Maximizing Data Transmission Rate for Implantable Devices Over a Single Inductive Link: Methodological Review

Due to the constantly growing geriatric population and the projected increase of the prevalence of chronic diseases that are refractory to drugs, implantable medical devices (IMDs) such as neurostimulators, endoscopic capsules, artificial retinal prostheses, and brain-machine interfaces are being de...

Full description

Saved in:
Bibliographic Details
Published inIEEE reviews in biomedical engineering Vol. 12; pp. 72 - 87
Main Authors Trigui, Aref, Hached, Sami, Ammari, Ahmed Chiheb, Savaria, Yvon, Sawan, Mohamad
Format Journal Article
LanguageEnglish
Published United States IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1937-3333
1941-1189
1941-1189
DOI10.1109/RBME.2018.2873817

Cover

More Information
Summary:Due to the constantly growing geriatric population and the projected increase of the prevalence of chronic diseases that are refractory to drugs, implantable medical devices (IMDs) such as neurostimulators, endoscopic capsules, artificial retinal prostheses, and brain-machine interfaces are being developed. According to many business forecast firms, the IMD market is expected to grow and they are subject to much research aiming to overcome the numerous challenges of their development. One of these challenges consists of designing a wireless power and data transmission system that has high power efficiency, high data rates, low power consumption, and high robustness against noise. This is in addition to minimal design and implementation complexity. This manuscript concerns a comprehensive survey of the latest techniques used to power up and communicate between an external base station and an IMD. Patient safety considerations related to biological, physical, electromagnetic, and electromagnetic interference concerns for wireless IMDs are also explored. The simultaneous powering and data communication techniques using a single inductive link for both power transfer and bidirectional data communication, including the various data modulation/demodulation techniques, are also reviewed. This review will hopefully contribute to the persistent efforts to implement compact reliable IMDs while lowering their cost and upsurging their benefits.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ISSN:1937-3333
1941-1189
1941-1189
DOI:10.1109/RBME.2018.2873817