Integrated particle swarm optimization algorithm based obstacle avoidance control design for home service robot

[Display omitted] •A new adaptive PSO method is proposed and verified by simulations and a real robot.•Our proposed method has been successful applied to three-dimensional obstacle avoidance with manipulator for the home service robot.•Both the free-space and obstacle avoidance states are establishe...

Full description

Saved in:
Bibliographic Details
Published inComputers & electrical engineering Vol. 56; pp. 748 - 762
Main Authors Lin, Chih-Jui, Li, Tzuu-Hseng S., Kuo, Ping-Huan, Wang, Yin-Hao
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Ltd 01.11.2016
Elsevier BV
Subjects
Online AccessGet full text
ISSN0045-7906
1879-0755
DOI10.1016/j.compeleceng.2015.05.019

Cover

Abstract [Display omitted] •A new adaptive PSO method is proposed and verified by simulations and a real robot.•Our proposed method has been successful applied to three-dimensional obstacle avoidance with manipulator for the home service robot.•Both the free-space and obstacle avoidance states are established for evaluations in computer simulations and real-time experiments. Our PSO-IAC algorithm has achieved outstanding performance compared to other methods in these experiments. This paper presents a new particle swarm optimization (PSO) algorithm, called the PSO-IAC algorithm, to resolve the goal of reaching with the obstacle avoidance problem for a 6-DOF manipulator of the home service robot. The proposed PSO-IAC algorithm integrates the improved adaptive inertia weight and the constriction factor with the standard PSO. Both the free-space and obstacle avoidance states are established for evaluations in computer simulations and real-time experiments. The performance comparisons of the PSO-IAC algorithm with respect to the existing inertia weighted PSO (PSO-W), constriction factor based PSO (PSO-C), constriction factor and inertia weighted PSO (PSO-CW), and adaptive inertia weighted PSO (PSO-A) algorithms are examined. Simulation results indicate that the PSO-IAC algorithm provides the fastest convergence capability. Finally, the proposed control scheme can make the manipulator of the home service robot arrive at the goal position with and without obstacles in all real-time experiments.
AbstractList This paper presents a new particle swarm optimization (PSO) algorithm, called the PSO-IAC algorithm, to resolve the goal of reaching with the obstacle avoidance problem for a 6-DOF manipulator of the home service robot. The proposed PSO-IAC algorithm integrates the improved adaptive inertia weight and the constriction factor with the standard PSO. Both the free-space and obstacle avoidance states are established for evaluations in computer simulations and real-time experiments. The performance comparisons of the PSO-IAC algorithm with respect to the existing inertia weighted PSO (PSO-W), constriction factor based PSO (PSO-C), constriction factor and inertia weighted PSO (PSO-CW), and adaptive inertia weighted PSO (PSO-A) algorithms are examined. Simulation results indicate that the PSO-IAC algorithm provides the fastest convergence capability. Finally, the proposed control scheme can make the manipulator of the home service robot arrive at the goal position with and without obstacles in all real-time experiments.
[Display omitted] •A new adaptive PSO method is proposed and verified by simulations and a real robot.•Our proposed method has been successful applied to three-dimensional obstacle avoidance with manipulator for the home service robot.•Both the free-space and obstacle avoidance states are established for evaluations in computer simulations and real-time experiments. Our PSO-IAC algorithm has achieved outstanding performance compared to other methods in these experiments. This paper presents a new particle swarm optimization (PSO) algorithm, called the PSO-IAC algorithm, to resolve the goal of reaching with the obstacle avoidance problem for a 6-DOF manipulator of the home service robot. The proposed PSO-IAC algorithm integrates the improved adaptive inertia weight and the constriction factor with the standard PSO. Both the free-space and obstacle avoidance states are established for evaluations in computer simulations and real-time experiments. The performance comparisons of the PSO-IAC algorithm with respect to the existing inertia weighted PSO (PSO-W), constriction factor based PSO (PSO-C), constriction factor and inertia weighted PSO (PSO-CW), and adaptive inertia weighted PSO (PSO-A) algorithms are examined. Simulation results indicate that the PSO-IAC algorithm provides the fastest convergence capability. Finally, the proposed control scheme can make the manipulator of the home service robot arrive at the goal position with and without obstacles in all real-time experiments.
Author Li, Tzuu-Hseng S.
