Updating highway asset inventory using airborne LiDAR

•A field experiment is conducted to collect airborne LiDAR data of four highway sections in Utah.•A GIS-based algorithm is developed to process raw LiDAR point cloud data for extracting highway inventory data.•The pros and cons of the airborne LiDAR technology are compared with the mobile counterpar...

Full description

Saved in:
Bibliographic Details
Published inMeasurement : journal of the International Measurement Confederation Vol. 104; pp. 132 - 141
Main Authors He, Yi, Song, Ziqi, Liu, Zhaocai
Format Journal Article
LanguageEnglish
Published London Elsevier Ltd 01.07.2017
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0263-2241
1873-412X
DOI10.1016/j.measurement.2017.03.026

Cover

Abstract •A field experiment is conducted to collect airborne LiDAR data of four highway sections in Utah.•A GIS-based algorithm is developed to process raw LiDAR point cloud data for extracting highway inventory data.•The pros and cons of the airborne LiDAR technology are compared with the mobile counterpart for highway feature extraction. Highway assets, including traffic signs and signals, light poles, guardrails, and culverts, are essential components of transportation networks. They guide, warn, and protect drivers and regulate traffic. To manage and maintain the regular operation of the highway system, state departments of transportation (DOTs) need reliable and up-to-date information about the location and condition of highway features. Various techniques have been employed to collect highway inventory data. These techniques range from the simplest manual inventory method to methods that involve advanced technology, such as light detection and ranging (LiDAR). The focus of this paper is to analyze the capability and strengths of airborne LiDAR in highway inventory data collection. A field experiment was conducted to collect airborne LiDAR data, and an ArcGIS-based workflow was proposed to process the data. The results demonstrate the effectiveness of the proposed workflow as well as the feasibility and high efficiency of airborne LiDAR for highway inventory data collection.
AbstractList Highway assets, including traffic signs and signals, light poles, guardrails, and culverts, are essential components of transportation networks. They guide, warn, and protect drivers and regulate traffic. To manage and maintain the regular operation of the highway system, state departments of transportation (DOTs) need reliable and up-to-date information about the location and condition of highway features. Various techniques have been employed to collect highway inventory data. These techniques range from the simplest manual inventory method to methods that involve advanced technology, such as light detection and ranging (LiDAR). The focus of this paper is to analyze the capability and strengths of airborne LiDAR in highway inventory data collection. A field experiment was conducted to collect airborne LiDAR data, and an ArcGIS-based workflow was proposed to process the data. The results demonstrate the effectiveness of the proposed workflow as well as the feasibility and high efficiency of airborne LiDAR for highway inventory data collection.
•A field experiment is conducted to collect airborne LiDAR data of four highway sections in Utah.•A GIS-based algorithm is developed to process raw LiDAR point cloud data for extracting highway inventory data.•The pros and cons of the airborne LiDAR technology are compared with the mobile counterpart for highway feature extraction. Highway assets, including traffic signs and signals, light poles, guardrails, and culverts, are essential components of transportation networks. They guide, warn, and protect drivers and regulate traffic. To manage and maintain the regular operation of the highway system, state departments of transportation (DOTs) need reliable and up-to-date information about the location and condition of highway features. Various techniques have been employed to collect highway inventory data. These techniques range from the simplest manual inventory method to methods that involve advanced technology, such as light detection and ranging (LiDAR). The focus of this paper is to analyze the capability and strengths of airborne LiDAR in highway inventory data collection. A field experiment was conducted to collect airborne LiDAR data, and an ArcGIS-based workflow was proposed to process the data. The results demonstrate the effectiveness of the proposed workflow as well as the feasibility and high efficiency of airborne LiDAR for highway inventory data collection.
Author Liu, Zhaocai
He, Yi
Song, Ziqi
Author_xml – sequence: 1
  givenname: Yi
  surname: He
  fullname: He, Yi
  email: yi.zoe.he@aggiemail.usu.edu
– sequence: 2
  givenname: Ziqi
  surname: Song
  fullname: Song, Ziqi
  email: ziqi.song@usu.edu
– sequence: 3
  givenname: Zhaocai
  surname: Liu
  fullname: Liu, Zhaocai
  email: zhaocai.liu@aggiemail.usu.edu
BookMark eNqNkF1LwzAUhoNMcJv-h4rXrTlJmzZXMuYnDASZ4F1I29MtZUtm0k32722ZF-KVVwfOed_nwDMhI-ssEnINNAEK4rZNtqjD3uMWbZcwCnlCeUKZOCNjKHIep8A-RmTcb3jMWAoXZBJCSykVXIoxyd53te6MXUVrs1p_6WOkQ8AuMvbQA50_RvswXLXxpfMWo4W5n71dkvNGbwJe_cwpWT4-LOfP8eL16WU-W8QVT2UX1yKtdQq6YDqTueQZZCCgrGWhgQGKkjKeI6cZpVIiFBnL6zJjgjYFikbwKbk5YXfefe4xdKp1e2_7j4pRATJNBYc-JU-pyrsQPDZq581W-6MCqgZJqlW_JKlBkqJcDUqm5O5PtzJd78PZzmuz-RdhfiJg7-Fg0KtQGbQV1sZj1anamX9QvgGdSoxP
CitedBy_id crossref_primary_10_1016_j_autcon_2018_09_014
crossref_primary_10_17221_87_2018_JFS
crossref_primary_10_17221_95_2017_JFS
crossref_primary_10_3390_rs12162630
crossref_primary_10_1080_01431161_2020_1771792
crossref_primary_10_3390_technologies10030061
crossref_primary_10_3390_su132111773
crossref_primary_10_1177_03611981211001855
crossref_primary_10_1016_j_iintel_2022_100016
crossref_primary_10_3390_ijgi10040254
crossref_primary_10_1061__ASCE_CF_1943_5509_0001758
crossref_primary_10_3390_geosciences9060248
crossref_primary_10_3390_infrastructures8120181
crossref_primary_10_1016_j_measurement_2018_04_049
crossref_primary_10_1080_15623599_2019_1678863
crossref_primary_10_3390_app11010309
crossref_primary_10_3390_buildings14041078
crossref_primary_10_3390_rs13030463
crossref_primary_10_1016_j_landusepol_2020_104938
crossref_primary_10_1088_1361_6501_acb78d
crossref_primary_10_1177_1087724X19862285
Cites_doi 10.1175/1520-0477-44.9.564
10.1016/j.jas.2012.12.021
10.1016/j.measurement.2010.08.010
10.1016/j.measurement.2015.06.009
10.1016/j.rse.2012.01.021
10.1016/j.measurement.2015.08.008
10.14358/PERS.70.3.301
10.1016/j.measurement.2015.07.049
10.1016/S2212-5671(14)00356-6
10.1016/j.measurement.2013.09.044
10.3390/rs2041120
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright Elsevier Science Ltd. Jul 2017
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. Jul 2017
DBID AAYXX
CITATION
DOI 10.1016/j.measurement.2017.03.026
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-412X
EndPage 141
ExternalDocumentID 10_1016_j_measurement_2017_03_026
S0263224117301847
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFO
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEGXH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GS5
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SPD
SSQ
SST
SSZ
T5K
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AGCQF
ID FETCH-LOGICAL-c349t-d64da41a82a59793515161bd98a121e6b0237e3050099e18527db5260f8e6f63
IEDL.DBID .~1
ISSN 0263-2241
IngestDate Wed Aug 13 09:47:38 EDT 2025
Thu Apr 24 23:00:04 EDT 2025
Wed Oct 01 05:13:37 EDT 2025
Fri Feb 23 02:27:47 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Airborne LiDAR
Highway inventory
Asset management
ArcGIS-based workflow
Field experiment
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-d64da41a82a59793515161bd98a121e6b0237e3050099e18527db5260f8e6f63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2061944631
PQPubID 2047460
PageCount 10
ParticipantIDs proquest_journals_2061944631
crossref_primary_10_1016_j_measurement_2017_03_026
crossref_citationtrail_10_1016_j_measurement_2017_03_026
elsevier_sciencedirect_doi_10_1016_j_measurement_2017_03_026
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2017
2017-07-00
20170701
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: July 2017
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Measurement : journal of the International Measurement Confederation
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Díaz-Vilariño, González-Jorge, Martínez-Sánchez, Lorenzo (b0095) 2015; 73
Puente, González-Jorge, Martínez-Sánchez, Arias (b0090) 2014; 47
Khattak, Hummer, Karimi (b0015) 2000; 3
D.A. Grejner-Brzezinska, C. Toth, M. McCord, Airborne LiDAR: A new source of traffic flow data, The Ohio State University, Department of Civil & Environmental Engineering & Geodetic Science Center for Mapping, 2005.
L. Zhao, Z. Lai, Y. Li, Y. Xue, M. Liao, Z. Wu, P. Liu, X. Liu, Application and analysis of airborne LiDAR technology in topographic survey of tidal flat and coastal zone, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXVII, 2008.
White, Dietterick, Mastin, Strohman (b0105) 2010; 2
Xiong, Floyd (b0045) 2004
Jeyapalan (b0020) 2004; 79
Hill, Graham, Henry (b0060) 2000; 66
Chen, Laurin, Battles, Saah (b0075) 2012; 121
H. Zhou, M. Jalayer, J. Gong, S. Hu, M. Grinter, Investigation of methods and approaches for collecting and recording highway inventory data, FHWA-ICT-13-022, 2013.
Asset Management Primer, U.S. Department of Transportation Federal Highway Administration Office of Asset Management, 1999.
M. Jalayer, S. Hu, H. Zhou, R.E. Turochy, An Assessment of the Highway Inventory Data Collection Method Using Photo/Video Logging, Transportation Research Board 94th Annual Meeting. No. 15-2403, 2015.
W. Uddin, E. Al-Turk, Airborne LiDAR digital terrain mapping for transportation infrastructure asset management, 5th International Conference on Managing Pavements, 2001.
Landa, Prochazka (b0025) 2014; 12
Polat, Uysal, Toprak (b0070) 2015; 75
Jalayer, Zhou, Gong, Hu, Grinter (b0030) 2014; 53
Doneus, Doneus, Briese, Pregesbauer, Mandlburger, Verhoeven (b0080) 2013; 40
Rodrigues, Da Silva, Nunes (b0085) 2011; 44
Goyer, Watson (b0050) 1963; 44
Khalilikhah, Heaslip, Song (b0040) 2015; 75
U.S. Geological Survey National Geospatial Program Lidar Guidelines and Base Specification, Version 13 – ILMF, 2010.
Rodrigues (10.1016/j.measurement.2017.03.026_b0085) 2011; 44
Jeyapalan (10.1016/j.measurement.2017.03.026_b0020) 2004; 79
Hill (10.1016/j.measurement.2017.03.026_b0060) 2000; 66
Khattak (10.1016/j.measurement.2017.03.026_b0015) 2000; 3
Chen (10.1016/j.measurement.2017.03.026_b0075) 2012; 121
White (10.1016/j.measurement.2017.03.026_b0105) 2010; 2
Jalayer (10.1016/j.measurement.2017.03.026_b0030) 2014; 53
Landa (10.1016/j.measurement.2017.03.026_b0025) 2014; 12
Khalilikhah (10.1016/j.measurement.2017.03.026_b0040) 2015; 75
Goyer (10.1016/j.measurement.2017.03.026_b0050) 1963; 44
Doneus (10.1016/j.measurement.2017.03.026_b0080) 2013; 40
Polat (10.1016/j.measurement.2017.03.026_b0070) 2015; 75
10.1016/j.measurement.2017.03.026_b0035
Xiong (10.1016/j.measurement.2017.03.026_b0045) 2004
Puente (10.1016/j.measurement.2017.03.026_b0090) 2014; 47
10.1016/j.measurement.2017.03.026_b0100
10.1016/j.measurement.2017.03.026_b0055
10.1016/j.measurement.2017.03.026_b0110
10.1016/j.measurement.2017.03.026_b0010
10.1016/j.measurement.2017.03.026_b0065
Díaz-Vilariño (10.1016/j.measurement.2017.03.026_b0095) 2015; 73
10.1016/j.measurement.2017.03.026_b0005
References_xml – volume: 121
  start-page: 108
  year: 2012
  end-page: 117
  ident: b0075
  article-title: Integration of airborne lidar and vegetation types derived from aerial photography for mapping aboveground live biomass
  publication-title: Rem. Sens. Environ.
– reference: W. Uddin, E. Al-Turk, Airborne LiDAR digital terrain mapping for transportation infrastructure asset management, 5th International Conference on Managing Pavements, 2001.
