Two path gland segmentation algorithm of colon pathological image based on local semantic guidance
Colonic adenocarcinoma is a disease severely endangering human life caused by mucosal epidermal carcinogenesis. The segmentation of potentially cancerous glands is the key in the detection and diagnosis of colonic adenocarcinoma. The appearance of cancerous tissue is different in gland segmentation...
Saved in:
| Published in | IEEE journal of biomedical and health informatics Vol. 27; no. 4; pp. 1 - 8 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.04.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2168-2194 2168-2208 2168-2208 |
| DOI | 10.1109/JBHI.2022.3207874 |
Cover
| Abstract | Colonic adenocarcinoma is a disease severely endangering human life caused by mucosal epidermal carcinogenesis. The segmentation of potentially cancerous glands is the key in the detection and diagnosis of colonic adenocarcinoma. The appearance of cancerous tissue is different in gland segmentation in colon pathological images, and it is impossible to accurately segment the changes of glands from benign to malignant using a single network. Given these issues, a two-path gland segmentation algorithm of colon pathological image based on local semantic guidance is proposed in this paper. The improved candidate region search algorithm is adopted to expand the original image data set and generate sub-datasets sensitive to specific features. Then, the semantic feature-guided model is employed to extract the local adenocarcinoma features and acts on the backbone network together with context feature extraction based on the attention mechanism. In this way, a larger receptive field and more local feature information are obtained, the learning ability of the network to the morphological features of glands is enhanced, and the performance of automatic gland segmentation is finally improved. The algorithm is verified on Warwick Qu-Dataset. Compared with the current popular segmentation algorithms, our algorithm has good performance in Dice coefficient, F1 score, and Hausdorff distance on different types of test sets. |
|---|---|
| AbstractList | Colonic adenocarcinoma is a disease severely endangering human life caused by mucosal epidermal carcinogenesis. The segmentation of potentially cancerous glands is the key in the detection and diagnosis of colonic adenocarcinoma. The appearance of cancerous tissue is different in gland segmentation in colon pathological images, and it is impossible to accurately segment the changes of glands from benign to malignant using a single network. Given these issues, a two-path gland segmentation algorithm of colon pathological image based on local semantic guidance is proposed in this paper. The improved candidate region search algorithm is adopted to expand the original image data set and generate sub-datasets sensitive to specific features. Then, the semantic feature-guided model is employed to extract the local adenocarcinoma features and acts on the backbone network together with context feature extraction based on the attention mechanism. In this way, a larger receptive field and more local feature information are obtained, the learning ability of the network to the morphological features of glands is enhanced, and the performance of automatic gland segmentation is finally improved. The algorithm is verified on Warwick