Wang, Yin-Hao
Lin, Chih-Jui
Kuo, Ping-Huan
Author_xml – sequence: 1
  givenname: Chih-Jui
  surname: Lin
  fullname: Lin, Chih-Jui
– sequence: 2
  givenname: Tzuu-Hseng S.
  surname: Li
  fullname: Li, Tzuu-Hseng S.
  email: thsli@mail.ncku.edu.tw
– sequence: 3
  givenname: Ping-Huan
  surname: Kuo
  fullname: Kuo, Ping-Huan
– sequence: 4
  givenname: Yin-Hao
  surname: Wang
  fullname: Wang, Yin-Hao
BookMark eNqNkE2LFDEQhoOs4Ozqf4h47jHVX5mcRAZXFxa86Dmkk8pshu5Um2RH3F9vxvEgnhYKiqLeegqea3YVKSJjb0FsQcD4_ri1tKw4o8V42LYChq2oBeoF28BOqkbIYbhiGyH6oZFKjK_Ydc5HUecRdhtGd7HgIZmCjq8mlWBn5PmnSQuntYQlPJkSKHIzHyiF8rDwyeSapSkXc86aEwVnokVuKZZEM3eYwyFyT4k_0FJpmE6h7hNNVF6zl97MGd_87Tfs--2nb_svzf3Xz3f7j_eN7XpVGuyVh0mNxjv0nZfgwOLYttJA249euQHk1E1q16FS6BxAb6bR7lQvrR_Adzfs3YW7JvrxiLnoIz2mWF9qUK2QMCgpa0pdUjZRzgm9XlNYTPqlQeizX33U__jVZ79a1AJVbz_8d2tD-SOrJBPmZxH2FwJWEaeASWcbsKp0IaEt2lF4BuU3EtGktw
CitedBy_id crossref_primary_10_1109_ACCESS_2019_2949019
crossref_primary_10_1016_j_asoc_2017_01_049
crossref_primary_10_1016_j_asoc_2021_107924
crossref_primary_10_3390_robotics10040127
crossref_primary_10_3390_machines9120343
crossref_primary_10_1016_j_compeleceng_2021_107471
crossref_primary_10_1177_1687814020958574
crossref_primary_10_3390_app12188977
crossref_primary_10_3390_app9163379
crossref_primary_10_1007_s40430_024_05277_z
crossref_primary_10_1016_j_compeleceng_2018_01_023
crossref_primary_10_1007_s11042_018_6575_3
crossref_primary_10_1108_WJE_01_2017_0004
crossref_primary_10_1109_ACCESS_2020_2990555
crossref_primary_10_1177_1729881418775849
crossref_primary_10_5772_64044
crossref_primary_10_1016_j_conengprac_2020_104649
crossref_primary_10_1109_ACCESS_2021_3089637
crossref_primary_10_3390_s18103575
crossref_primary_10_1109_ACCESS_2020_3002555
crossref_primary_10_5194_ms_12_259_2021
crossref_primary_10_1177_09544062211054001
crossref_primary_10_3390_electronics10212658
crossref_primary_10_1016_j_compeleceng_2016_11_024
crossref_primary_10_1177_1729881419891581
crossref_primary_10_3390_s22186943
Cites_doi 10.1016/j.engappai.2011.05.010
10.1109/ISIC.2003.1254760
10.1109/ICNN.1995.488968
10.1016/j.isatra.2013.12.019
10.1016/j.rcim.2012.04.007
10.1109/CEC.1999.785513
10.1109/CEC.2001.934374
10.1016/j.asoc.2011.01.037
10.1115/1.4011045
10.1016/j.engappai.2011.02.009
10.1016/j.engappai.2013.02.002
10.1109/TSMCB.2003.811519
10.1016/j.engappai.2011.12.005
10.1016/j.compeleceng.2012.12.021
10.1016/j.compeleceng.2014.05.012
10.1016/j.neucom.2012.01.034
10.1109/ICMA.2005.1626639
10.1109/CEC.1999.785511
10.1016/S0094-114X(97)00034-7
10.1007/s10514-010-9196-x
10.1109/ICEC.1998.699146
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Copyright Elsevier BV Nov 2016
Copyright_xml – notice: 2015 Elsevier Ltd
– notice: Copyright Elsevier BV Nov 2016
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.compeleceng.2015.05.019
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0755
EndPage 762
ExternalDocumentID 10_1016_j_compeleceng_2015_05_019
S0045790615002189
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
TN5
UHS
VOH
WH7
WUQ
XPP
ZMT
~G-
~S-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
7SP
8FD
AFXIZ
AGCQF
AGRNS
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c349t-e49f1b96afdef3f71d1ce6227a1246f9d517b3b983e99edd114ab6c8947cf51f3
IEDL.DBID .~1
ISSN 0045-7906
IngestDate Mon Jul 14 08:46:58 EDT 2025
Wed Oct 01 02:30:25 EDT 2025
Thu Apr 24 23:03:01 EDT 2025
Fri Feb 23 02:26:00 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Constriction factor
Adaptive inertia weight
Obstacle avoidance
Particle swarm optimization
Home service robot
Manipulator
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-e49f1b96afdef3f71d1ce6227a1246f9d517b3b983e99edd114ab6c8947cf51f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1920715977
PQPubID 2045266
PageCount 15
ParticipantIDs proquest_journals_1920715977
crossref_primary_10_1016_j_compeleceng_2015_05_019
crossref_citationtrail_10_1016_j_compeleceng_2015_05_019
elsevier_sciencedirect_doi_10_1016_j_compeleceng_2015_05_019
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2016
2016-11-00
20161101
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: November 2016
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computers & electrical engineering
PublicationYear 2016
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Clerc M. The swarm and the queen: towards a deterministic and adaptive particle swarm optimization. In: Proceedings of the 1999 congress on evolutionary computation; 1999. p. 1951–7.
Li, Chen, Liu, Li, Liang (b0020) 2012; 91
Beheshti MTH, Tehrani AK, Ghanbari B. An optimized adaptive fuzzy inverse kinematics solution for redundant manipulators. In: Proceedings of IEEE international symposium on intelligent control; 2003. p. 924–9.
Bedi, Bansal, Sehgal (b0070) 2013; 39
Chyan, Ponnambalam (b0045) 2012; 28
Nearchou (b0015) 1998; 33
Duguleana, Barbuceanu, Teirelbar, Mogan (b0025) 2012; 28
Mandal, Ghoshal, Bhattacharjee (b0120) 2010; 31
Soucy M, Payeur P. Flexible fuzzy logic control for collision-free manipulator operation. In: Proceedings of 2005 IEEE international conference on mechatronics and automation; 2005. p. 723–8.
Artemiadis, Katsiaris, Kyriakopoulos (b0010) 2010; 29
Tyagi, Yang, Tyagi, Dwivedi (b0080) 2011; 24
Zhang, Wang (b0030) 2004; 34
Shi Y, Eberhart RC. A modified particle swarm optimizer. In: Proceedings of IEEE world congress on computational intelligence; 1998. p. 69–73.
Kennedy J, Eberhart R. Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks; 1995. p. 1942–8.
Hsieh, Chu (b0065) 2013; 29
Eberhart RC, Shi Y. Particle swarm optimization: developments, applications and resources. In: Proceedings of the 2001 congress on evolutionary computation; 2001. p. 81–6.
Richard (b0005) 1981
Nery, Martins, Kalid (b0055) 2014; 53
Nickabadi, Ebadzadeh, Safabakhsh (b0125) 2011; 11
Shi Y, Eberhart RC. Empirical study of particle swarm optimization. In: Proceedings of the 1999 congress on evolutionary computation; 1999. p. 1945–50.
Denavit, Hartenberg (b0095) 1955; 22
Zhang, Ding (b0085) 2011; 24
Mazhoud, Hadj-Hamou, Bigeon, Joyeux (b0050) 2013; 26
Jamali, Shaker (b0060) 2014; 40
Vasumathi, Moorthi (b0075) 2012; 25
Zhang (10.1016/j.compeleceng.2015.05.019_b0030) 2004; 34
10.1016/j.compeleceng.2015.05.019_b0040
Tyagi (10.1016/j.compeleceng.2015.05.019_b0080) 2011; 24
Nickabadi (10.1016/j.compeleceng.2015.05.019_b0125) 2011; 11
Jamali (10.1016/j.compeleceng.2015.05.019_b0060) 2014; 40
Nearchou (10.1016/j.compeleceng.2015.05.019_b0015) 1998; 33
Mandal (10.1016/j.compeleceng.2015.05.019_b0120) 2010; 31
Li (10.1016/j.compeleceng.2015.05.019_b0020) 2012; 91
10.1016/j.compeleceng.2015.05.019_b0100
Artemiadis (10.1016/j.compeleceng.2015.05.019_b0010) 2010; 29
Denavit (10.1016/j.compeleceng.2015.05.019_b0095) 1955; 22
Bedi (10.1016/j.compeleceng.2015.05.019_b0070) 2013; 39
Zhang (10.1016/j.compeleceng.2015.05.019_b0085) 2011; 24
10.1016/j.compeleceng.2015.05.019_b0090
10.1016/j.compeleceng.2015.05.019_b0035
10.1016/j.compeleceng.2015.05.019_b0115
10.1016/j.compeleceng.2015.05.019_b0110
Chyan (10.1016/j.compeleceng.2015.05.019_b0045) 2012; 28
Nery (10.1016/j.compeleceng.2015.05.019_b0055) 2014; 53
Hsieh (10.1016/j.compeleceng.2015.05.019_b0065) 2013; 29
10.1016/j.compeleceng.2015.05.019_b0105
Vasumathi (10.1016/j.compeleceng.2015.05.019_b0075) 2012; 25
Richard (10.1016/j.compeleceng.2015.05.019_b0005) 1981
Duguleana (10.1016/j.compeleceng.2015.05.019_b0025) 2012; 28
Mazhoud (10.1016/j.compeleceng.2015.05.019_b0050) 2013; 26
References_xml – volume: 31
  start-page: 667
  year: 2010
  end-page: 680
  ident: b0120
  article-title: Design of concentric circular antenna array with central element feeding using particle swarm optimization with constriction factor and inertia weight approach and evolutionary programing technique
  publication-title: J Infrared Milli Terahertz Waves
– volume: 39
  start-page: 640
  year: 2013
  end-page: 654
  ident: b0070
  article-title: Using PSO in a spatial domain based image hiding scheme with distortion tolerance
  publication-title: Comput Electr Eng
– volume: 40
  start-page: 2013
  year: 2014
  end-page: 2025
  ident: b0060
  article-title: Defense against SYN Flooding attacks: a particle swarm optimization approach
  publication-title: Comput Electr Eng
– reference: Kennedy J, Eberhart R. Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks; 1995. p. 1942–8.
– volume: 28
  start-page: 147
  year: 2012
  end-page: 153
  ident: b0045
  article-title: Obstacle avoidance control of redundant robots using variants of particle swarm optimization
  publication-title: Robot Comput-Int Manuf
– year: 1981
  ident: b0005
  article-title: Robot manipulators: mathematics, programming, and control
– volume: 24
  start-page: 866
  year: 2011
  end-page: 879
  ident: b0080
  article-title: Development of a fuzzy goal programming model for optimization of lead time and cost in an overlapped product development project using a Gaussian Adaptive Particle Swarm Optimization-based approach
  publication-title: Eng Appl Artif Intell
– volume: 28
  start-page: 132
  year: 2012
  end-page: 146
  ident: b0025
  article-title: Obstacle avoidance of redundant manipulators using neural networks based reinforcement learning
  publication-title: Robot Comput-Int Manuf
– reference: Shi Y, Eberhart RC. A modified particle swarm optimizer. In: Proceedings of IEEE world congress on computational intelligence; 1998. p. 69–73.
– volume: 22
  start-page: 215
  year: 1955
  end-page: 221
  ident: b0095
  article-title: A kinematic notation for lower-pair mechanisms based on matrices
  publication-title: J Appl Mech
– volume: 34
  start-page: 752
  year: 2004
  end-page: 759
  ident: b0030
  article-title: Obstacle avoidance for kinematically redundant manipulators using a dual neural network
  publication-title: IEEE Trans Syst Man Cybernet Part B: Cybernet
– reference: Clerc M. The swarm and the queen: towards a deterministic and adaptive particle swarm optimization. In: Proceedings of the 1999 congress on evolutionary computation; 1999. p. 1951–7.
– volume: 53
  start-page: 560
  year: 2014
  end-page: 567
  ident: b0055
  article-title: A PSO-based optimal tuning strategy for constrained multivariable predictive controllers with model uncertainty
  publication-title: ISA Trans
– reference: Beheshti MTH, Tehrani AK, Ghanbari B. An optimized adaptive fuzzy inverse kinematics solution for redundant manipulators. In: Proceedings of IEEE international symposium on intelligent control; 2003. p. 924–9.
– volume: 33
  start-page: 273
  year: 1998
  end-page: 292
  ident: b0015
  article-title: Solving the inverse kinematics problem of redundant robots operating in complex environments via a modified genetic algorithm
  publication-title: Mech Mach Theory
– reference: Soucy M, Payeur P. Flexible fuzzy logic control for collision-free manipulator operation. In: Proceedings of 2005 IEEE international conference on mechatronics and automation; 2005. p. 723–8.
– volume: 24
  start-page: 958
  year: 2011
  end-page: 967
  ident: b0085
  article-title: A multi-swarm self-adaptive and cooperative particle swarm optimization
  publication-title: Eng Appl Artif Intell
– volume: 29
  start-page: 3
  year: 2013
  end-page: 11
  ident: b0065
  article-title: Improving optimization of tool path planning in 5-axis flank milling using advanced PSO algorithms
  publication-title: Robot Comput-Int Manuf
– volume: 29
  start-page: 293
  year: 2010
  end-page: 308
  ident: b0010
  article-title: A biomimetic approach to inverse kinematics for a redundant robot arm
  publication-title: Auton Robot
– volume: 25
  start-page: 476
  year: 2012
  end-page: 483
  ident: b0075
  article-title: Implementation of hybrid ANN-PSO algorithm on FPGA for harmonic estimation
  publication-title: Eng Appl Artif Intell
– reference: Shi Y, Eberhart RC. Empirical study of particle swarm optimization. In: Proceedings of the 1999 congress on evolutionary computation; 1999. p. 1945–50.
– reference: Eberhart RC, Shi Y. Particle swarm optimization: developments, applications and resources. In: Proceedings of the 2001 congress on evolutionary computation; 2001. p. 81–6.
– volume: 91
  start-page: 1
  year: 2012
  end-page: 10
  ident: b0020
  article-title: Decentralized kinematic control of a class of collaborative redundant manipulators via recurrent neural networks
  publication-title: Neurocomputing
– volume: 26
  start-page: 1263
  year: 2013
  end-page: 1273
  ident: b0050
  article-title: Particle swarm optimization for solving engineering problems: a new constraint-handling mechanism
  publication-title: Eng Appl Artif Intell
– volume: 11
  start-page: 3658
  year: 2011
  end-page: 3670
  ident: b0125
  article-title: A novel particle swarm optimization algorithm with adaptive inertia weight
  publication-title: Appl Soft Comput
– volume: 24
  start-page: 958
  issue: 6
  year: 2011
  ident: 10.1016/j.compeleceng.2015.05.019_b0085
  article-title: A multi-swarm self-adaptive and cooperative particle swarm optimization
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2011.05.010
– year: 1981
  ident: 10.1016/j.compeleceng.2015.05.019_b0005
– ident: 10.1016/j.compeleceng.2015.05.019_b0035
  doi: 10.1109/ISIC.2003.1254760
– ident: 10.1016/j.compeleceng.2015.05.019_b0090
  doi: 10.1109/ICNN.1995.488968
– volume: 53
  start-page: 560
  issue: 2
  year: 2014
  ident: 10.1016/j.compeleceng.2015.05.019_b0055
  article-title: A PSO-based optimal tuning strategy for constrained multivariable predictive controllers with model uncertainty
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2013.12.019
– volume: 29
  start-page: 3
  issue: 3
  year: 2013
  ident: 10.1016/j.compeleceng.2015.05.019_b0065
  article-title: Improving optimization of tool path planning in 5-axis flank milling using advanced PSO algorithms
  publication-title: Robot Comput-Int Manuf
  doi: 10.1016/j.rcim.2012.04.007
– ident: 10.1016/j.compeleceng.2015.05.019_b0110
  doi: 10.1109/CEC.1999.785513
– ident: 10.1016/j.compeleceng.2015.05.019_b0115
  doi: 10.1109/CEC.2001.934374
– volume: 11
  start-page: 3658
  issue: 4
  year: 2011
  ident: 10.1016/j.compeleceng.2015.05.019_b0125
  article-title: A novel particle swarm optimization algorithm with adaptive inertia weight
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2011.01.037
– volume: 28
  start-page: 147
  year: 2012
  ident: 10.1016/j.compeleceng.2015.05.019_b0045
  article-title: Obstacle avoidance control of redundant robots using variants of particle swarm optimization
  publication-title: Robot Comput-Int Manuf
– volume: 22
  start-page: 215
  year: 1955
  ident: 10.1016/j.compeleceng.2015.05.019_b0095
  article-title: A kinematic notation for lower-pair mechanisms based on matrices
  publication-title: J Appl Mech
  doi: 10.1115/1.4011045
– volume: 24
  start-page: 866
  issue: 5
  year: 2011
  ident: 10.1016/j.compeleceng.2015.05.019_b0080
  article-title: Development of a fuzzy goal programming model for optimization of lead time and cost in an overlapped product development project using a Gaussian Adaptive Particle Swarm Optimization-based approach
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2011.02.009
– volume: 26
  start-page: 1263
  issue: 4
  year: 2013
  ident: 10.1016/j.compeleceng.2015.05.019_b0050
  article-title: Particle swarm optimization for solving engineering problems: a new constraint-handling mechanism
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2013.02.002
– volume: 34
  start-page: 752
  issue: 1
  year: 2004
  ident: 10.1016/j.compeleceng.2015.05.019_b0030
  article-title: Obstacle avoidance for kinematically redundant manipulators using a dual neural network
  publication-title: IEEE Trans Syst Man Cybernet Part B: Cybernet
  doi: 10.1109/TSMCB.2003.811519
– volume: 25
  start-page: 476
  issue: 3
  year: 2012
  ident: 10.1016/j.compeleceng.2015.05.019_b0075
  article-title: Implementation of hybrid ANN-PSO algorithm on FPGA for harmonic estimation
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2011.12.005
– volume: 28
  start-page: 132
  issue: 2
  year: 2012
  ident: 10.1016/j.compeleceng.2015.05.019_b0025
  article-title: Obstacle avoidance of redundant manipulators using neural networks based reinforcement learning
  publication-title: Robot Comput-Int Manuf
– volume: 39
  start-page: 640
  issue: 2
  year: 2013
  ident: 10.1016/j.compeleceng.2015.05.019_b0070
  article-title: Using PSO in a spatial domain based image hiding scheme with distortion tolerance
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2012.12.021
– volume: 40
  start-page: 2013
  issue: 6
  year: 2014
  ident: 10.1016/j.compeleceng.2015.05.019_b0060
  article-title: Defense against SYN Flooding attacks: a particle swarm optimization approach
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2014.05.012
– volume: 91
  start-page: 1
  year: 2012
  ident: 10.1016/j.compeleceng.2015.05.019_b0020
  article-title: Decentralized kinematic control of a class of collaborative redundant manipulators via recurrent neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.01.034
– ident: 10.1016/j.compeleceng.2015.05.019_b0040
  doi: 10.1109/ICMA.2005.1626639
– ident: 10.1016/j.compeleceng.2015.05.019_b0105
  doi: 10.1109/CEC.1999.785511
– volume: 33
  start-page: 273
  issue: 3
  year: 1998
  ident: 10.1016/j.compeleceng.2015.05.019_b0015
  article-title: Solving the inverse kinematics problem of redundant robots operating in complex environments via a modified genetic algorithm
  publication-title: Mech Mach Theory
  doi: 10.1016/S0094-114X(97)00034-7
– volume: 29
  start-page: 293
  issue: 3–4
  year: 2010
  ident: 10.1016/j.compeleceng.2015.05.019_b0010
  article-title: A biomimetic approach to inverse kinematics for a redundant robot arm
  publication-title: Auton Robot
  doi: 10.1007/s10514-010-9196-x
– ident: 10.1016/j.compeleceng.2015.05.019_b0100
  doi: 10.1109/ICEC.1998.699146
– volume: 31
  start-page: 667
  issue: 6
  year: 2010
  ident: 10.1016/j.compeleceng.2015.05.019_b0120
  article-title: Design of concentric circular antenna array with central element feeding using particle swarm optimization with constriction factor and inertia weight approach and evolutionary programing technique
  publication-title: J Infrared Milli Terahertz Waves
SSID ssj0004618
Score 2.2433043
Snippet [Display omitted] •A new adaptive PSO method is proposed and verified by simulations and a real robot.•Our proposed method has been successful applied to...
This paper presents a new particle swarm optimization (PSO) algorithm, called the PSO-IAC algorithm, to resolve the goal of reaching with the obstacle...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 748
SubjectTerms Adaptive algorithms
Adaptive inertia weight
Algorithms
Computer simulation
Constriction factor
Constrictions
Design optimization
Home service robot
Inertia
Manipulator
Obstacle avoidance
Particle swarm optimization
Performance assessment
Real time
Robots
Title Integrated particle swarm optimization algorithm based obstacle avoidance control design for home service robot
URI https://dx.doi.org/10.1016/j.compeleceng.2015.05.019
https://www.proquest.com/docview/1920715977
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0755
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004618
  issn: 0045-7906
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-0755
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004618
  issn: 0045-7906
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals
  customDbUrl:
  eissn: 1879-0755
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004618
  issn: 0045-7906
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-0755
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004618
  issn: 0045-7906
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0755
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004618
  issn: 0045-7906
  databaseCode: AKRWK
  dateStart: 19730601
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA9DQfRB_MTPEcHXaj_SdgFfxlCm4p4UfAtJk-jELWNWffNv965NdQrCQOhLS-9oc9e7X8rd7wg5zq1ihoUanJexgOmcBSrmNoilwREnyD2JP_RvBln_jl3dp_ct0mt6YbCs0sf-OqZX0dpfOfWreToZDrHHl6U5rxjNMVFhEx9jOU4xOPmIZnojozoaM6RmDLMlcvRd44Vl2zhuxowfsMorrUk8-V856le0rlLQxRpZ9diRduvHWyctM94gKzOMgpvEXTb0D5pO_HvQl3c5HVEHwWHkuy6pfH5w02H5OKKYxjR1ClAi3ivf3FCjJ1BfxE51VeNBAdzSRzcCbXV0oVOnXLlF7i7Ob3v9wM9UCIqE8TIwjNtI8UxabWxi80hHhcniOJeQ6DPLdRrlKlG8kxjOjdawXZIqKzqc5YVNI5tsk4WxG5sdQlNjDcA3WyCsYSxUsPeQWShBQ6ISyXdJp1lFUXjCcZx78SyayrInMWMAgQYQIRwRiMZfopOadWMeobPGVOKHCwnIDvOIHzTmFf47fhGAfwGDIUff3v-075NlOMvqLsYDslBOX80hwJlStSt_bZPF7uV1f_AJZdv4mQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6rgo-D-MS3EbxW-0jbDXgRUXZ9nRS8haRJdMXdLGvVm7_dmTbVVRAEoae2E9rMdOabMvMNIfu5VcywUIPxMhYwnbNAxdwGsTQ44gS5J_GH_tV11rll53fpXYucNL0wWFbpfX_t0ytv7c8c-t08HPZ62OPL0pxXjOYYqPgEmWJpnGMGdvAejTVHRrU7ZsjNGGbTZO-ryAvrtnHejBncY5lXWrN48t-C1A93XcWgswUy78EjPa6fb5G0zGCJzI1RCi4T1234HzQd-hehz29y1KcOvEPft11S-XTvRr3yoU8xjmnqFMBEvFe-up5GU6C-ip3qqsiDArqlD64Pq9XuhY6ccuUKuT07vTnpBH6oQlAkjJeBYdxGimfSamMTm0c6KkwWx7mESJ9ZrtMoV4ni7cRwbrSGfEmqrGhzlhc2jWyySiYHbmDWCE2NNYDfbIG4hrFQQfIhs1DCColKJF8n7WYXReEZx3HwxZNoSssexZgCBCpAhHBEIBp_ig5r2o2_CB01qhLfbEhAePiL-FajXuE_5GcBABhAGJL0bfxv9V0y07m5uhSX3euLTTILV7K6pXGLTJajF7MN2KZUO5XtfgAe8vou
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrated+particle+swarm+optimization+algorithm+based+obstacle+avoidance+control+design+for+home+service+robot&rft.jtitle=Computers+%26+electrical+engineering&rft.au=Lin%2C+Chih-Jui&rft.au=Li%2C+Tzuu-Hseng+S&rft.au=Kuo%2C+Ping-Huan&rft.au=Wang%2C+Yin-Hao&rft.date=2016-11-01&rft.pub=Elsevier+BV&rft.issn=0045-7906&rft.eissn=1879-0755&rft.volume=56&rft.spage=748&rft_id=info:doi/10.1016%2Fj.compeleceng.2015.05.019&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7906&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7906&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7906&client=summon