Two path gland segmentation algorithm of colon pathological image based on local semantic guidance

Colonic adenocarcinoma is a disease severely endangering human life caused by mucosal epidermal carcinogenesis. The segmentation of potentially cancerous glands is the key in the detection and diagnosis of colonic adenocarcinoma. The appearance of cancerous tissue is different in gland segmentation...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 27; no. 4; pp. 1 - 8
Main Authors Ding, Songtao, Wang, Hongyu, Lu, Hu, Nappi, Michele, Wan, Shaohua
Format Journal Article
LanguageEnglish
Published United States IEEE 01.04.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2194
2168-2208
2168-2208
DOI10.1109/JBHI.2022.3207874

Cover

Abstract Colonic adenocarcinoma is a disease severely endangering human life caused by mucosal epidermal carcinogenesis. The segmentation of potentially cancerous glands is the key in the detection and diagnosis of colonic adenocarcinoma. The appearance of cancerous tissue is different in gland segmentation in colon pathological images, and it is impossible to accurately segment the changes of glands from benign to malignant using a single network. Given these issues, a two-path gland segmentation algorithm of colon pathological image based on local semantic guidance is proposed in this paper. The improved candidate region search algorithm is adopted to expand the original image data set and generate sub-datasets sensitive to specific features. Then, the semantic feature-guided model is employed to extract the local adenocarcinoma features and acts on the backbone network together with context feature extraction based on the attention mechanism. In this way, a larger receptive field and more local feature information are obtained, the learning ability of the network to the morphological features of glands is enhanced, and the performance of automatic gland segmentation is finally improved. The algorithm is verified on Warwick Qu-Dataset. Compared with the current popular segmentation algorithms, our algorithm has good performance in Dice coefficient, F1 score, and Hausdorff distance on different types of test sets.
AbstractList Colonic adenocarcinoma is a disease severely endangering human life caused by mucosal epidermal carcinogenesis. The segmentation of potentially cancerous glands is the key in the detection and diagnosis of colonic adenocarcinoma. The appearance of cancerous tissue is different in gland segmentation in colon pathological images, and it is impossible to accurately segment the changes of glands from benign to malignant using a single network. Given these issues, a two-path gland segmentation algorithm of colon pathological image based on local semantic guidance is proposed in this paper. The improved candidate region search algorithm is adopted to expand the original image data set and generate sub-datasets sensitive to specific features. Then, the semantic feature-guided model is employed to extract the local adenocarcinoma features and acts on the backbone network together with context feature extraction based on the attention mechanism. In this way, a larger receptive field and more local feature information are obtained, the learning ability of the network to the morphological features of glands is enhanced, and the performance of automatic gland segmentation is finally improved. The algorithm is verified on Warwick Qu-Dataset. Compared with the current popular segmentation algorithms, our algorithm has good performance in Dice coefficient, F1 score, and Hausdorff distance on different types of test sets.
Colonic adenocarcinoma is a disease severely endangering human life caused by mucosal epidermal carcinogenesis. The segmentation of potentially cancerous glands is the key in the detection and diagnosis of colonic adenocarcinoma. The appearance of cancerous tissue is different in gland segmentation in colon pathological images, and it is impossible to accurately segment the changes of glands from benign to malignant using a single network. Given these issues, a two-path gland segmentation algorithm of colon pathological image based on local semantic guidance is proposed in this paper. The improved candidate region search algorithm is adopted to expand the original image data set and generate sub-datasets sensitive to specific features. Then, the semantic feature-guided model is employed to extract the local adenocarcinoma features and acts on the backbone network together with context feature extraction based on the attention mechanism. In this way, a larger receptive field and more local feature information are obtained, the learning ability of the network to the morphological features of glands is enhanced, and the performance of automatic gland segmentation is finally improved. The algorithm is verified on Warwick Qu-Dataset. Compared with the current popular segmentation algorithms, our algorithm has good performance in Dice coefficient, F1 score, and Hausdorff distance on different types of test sets.Colonic adenocarcinoma is a disease severely endangering human life caused by mucosal epidermal carcinogenesis. The segmentation of potentially cancerous glands is the key in the detection and diagnosis of colonic adenocarcinoma. The appearance of cancerous tissue is different in gland segmentation in colon pathological images, and it is impossible to accurately segment the changes of glands from benign to malignant using a single network. Given these issues, a two-path gland segmentation algorithm of colon pathological image based on local semantic guidance is proposed in this paper. The improved candidate region search algorithm is adopted to expand the original image data set and generate sub-datasets sensitive to specific features. Then, the semantic feature-guided model is employed to extract the local adenocarcinoma features and acts on the backbone network together with context feature extraction based on the attention mechanism. In this way, a larger receptive field and more local feature information are obtained, the learning ability of the network to the morphological features of glands is enhanced, and the performance of automatic gland segmentation is finally improved. The algorithm is verified on Warwick Qu-Dataset. Compared with the current popular segmentation algorithms, our algorithm has good performance in Dice coefficient, F1 score, and Hausdorff distance on different types of test sets.
Author Ding, Songtao
Nappi, Michele
Wang, Hongyu
Lu, Hu
Wan, Shaohua
Author_xml – sequence: 1
  givenname: Songtao
  surname: Ding
  fullname: Ding, Songtao
  organization: School of Computer Science and Technology and Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing, Xi'an University of Posts and Telecommunications, Xi'an, Shaanxi, China
– sequence: 2
  givenname: Hongyu
  orcidid: 0000-0002-4556-9546
  surname: Wang
  fullname: Wang, Hongyu
  organization: School of Computer Science and Technology and Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing, Xi'an University of Posts and Telecommunications, Xi'an, Shaanxi, China
– sequence: 3
  givenname: Hu
  surname: Lu
  fullname: Lu, Hu
  organization: School of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang, China
– sequence: 4
  givenname: Michele
  orcidid: 0000-0002-2517-2867
  surname: Nappi
  fullname: Nappi, Michele
  organization: University of Salerno, Fisciano, Salerno, Italy
– sequence: 5
  givenname: Shaohua
  orcidid: 0000-0001-7013-9081
  surname: Wan
  fullname: Wan, Shaohua
  organization: Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36126032$$D View this record in MEDLINE/PubMed
BookMark eNp9kctOwzAQRS0E4tkPQEjIEhs2LX7FiZdQ8RQSG1hHE2eaukriEidC_D2OWrpggTceXZ9re-aekP3Wt0jIOWczzpm5ebl7ep4JJsRMCpZmqdojx4LrbCoEy_Z_a27UEZmEsGJxZVEy-pAcSc2FZlIck-L9y9M19Eta1dCWNGDVYNtD73xLoa585_plQ_2CWl9HaURjUTkLNXUNVEgLCFjSeFb7UQzYQNs7S6vBldBaPCMHC6gDTrb7Kfl4uH-fP01f3x6f57evUyuV6ael0qkqMMksU9yqBDCVIBQKq0rJClMUC6NkaYzVJtGFNgI0UwAcdJZIZuUpud7cu-7854ChzxsXLNaxL_RDyEXKNcuM0WlEr_6gKz90bfxdpEySMcnTkbrcUkPRYJmvu9hw953_Ti8CfAPYzofQ4WKHcJaPIeVjSPkYUr4NKXrSPx7rNuPuO3D1v86LjdMh4u4lExPlissfONCdVg
CODEN IJBHA9
CitedBy_id crossref_primary_10_1080_21681163_2023_2266048
crossref_primary_10_1049_ipr2_12772
crossref_primary_10_1007_s11548_023_02857_7
crossref_primary_10_1016_j_eswa_2024_125527
crossref_primary_10_1016_j_inffus_2023_102016
crossref_primary_10_1007_s10586_022_03773_2
crossref_primary_10_1080_21681163_2023_2296630
crossref_primary_10_1080_21681163_2023_2297983
crossref_primary_10_1002_ima_23179
crossref_primary_10_1016_j_bspc_2023_105566
crossref_primary_10_1016_j_comcom_2023_09_032
crossref_primary_10_1016_j_engappai_2024_108335
crossref_primary_10_1109_JIOT_2023_3277555
crossref_primary_10_1007_s00500_023_07816_7
crossref_primary_10_1080_03772063_2023_2297382
crossref_primary_10_1080_21681163_2023_2258998
crossref_primary_10_1016_j_optlastec_2024_112385
crossref_primary_10_2174_1573405620666230511093259
crossref_primary_10_1049_ipr2_12878
crossref_primary_10_1038_s41598_022_27210_x
crossref_primary_10_3390_electronics13173361
crossref_primary_10_1038_s41598_023_40581_z
crossref_primary_10_1016_j_modpat_2023_100331
crossref_primary_10_1109_ACCESS_2024_3490799
Cites_doi 10.1007/978-3-319-60964-5_61
10.1109/TMI.2014.2336883
10.48550/arXiv.1802.02611
10.1109/TPAMI.2017.2699184
10.1007/s00521-021-06546-x
10.1016/j.bspc.2021.103154
10.1109/TMI.2020.3035253
10.1111/jop.13042
10.1038/s41591-021-01343-4
10.1109/ICIP.2016.7533135
10.1109/EMBC.2019.8856776
10.1007/978-3-030-00889-5_1
10.1007/978-3-319-24574-4_28
10.1007/978-3-319-46723-8_57
10.1109/CVPR.2017.660
10.1109/TII.2021.3093905
10.1145/3554737
10.1109/CVPR.2016.273
10.1016/j.media.2016.08.008
10.1007/s00521-022-07054-2
10.1109/WACV.2018.00163
10.1109/JBHI.2020.2986926
10.1016/j.bbcan.2020.188452
10.1016/j.media.2018.12.001
10.1016/j.media.2009.09.001
10.3389/fcomp.2021.613981
10.1016/j.bspc.2019.101776
10.1109/CVPR.2017.189
10.1016/j.cmpb.2021.106047
10.1016/j.lfs.2012.03.039
10.1109/CVPR.2015.7298965
10.1109/TBME.2016.2603119
10.1111/j.1365-2818.2005.01531.x
10.1109/CVPR.2016.90
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/JBHI.2022.3207874
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE
Materials Research Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2168-2208
EndPage 8
ExternalDocumentID 36126032
10_1109_JBHI_2022_3207874
9896141
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62001380
GroupedDBID 0R~
4.4
6IF
6IH
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
6IL
ADZIZ
CGR
CHZPO
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c349t-d4674be58c041c45ae73a24e2c4d30b9bbf943d99c6956b692a604aa1a68530c3
IEDL.DBID RIE
ISSN 2168-2194
2168-2208
IngestDate Sun Sep 28 00:26:44 EDT 2025
Mon Jun 30 05:43:33 EDT 2025
Thu Jan 02 22:53:02 EST 2025
Thu Apr 24 22:59:52 EDT 2025
Wed Oct 01 03:40:04 EDT 2025
Wed Aug 27 02:29:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-d4674be58c041c45ae73a24e2c4d30b9bbf943d99c6956b692a604aa1a68530c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4556-9546
0000-0001-7013-9081
0000-0002-2517-2867
PMID 36126032
PQID 2795803177
PQPubID 85417
PageCount 8
ParticipantIDs ieee_primary_9896141
crossref_primary_10_1109_JBHI_2022_3207874
proquest_miscellaneous_2716089967
crossref_citationtrail_10_1109_JBHI_2022_3207874
pubmed_primary_36126032
proquest_journals_2795803177
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE journal of biomedical and health informatics
PublicationTitleAbbrev JBHI
PublicationTitleAlternate IEEE J Biomed Health Inform
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref2
Safaa (ref7) 2013
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
Pinckaers (ref32) 2019
ref29
ref8
ref9
ref4
ref3
ref6
Oktay (ref1) 2018
ref5
References_xml – year: 2019
  ident: ref32
  article-title: Neural ordinary differential equations for semantic segmentation of individual colon glands
– ident: ref21
  doi: 10.1007/978-3-319-60964-5_61
– ident: ref13
  doi: 10.1109/TMI.2014.2336883
– ident: ref26
  doi: 10.48550/arXiv.1802.02611
– ident: ref28
  doi: 10.1109/TPAMI.2017.2699184
– ident: ref15
  doi: 10.1007/s00521-021-06546-x
– ident: ref16
  doi: 10.1016/j.bspc.2021.103154
– ident: ref24
  doi: 10.1109/TMI.2020.3035253
– ident: ref6
  doi: 10.1111/jop.13042
– ident: ref3
  doi: 10.1038/s41591-021-01343-4
– ident: ref12
  doi: 10.1109/ICIP.2016.7533135
– ident: ref33
  doi: 10.1109/EMBC.2019.8856776
– ident: ref36
  doi: 10.1007/978-3-030-00889-5_1
– ident: ref35
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref20
  doi: 10.1007/978-3-319-46723-8_57
– ident: ref29
  doi: 10.1109/CVPR.2017.660
– ident: ref4
  doi: 10.1109/TII.2021.3093905
– ident: ref5
  doi: 10.1145/3554737
– ident: ref19
  doi: 10.1109/CVPR.2016.273
– ident: ref31
  doi: 10.1016/j.media.2016.08.008
– ident: ref18
  doi: 10.1007/s00521-022-07054-2
– year: 2018
  ident: ref1
  article-title: Attention U-Net: Learning where to look for the pancreas
– ident: ref27
  doi: 10.1109/WACV.2018.00163
– ident: ref23
  doi: 10.1109/JBHI.2020.2986926
– ident: ref17
  doi: 10.1016/j.bbcan.2020.188452
– ident: ref22
  doi: 10.1016/j.media.2018.12.001
– ident: ref11
  doi: 10.1016/j.media.2009.09.001
– ident: ref37
  doi: 10.3389/fcomp.2021.613981
– ident: ref14
  doi: 10.1016/j.bspc.2019.101776
– ident: ref30
  doi: 10.1109/CVPR.2017.189
– ident: ref9
  doi: 10.1016/j.cmpb.2021.106047
– ident: ref2
  doi: 10.1016/j.lfs.2012.03.039
– ident: ref34
  doi: 10.1109/CVPR.2015.7298965
– ident: ref8
  doi: 10.1109/TBME.2016.2603119
– start-page: 1
  volume-title: Proc. IEEE Jordan Conf. Appl. Elect. Eng. Comput. Technol.
  year: 2013
  ident: ref7
  article-title: Histopathological prostate tissue glands segmentation for automated diagnosis
– ident: ref10
  doi: 10.1111/j.1365-2818.2005.01531.x
– ident: ref25
  doi: 10.1109/CVPR.2016.90
SSID ssj0000816896
Score 2.5477836
Snippet Colonic adenocarcinoma is a disease severely endangering human life caused by mucosal epidermal carcinogenesis. The segmentation of potentially cancerous...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Adenocarcinoma
Algorithms
Cancer
Candidate region
Carcinogenesis
Carcinogens
Colon
Colon - diagnostic imaging
Colonic adenocarcinoma
Computer networks
Datasets
Feature extraction
Gland segmentation
Glands
Humans
Image processing
Image segmentation
Medical imaging
Metric space
Pathology
Receptive field
Search algorithms
Semantics
Semantics guided
Shape
Title Two path gland segmentation algorithm of colon pathological image based on local semantic guidance
URI https://ieeexplore.ieee.org/document/9896141
https://www.ncbi.nlm.nih.gov/pubmed/36126032
https://www.proquest.com/docview/2795803177
https://www.proquest.com/docview/2716089967
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2208
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816896
  issn: 2168-2194
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VHhAXXuWxUJCROCGydWzHjo-AqJZKy6mVeov8yrKim6A2ERK_nrHjjQQCxC2SJ85jxv5mPPZ8AK-lLdvKK1co73UhrHaF8aUsvOM1AipjrY2B4vqzXF2Is8vq8gDezmdhQghp81lYxsuUy_e9G-NS2YmuNaIJxjq3VC2ns1rzekoikEh0XAwvChyIIicxS6pPzt6vPmEwyNiSMwRFJX6BocSr8ncXM0HN6T1Y719y2mHydTkOdul-_Fa_8X-_4j7czT4neTcZyQM4CN1DuL3OWfUjsOffexKpiUki9CA3YbPLR5I6Yq42_fV2-LIjfUtiiesuie7nTLLd4YxEIhh6gm0JG7GHHWps68hm3PpoV4_g4vTj-YdVkbkXCseFHgofWUhsqGpHRelEZYLihonAnPCcWm1tqwX3WjuJEZaVmhlJhTGlkegAUMcfw2HXd-EpEC4xCrKtosIZUYlUMU9ZxmwdHK3qdgF0r4rG5cLkkR_jqkkBCtVN1F4Ttddk7S3gzXzLt6kqx7-Ej6ISZsH8_xdwvNd3k8ftTcOUrmqc55RawKu5GUdcTKOYLvRjlCllTJZKlHky2cncN0f7lpSzZ39-5nO4E-nqp50_x3A4XI_hBTo1g32ZrPknixbxGA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqVgIuFCiPpQWMxAmRreNnfAREtS3dnrZSb5Ff2a7oJlWbqBK_vmMnGwkEiFskT5zHjP3NeOz5EPogbV4Jr1ymvNcZt9plxucy844VAKiUVjYGivMzOTvnJxfiYgt9Gs_ChBDS5rMwjZcpl-8b18WlskNdaEATiHV2BOdc9Ke1xhWVRCGRCLkoXGQwFPmQxsyJPjz5MjuGcJDSKaMAi4r_AkSJWeXvTmYCm6NdNN-8Zr_H5Me0a-3U_fytguP_fscT9HjwOvHn3kyeoq1QP0MP5kNefQ_ZxV2DIzkxTpQe-DYs18OhpBqbq2Vzs2ov17ipcCxyXSfRzayJV2uYk3CEQ4-hLaEj9LAGna0cXnYrHy3rOTo_-rb4OssG9oXMMa7bzEceEhtE4QjPHRcmKGYoD9Rxz4jV1laaM6-1kxBjWampkYQbkxsJLgBx7AXarps6vEKYSYiDbKUId4YLnmrmKUupLYIjoqgmiGxUUbqhNHlkyLgqU4hCdBm1V0btlYP2JujjeMt1X5fjX8J7UQmj4PD_J-hgo-9yGLm3JVVaFDDTKTVB78dmGHMxkWLq0HRRJpcxXSpB5mVvJ2PfDCxcEkZf__mZ79DD2WJ-Wp4en33fR48ieX2_D-gAbbc3XXgDLk5r3ybLvgdRKPRl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two+Path+Gland+Segmentation+Algorithm+of+Colon+Pathological+Image+Based+on+Local+Semantic+Guidance&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Ding%2C+Songtao&rft.au=Wang%2C+Hongyu&rft.au=Hu%2C+Lu&rft.au=Nappi%2C+Michele&rft.date=2023-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2168-2194&rft.eissn=2168-2208&rft.volume=27&rft.issue=4&rft.spage=1701&rft_id=info:doi/10.1109%2FJBHI.2022.3207874&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon