Integrated particle swarm optimization algorithm based obstacle avoidance control design for home service robot
[Display omitted] •A new adaptive PSO method is proposed and verified by simulations and a real robot.•Our proposed method has been successful applied to three-dimensional obstacle avoidance with manipulator for the home service robot.•Both the free-space and obstacle avoidance states are establishe...
        Saved in:
      
    
          | Published in | Computers & electrical engineering Vol. 56; pp. 748 - 762 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Amsterdam
          Elsevier Ltd
    
        01.11.2016
     Elsevier BV  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0045-7906 1879-0755  | 
| DOI | 10.1016/j.compeleceng.2015.05.019 | 
Cover
| Abstract | [Display omitted]
•A new adaptive PSO method is proposed and verified by simulations and a real robot.•Our proposed method has been successful applied to three-dimensional obstacle avoidance with manipulator for the home service robot.•Both the free-space and obstacle avoidance states are established for evaluations in computer simulations and real-time experiments. Our PSO-IAC algorithm has achieved outstanding performance compared to other methods in these experiments.
This paper presents a new particle swarm optimization (PSO) algorithm, called the PSO-IAC algorithm, to resolve the goal of reaching with the obstacle avoidance problem for a 6-DOF manipulator of the home service robot. The proposed PSO-IAC algorithm integrates the improved adaptive inertia weight and the constriction factor with the standard PSO. Both the free-space and obstacle avoidance states are established for evaluations in computer simulations and real-time experiments. The performance comparisons of the PSO-IAC algorithm with respect to the existing inertia weighted PSO (PSO-W), constriction factor based PSO (PSO-C), constriction factor and inertia weighted PSO (PSO-CW), and adaptive inertia weighted PSO (PSO-A) algorithms are examined. Simulation results indicate that the PSO-IAC algorithm provides the fastest convergence capability. Finally, the proposed control scheme can make the manipulator of the home service robot arrive at the goal position with and without obstacles in all real-time experiments. | 
    
|---|---|
| AbstractList | This paper presents a new particle swarm optimization (PSO) algorithm, called the PSO-IAC algorithm, to resolve the goal of reaching with the obstacle avoidance problem for a 6-DOF manipulator of the home service robot. The proposed PSO-IAC algorithm integrates the improved adaptive inertia weight and the constriction factor with the standard PSO. Both the free-space and obstacle avoidance states are established for evaluations in computer simulations and real-time experiments. The performance comparisons of the PSO-IAC algorithm with respect to the existing inertia weighted PSO (PSO-W), constriction factor based PSO (PSO-C), constriction factor and inertia weighted PSO (PSO-CW), and adaptive inertia weighted PSO (PSO-A) algorithms are examined. Simulation results indicate that the PSO-IAC algorithm provides the fastest convergence capability. Finally, the proposed control scheme can make the manipulator of the home service robot arrive at the goal position with and without obstacles in all real-time experiments. [Display omitted] •A new adaptive PSO method is proposed and verified by simulations and a real robot.•Our proposed method has been successful applied to three-dimensional obstacle avoidance with manipulator for the home service robot.•Both the free-space and obstacle avoidance states are established for evaluations in computer simulations and real-time experiments. Our PSO-IAC algorithm has achieved outstanding performance compared to other methods in these experiments. This paper presents a new particle swarm optimization (PSO) algorithm, called the PSO-IAC algorithm, to resolve the goal of reaching with the obstacle avoidance problem for a 6-DOF manipulator of the home service robot. The proposed PSO-IAC algorithm integrates the improved adaptive inertia weight and the constriction factor with the standard PSO. Both the free-space and obstacle avoidance states are established for evaluations in computer simulations and real-time experiments. The performance comparisons of the PSO-IAC algorithm with respect to the existing inertia weighted PSO (PSO-W), constriction factor based PSO (PSO-C), constriction factor and inertia weighted PSO (PSO-CW), and adaptive inertia weighted PSO (PSO-A) algorithms are examined. Simulation results indicate that the PSO-IAC algorithm provides the fastest convergence capability. Finally, the proposed control scheme can make the manipulator of the home service robot arrive at the goal position with and without obstacles in all real-time experiments.  | 
    
| Author | Li, Tzuu-Hseng S. Wang, Yin-Hao Lin, Chih-Jui Kuo, Ping-Huan  | 
    
| Author_xml | – sequence: 1 givenname: Chih-Jui surname: Lin fullname: Lin, Chih-Jui – sequence: 2 givenname: Tzuu-Hseng S. surname: Li fullname: Li, Tzuu-Hseng S. email: thsli@mail.ncku.edu.tw – sequence: 3 givenname: Ping-Huan surname: Kuo fullname: Kuo, Ping-Huan – sequence: 4 givenname: Yin-Hao surname: Wang fullname: Wang, Yin-Hao  | 
    
| BookMark | eNqNkE2LFDEQhoOs4Ozqf4h47jHVX5mcRAZXFxa86Dmkk8pshu5Um2RH3F9vxvEgnhYKiqLeegqea3YVKSJjb0FsQcD4_ri1tKw4o8V42LYChq2oBeoF28BOqkbIYbhiGyH6oZFKjK_Ydc5HUecRdhtGd7HgIZmCjq8mlWBn5PmnSQuntYQlPJkSKHIzHyiF8rDwyeSapSkXc86aEwVnokVuKZZEM3eYwyFyT4k_0FJpmE6h7hNNVF6zl97MGd_87Tfs--2nb_svzf3Xz3f7j_eN7XpVGuyVh0mNxjv0nZfgwOLYttJA249euQHk1E1q16FS6BxAb6bR7lQvrR_Adzfs3YW7JvrxiLnoIz2mWF9qUK2QMCgpa0pdUjZRzgm9XlNYTPqlQeizX33U__jVZ79a1AJVbz_8d2tD-SOrJBPmZxH2FwJWEaeASWcbsKp0IaEt2lF4BuU3EtGktw | 
    
| CitedBy_id | crossref_primary_10_1109_ACCESS_2019_2949019 crossref_primary_10_1016_j_asoc_2017_01_049 crossref_primary_10_1016_j_asoc_2021_107924 crossref_primary_10_3390_robotics10040127 crossref_primary_10_3390_machines9120343 crossref_primary_10_1016_j_compeleceng_2021_107471 crossref_primary_10_1177_1687814020958574 crossref_primary_10_3390_app12188977 crossref_primary_10_3390_app9163379 crossref_primary_10_1007_s40430_024_05277_z crossref_primary_10_1016_j_compeleceng_2018_01_023 crossref_primary_10_1007_s11042_018_6575_3 crossref_primary_10_1108_WJE_01_2017_0004 crossref_primary_10_1109_ACCESS_2020_2990555 crossref_primary_10_1177_1729881418775849 crossref_primary_10_5772_64044 crossref_primary_10_1016_j_conengprac_2020_104649 crossref_primary_10_1109_ACCESS_2021_3089637 crossref_primary_10_3390_s18103575 crossref_primary_10_1109_ACCESS_2020_3002555 crossref_primary_10_5194_ms_12_259_2021 crossref_primary_10_1177_09544062211054001 crossref_primary_10_3390_electronics10212658 crossref_primary_10_1016_j_compeleceng_2016_11_024 crossref_primary_10_1177_1729881419891581 crossref_primary_10_3390_s22186943  | 
    
| Cites_doi | 10.1016/j.engappai.2011.05.010 10.1109/ISIC.2003.1254760 10.1109/ICNN.1995.488968 10.1016/j.isatra.2013.12.019 10.1016/j.rcim.2012.04.007 10.1109/CEC.1999.785513 10.1109/CEC.2001.934374 10.1016/j.asoc.2011.01.037 10.1115/1.4011045 10.1016/j.engappai.2011.02.009 10.1016/j.engappai.2013.02.002 10.1109/TSMCB.2003.811519 10.1016/j.engappai.2011.12.005 10.1016/j.compeleceng.2012.12.021 10.1016/j.compeleceng.2014.05.012 10.1016/j.neucom.2012.01.034 10.1109/ICMA.2005.1626639 10.1109/CEC.1999.785511 10.1016/S0094-114X(97)00034-7 10.1007/s10514-010-9196-x 10.1109/ICEC.1998.699146  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2015 Elsevier Ltd Copyright Elsevier BV Nov 2016  | 
    
| Copyright_xml | – notice: 2015 Elsevier Ltd – notice: Copyright Elsevier BV Nov 2016  | 
    
| DBID | AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D  | 
    
| DOI | 10.1016/j.compeleceng.2015.05.019 | 
    
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Technology Research Database | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1879-0755 | 
    
| EndPage | 762 | 
    
| ExternalDocumentID | 10_1016_j_compeleceng_2015_05_019 S0045790615002189  | 
    
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ RXW SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TAE TN5 UHS VOH WH7 WUQ XPP ZMT ~G- ~S- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SC 7SP 8FD AFXIZ AGCQF AGRNS JQ2 L7M L~C L~D SSH  | 
    
| ID | FETCH-LOGICAL-c349t-e49f1b96afdef3f71d1ce6227a1246f9d517b3b983e99edd114ab6c8947cf51f3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0045-7906 | 
    
| IngestDate | Mon Jul 14 08:46:58 EDT 2025 Wed Oct 01 02:30:25 EDT 2025 Thu Apr 24 23:03:01 EDT 2025 Fri Feb 23 02:26:00 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Constriction factor Adaptive inertia weight Obstacle avoidance Particle swarm optimization Home service robot Manipulator  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c349t-e49f1b96afdef3f71d1ce6227a1246f9d517b3b983e99edd114ab6c8947cf51f3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| PQID | 1920715977 | 
    
| PQPubID | 2045266 | 
    
| PageCount | 15 | 
    
| ParticipantIDs | proquest_journals_1920715977 crossref_primary_10_1016_j_compeleceng_2015_05_019 crossref_citationtrail_10_1016_j_compeleceng_2015_05_019 elsevier_sciencedirect_doi_10_1016_j_compeleceng_2015_05_019  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | November 2016 2016-11-00 20161101  | 
    
| PublicationDateYYYYMMDD | 2016-11-01 | 
    
| PublicationDate_xml | – month: 11 year: 2016 text: November 2016  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Amsterdam | 
    
| PublicationPlace_xml | – name: Amsterdam | 
    
| PublicationTitle | Computers & electrical engineering | 
    
| PublicationYear | 2016 | 
    
| Publisher | Elsevier Ltd Elsevier BV  | 
    
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV  | 
    
| References | Clerc M. The swarm and the queen: towards a deterministic and adaptive particle swarm optimization. In: Proceedings of the 1999 congress on evolutionary computation; 1999. p. 1951–7. Li, Chen, Liu, Li, Liang (b0020) 2012; 91 Beheshti MTH, Tehrani AK, Ghanbari B. An optimized adaptive fuzzy inverse kinematics solution for redundant manipulators. In: Proceedings of IEEE international symposium on intelligent control; 2003. p. 924–9. Bedi, Bansal, Sehgal (b0070) 2013; 39 Chyan, Ponnambalam (b0045) 2012; 28 Nearchou (b0015) 1998; 33 Duguleana, Barbuceanu, Teirelbar, Mogan (b0025) 2012; 28 Mandal, Ghoshal, Bhattacharjee (b0120) 2010; 31 Soucy M, Payeur P. Flexible fuzzy logic control for collision-free manipulator operation. In: Proceedings of 2005 IEEE international conference on mechatronics and automation; 2005. p. 723–8. Artemiadis, Katsiaris, Kyriakopoulos (b0010) 2010; 29 Tyagi, Yang, Tyagi, Dwivedi (b0080) 2011; 24 Zhang, Wang (b0030) 2004; 34 Shi Y, Eberhart RC. A modified particle swarm optimizer. In: Proceedings of IEEE world congress on computational intelligence; 1998. p. 69–73. Kennedy J, Eberhart R. Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks; 1995. p. 1942–8. Hsieh, Chu (b0065) 2013; 29 Eberhart RC, Shi Y. Particle swarm optimization: developments, applications and resources. In: Proceedings of the 2001 congress on evolutionary computation; 2001. p. 81–6. Richard (b0005) 1981 Nery, Martins, Kalid (b0055) 2014; 53 Nickabadi, Ebadzadeh, Safabakhsh (b0125) 2011; 11 Shi Y, Eberhart RC. Empirical study of particle swarm optimization. In: Proceedings of the 1999 congress on evolutionary computation; 1999. p. 1945–50. Denavit, Hartenberg (b0095) 1955; 22 Zhang, Ding (b0085) 2011; 24 Mazhoud, Hadj-Hamou, Bigeon, Joyeux (b0050) 2013; 26 Jamali, Shaker (b0060) 2014; 40 Vasumathi, Moorthi (b0075) 2012; 25 Zhang (10.1016/j.compeleceng.2015.05.019_b0030) 2004; 34 10.1016/j.compeleceng.2015.05.019_b0040 Tyagi (10.1016/j.compeleceng.2015.05.019_b0080) 2011; 24 Nickabadi (10.1016/j.compeleceng.2015.05.019_b0125) 2011; 11 Jamali (10.1016/j.compeleceng.2015.05.019_b0060) 2014; 40 Nearchou (10.1016/j.compeleceng.2015.05.019_b0015) 1998; 33 Mandal (10.1016/j.compeleceng.2015.05.019_b0120) 2010; 31 Li (10.1016/j.compeleceng.2015.05.019_b0020) 2012; 91 10.1016/j.compeleceng.2015.05.019_b0100 Artemiadis (10.1016/j.compeleceng.2015.05.019_b0010) 2010; 29 Denavit (10.1016/j.compeleceng.2015.05.019_b0095) 1955; 22 Bedi (10.1016/j.compeleceng.2015.05.019_b0070) 2013; 39 Zhang (10.1016/j.compeleceng.2015.05.019_b0085) 2011; 24 10.1016/j.compeleceng.2015.05.019_b0090 10.1016/j.compeleceng.2015.05.019_b0035 10.1016/j.compeleceng.2015.05.019_b0115 10.1016/j.compeleceng.2015.05.019_b0110 Chyan (10.1016/j.compeleceng.2015.05.019_b0045) 2012; 28 Nery (10.1016/j.compeleceng.2015.05.019_b0055) 2014; 53 Hsieh (10.1016/j.compeleceng.2015.05.019_b0065) 2013; 29 10.1016/j.compeleceng.2015.05.019_b0105 Vasumathi (10.1016/j.compeleceng.2015.05.019_b0075) 2012; 25 Richard (10.1016/j.compeleceng.2015.05.019_b0005) 1981 Duguleana (10.1016/j.compeleceng.2015.05.019_b0025) 2012; 28 Mazhoud (10.1016/j.compeleceng.2015.05.019_b0050) 2013; 26  | 
    
| References_xml | – volume: 31 start-page: 667 year: 2010 end-page: 680 ident: b0120 article-title: Design of concentric circular antenna array with central element feeding using particle swarm optimization with constriction factor and inertia weight approach and evolutionary programing technique publication-title: J Infrared Milli Terahertz Waves – volume: 39 start-page: 640 year: 2013 end-page: 654 ident: b0070 article-title: Using PSO in a spatial domain based image hiding scheme with distortion tolerance publication-title: Comput Electr Eng – volume: 40 start-page: 2013 year: 2014 end-page: 2025 ident: b0060 article-title: Defense against SYN Flooding attacks: a particle swarm optimization approach publication-title: Comput Electr Eng – reference: Kennedy J, Eberhart R. Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks; 1995. p. 1942–8. – volume: 28 start-page: 147 year: 2012 end-page: 153 ident: b0045 article-title: Obstacle avoidance control of redundant robots using variants of particle swarm optimization publication-title: Robot Comput-Int Manuf – year: 1981 ident: b0005 article-title: Robot manipulators: mathematics, programming, and control – volume: 24 start-page: 866 year: 2011 end-page: 879 ident: b0080 article-title: Development of a fuzzy goal programming model for optimization of lead time and cost in an overlapped product development project using a Gaussian Adaptive Particle Swarm Optimization-based approach publication-title: Eng Appl Artif Intell – volume: 28 start-page: 132 year: 2012 end-page: 146 ident: b0025 article-title: Obstacle avoidance of redundant manipulators using neural networks based reinforcement learning publication-title: Robot Comput-Int Manuf – reference: Shi Y, Eberhart RC. A modified particle swarm optimizer. In: Proceedings of IEEE world congress on computational intelligence; 1998. p. 69–73. – volume: 22 start-page: 215 year: 1955 end-page: 221 ident: b0095 article-title: A kinematic notation for lower-pair mechanisms based on matrices publication-title: J Appl Mech – volume: 34 start-page: 752 year: 2004 end-page: 759 ident: b0030 article-title: Obstacle avoidance for kinematically redundant manipulators using a dual neural network publication-title: IEEE Trans Syst Man Cybernet Part B: Cybernet – reference: Clerc M. The swarm and the queen: towards a deterministic and adaptive particle swarm optimization. In: Proceedings of the 1999 congress on evolutionary computation; 1999. p. 1951–7. – volume: 53 start-page: 560 year: 2014 end-page: 567 ident: b0055 article-title: A PSO-based optimal tuning strategy for constrained multivariable predictive controllers with model uncertainty publication-title: ISA Trans – reference: Beheshti MTH, Tehrani AK, Ghanbari B. An optimized adaptive fuzzy inverse kinematics solution for redundant manipulators. In: Proceedings of IEEE international symposium on intelligent control; 2003. p. 924–9. – volume: 33 start-page: 273 year: 1998 end-page: 292 ident: b0015 article-title: Solving the inverse kinematics problem of redundant robots operating in complex environments via a modified genetic algorithm publication-title: Mech Mach Theory – reference: Soucy M, Payeur P. Flexible fuzzy logic control for collision-free manipulator operation. In: Proceedings of 2005 IEEE international conference on mechatronics and automation; 2005. p. 723–8. – volume: 24 start-page: 958 year: 2011 end-page: 967 ident: b0085 article-title: A multi-swarm self-adaptive and cooperative particle swarm optimization publication-title: Eng Appl Artif Intell – volume: 29 start-page: 3 year: 2013 end-page: 11 ident: b0065 article-title: Improving optimization of tool path planning in 5-axis flank milling using advanced PSO algorithms publication-title: Robot Comput-Int Manuf – volume: 29 start-page: 293 year: 2010 end-page: 308 ident: b0010 article-title: A biomimetic approach to inverse kinematics for a redundant robot arm publication-title: Auton Robot – volume: 25 start-page: 476 year: 2012 end-page: 483 ident: b0075 article-title: Implementation of hybrid ANN-PSO algorithm on FPGA for harmonic estimation publication-title: Eng Appl Artif Intell – reference: Shi Y, Eberhart RC. Empirical study of particle swarm optimization. In: Proceedings of the 1999 congress on evolutionary computation; 1999. p. 1945–50. – reference: Eberhart RC, Shi Y. Particle swarm optimization: developments, applications and resources. In: Proceedings of the 2001 congress on evolutionary computation; 2001. p. 81–6. – volume: 91 start-page: 1 year: 2012 end-page: 10 ident: b0020 article-title: Decentralized kinematic control of a class of collaborative redundant manipulators via recurrent neural networks publication-title: Neurocomputing – volume: 26 start-page: 1263 year: 2013 end-page: 1273 ident: b0050 article-title: Particle swarm optimization for solving engineering problems: a new constraint-handling mechanism publication-title: Eng Appl Artif Intell – volume: 11 start-page: 3658 year: 2011 end-page: 3670 ident: b0125 article-title: A novel particle swarm optimization algorithm with adaptive inertia weight publication-title: Appl Soft Comput – volume: 24 start-page: 958 issue: 6 year: 2011 ident: 10.1016/j.compeleceng.2015.05.019_b0085 article-title: A multi-swarm self-adaptive and cooperative particle swarm optimization publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2011.05.010 – year: 1981 ident: 10.1016/j.compeleceng.2015.05.019_b0005 – ident: 10.1016/j.compeleceng.2015.05.019_b0035 doi: 10.1109/ISIC.2003.1254760 – ident: 10.1016/j.compeleceng.2015.05.019_b0090 doi: 10.1109/ICNN.1995.488968 – volume: 53 start-page: 560 issue: 2 year: 2014 ident: 10.1016/j.compeleceng.2015.05.019_b0055 article-title: A PSO-based optimal tuning strategy for constrained multivariable predictive controllers with model uncertainty publication-title: ISA Trans doi: 10.1016/j.isatra.2013.12.019 – volume: 29 start-page: 3 issue: 3 year: 2013 ident: 10.1016/j.compeleceng.2015.05.019_b0065 article-title: Improving optimization of tool path planning in 5-axis flank milling using advanced PSO algorithms publication-title: Robot Comput-Int Manuf doi: 10.1016/j.rcim.2012.04.007 – ident: 10.1016/j.compeleceng.2015.05.019_b0110 doi: 10.1109/CEC.1999.785513 – ident: 10.1016/j.compeleceng.2015.05.019_b0115 doi: 10.1109/CEC.2001.934374 – volume: 11 start-page: 3658 issue: 4 year: 2011 ident: 10.1016/j.compeleceng.2015.05.019_b0125 article-title: A novel particle swarm optimization algorithm with adaptive inertia weight publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2011.01.037 – volume: 28 start-page: 147 year: 2012 ident: 10.1016/j.compeleceng.2015.05.019_b0045 article-title: Obstacle avoidance control of redundant robots using variants of particle swarm optimization publication-title: Robot Comput-Int Manuf – volume: 22 start-page: 215 year: 1955 ident: 10.1016/j.compeleceng.2015.05.019_b0095 article-title: A kinematic notation for lower-pair mechanisms based on matrices publication-title: J Appl Mech doi: 10.1115/1.4011045 – volume: 24 start-page: 866 issue: 5 year: 2011 ident: 10.1016/j.compeleceng.2015.05.019_b0080 article-title: Development of a fuzzy goal programming model for optimization of lead time and cost in an overlapped product development project using a Gaussian Adaptive Particle Swarm Optimization-based approach publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2011.02.009 – volume: 26 start-page: 1263 issue: 4 year: 2013 ident: 10.1016/j.compeleceng.2015.05.019_b0050 article-title: Particle swarm optimization for solving engineering problems: a new constraint-handling mechanism publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2013.02.002 – volume: 34 start-page: 752 issue: 1 year: 2004 ident: 10.1016/j.compeleceng.2015.05.019_b0030 article-title: Obstacle avoidance for kinematically redundant manipulators using a dual neural network publication-title: IEEE Trans Syst Man Cybernet Part B: Cybernet doi: 10.1109/TSMCB.2003.811519 – volume: 25 start-page: 476 issue: 3 year: 2012 ident: 10.1016/j.compeleceng.2015.05.019_b0075 article-title: Implementation of hybrid ANN-PSO algorithm on FPGA for harmonic estimation publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2011.12.005 – volume: 28 start-page: 132 issue: 2 year: 2012 ident: 10.1016/j.compeleceng.2015.05.019_b0025 article-title: Obstacle avoidance of redundant manipulators using neural networks based reinforcement learning publication-title: Robot Comput-Int Manuf – volume: 39 start-page: 640 issue: 2 year: 2013 ident: 10.1016/j.compeleceng.2015.05.019_b0070 article-title: Using PSO in a spatial domain based image hiding scheme with distortion tolerance publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2012.12.021 – volume: 40 start-page: 2013 issue: 6 year: 2014 ident: 10.1016/j.compeleceng.2015.05.019_b0060 article-title: Defense against SYN Flooding attacks: a particle swarm optimization approach publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2014.05.012 – volume: 91 start-page: 1 year: 2012 ident: 10.1016/j.compeleceng.2015.05.019_b0020 article-title: Decentralized kinematic control of a class of collaborative redundant manipulators via recurrent neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.01.034 – ident: 10.1016/j.compeleceng.2015.05.019_b0040 doi: 10.1109/ICMA.2005.1626639 – ident: 10.1016/j.compeleceng.2015.05.019_b0105 doi: 10.1109/CEC.1999.785511 – volume: 33 start-page: 273 issue: 3 year: 1998 ident: 10.1016/j.compeleceng.2015.05.019_b0015 article-title: Solving the inverse kinematics problem of redundant robots operating in complex environments via a modified genetic algorithm publication-title: Mech Mach Theory doi: 10.1016/S0094-114X(97)00034-7 – volume: 29 start-page: 293 issue: 3–4 year: 2010 ident: 10.1016/j.compeleceng.2015.05.019_b0010 article-title: A biomimetic approach to inverse kinematics for a redundant robot arm publication-title: Auton Robot doi: 10.1007/s10514-010-9196-x – ident: 10.1016/j.compeleceng.2015.05.019_b0100 doi: 10.1109/ICEC.1998.699146 – volume: 31 start-page: 667 issue: 6 year: 2010 ident: 10.1016/j.compeleceng.2015.05.019_b0120 article-title: Design of concentric circular antenna array with central element feeding using particle swarm optimization with constriction factor and inertia weight approach and evolutionary programing technique publication-title: J Infrared Milli Terahertz Waves  | 
    
| SSID | ssj0004618 | 
    
| Score | 2.2433043 | 
    
| Snippet | [Display omitted]
•A new adaptive PSO method is proposed and verified by simulations and a real robot.•Our proposed method has been successful applied to... This paper presents a new particle swarm optimization (PSO) algorithm, called the PSO-IAC algorithm, to resolve the goal of reaching with the obstacle...  | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 748 | 
    
| SubjectTerms | Adaptive algorithms Adaptive inertia weight Algorithms Computer simulation Constriction factor Constrictions Design optimization Home service robot Inertia Manipulator Obstacle avoidance Particle swarm optimization Performance assessment Real time Robots  | 
    
| Title | Integrated particle swarm optimization algorithm based obstacle avoidance control design for home service robot | 
    
| URI | https://dx.doi.org/10.1016/j.compeleceng.2015.05.019 https://www.proquest.com/docview/1920715977  | 
    
| Volume | 56 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0755 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004618 issn: 0045-7906 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-0755 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004618 issn: 0045-7906 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals customDbUrl: eissn: 1879-0755 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004618 issn: 0045-7906 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1879-0755 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004618 issn: 0045-7906 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0755 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004618 issn: 0045-7906 databaseCode: AKRWK dateStart: 19730601 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA9DQfRB_MTPEcHXaj_SdgFfxlCm4p4UfAtJk-jELWNWffNv965NdQrCQOhLS-9oc9e7X8rd7wg5zq1ihoUanJexgOmcBSrmNoilwREnyD2JP_RvBln_jl3dp_ct0mt6YbCs0sf-OqZX0dpfOfWreToZDrHHl6U5rxjNMVFhEx9jOU4xOPmIZnojozoaM6RmDLMlcvRd44Vl2zhuxowfsMorrUk8-V856le0rlLQxRpZ9diRduvHWyctM94gKzOMgpvEXTb0D5pO_HvQl3c5HVEHwWHkuy6pfH5w02H5OKKYxjR1ClAi3ivf3FCjJ1BfxE51VeNBAdzSRzcCbXV0oVOnXLlF7i7Ob3v9wM9UCIqE8TIwjNtI8UxabWxi80hHhcniOJeQ6DPLdRrlKlG8kxjOjdawXZIqKzqc5YVNI5tsk4WxG5sdQlNjDcA3WyCsYSxUsPeQWShBQ6ISyXdJp1lFUXjCcZx78SyayrInMWMAgQYQIRwRiMZfopOadWMeobPGVOKHCwnIDvOIHzTmFf47fhGAfwGDIUff3v-075NlOMvqLsYDslBOX80hwJlStSt_bZPF7uV1f_AJZdv4mQ | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6rgo-D-MS3EbxW-0jbDXgRUXZ9nRS8haRJdMXdLGvVm7_dmTbVVRAEoae2E9rMdOabMvMNIfu5VcywUIPxMhYwnbNAxdwGsTQ44gS5J_GH_tV11rll53fpXYucNL0wWFbpfX_t0ytv7c8c-t08HPZ62OPL0pxXjOYYqPgEmWJpnGMGdvAejTVHRrU7ZsjNGGbTZO-ryAvrtnHejBncY5lXWrN48t-C1A93XcWgswUy78EjPa6fb5G0zGCJzI1RCi4T1234HzQd-hehz29y1KcOvEPft11S-XTvRr3yoU8xjmnqFMBEvFe-up5GU6C-ip3qqsiDArqlD64Pq9XuhY6ccuUKuT07vTnpBH6oQlAkjJeBYdxGimfSamMTm0c6KkwWx7mESJ9ZrtMoV4ni7cRwbrSGfEmqrGhzlhc2jWyySiYHbmDWCE2NNYDfbIG4hrFQQfIhs1DCColKJF8n7WYXReEZx3HwxZNoSssexZgCBCpAhHBEIBp_ig5r2o2_CB01qhLfbEhAePiL-FajXuE_5GcBABhAGJL0bfxv9V0y07m5uhSX3euLTTILV7K6pXGLTJajF7MN2KZUO5XtfgAe8vou | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrated+particle+swarm+optimization+algorithm+based+obstacle+avoidance+control+design+for+home+service+robot&rft.jtitle=Computers+%26+electrical+engineering&rft.au=Lin%2C+Chih-Jui&rft.au=Li%2C+Tzuu-Hseng+S&rft.au=Kuo%2C+Ping-Huan&rft.au=Wang%2C+Yin-Hao&rft.date=2016-11-01&rft.pub=Elsevier+BV&rft.issn=0045-7906&rft.eissn=1879-0755&rft.volume=56&rft.spage=748&rft_id=info:doi/10.1016%2Fj.compeleceng.2015.05.019&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7906&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7906&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7906&client=summon |