Updating highway asset inventory using airborne LiDAR
•A field experiment is conducted to collect airborne LiDAR data of four highway sections in Utah.•A GIS-based algorithm is developed to process raw LiDAR point cloud data for extracting highway inventory data.•The pros and cons of the airborne LiDAR technology are compared with the mobile counterpar...
Saved in:
| Published in | Measurement : journal of the International Measurement Confederation Vol. 104; pp. 132 - 141 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Elsevier Ltd
01.07.2017
Elsevier Science Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0263-2241 1873-412X |
| DOI | 10.1016/j.measurement.2017.03.026 |
Cover
| Abstract | •A field experiment is conducted to collect airborne LiDAR data of four highway sections in Utah.•A GIS-based algorithm is developed to process raw LiDAR point cloud data for extracting highway inventory data.•The pros and cons of the airborne LiDAR technology are compared with the mobile counterpart for highway feature extraction.
Highway assets, including traffic signs and signals, light poles, guardrails, and culverts, are essential components of transportation networks. They guide, warn, and protect drivers and regulate traffic. To manage and maintain the regular operation of the highway system, state departments of transportation (DOTs) need reliable and up-to-date information about the location and condition of highway features. Various techniques have been employed to collect highway inventory data. These techniques range from the simplest manual inventory method to methods that involve advanced technology, such as light detection and ranging (LiDAR). The focus of this paper is to analyze the capability and strengths of airborne LiDAR in highway inventory data collection. A field experiment was conducted to collect airborne LiDAR data, and an ArcGIS-based workflow was proposed to process the data. The results demonstrate the effectiveness of the proposed workflow as well as the feasibility and high efficiency of airborne LiDAR for highway inventory data collection. |
|---|---|
| AbstractList | Highway assets, including traffic signs and signals, light poles, guardrails, and culverts, are essential components of transportation networks. They guide, warn, and protect drivers and regulate traffic. To manage and maintain the regular operation of the highway system, state departments of transportation (DOTs) need reliable and up-to-date information about the location and condition of highway features. Various techniques have been employed to collect highway inventory data. These techniques range from the simplest manual inventory method to methods that involve advanced technology, such as light detection and ranging (LiDAR). The focus of this paper is to analyze the capability and strengths of airborne LiDAR in highway inventory data collection. A field experiment was conducted to collect airborne LiDAR data, and an ArcGIS-based workflow was proposed to process the data. The results demonstrate the effectiveness of the proposed workflow as well as the feasibility and high efficiency of airborne LiDAR for highway inventory data collection. •A field experiment is conducted to collect airborne LiDAR data of four highway sections in Utah.•A GIS-based algorithm is developed to process raw LiDAR point cloud data for extracting highway inventory data.•The pros and cons of the airborne LiDAR technology are compared with the mobile counterpart for highway feature extraction. Highway assets, including traffic signs and signals, light poles, guardrails, and culverts, are essential components of transportation networks. They guide, warn, and protect drivers and regulate traffic. To manage and maintain the regular operation of the highway system, state departments of transportation (DOTs) need reliable and up-to-date information about the location and condition of highway features. Various techniques have been employed to collect highway inventory data. These techniques range from the simplest manual inventory method to methods that involve advanced technology, such as light detection and ranging (LiDAR). The focus of this paper is to analyze the capability and strengths of airborne LiDAR in highway inventory data collection. A field experiment was conducted to collect airborne LiDAR data, and an ArcGIS-based workflow was proposed to process the data. The results demonstrate the effectiveness of the proposed workflow as well as the feasibility and high efficiency of airborne LiDAR for highway inventory data collection. |
| Author | Liu, Zhaocai He, Yi Song, Ziqi |
| Author_xml | – sequence: 1 givenname: Yi surname: He fullname: He, Yi email: yi.zoe.he@aggiemail.usu.edu – sequence: 2 givenname: Ziqi surname: Song fullname: Song, Ziqi email: ziqi.song@usu.edu – sequence: 3 givenname: Zhaocai surname: Liu fullname: Liu, Zhaocai email: zhaocai.liu@aggiemail.usu.edu |
| BookMark | eNqNkF1LwzAUhoNMcJv-h4rXrTlJmzZXMuYnDASZ4F1I29MtZUtm0k32722ZF-KVVwfOed_nwDMhI-ssEnINNAEK4rZNtqjD3uMWbZcwCnlCeUKZOCNjKHIep8A-RmTcb3jMWAoXZBJCSykVXIoxyd53te6MXUVrs1p_6WOkQ8AuMvbQA50_RvswXLXxpfMWo4W5n71dkvNGbwJe_cwpWT4-LOfP8eL16WU-W8QVT2UX1yKtdQq6YDqTueQZZCCgrGWhgQGKkjKeI6cZpVIiFBnL6zJjgjYFikbwKbk5YXfefe4xdKp1e2_7j4pRATJNBYc-JU-pyrsQPDZq581W-6MCqgZJqlW_JKlBkqJcDUqm5O5PtzJd78PZzmuz-RdhfiJg7-Fg0KtQGbQV1sZj1anamX9QvgGdSoxP |
| CitedBy_id | crossref_primary_10_1016_j_autcon_2018_09_014 crossref_primary_10_17221_87_2018_JFS crossref_primary_10_17221_95_2017_JFS crossref_primary_10_3390_rs12162630 crossref_primary_10_1080_01431161_2020_1771792 crossref_primary_10_3390_technologies10030061 crossref_primary_10_3390_su132111773 crossref_primary_10_1177_03611981211001855 crossref_primary_10_1016_j_iintel_2022_100016 crossref_primary_10_3390_ijgi10040254 crossref_primary_10_1061__ASCE_CF_1943_5509_0001758 crossref_primary_10_3390_geosciences9060248 crossref_primary_10_3390_infrastructures8120181 crossref_primary_10_1016_j_measurement_2018_04_049 crossref_primary_10_1080_15623599_2019_1678863 crossref_primary_10_3390_app11010309 crossref_primary_10_3390_buildings14041078 crossref_primary_10_3390_rs13030463 crossref_primary_10_1016_j_landusepol_2020_104938 crossref_primary_10_1088_1361_6501_acb78d crossref_primary_10_1177_1087724X19862285 |
| Cites_doi | 10.1175/1520-0477-44.9.564 10.1016/j.jas.2012.12.021 10.1016/j.measurement.2010.08.010 10.1016/j.measurement.2015.06.009 10.1016/j.rse.2012.01.021 10.1016/j.measurement.2015.08.008 10.14358/PERS.70.3.301 10.1016/j.measurement.2015.07.049 10.1016/S2212-5671(14)00356-6 10.1016/j.measurement.2013.09.044 10.3390/rs2041120 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier Ltd Copyright Elsevier Science Ltd. Jul 2017 |
| Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright Elsevier Science Ltd. Jul 2017 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.measurement.2017.03.026 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1873-412X |
| EndPage | 141 |
| ExternalDocumentID | 10_1016_j_measurement_2017_03_026 S0263224117301847 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABXDB ABYKQ ACDAQ ACFVG ACGFO ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEFWE AEGXH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GS5 HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SET SEW SPC SPCBC SPD SSQ SST SSZ T5K WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ACLOT ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AGCQF |
| ID | FETCH-LOGICAL-c349t-d64da41a82a59793515161bd98a121e6b0237e3050099e18527db5260f8e6f63 |
| IEDL.DBID | .~1 |
| ISSN | 0263-2241 |
| IngestDate | Wed Aug 13 09:47:38 EDT 2025 Thu Apr 24 23:00:04 EDT 2025 Wed Oct 01 05:13:37 EDT 2025 Fri Feb 23 02:27:47 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Airborne LiDAR Highway inventory Asset management ArcGIS-based workflow Field experiment |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c349t-d64da41a82a59793515161bd98a121e6b0237e3050099e18527db5260f8e6f63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2061944631 |
| PQPubID | 2047460 |
| PageCount | 10 |
| ParticipantIDs | proquest_journals_2061944631 crossref_primary_10_1016_j_measurement_2017_03_026 crossref_citationtrail_10_1016_j_measurement_2017_03_026 elsevier_sciencedirect_doi_10_1016_j_measurement_2017_03_026 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | July 2017 2017-07-00 20170701 |
| PublicationDateYYYYMMDD | 2017-07-01 |
| PublicationDate_xml | – month: 07 year: 2017 text: July 2017 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | Measurement : journal of the International Measurement Confederation |
| PublicationYear | 2017 |
| Publisher | Elsevier Ltd Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
| References | Díaz-Vilariño, González-Jorge, Martínez-Sánchez, Lorenzo (b0095) 2015; 73 Puente, González-Jorge, Martínez-Sánchez, Arias (b0090) 2014; 47 Khattak, Hummer, Karimi (b0015) 2000; 3 D.A. Grejner-Brzezinska, C. Toth, M. McCord, Airborne LiDAR: A new source of traffic flow data, The Ohio State University, Department of Civil & Environmental Engineering & Geodetic Science Center for Mapping, 2005. L. Zhao, Z. Lai, Y. Li, Y. Xue, M. Liao, Z. Wu, P. Liu, X. Liu, Application and analysis of airborne LiDAR technology in topographic survey of tidal flat and coastal zone, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXVII, 2008. White, Dietterick, Mastin, Strohman (b0105) 2010; 2 Xiong, Floyd (b0045) 2004 Jeyapalan (b0020) 2004; 79 Hill, Graham, Henry (b0060) 2000; 66 Chen, Laurin, Battles, Saah (b0075) 2012; 121 H. Zhou, M. Jalayer, J. Gong, S. Hu, M. Grinter, Investigation of methods and approaches for collecting and recording highway inventory data, FHWA-ICT-13-022, 2013. Asset Management Primer, U.S. Department of Transportation Federal Highway Administration Office of Asset Management, 1999. M. Jalayer, S. Hu, H. Zhou, R.E. Turochy, An Assessment of the Highway Inventory Data Collection Method Using Photo/Video Logging, Transportation Research Board 94th Annual Meeting. No. 15-2403, 2015. W. Uddin, E. Al-Turk, Airborne LiDAR digital terrain mapping for transportation infrastructure asset management, 5th International Conference on Managing Pavements, 2001. Landa, Prochazka (b0025) 2014; 12 Polat, Uysal, Toprak (b0070) 2015; 75 Jalayer, Zhou, Gong, Hu, Grinter (b0030) 2014; 53 Doneus, Doneus, Briese, Pregesbauer, Mandlburger, Verhoeven (b0080) 2013; 40 Rodrigues, Da Silva, Nunes (b0085) 2011; 44 Goyer, Watson (b0050) 1963; 44 Khalilikhah, Heaslip, Song (b0040) 2015; 75 U.S. Geological Survey National Geospatial Program Lidar Guidelines and Base Specification, Version 13 – ILMF, 2010. Rodrigues (10.1016/j.measurement.2017.03.026_b0085) 2011; 44 Jeyapalan (10.1016/j.measurement.2017.03.026_b0020) 2004; 79 Hill (10.1016/j.measurement.2017.03.026_b0060) 2000; 66 Khattak (10.1016/j.measurement.2017.03.026_b0015) 2000; 3 Chen (10.1016/j.measurement.2017.03.026_b0075) 2012; 121 White (10.1016/j.measurement.2017.03.026_b0105) 2010; 2 Jalayer (10.1016/j.measurement.2017.03.026_b0030) 2014; 53 Landa (10.1016/j.measurement.2017.03.026_b0025) 2014; 12 Khalilikhah (10.1016/j.measurement.2017.03.026_b0040) 2015; 75 Goyer (10.1016/j.measurement.2017.03.026_b0050) 1963; 44 Doneus (10.1016/j.measurement.2017.03.026_b0080) 2013; 40 Polat (10.1016/j.measurement.2017.03.026_b0070) 2015; 75 10.1016/j.measurement.2017.03.026_b0035 Xiong (10.1016/j.measurement.2017.03.026_b0045) 2004 Puente (10.1016/j.measurement.2017.03.026_b0090) 2014; 47 10.1016/j.measurement.2017.03.026_b0100 10.1016/j.measurement.2017.03.026_b0055 10.1016/j.measurement.2017.03.026_b0110 10.1016/j.measurement.2017.03.026_b0010 10.1016/j.measurement.2017.03.026_b0065 Díaz-Vilariño (10.1016/j.measurement.2017.03.026_b0095) 2015; 73 10.1016/j.measurement.2017.03.026_b0005 |
| References_xml | – volume: 121 start-page: 108 year: 2012 end-page: 117 ident: b0075 article-title: Integration of airborne lidar and vegetation types derived from aerial photography for mapping aboveground live biomass publication-title: Rem. Sens. Environ. – reference: W. Uddin, E. Al-Turk, Airborne LiDAR digital terrain mapping for transportation infrastructure asset management, 5th International Conference on Managing Pavements, 2001. – reference: L. Zhao, Z. Lai, Y. Li, Y. Xue, M. Liao, Z. Wu, P. Liu, X. Liu, Application and analysis of airborne LiDAR technology in topographic survey of tidal flat and coastal zone, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXVII, 2008. – reference: H. Zhou, M. Jalayer, J. Gong, S. Hu, M. Grinter, Investigation of methods and approaches for collecting and recording highway inventory data, FHWA-ICT-13-022, 2013. – volume: 12 start-page: 363 year: 2014 end-page: 370 ident: b0025 article-title: Automatic road inventory using LiDAR publication-title: Procedia Econ. Finance – volume: 40 start-page: 2136 year: 2013 end-page: 2151 ident: b0080 article-title: Airborne laser bathymetry-detecting and recording submerged archaeological sites from the air publication-title: J. Archaeol. Sci. – reference: M. Jalayer, S. Hu, H. Zhou, R.E. Turochy, An Assessment of the Highway Inventory Data Collection Method Using Photo/Video Logging, Transportation Research Board 94th Annual Meeting. No. 15-2403, 2015. – volume: 44 start-page: 11 year: 2011 end-page: 17 ident: b0085 article-title: Metrological assessment of LIDAR signals in water publication-title: Measurement – year: 2004 ident: b0045 article-title: Highway Feature and Characteristics Database Development using Commercial Remote Sensing Technologies, Combined with Mobile Mapping, GIS and GPS – volume: 47 start-page: 569 year: 2014 end-page: 575 ident: b0090 article-title: Automatic detection of road tunnel luminaires using a mobile LiDAR system publication-title: Measurement – volume: 75 start-page: 147 year: 2015 end-page: 160 ident: b0040 article-title: Can daytime digital imaging be used for traffic sign retroreflectivity compliance? publication-title: Measurement – reference: D.A. Grejner-Brzezinska, C. Toth, M. McCord, Airborne LiDAR: A new source of traffic flow data, The Ohio State University, Department of Civil & Environmental Engineering & Geodetic Science Center for Mapping, 2005. – reference: Asset Management Primer, U.S. Department of Transportation Federal Highway Administration Office of Asset Management, 1999. – reference: U.S. Geological Survey National Geospatial Program Lidar Guidelines and Base Specification, Version 13 – ILMF, 2010. – volume: 73 start-page: 544 year: 2015 end-page: 550 ident: b0095 article-title: Automatic LiDAR-based lighting inventory in buildings publication-title: Measurement – volume: 79 start-page: 301 year: 2004 end-page: 312 ident: b0020 article-title: Mobile digital cameras for as-built surveys of roadside features publication-title: Photogramm. Eng. Rem. Sens. – volume: 53 start-page: 73 year: 2014 end-page: 92 ident: b0030 article-title: A comprehensive assessment of highway inventory data collection methods publication-title: J. Transport. Res. Forum. – volume: 2 start-page: 1120 year: 2010 end-page: 1141 ident: b0105 article-title: Forest roads mapped using LiDAR in steep forested terrain publication-title: Rem. Sens. – volume: 75 start-page: 50 year: 2015 end-page: 56 ident: b0070 article-title: An investigation of DEM generation process based on LiDAR data filtering, decimation, and interpolation methods for an urban area publication-title: Measurement – volume: 66 start-page: 908 year: 2000 end-page: 914 ident: b0060 article-title: Wide-area topographic mapping and applications using airborne light detection and ranging (LiDAR) technology publication-title: Photogram. Eng. Rem. Sens. – volume: 3 start-page: 33 year: 2000 end-page: 46 ident: b0015 article-title: New and existing roadway inventory data acquisition methods publication-title: J. Transport. Stat. – volume: 44 start-page: 564 year: 1963 end-page: 575 ident: b0050 article-title: The laser and its application to meteorology publication-title: Bull. Am. Meteor. Soc. – volume: 66 start-page: 908 year: 2000 ident: 10.1016/j.measurement.2017.03.026_b0060 article-title: Wide-area topographic mapping and applications using airborne light detection and ranging (LiDAR) technology publication-title: Photogram. Eng. Rem. Sens. – volume: 53 start-page: 73 issue: 2 year: 2014 ident: 10.1016/j.measurement.2017.03.026_b0030 article-title: A comprehensive assessment of highway inventory data collection methods publication-title: J. Transport. Res. Forum. – volume: 44 start-page: 564 issue: 9 year: 1963 ident: 10.1016/j.measurement.2017.03.026_b0050 article-title: The laser and its application to meteorology publication-title: Bull. Am. Meteor. Soc. doi: 10.1175/1520-0477-44.9.564 – ident: 10.1016/j.measurement.2017.03.026_b0100 – ident: 10.1016/j.measurement.2017.03.026_b0035 – volume: 40 start-page: 2136 year: 2013 ident: 10.1016/j.measurement.2017.03.026_b0080 article-title: Airborne laser bathymetry-detecting and recording submerged archaeological sites from the air publication-title: J. Archaeol. Sci. doi: 10.1016/j.jas.2012.12.021 – ident: 10.1016/j.measurement.2017.03.026_b0065 – volume: 44 start-page: 11 issue: 1 year: 2011 ident: 10.1016/j.measurement.2017.03.026_b0085 article-title: Metrological assessment of LIDAR signals in water publication-title: Measurement doi: 10.1016/j.measurement.2010.08.010 – volume: 73 start-page: 544 year: 2015 ident: 10.1016/j.measurement.2017.03.026_b0095 article-title: Automatic LiDAR-based lighting inventory in buildings publication-title: Measurement doi: 10.1016/j.measurement.2015.06.009 – volume: 121 start-page: 108 year: 2012 ident: 10.1016/j.measurement.2017.03.026_b0075 article-title: Integration of airborne lidar and vegetation types derived from aerial photography for mapping aboveground live biomass publication-title: Rem. Sens. Environ. doi: 10.1016/j.rse.2012.01.021 – ident: 10.1016/j.measurement.2017.03.026_b0005 – volume: 75 start-page: 50 year: 2015 ident: 10.1016/j.measurement.2017.03.026_b0070 article-title: An investigation of DEM generation process based on LiDAR data filtering, decimation, and interpolation methods for an urban area publication-title: Measurement doi: 10.1016/j.measurement.2015.08.008 – ident: 10.1016/j.measurement.2017.03.026_b0110 – volume: 79 start-page: 301 issue: 3 year: 2004 ident: 10.1016/j.measurement.2017.03.026_b0020 article-title: Mobile digital cameras for as-built surveys of roadside features publication-title: Photogramm. Eng. Rem. Sens. doi: 10.14358/PERS.70.3.301 – volume: 3 start-page: 33 year: 2000 ident: 10.1016/j.measurement.2017.03.026_b0015 article-title: New and existing roadway inventory data acquisition methods publication-title: J. Transport. Stat. – ident: 10.1016/j.measurement.2017.03.026_b0055 – volume: 75 start-page: 147 year: 2015 ident: 10.1016/j.measurement.2017.03.026_b0040 article-title: Can daytime digital imaging be used for traffic sign retroreflectivity compliance? publication-title: Measurement doi: 10.1016/j.measurement.2015.07.049 – year: 2004 ident: 10.1016/j.measurement.2017.03.026_b0045 – volume: 12 start-page: 363 year: 2014 ident: 10.1016/j.measurement.2017.03.026_b0025 article-title: Automatic road inventory using LiDAR publication-title: Procedia Econ. Finance doi: 10.1016/S2212-5671(14)00356-6 – volume: 47 start-page: 569 year: 2014 ident: 10.1016/j.measurement.2017.03.026_b0090 article-title: Automatic detection of road tunnel luminaires using a mobile LiDAR system publication-title: Measurement doi: 10.1016/j.measurement.2013.09.044 – volume: 2 start-page: 1120 year: 2010 ident: 10.1016/j.measurement.2017.03.026_b0105 article-title: Forest roads mapped using LiDAR in steep forested terrain publication-title: Rem. Sens. doi: 10.3390/rs2041120 – ident: 10.1016/j.measurement.2017.03.026_b0010 |
| SSID | ssj0006396 |
| Score | 2.2704427 |
| Snippet | •A field experiment is conducted to collect airborne LiDAR data of four highway sections in Utah.•A GIS-based algorithm is developed to process raw LiDAR point... Highway assets, including traffic signs and signals, light poles, guardrails, and culverts, are essential components of transportation networks. They guide,... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 132 |
| SubjectTerms | Airborne LiDAR ArcGIS-based workflow Asset management Culverts Data acquisition Data collection Field experiment Guide rails Highway inventory Highway transportation Inventory Lidar Roads & highways Traffic control Traffic management Traffic signs Transportation networks Utility poles Workflow |
| Title | Updating highway asset inventory using airborne LiDAR |
| URI | https://dx.doi.org/10.1016/j.measurement.2017.03.026 https://www.proquest.com/docview/2061944631 |
| Volume | 104 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-412X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006396 issn: 0263-2241 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Science Direct Journals customDbUrl: eissn: 1873-412X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006396 issn: 0263-2241 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection customDbUrl: eissn: 1873-412X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006396 issn: 0263-2241 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-412X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006396 issn: 0263-2241 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-412X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006396 issn: 0263-2241 databaseCode: AKRWK dateStart: 19830101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4YjEYPRlEjiqQmXiu0XfpIvBCU4IuDQsJts-3ukhotBPDAxd_uTB-CxgOJxz62aWZnZ76dfPMtwKUKfEu7njApt5pM2cwMpRCm8LSMpOdEfkrGfOq53QG7HzaHG9AuemGIVpnH_iymp9E6v1PPrVmfxHH9pUFS45iALHJSDLLUwc48OsXg6nNJ88AM7GZ1Fsekt7fhYsnxel_W4Yjl5aV6p6Sz8HeO-hWt0xTU2Ye9HDsarez3DmBDJWXYXVEULMNWyuiMZofQHEyocyEZGakisVgYCJPV3IhTlvl4ujCI8j4yRDxFN0iU8RjftJ6PoN-57be7Zn5Gghk5LJib0mVSMEv4tsCtQeAgPEEMF8rAF5ZtKTfEnOwpXNQEBRV1SnsybOImRvvK1a5zDKVknKgTMPxIC0vbNu7fFJORCrUTKIQrWupQWpFdAb8wCo9y_XA6xuKNF0SxV75iT0725A2Hoz0rYH8PnWQiGusMui4sz394BMdgv87wajFbPF-WM3xORRvmOtbp_75-Bjt0lfF2q1CaTz_UOaKTeVhL3a8Gm627h27vC3Jm5Y0 |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4gxtfBKGpEUWvitULb7SvxQlCDChwUEm6bbXeX1GghUA9c_O3O9iFoPJB47XaaZnZ25pvNt98CXAnfM6TjMl3VVp0Ik-gBZ0xnruQhd63QS8mY3Z7THpDHoT0sQas4C6NolXnuz3J6mq3zJ_Xcm_VJFNVfGkpqHAuQoYIUk-warBPbdFUHdv254HlgCXayjRZLV69vwuWC5PW-2IhTNC83FTxVQgt_F6lf6TqtQfd7sJuDR62Z_d8-lERcgZ0lScEKbKSUznB2APZgoo4uxCMtlSRmcw1xski0KKWZj6dzTXHeRxqLphgHsdA60W3z-RD693f9VlvPL0nQQ4v4ic4dwhkxmGcy7A18C_EJgriA-x4zTEM4ARZlV-CqVlhQqKPSLg9s7GKkJxzpWEdQjsexOAbNCyUzpGliAycID0UgLV8gXpFcBtwIzSp4hVNomAuIq3ss3mjBFHulS_6kyp-0YVH0ZxXMb9NJpqKxitFN4Xn6IyQoZvtVzGvFbNF8Xc5wXO3aEMcyTv739QvYave7Hdp56D2dwrYayUi8NSgn0w9xhlAlCc7TUPwC1PnnIg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Updating+highway+asset+inventory+using+airborne+LiDAR&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=He%2C+Yi&rft.au=Song%2C+Ziqi&rft.au=Liu%2C+Zhaocai&rft.date=2017-07-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0263-2241&rft.eissn=1873-412X&rft.volume=104&rft.spage=132&rft_id=info:doi/10.1016%2Fj.measurement.2017.03.026&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon |