication-title: Glob Planet Change doi: 10.1016/j.gloplacha.2014.04.006 – volume: 23 start-page: 1011 issue: 7 year: 2009 end-page: 1026 ident: CR35 article-title: Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling? publication-title: Stoch Environ Res Risk Assess doi: 10.1007/s00477-008-0274-y – volume: 19 start-page: 1026 issue: 5 year: 2014 end-page: 1035 ident: CR20 article-title: Effects of climate variations and human activities on runoff in the Zoige alpine wetland in the eastern edge of the Tibetan Plateau publication-title: J Hydrol Eng doi: 10.1061/(ASCE)HE.1943-5584.0000868 – year: 2008 ident: CR3 publication-title: Environmental modelling: an uncertain future? – ident: CR39 – volume: 420–421 start-page: 319 year: 2012 end-page: 328 ident: CR10 article-title: Advancing representation of hydrologic processes in the soil and water assessment tool (SWAT) through integration of the TOPographic MODEL (TOPMODEL) features publication-title: J Hydrol doi: 10.1016/j.jhydrol.2011.12.022 – ident: CR37 – volume: 7 start-page: 223 issue: 2 year: 2001 end-page: 242 ident: CR14 article-title: An adaptive Metropolis algorithm publication-title: Bernoulli doi: 10.2307/3318737 – volume: 40 start-page: W02501 year: 2004 ident: CR24 article-title: A comparative study of Markov chain Monte Carlo methods for conceptual rainfall-runoff modeling publication-title: Water Resour Res doi: 10.1029/2003WR002378 – volume: 41 start-page: W08406 year: 2005 ident: CR26 article-title: Large sample behaviors of the generalized likelihood uncertainty estimation (GLUE) in assessing the uncertainty of rainfall-runoff simulations publication-title: Water Resour Res doi: 10.1029/2004WR003826 – volume: 49 start-page: 825 issue: 2 year: 2013 end-page: 843 ident: CR28 article-title: Data-based comparison of frequency analysis methods: a general framework publication-title: Water Resour Res doi: 10.1002/wrcr.20087 – volume: 16 start-page: 41 year: 1993 end-page: 51 ident: CR2 article-title: Prophecy, reality and uncertainty in distributed hydrological modeling publication-title: Adv Water Resour doi: 10.1016/0309-1708(93)90028-E – volume: 37 start-page: 129 issue: 2 year: 2009 end-page: 132 ident: CR21 article-title: Parametric uncertainty analysis for TOPMODEL based on Bayesian theory publication-title: J Hohai Univ (Nat Sci) – volume: 30 start-page: 3159 year: 1994 end-page: 3170 ident: CR33 article-title: Parameter uncertainty and interaction in complex environmental models publication-title: Water Resour Res doi: 10.1029/94WR01732 – volume: 57 start-page: 97 year: 1970 end-page: 109 ident: CR15 article-title: Monte Carlo sampling methods using Markov chains and their applications publication-title: Biometrika doi: 10.1093/biomet/57.1.97 – volume: 28 start-page: 265 issue: 4 year: 1992 end-page: 284 ident: CR11 article-title: Effective and efficient global optimization for conceptual rainfall-runoff models publication-title: Water Resour Res doi: 10.1029/91WR02985 – volume: 28 start-page: 5897 year: 2014 end-page: 5918 ident: CR6 article-title: GLUE: 20 years on publication-title: Hydrol Process doi: 10.1002/hyp.10082 – volume: 330 start-page: 368 year: 2006 end-page: 381 ident: CR23 article-title: Hydrological forecasting uncertainty assessment: incoherence of the GLUE methodology publication-title: J Hydrol doi: 10.1016/j.jhydrol.2006.04.046 – volume: 2 start-page: 28 issue: 4 year: 2009 end-page: 39 ident: CR36 article-title: Application of hydrometeorological coupled European flood forecasting operational real time system in Yellow River Basin publication-title: Water Sci Eng – volume: 28 start-page: 1493 issue: 6 year: 2014 end-page: 1510 ident: CR31 article-title: Uncertainty-based multi-criteria calibration of rainfall-runoff models: a comparative study publication-title: Stoch Environ Res Risk Assess doi: 10.1007/s00477-014-0855-x – volume: 26 start-page: 721 issue: 5 year: 2012 end-page: 730 ident: CR22 article-title: Bayesian flood frequency analysis in the light of model and parameter uncertainties publication-title: Stoch Environ Res Risk Assess doi: 10.1007/s00477-011-0552-y – volume: 306 start-page: 127 year: 2005 end-page: 145 ident: CR27 article-title: Sensitivity and uncertainty analysis coupled with automatic calibration for a distribution watershed model publication-title: J Hydrol doi: 10.1016/j.jhydrol.2004.09.005 – ident: CR38 – volume: 3 start-page: 175 year: 1960 end-page: 184 ident: CR30 article-title: An automatic method for finding the greatest or least value of a function publication-title: Comput J doi: 10.1093/comjnl/3.3.175 – volume: 37 start-page: 937 issue: 4 year: 2001 end-page: 947 ident: CR1 article-title: A Markov chain Monte Carlo scheme for parameter estimation and inference in conceptual rainfall-runoff modeling publication-title: Water Resour Res doi: 10.1029/2000WR900363 – volume: 24 start-page: 43 year: 1979 end-page: 69 ident: CR7 article-title: A physically based, variable contributing area model of basin hydrology publication-title: Hydrol Sci Bull doi: 10.1080/02626667909491834 – volume: 354 start-page: 15 year: 2008 end-page: 32 ident: CR8 article-title: So just why would a modeller choose to be incoherent? publication-title: J Hydrol doi: 10.1016/j.jhydrol.2008.02.007 – volume: 47 start-page: W07550 year: 2011 ident: CR29 article-title: Inferring model structural deficits by analyzing temporal dynamics of model performance and parameter sensitivity publication-title: Water Resour Res – volume: 6 start-page: 279 year: 1992 end-page: 298 ident: CR4 article-title: The future of distributed models: model calibration and uncertainty prediction publication-title: Hydrol Process doi: 10.1002/hyp.3360060305 – volume: 6 start-page: 272 issue: 3 year: 1992 end-page: 298 ident: CR5 article-title: The future of distributed models: model calibration and uncertainty prediction publication-title: Hydrol Process – volume: 55 start-page: 3 year: 1993 end-page: 23 ident: CR32 article-title: Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods publication-title: J R Stat Soc Ser B – ident: CR34 – volume: 211 start-page: 69 year: 1998 end-page: 85 ident: CR18 article-title: Monte Carlo assessment of parameter uncertainty in conceptual catchment models—the Metropolis algorithm publication-title: J Hydrol doi: 10.1016/S0022-1694(98)00198-X – volume: 21 start-page: 1087 issue: 6 year: 1953 end-page: 1092 ident: CR25 article-title: Equation of state calculations by fast computing machines publication-title: J Chem Phys doi: 10.1063/1.1699114 – volume: 249 start-page: 11 issue: 1–4 year: 2001 end-page: 29 ident: CR12 article-title: Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology publication-title: J Hydrol – volume: 353 start-page: 18 year: 2008 end-page: 32 ident: CR9 article-title: Uncertainty assessment of integrated distributed hydrological models using GLUE with Markov chain Monte Carlo sampling publication-title: J Hydrol doi: 10.1016/j.jhydrol.2007.12.026 – volume: 42 start-page: W03407 year: 2006 ident: CR17 article-title: Bayesian analysis of input uncertainty in hydrological modeling:1. Theory publication-title: Water Resour Res – volume: 7 start-page: 457 issue: 4 year: 1992 end-page: 472 ident: CR13 article-title: Inference from iterative simulation using multiple sequences publication-title: Stat Sci doi: 10.1214/ss/1177011136 – volume: 28 start-page: 265 issue: 4 year: 1992 ident: 1319_CR11 publication-title: Water Resour Res doi: 10.1029/91WR02985 – volume: 16 start-page: 41 year: 1993 ident: 1319_CR2 publication-title: Adv Water Resour doi: 10.1016/0309-1708(93)90028-E – volume: 306 start-page: 127 year: 2005 ident: 1319_CR27 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2004.09.005 – volume: 354 start-page: 15 year: 2008 ident: 1319_CR8 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2008.02.007 – volume: 118 start-page: 69 year: 2014 ident: 1319_CR19 publication-title: Glob Planet Change doi: 10.1016/j.gloplacha.2014.04.006 – ident: 1319_CR39 – volume: 21 start-page: 1087 issue: 6 year: 1953 ident: 1319_CR25 publication-title: J Chem Phys doi: 10.1063/1.1699114 – volume: 12 start-page: 7 year: 1981 ident: 1319_CR16 publication-title: J Environ Manag – volume: 37 start-page: 129 issue: 2 year: 2009 ident: 1319_CR21 publication-title: J Hohai Univ (Nat Sci) – ident: 1319_CR37 – volume: 30 start-page: 3159 year: 1994 ident: 1319_CR33 publication-title: Water Resour Res doi: 10.1029/94WR01732 – volume: 28 start-page: 5897 year: 2014 ident: 1319_CR6 publication-title: Hydrol Process doi: 10.1002/hyp.10082 – volume: 49 start-page: 825 issue: 2 year: 2013 ident: 1319_CR28 publication-title: Water Resour Res doi: 10.1002/wrcr.20087 – volume: 37 start-page: 937 issue: 4 year: 2001 ident: 1319_CR1 publication-title: Water Resour Res doi: 10.1029/2000WR900363 – volume: 353 start-page: 18 year: 2008 ident: 1319_CR9 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2007.12.026 – volume: 23 start-page: 1011 issue: 7 year: 2009 ident: 1319_CR35 publication-title: Stoch Environ Res Risk Assess doi: 10.1007/s00477-008-0274-y – ident: 1319_CR38 doi: 10.1029/2007WR005940 – volume: 41 start-page: W08406 year: 2005 ident: 1319_CR26 publication-title: Water Resour Res doi: 10.1029/2004WR003826 – volume: 420–421 start-page: 319 year: 2012 ident: 1319_CR10 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2011.12.022 – volume: 3 start-page: 175 year: 1960 ident: 1319_CR30 publication-title: Comput J doi: 10.1093/comjnl/3.3.175 – volume-title: Environmental modelling: an uncertain future? year: 2008 ident: 1319_CR3 – volume: 6 start-page: 272 issue: 3 year: 1992 ident: 1319_CR5 publication-title: Hydrol Process – volume: 19 start-page: 1026 issue: 5 year: 2014 ident: 1319_CR20 publication-title: J Hydrol Eng doi: 10.1061/(ASCE)HE.1943-5584.0000868 – volume: 6 start-page: 279 year: 1992 ident: 1319_CR4 publication-title: Hydrol Process doi: 10.1002/hyp.3360060305 – volume: 7 start-page: 457 issue: 4 year: 1992 ident: 1319_CR13 publication-title: Stat Sci doi: 10.1214/ss/1177011136 – ident: 1319_CR34 doi: 10.1029/2007WR006720 – volume: 42 start-page: W03407 year: 2006 ident: 1319_CR17 publication-title: Water Resour Res doi: 10.1029/2005WR004368 – volume: 26 start-page: 721 issue: 5 year: 2012 ident: 1319_CR22 publication-title: Stoch Environ Res Risk Assess doi: 10.1007/s00477-011-0552-y – volume: 211 start-page: 69 year: 1998 ident: 1319_CR18 publication-title: J Hydrol doi: 10.1016/S0022-1694(98)00198-X – volume: 2 start-page: 28 issue: 4 year: 2009 ident: 1319_CR36 publication-title: Water Sci Eng – volume: 47 start-page: W07550 year: 2011 ident: 1319_CR29 publication-title: Water Resour Res – volume: 55 start-page: 3 year: 1993 ident: 1319_CR32 publication-title: J R Stat Soc Ser B doi: 10.1111/j.2517-6161.1993.tb01466.x – volume: 57 start-page: 97 year: 1970 ident: 1319_CR15 publication-title: Biometrika doi: 10.1093/biomet/57.1.97 – volume: 7 start-page: 223 issue: 2 year: 2001 ident: 1319_CR14 publication-title: Bernoulli doi: 10.2307/3318737 – volume: 24 start-page: 43 year: 1979 ident: 1319_CR7 publication-title: Hydrol Sci Bull doi: 10.1080/02626667909491834 – volume: 28 start-page: 1493 issue: 6 year: 2014 ident: 1319_CR31 publication-title: Stoch Environ Res Risk Assess doi: 10.1007/s00477-014-0855-x – volume: 330 start-page: 368 year: 2006 ident: 1319_CR23 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2006.04.046 – volume: 40 start-page: W02501 year: 2004 ident: 1319_CR24 publication-title: Water Resour Res doi: 10.1029/2003WR002378 – volume: 249 start-page: 11 issue: 1–4 year: 2001 ident: 1319_CR12 publication-title: J Hydrol |
| SSID | ssj0017754 ssib007539910 ssib057179955 ssib001127189 |
| Score | 2.2376382 |
| Snippet | Parameter uncertainty in hydrologic modeling is crucial to the flood simulation and forecasting. The Bayesian approach allows one to estimate parameters... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1045 |
| SubjectTerms | Algorithms Aquatic Pollution Bayesian analysis Calibration Chains Chemistry and Earth Sciences Computational Intelligence Computer Science Computer simulation Conductivity Continuity (mathematics) Data processing Diagnostic software Diagnostic systems Earth and Environmental Science Earth Sciences Economic models Environment Estimates Flood forecasting Flood predictions Floods Forecasting Hydrologic models Hydrology Markov chains Math. Appl. in Environmental Science Mathematical models Methods Monte Carlo simulation Optimization Original Paper Overland flow Parameter identification Performance assessment Physics Probability theory Probability Theory and Stochastic Processes Sampling Sensitivity analysis Statistics for Engineering Stream discharge Stream flow Velocity Waste Water Technology Water Management Water Pollution Control |
| SummonAdditionalLinks | – databaseName: ProQuest Central (NIESG) dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED6VdoAFQQHxKMgDE8gisZ00GRCC0qpCtCAEElsUv8QALdAy9N_jS50UkOgWybGHO9t357v7PoBj5VxaoXRAtZERFQkzVKaBoIjOlZrQ6bxoFB4M4_6TuHmOnmswLHthsKyyvBOLi1qPFb6RnznDlWIKi_GL9w-KrFGYXS0pNHJPraDPC4ixFWgwRMaqQ-OqO7x_qPIKiPdW9BvxmCIUXZnnDOawom0sw0RcvjCl7LelWriffzKmhSHqbcC69yDJ5Vzlm1AzoybsdBcNa27Qn9hJE1Y9y_nLbAseOhXpIBlbgqjfb1gNQ5xtm1cGTGck9yglpEJ3nRDn2JKcPN7dD-6uu7fkR9J7G5563cdOn3pOBaq4SKfUJDKKpIoDw1zk4yJpbWNhVSI149LYJI6DxKaacylNoNNEi9iyPIza0raN5jnfgfpoPDK7QNwknre1CJNACe6-cxu6paWLWHgSSbYHQSm_THnAceS9eM0qqORC5BkWmaHIMzflpJryPkfbWPZzq1RK5g_eJFtskz04LRX1Y_i_xfaXL3YAawzteVGn24L69PPLHDpvZCqP_Bb7Blry27g priority: 102 providerName: ProQuest |
| Title | Comparison of parameter uncertainty analysis techniques for a TOPMODEL application |
| URI | https://link.springer.com/article/10.1007/s00477-016-1319-2 https://www.proquest.com/docview/1909585123 |
| Volume | 31 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1436-3259 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017754 issn: 1436-3240 databaseCode: AFBBN dateStart: 19970201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1436-3259 dateEnd: 20171231 omitProxy: true ssIdentifier: ssj0017754 issn: 1436-3240 databaseCode: BENPR dateStart: 20020101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1436-3259 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0017754 issn: 1436-3240 databaseCode: 8FG dateStart: 20020201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1436-3259 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017754 issn: 1436-3240 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1436-3259 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017754 issn: 1436-3240 databaseCode: U2A dateStart: 19990404 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFH7oiOjFZVTcycGTEmmbtJMeR-0o7sgM6Kk0SxHUUWw96K_3pZPWBRU8taRJSLN-4X3vewBbCiEtV9qj2siQchEYKmOPU6vOFRsfx7xyFD47j44G_Pg6vHZ-3EXNdq9NktVO3Ti7WWFDS5O0unl-THHfnajktlow0T28OUka44EVdaucilhErd5cbcz8qZKvx9EHxvxmFq1Om94s9Ot2jkgmd7svpdxVb98kHP_5I3Mw49An6Y6myzyMmWEbZuvIDsQt9DYsJR_-b5jfpRdtmHJB029f2zBZsUdVsQBX-000Q_KYEysn_mBpNgQPzRHloHwlmZM_IY1sbEEQMZOM9C8uzy4OklPyyZq-CINe0t8_oi5YA1WMxyU1QoahVJFnArxS4RVd5xHPlZA6YNLkIoo8kceaMSmNp2OheZQHmR92ZN4xmmVsCVrDx6FZBoKFWNbR3Bee4gzfs9zHqiVehZgIZbACXj1mqXJK5jagxn3aaDBXXZxa9prt4hSLbDdFnkYyHn9lXq8nQupWdJEicIqtCTVgK7BTj-unz79Vtvqv3GswHVjcUPGB16FVPr-YDUQ9pdyEcdE73HRzHZ97yfnlFaYOgu475Gz7Lw |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTsMwDLbGdoALggHiZ0AOcAFFtEnatQeEgA0N2AZCQ-JWmiYVB9iADaG9HM-G06UdIMGNW6XUPthubNf2Z4CdBENakSiHKi09KgKmqQwdQQ06V6hd1Hk2KNzp-q1bcXHn3ZXgI5-FMW2V-Z2YXdRqkJh_5AfouEJTwmL86PmFmq1Rprqar9CI7WoFdZhBjNnBjks9fscUbnh43kB97zJ21uydtqjdMkATLsIR1YH0PJn4jmaYC2BuqVJfpEkgFeNSp4HvO0EaKs6l1I4KAyX8lMWuV5dpXSsec-Q7AxWBzDD5q5w0u9c3RR3D4Mtl803cpwb6Lq-rOhMY07pp-zQ4gG5I2XfPOA13f1RoM8d3tgDzNmIlxxMTW4SS7ldhpTkdkMNDe0MMqzBrt6o_jJfg5rRYckgGKTEo40-m-4agL510IozGJLaoKKRAkx0SDKRJTHpX152rRrNNvhTZl-H2X6S7AuX-oK9XgSARj-tKuIGTCI7Pceoia4kZEg88ydbAyeUXJRbg3OzZeIwKaOZM5JFpajMij5BkryB5nqB7_PVyLVdKZD_0YTQ1yzXYzxX15fg3Zut_M9uG2Vav047a593LDZhjJpbIeoRrUB69vulNjIRGcsuaG4H7_7bwT-9wGuc |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxtBDLYCSKWXqlAQr8Ic6KVoxO7M7OuAqookDSQ8hEDituzszKiHNgGSCuWv8euw9xVAKjduK83aB9s7ttf2Z4DdHENalRuPG6sDrmJhuU48xQmdK7E-6rwYFD45DXtX6vg6uG7BYz0LQ22V9Z1YXNRmlNM_8n10XAmVsITcd1VbxHm7--P2jtMGKaq01us0ShPp2-kDpm_jg6M26vqbEN3O5WGPVxsGeC5VMuE21kGg89CzAvMAzCuNC5XLY22E1NbFYejFLjFSam09k8RGhU5kfhBpF1kjM4l852AhIhR3mlLv_moqGIQsV0w2yZAT6F1dUfVKANOIGj4JAdBPuHjpE2eB7qvabOHyup_hUxWrsp-lcS1Byw6XYbUzG43Dw-puGC_DYrVP_ff0C1wcNusN2cgxwhf_S303DL1o2YMwmbKswkNhDY7smGEIzTJ2eXZ-ctbuDNiz8voKXL2LbFdhfjga2jVgSCSzyCg_9nIl8TlzPrLWmBvJONBiHbxafmleQZvTho0_aQPKXIg8pXY2EnmKJN8bktsS1-Otl7dqpaTVJz5OZwa5Dnu1op4d_4_ZxtvMduAD2nU6ODrtb8JHQUFE0Ry8BfOT-3_2K4ZAE71d2BqDm_c27ic1aRiB |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+parameter+uncertainty+analysis+techniques+for+a+TOPMODEL+application&rft.jtitle=Stochastic+environmental+research+and+risk+assessment&rft.au=Li%2C+Binquan&rft.au=Liang%2C+Zhongmin&rft.au=He%2C+Yingqing&rft.au=Hu%2C+Lin&rft.date=2017-07-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1436-3240&rft.eissn=1436-3259&rft.volume=31&rft.issue=5&rft.spage=1045&rft.epage=1059&rft_id=info:doi/10.1007%2Fs00477-016-1319-2&rft.externalDocID=10_1007_s00477_016_1319_2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1436-3240&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1436-3240&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1436-3240&client=summon |