– reference: L. Zhao, Z. Lai, Y. Li, Y. Xue, M. Liao, Z. Wu, P. Liu, X. Liu, Application and analysis of airborne LiDAR technology in topographic survey of tidal flat and coastal zone, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXVII, 2008.
– reference: H. Zhou, M. Jalayer, J. Gong, S. Hu, M. Grinter, Investigation of methods and approaches for collecting and recording highway inventory data, FHWA-ICT-13-022, 2013.
– volume: 12
  start-page: 363
  year: 2014
  end-page: 370
  ident: b0025
  article-title: Automatic road inventory using LiDAR
  publication-title: Procedia Econ. Finance
– volume: 40
  start-page: 2136
  year: 2013
  end-page: 2151
  ident: b0080
  article-title: Airborne laser bathymetry-detecting and recording submerged archaeological sites from the air
  publication-title: J. Archaeol. Sci.
– reference: M. Jalayer, S. Hu, H. Zhou, R.E. Turochy, An Assessment of the Highway Inventory Data Collection Method Using Photo/Video Logging, Transportation Research Board 94th Annual Meeting. No. 15-2403, 2015.
– volume: 44
  start-page: 11
  year: 2011
  end-page: 17
  ident: b0085
  article-title: Metrological assessment of LIDAR signals in water
  publication-title: Measurement
– year: 2004
  ident: b0045
  article-title: Highway Feature and Characteristics Database Development using Commercial Remote Sensing Technologies, Combined with Mobile Mapping, GIS and GPS
– volume: 47
  start-page: 569
  year: 2014
  end-page: 575
  ident: b0090
  article-title: Automatic detection of road tunnel luminaires using a mobile LiDAR system
  publication-title: Measurement
– volume: 75
  start-page: 147
  year: 2015
  end-page: 160
  ident: b0040
  article-title: Can daytime digital imaging be used for traffic sign retroreflectivity compliance?
  publication-title: Measurement
– reference: D.A. Grejner-Brzezinska, C. Toth, M. McCord, Airborne LiDAR: A new source of traffic flow data, The Ohio State University, Department of Civil & Environmental Engineering & Geodetic Science Center for Mapping, 2005.
– reference: Asset Management Primer, U.S. Department of Transportation Federal Highway Administration Office of Asset Management, 1999.
– reference: U.S. Geological Survey National Geospatial Program Lidar Guidelines and Base Specification, Version 13 – ILMF, 2010.
– volume: 73
  start-page: 544
  year: 2015
  end-page: 550
  ident: b0095
  article-title: Automatic LiDAR-based lighting inventory in buildings
  publication-title: Measurement
– volume: 79
  start-page: 301
  year: 2004
  end-page: 312
  ident: b0020
  article-title: Mobile digital cameras for as-built surveys of roadside features
  publication-title: Photogramm. Eng. Rem. Sens.
– volume: 53
  start-page: 73
  year: 2014
  end-page: 92
  ident: b0030
  article-title: A comprehensive assessment of highway inventory data collection methods
  publication-title: J. Transport. Res. Forum.
– volume: 2
  start-page: 1120
  year: 2010
  end-page: 1141
  ident: b0105
  article-title: Forest roads mapped using LiDAR in steep forested terrain
  publication-title: Rem. Sens.
– volume: 75
  start-page: 50
  year: 2015
  end-page: 56
  ident: b0070
  article-title: An investigation of DEM generation process based on LiDAR data filtering, decimation, and interpolation methods for an urban area
  publication-title: Measurement
– volume: 66
  start-page: 908
  year: 2000
  end-page: 914
  ident: b0060
  article-title: Wide-area topographic mapping and applications using airborne light detection and ranging (LiDAR) technology
  publication-title: Photogram. Eng. Rem. Sens.
– volume: 3
  start-page: 33
  year: 2000
  end-page: 46
  ident: b0015
  article-title: New and existing roadway inventory data acquisition methods
  publication-title: J. Transport. Stat.
– volume: 44
  start-page: 564
  year: 1963
  end-page: 575
  ident: b0050
  article-title: The laser and its application to meteorology
  publication-title: Bull. Am. Meteor. Soc.
– volume: 66
  start-page: 908
  year: 2000
  ident: 10.1016/j.measurement.2017.03.026_b0060
  article-title: Wide-area topographic mapping and applications using airborne light detection and ranging (LiDAR) technology
  publication-title: Photogram. Eng. Rem. Sens.
– volume: 53
  start-page: 73
  issue: 2
  year: 2014
  ident: 10.1016/j.measurement.2017.03.026_b0030
  article-title: A comprehensive assessment of highway inventory data collection methods
  publication-title: J. Transport. Res. Forum.
– volume: 44
  start-page: 564
  issue: 9
  year: 1963
  ident: 10.1016/j.measurement.2017.03.026_b0050
  article-title: The laser and its application to meteorology
  publication-title: Bull. Am. Meteor. Soc.
  doi: 10.1175/1520-0477-44.9.564
– ident: 10.1016/j.measurement.2017.03.026_b0100
– ident: 10.1016/j.measurement.2017.03.026_b0035
– volume: 40
  start-page: 2136
  year: 2013
  ident: 10.1016/j.measurement.2017.03.026_b0080
  article-title: Airborne laser bathymetry-detecting and recording submerged archaeological sites from the air
  publication-title: J. Archaeol. Sci.
  doi: 10.1016/j.jas.2012.12.021
– ident: 10.1016/j.measurement.2017.03.026_b0065
– volume: 44
  start-page: 11
  issue: 1
  year: 2011
  ident: 10.1016/j.measurement.2017.03.026_b0085
  article-title: Metrological assessment of LIDAR signals in water
  publication-title: Measurement
  doi: 10.1016/j.measurement.2010.08.010
– volume: 73
  start-page: 544
  year: 2015
  ident: 10.1016/j.measurement.2017.03.026_b0095
  article-title: Automatic LiDAR-based lighting inventory in buildings
  publication-title: Measurement
  doi: 10.1016/j.measurement.2015.06.009
– volume: 121
  start-page: 108
  year: 2012
  ident: 10.1016/j.measurement.2017.03.026_b0075
  article-title: Integration of airborne lidar and vegetation types derived from aerial photography for mapping aboveground live biomass
  publication-title: Rem. Sens. Environ.
  doi: 10.1016/j.rse.2012.01.021
– ident: 10.1016/j.measurement.2017.03.026_b0005
– volume: 75
  start-page: 50
  year: 2015
  ident: 10.1016/j.measurement.2017.03.026_b0070
  article-title: An investigation of DEM generation process based on LiDAR data filtering, decimation, and interpolation methods for an urban area
  publication-title: Measurement
  doi: 10.1016/j.measurement.2015.08.008
– ident: 10.1016/j.measurement.2017.03.026_b0110
– volume: 79
  start-page: 301
  issue: 3
  year: 2004
  ident: 10.1016/j.measurement.2017.03.026_b0020
  article-title: Mobile digital cameras for as-built surveys of roadside features
  publication-title: Photogramm. Eng. Rem. Sens.
  doi: 10.14358/PERS.70.3.301
– volume: 3
  start-page: 33
  year: 2000
  ident: 10.1016/j.measurement.2017.03.026_b0015
  article-title: New and existing roadway inventory data acquisition methods
  publication-title: J. Transport. Stat.
– ident: 10.1016/j.measurement.2017.03.026_b0055
– volume: 75
  start-page: 147
  year: 2015
  ident: 10.1016/j.measurement.2017.03.026_b0040
  article-title: Can daytime digital imaging be used for traffic sign retroreflectivity compliance?
  publication-title: Measurement
  doi: 10.1016/j.measurement.2015.07.049
– year: 2004
  ident: 10.1016/j.measurement.2017.03.026_b0045
– volume: 12
  start-page: 363
  year: 2014
  ident: 10.1016/j.measurement.2017.03.026_b0025
  article-title: Automatic road inventory using LiDAR
  publication-title: Procedia Econ. Finance
  doi: 10.1016/S2212-5671(14)00356-6
– volume: 47
  start-page: 569
  year: 2014
  ident: 10.1016/j.measurement.2017.03.026_b0090
  article-title: Automatic detection of road tunnel luminaires using a mobile LiDAR system
  publication-title: Measurement
  doi: 10.1016/j.measurement.2013.09.044
– volume: 2
  start-page: 1120
  year: 2010
  ident: 10.1016/j.measurement.2017.03.026_b0105
  article-title: Forest roads mapped using LiDAR in steep forested terrain
  publication-title: Rem. Sens.
  doi: 10.3390/rs2041120
– ident: 10.1016/j.measurement.2017.03.026_b0010
SSID ssj0006396
Score 2.2704427
Snippet •A field experiment is conducted to collect airborne LiDAR data of four highway sections in Utah.•A GIS-based algorithm is developed to process raw LiDAR point...
Highway assets, including traffic signs and signals, light poles, guardrails, and culverts, are essential components of transportation networks. They guide,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 132
SubjectTerms Airborne LiDAR
ArcGIS-based workflow
Asset management
Culverts
Data acquisition
Data collection
Field experiment
Guide rails
Highway inventory
Highway transportation
Inventory
Lidar
Roads & highways
Traffic control
Traffic management
Traffic signs
Transportation networks
Utility poles
Workflow
Title Updating highway asset inventory using airborne LiDAR
URI https://dx.doi.org/10.1016/j.measurement.2017.03.026
https://www.proquest.com/docview/2061944631
Volume 104
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-412X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006396
  issn: 0263-2241
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Science Direct Journals
  customDbUrl:
  eissn: 1873-412X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006396
  issn: 0263-2241
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1873-412X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006396
  issn: 0263-2241
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-412X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006396
  issn: 0263-2241
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-412X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006396
  issn: 0263-2241
  databaseCode: AKRWK
  dateStart: 19830101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4YjEYPRlEjiqQmXiu0XfpIvBCU4IuDQsJts-3ukhotBPDAxd_uTB-CxgOJxz62aWZnZ76dfPMtwKUKfEu7njApt5pM2cwMpRCm8LSMpOdEfkrGfOq53QG7HzaHG9AuemGIVpnH_iymp9E6v1PPrVmfxHH9pUFS45iALHJSDLLUwc48OsXg6nNJ88AM7GZ1Fsekt7fhYsnxel_W4Yjl5aV6p6Sz8HeO-hWt0xTU2Ye9HDsarez3DmBDJWXYXVEULMNWyuiMZofQHEyocyEZGakisVgYCJPV3IhTlvl4ujCI8j4yRDxFN0iU8RjftJ6PoN-57be7Zn5Gghk5LJib0mVSMEv4tsCtQeAgPEEMF8rAF5ZtKTfEnOwpXNQEBRV1SnsybOImRvvK1a5zDKVknKgTMPxIC0vbNu7fFJORCrUTKIQrWupQWpFdAb8wCo9y_XA6xuKNF0SxV75iT0725A2Hoz0rYH8PnWQiGusMui4sz394BMdgv87wajFbPF-WM3xORRvmOtbp_75-Bjt0lfF2q1CaTz_UOaKTeVhL3a8Gm627h27vC3Jm5Y0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4gxtfBKGpEUWvitULb7SvxQlCDChwUEm6bbXeX1GghUA9c_O3O9iFoPJB47XaaZnZ25pvNt98CXAnfM6TjMl3VVp0Ik-gBZ0xnruQhd63QS8mY3Z7THpDHoT0sQas4C6NolXnuz3J6mq3zJ_Xcm_VJFNVfGkpqHAuQoYIUk-warBPbdFUHdv254HlgCXayjRZLV69vwuWC5PW-2IhTNC83FTxVQgt_F6lf6TqtQfd7sJuDR62Z_d8-lERcgZ0lScEKbKSUznB2APZgoo4uxCMtlSRmcw1xski0KKWZj6dzTXHeRxqLphgHsdA60W3z-RD693f9VlvPL0nQQ4v4ic4dwhkxmGcy7A18C_EJgriA-x4zTEM4ARZlV-CqVlhQqKPSLg9s7GKkJxzpWEdQjsexOAbNCyUzpGliAycID0UgLV8gXpFcBtwIzSp4hVNomAuIq3ss3mjBFHulS_6kyp-0YVH0ZxXMb9NJpqKxitFN4Xn6IyQoZvtVzGvFbNF8Xc5wXO3aEMcyTv739QvYave7Hdp56D2dwrYayUi8NSgn0w9xhlAlCc7TUPwC1PnnIg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Updating+highway+asset+inventory+using+airborne+LiDAR&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=He%2C+Yi&rft.au=Song%2C+Ziqi&rft.au=Liu%2C+Zhaocai&rft.date=2017-07-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0263-2241&rft.eissn=1873-412X&rft.volume=104&rft.spage=132&rft_id=info:doi/10.1016%2Fj.measurement.2017.03.026&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon