Resilient State Estimation for 2-D Time-Varying Systems With Redundant Channels: A Variance-Constrained Approach

This paper investigates the state estimation problem for a class of 2-D time-varying systems with error variance constraints, where the implemented estimator gain is subject to stochastic perturbations. Redundant channels are utilized as a protocol to strengthen the transmission reliability and the...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 49; no. 7; pp. 2479 - 2489
Main Authors Wang, Fan, Wang, Zidong, Liang, Jinling, Liu, Xiaohui
Format Journal Article
LanguageEnglish
Published United States IEEE 01.07.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2267
2168-2275
2168-2275
DOI10.1109/TCYB.2018.2821188

Cover

More Information
Summary:This paper investigates the state estimation problem for a class of 2-D time-varying systems with error variance constraints, where the implemented estimator gain is subject to stochastic perturbations. Redundant channels are utilized as a protocol to strengthen the transmission reliability and the channels' packet dropout rates are described by mutually uncorrelated Bernoulli distributions. The objective of the addressed problem is to design a resilient estimator such that an upper bound on the estimation error variance is first guaranteed and then minimized at each time step, where the considered gain perturbations are characterized by their statistical properties. By employing the induction method and the variance-constrained approach, an upper bound on the estimation error variance is first constructed by means of the solutions to two Riccati-like difference equations and, subsequently, a locally minimal upper bound is achieved by appropriately designing the gain parameter. Then, an effective algorithm is proposed for designing the desired estimator, which is in a recursive form suitable for online applications. Finally, a numerical simulation is provided to demonstrate the usefulness of the proposed estimation scheme.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2267
2168-2275
2168-2275
DOI:10.1109/TCYB.2018.2821188