Qu-Dataset. Compared with the current popular segmentation algorithms, our algorithm has good performance in Dice coefficient, F1 score, and Hausdorff distance on different types of test sets. Colonic adenocarcinoma is a disease severely endangering human life caused by mucosal epidermal carcinogenesis. The segmentation of potentially cancerous glands is the key in the detection and diagnosis of colonic adenocarcinoma. The appearance of cancerous tissue is different in gland segmentation in colon pathological images, and it is impossible to accurately segment the changes of glands from benign to malignant using a single network. Given these issues, a two-path gland segmentation algorithm of colon pathological image based on local semantic guidance is proposed in this paper. The improved candidate region search algorithm is adopted to expand the original image data set and generate sub-datasets sensitive to specific features. Then, the semantic feature-guided model is employed to extract the local adenocarcinoma features and acts on the backbone network together with context feature extraction based on the attention mechanism. In this way, a larger receptive field and more local feature information are obtained, the learning ability of the network to the morphological features of glands is enhanced, and the performance of automatic gland segmentation is finally improved. The algorithm is verified on Warwick Qu-Dataset. Compared with the current popular segmentation algorithms, our algorithm has good performance in Dice coefficient, F1 score, and Hausdorff distance on different types of test sets.Colonic adenocarcinoma is a disease severely endangering human life caused by mucosal epidermal carcinogenesis. The segmentation of potentially cancerous glands is the key in the detection and diagnosis of colonic adenocarcinoma. The appearance of cancerous tissue is different in gland segmentation in colon pathological images, and it is impossible to accurately segment the changes of glands from benign to malignant using a single network. Given these issues, a two-path gland segmentation algorithm of colon pathological image based on local semantic guidance is proposed in this paper. The improved candidate region search algorithm is adopted to expand the original image data set and generate sub-datasets sensitive to specific features. Then, the semantic feature-guided model is employed to extract the local adenocarcinoma features and acts on the backbone network together with context feature extraction based on the attention mechanism. In this way, a larger receptive field and more local feature information are obtained, the learning ability of the network to the morphological features of glands is enhanced, and the performance of automatic gland segmentation is finally improved. The algorithm is verified on Warwick Qu-Dataset. Compared with the current popular segmentation algorithms, our algorithm has good performance in Dice coefficient, F1 score, and Hausdorff distance on different types of test sets. |
| Author | Ding, Songtao Nappi, Michele Wang, Hongyu Lu, Hu Wan, Shaohua |
| Author_xml | – sequence: 1 givenname: Songtao surname: Ding fullname: Ding, Songtao organization: School of Computer Science and Technology and Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing, Xi'an University of Posts and Telecommunications, Xi'an, Shaanxi, China – sequence: 2 givenname: Hongyu orcidid: 0000-0002-4556-9546 surname: Wang fullname: Wang, Hongyu organization: School of Computer Science and Technology and Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing, Xi'an University of Posts and Telecommunications, Xi'an, Shaanxi, China – sequence: 3 givenname: Hu surname: Lu fullname: Lu, Hu organization: School of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang, China – sequence: 4 givenname: Michele orcidid: 0000-0002-2517-2867 surname: Nappi fullname: Nappi, Michele organization: University of Salerno, Fisciano, Salerno, Italy – sequence: 5 givenname: Shaohua orcidid: 0000-0001-7013-9081 surname: Wan fullname: Wan, Shaohua organization: Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36126032$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kctOwzAQRS0E4tkPQEjIEhs2LX7FiZdQ8RQSG1hHE2eaukriEidC_D2OWrpggTceXZ9re-aekP3Wt0jIOWczzpm5ebl7ep4JJsRMCpZmqdojx4LrbCoEy_Z_a27UEZmEsGJxZVEy-pAcSc2FZlIck-L9y9M19Eta1dCWNGDVYNtD73xLoa585_plQ_2CWl9HaURjUTkLNXUNVEgLCFjSeFb7UQzYQNs7S6vBldBaPCMHC6gDTrb7Kfl4uH-fP01f3x6f57evUyuV6ael0qkqMMksU9yqBDCVIBQKq0rJClMUC6NkaYzVJtGFNgI0UwAcdJZIZuUpud7cu-7854ChzxsXLNaxL_RDyEXKNcuM0WlEr_6gKz90bfxdpEySMcnTkbrcUkPRYJmvu9hw953_Ti8CfAPYzofQ4WKHcJaPIeVjSPkYUr4NKXrSPx7rNuPuO3D1v86LjdMh4u4lExPlissfONCdVg |
| CODEN | IJBHA9 |
| CitedBy_id | crossref_primary_10_1080_21681163_2023_2266048 crossref_primary_10_1049_ipr2_12772 crossref_primary_10_1007_s11548_023_02857_7 crossref_primary_10_1016_j_eswa_2024_125527 crossref_primary_10_1016_j_inffus_2023_102016 crossref_primary_10_1007_s10586_022_03773_2 crossref_primary_10_1080_21681163_2023_2296630 crossref_primary_10_1080_21681163_2023_2297983 crossref_primary_10_1002_ima_23179 crossref_primary_10_1016_j_bspc_2023_105566 crossref_primary_10_1016_j_comcom_2023_09_032 crossref_primary_10_1016_j_engappai_2024_108335 crossref_primary_10_1109_JIOT_2023_3277555 crossref_primary_10_1007_s00500_023_07816_7 crossref_primary_10_1080_03772063_2023_2297382 crossref_primary_10_1080_21681163_2023_2258998 crossref_primary_10_1016_j_optlastec_2024_112385 crossref_primary_10_2174_1573405620666230511093259 crossref_primary_10_1049_ipr2_12878 crossref_primary_10_1038_s41598_022_27210_x crossref_primary_10_3390_electronics13173361 crossref_primary_10_1038_s41598_023_40581_z crossref_primary_10_1016_j_modpat_2023_100331 crossref_primary_10_1109_ACCESS_2024_3490799 |
| Cites_doi | 10.1007/978-3-319-60964-5_61 10.1109/TMI.2014.2336883 10.48550/arXiv.1802.02611 10.1109/TPAMI.2017.2699184 10.1007/s00521-021-06546-x 10.1016/j.bspc.2021.103154 10.1109/TMI.2020.3035253 10.1111/jop.13042 10.1038/s41591-021-01343-4 10.1109/ICIP.2016.7533135 10.1109/EMBC.2019.8856776 10.1007/978-3-030-00889-5_1 10.1007/978-3-319-24574-4_28 10.1007/978-3-319-46723-8_57 10.1109/CVPR.2017.660 10.1109/TII.2021.3093905 10.1145/3554737 10.1109/CVPR.2016.273 10.1016/j.media.2016.08.008 10.1007/s00521-022-07054-2 10.1109/WACV.2018.00163 10.1109/JBHI.2020.2986926 10.1016/j.bbcan.2020.188452 10.1016/j.media.2018.12.001 10.1016/j.media.2009.09.001 10.3389/fcomp.2021.613981 10.1016/j.bspc.2019.101776 10.1109/CVPR.2017.189 10.1016/j.cmpb.2021.106047 10.1016/j.lfs.2012.03.039 10.1109/CVPR.2015.7298965 10.1109/TBME.2016.2603119 10.1111/j.1365-2818.2005.01531.x 10.1109/CVPR.2016.90 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 |
| DOI | 10.1109/JBHI.2022.3207874 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Materials Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2168-2208 |
| EndPage | 8 |
| ExternalDocumentID | 36126032 10_1109_JBHI_2022_3207874 9896141 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62001380 |
| GroupedDBID | 0R~ 4.4 6IF 6IH 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION 6IL ADZIZ CGR CHZPO CUY CVF ECM EIF NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 |
| ID | FETCH-LOGICAL-c349t-d4674be58c041c45ae73a24e2c4d30b9bbf943d99c6956b692a604aa1a68530c3 |
| IEDL.DBID | RIE |
| ISSN | 2168-2194 2168-2208 |
| IngestDate | Sun Sep 28 00:26:44 EDT 2025 Mon Jun 30 05:43:33 EDT 2025 Thu Jan 02 22:53:02 EST 2025 Thu Apr 24 22:59:52 EDT 2025 Wed Oct 01 03:40:04 EDT 2025 Wed Aug 27 02:29:13 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c349t-d4674be58c041c45ae73a24e2c4d30b9bbf943d99c6956b692a604aa1a68530c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-4556-9546 0000-0001-7013-9081 0000-0002-2517-2867 |
| PMID | 36126032 |
| PQID | 2795803177 |
| PQPubID | 85417 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_9896141 crossref_primary_10_1109_JBHI_2022_3207874 proquest_miscellaneous_2716089967 crossref_citationtrail_10_1109_JBHI_2022_3207874 pubmed_primary_36126032 proquest_journals_2795803177 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-04-01 |
| PublicationDateYYYYMMDD | 2023-04-01 |
| PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE journal of biomedical and health informatics |
| PublicationTitleAbbrev | JBHI |
| PublicationTitleAlternate | IEEE J Biomed Health Inform |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref2 Safaa (ref7) 2013 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 Pinckaers (ref32) 2019 ref29 ref8 ref9 ref4 ref3 ref6 Oktay (ref1) 2018 ref5 |
| References_xml | – year: 2019 ident: ref32 article-title: Neural ordinary differential equations for semantic segmentation of individual colon glands – ident: ref21 doi: 10.1007/978-3-319-60964-5_61 – ident: ref13 doi: 10.1109/TMI.2014.2336883 – ident: ref26 doi: 10.48550/arXiv.1802.02611 – ident: ref28 doi: 10.1109/TPAMI.2017.2699184 – ident: ref15 doi: 10.1007/s00521-021-06546-x – ident: ref16 doi: 10.1016/j.bspc.2021.103154 – ident: ref24 doi: 10.1109/TMI.2020.3035253 – ident: ref6 doi: 10.1111/jop.13042 – ident: ref3 doi: 10.1038/s41591-021-01343-4 – ident: ref12 doi: 10.1109/ICIP.2016.7533135 – ident: ref33 doi: 10.1109/EMBC.2019.8856776 – ident: ref36 doi: 10.1007/978-3-030-00889-5_1 – ident: ref35 doi: 10.1007/978-3-319-24574-4_28 – ident: ref20 doi: 10.1007/978-3-319-46723-8_57 – ident: ref29 doi: 10.1109/CVPR.2017.660 – ident: ref4 doi: 10.1109/TII.2021.3093905 – ident: ref5 doi: 10.1145/3554737 – ident: ref19 doi: 10.1109/CVPR.2016.273 – ident: ref31 doi: 10.1016/j.media.2016.08.008 – ident: ref18 doi: 10.1007/s00521-022-07054-2 – year: 2018 ident: ref1 article-title: Attention U-Net: Learning where to look for the pancreas – ident: ref27 doi: 10.1109/WACV.2018.00163 – ident: ref23 doi: 10.1109/JBHI.2020.2986926 – ident: ref17 doi: 10.1016/j.bbcan.2020.188452 – ident: ref22 doi: 10.1016/j.media.2018.12.001 – ident: ref11 doi: 10.1016/j.media.2009.09.001 – ident: ref37 doi: 10.3389/fcomp.2021.613981 – ident: ref14 doi: 10.1016/j.bspc.2019.101776 – ident: ref30 doi: 10.1109/CVPR.2017.189 – ident: ref9 doi: 10.1016/j.cmpb.2021.106047 – ident: ref2 doi: 10.1016/j.lfs.2012.03.039 – ident: ref34 doi: 10.1109/CVPR.2015.7298965 – ident: ref8 doi: 10.1109/TBME.2016.2603119 – start-page: 1 volume-title: Proc. IEEE Jordan Conf. Appl. Elect. Eng. Comput. Technol. year: 2013 ident: ref7 article-title: Histopathological prostate tissue glands segmentation for automated diagnosis – ident: ref10 doi: 10.1111/j.1365-2818.2005.01531.x – ident: ref25 doi: 10.1109/CVPR.2016.90 |
| SSID | ssj0000816896 |
| Score | 2.5477836 |
| Snippet | Colonic adenocarcinoma is a disease severely endangering human life caused by mucosal epidermal carcinogenesis. The segmentation of potentially cancerous... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1 |
| SubjectTerms | Adenocarcinoma Algorithms Cancer Candidate region Carcinogenesis Carcinogens Colon Colon - diagnostic imaging Colonic adenocarcinoma Computer networks Datasets Feature extraction Gland segmentation Glands Humans Image processing Image segmentation Medical imaging Metric space Pathology Receptive field Search algorithms Semantics Semantics guided Shape |
| Title | Two path gland segmentation algorithm of colon pathological image based on local semantic guidance |
| URI | https://ieeexplore.ieee.org/document/9896141 https://www.ncbi.nlm.nih.gov/pubmed/36126032 https://www.proquest.com/docview/2795803177 https://www.proquest.com/docview/2716089967 |
| Volume | 27 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2168-2208 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816896 issn: 2168-2194 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VHhAXXuWxUJCROCGydWzHjo-AqJZKy6mVeov8yrKim6A2ERK_nrHjjQQCxC2SJ85jxv5mPPZ8AK-lLdvKK1co73UhrHaF8aUsvOM1AipjrY2B4vqzXF2Is8vq8gDezmdhQghp81lYxsuUy_e9G-NS2YmuNaIJxjq3VC2ns1rzekoikEh0XAwvChyIIicxS6pPzt6vPmEwyNiSMwRFJX6BocSr8ncXM0HN6T1Y719y2mHydTkOdul-_Fa_8X-_4j7czT4neTcZyQM4CN1DuL3OWfUjsOffexKpiUki9CA3YbPLR5I6Yq42_fV2-LIjfUtiiesuie7nTLLd4YxEIhh6gm0JG7GHHWps68hm3PpoV4_g4vTj-YdVkbkXCseFHgofWUhsqGpHRelEZYLihonAnPCcWm1tqwX3WjuJEZaVmhlJhTGlkegAUMcfw2HXd-EpEC4xCrKtosIZUYlUMU9ZxmwdHK3qdgF0r4rG5cLkkR_jqkkBCtVN1F4Ttddk7S3gzXzLt6kqx7-Ej6ISZsH8_xdwvNd3k8ftTcOUrmqc55RawKu5GUdcTKOYLvRjlCllTJZKlHky2cncN0f7lpSzZ39-5nO4E-nqp50_x3A4XI_hBTo1g32ZrPknixbxGA |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqVgIuFCiPpQWMxAmRreNnfAREtS3dnrZSb5Ff2a7oJlWbqBK_vmMnGwkEiFskT5zHjP3NeOz5EPogbV4Jr1ymvNcZt9plxucy844VAKiUVjYGivMzOTvnJxfiYgt9Gs_ChBDS5rMwjZcpl-8b18WlskNdaEATiHV2BOdc9Ke1xhWVRCGRCLkoXGQwFPmQxsyJPjz5MjuGcJDSKaMAi4r_AkSJWeXvTmYCm6NdNN-8Zr_H5Me0a-3U_fytguP_fscT9HjwOvHn3kyeoq1QP0MP5kNefQ_ZxV2DIzkxTpQe-DYs18OhpBqbq2Vzs2ov17ipcCxyXSfRzayJV2uYk3CEQ4-hLaEj9LAGna0cXnYrHy3rOTo_-rb4OssG9oXMMa7bzEceEhtE4QjPHRcmKGYoD9Rxz4jV1laaM6-1kxBjWampkYQbkxsJLgBx7AXarps6vEKYSYiDbKUId4YLnmrmKUupLYIjoqgmiGxUUbqhNHlkyLgqU4hCdBm1V0btlYP2JujjeMt1X5fjX8J7UQmj4PD_J-hgo-9yGLm3JVVaFDDTKTVB78dmGHMxkWLq0HRRJpcxXSpB5mVvJ2PfDCxcEkZf__mZ79DD2WJ-Wp4en33fR48ieX2_D-gAbbc3XXgDLk5r3ybLvgdRKPRl |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two+Path+Gland+Segmentation+Algorithm+of+Colon+Pathological+Image+Based+on+Local+Semantic+Guidance&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Ding%2C+Songtao&rft.au=Wang%2C+Hongyu&rft.au=Hu%2C+Lu&rft.au=Nappi%2C+Michele&rft.date=2023-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2168-2194&rft.eissn=2168-2208&rft.volume=27&rft.issue=4&rft.spage=1701&rft_id=info:doi/10.1109%2FJBHI.2022.3207874&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon |